WorldWideScience

Sample records for thaliana epidermal cells

  1. Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: An atomic force microscopy study

    Science.gov (United States)

    Fernandes, Anwesha N.; Chen, Xinyong; Scotchford, Colin A.; Walker, James; Wells, Darren M.; Roberts, Clive J.; Everitt, Nicola M.

    2012-02-01

    The knowledge of mechanical properties of root cell walls is vital to understand how these properties interact with relevant genetic and physiological processes to bring about growth. Expansion of cell walls is an essential component of growth, and the regulation of cell wall expansion is one of the ways in which the mechanics of growth is controlled, managed and directed. In this study, the inherent surface mechanical properties of living Arabidopsis thaliana whole-root epidermal cells were studied at the nanoscale using the technique of atomic force microscopy (AFM). A novel methodology was successfully developed to adapt AFM to live plant roots. Force-Indentation (F-I) experiments were conducted to investigate the mechanical properties along the length of the root. F-I curves for epidermal cells of roots were also generated by varying turgor pressure. The F-I curves displayed a variety of features due to the heterogeneity of the surface. Hysteresis is observed. Application of conventional models to living biological systems such as cell walls in nanometer regimes tends to increase error margins to a large extent. Hence information from the F-I curves were used in a preliminary semiquantitative analysis to infer material properties and calculate two parameters. The work done in the loading and unloading phases (hysteresis) of the force measurements were determined separately and were expressed in terms of “Index of Plasticity” (η), which characterized the elasticity properties of roots as a viscoelastic response. Scaling approaches were used to find the ratio of hardness to reduced modulus ((H)/(E*)).

  2. Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Osman Köse

    2015-03-01

    Full Text Available The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. In recent years, human induced pluripotent skin stem cells are produced from the epidermal cells such as keratinocytes, fibroblasts and melanocytes. These cells can be transdifferentiated to embriyonic stem cells. Human induced pluripotent stem cells have potential applications in cell replacement therapy and regenerative medicine. These cells provide a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. In this review, we aimed an overview of epidermal stem cells for better understanding their functions in the skin. Skin will be main organ for using the epidermal cells for regenerative medicine in near future.

  3. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells

    KAUST Repository

    Sauret-Güeto, Susanna

    2011-11-25

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 Blackwell Publishing Ltd.

  4. NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana.

    Science.gov (United States)

    Motose, Hiroyasu; Hamada, Takahiro; Yoshimoto, Kaori; Murata, Takashi; Hasebe, Mitsuyasu; Watanabe, Yuichiro; Hashimoto, Takashi; Sakai, Tatsuya; Takahashi, Taku

    2011-09-01

    NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates β-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of β-tubulins. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  5. Epidermal Stem Cells in Orthopaedic Regenerative Medicine

    Science.gov (United States)

    Li, Jin; Zhen, Gehua; Tsai, Shin-Yi; Jia, Xiaofeng

    2013-01-01

    In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling. PMID:23727934

  6. Mechanotransduction in epidermal Merkel cells.

    Science.gov (United States)

    Nakatani, Masashi; Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A

    2015-01-01

    The cellular and molecular basis of vertebrate touch reception remains least understood among the traditional five senses. Somatosensory afferents that innervate the skin encode distinct tactile qualities, such as flutter, slip, and pressure. Gentle touch is thought to be transduced by somatosensory afferents whose tactile end organs selectively filter mechanical stimuli. These tactile end organs comprise afferent terminals in association with non-neuronal cell types such as Merkel cells, keratinocytes, and Schwann cells. An open question is whether these non-neuronal cells serve primarily as passive mechanical filters or whether they actively participate in mechanosensory transduction. This question has been most extensively studied in Merkel cells, which are epidermal cells that complex with sensory afferents in regions of high tactile acuity such as fingertips, whisker follicles, and touch domes. Merkel cell-neurite complexes mediate slowly adapting type I (SAI) responses, which encode sustained pressure and represent object features with high fidelity. How Merkel cells contribute to unique SAI firing patterns has been debated for decades; however, three recent studies in rodent models provide some direct answers. First, whole-cell recordings demonstrate that Merkel cells are touch-sensitive cells with fast, mechanically activated currents that require Piezo2. Second, optogenetics and intact recordings show that Merkel cells mediate sustained SAI firing. Finally, loss-of-function studies in transgenic mouse models reveal that SAI afferents are also touch sensitive. Together, these studies identify molecular mechanisms of mechanotransduction in Merkel cells, reveal unexpected functions for these cells in touch, and support a revised, two-receptor site model of mechanosensory transduction.

  7. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  8. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.

    Science.gov (United States)

    Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep

    2017-03-20

    Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2017. Published by The Company of Biologists Ltd.

  9. Specification of Epidermal Cell Fate in Plant Shoots

    Directory of Open Access Journals (Sweden)

    Shinobu eTakada

    2014-02-01

    Full Text Available Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.

  10. Autologous epidermal cell suspension: A promising treatment for chronic wounds.

    Science.gov (United States)

    Zhao, Hongliang; Chen, Yan; Zhang, Cuiping; Fu, Xiaobing

    2016-02-01

    Chronic wounds have become an increasing medical and economic problem of aging societies because they are difficult to manage. Skin grafting is an important treatment method for chronic wounds, which are refractory to conservative therapy. The technique involving epidermal cell suspensions was invented to enable the possibility of treating larger wounds with only a small piece of donor skin. Both uncultured and cultured autologous epidermal cell suspensions can be prepared and survive permanently on the wound bed. A systematic search was conducted of EMBASE, Cochrane Library, PubMed and web of science by using Boolean search terms, from the establishment of the database until May 31, 2014. The bibliographies of all retrieved articles in English were searched. The search terms were: (epithelial cell suspension OR keratinocyte suspension) and chronic and wound. From the included, 6 studies are descriptive interventions and discussed the use of autologous keratinocyte suspension to treat 61 patients' chronic wound. The various methods of preparation of epidermal cell suspension are described. The advantages and shortcomings of different carriers for epidermal cell suspensions are also summarised. Both uncultured and cultured autologous epidermal cell suspensions have been used to treat chronic wounds. Although the limitations of these studies include the small number of patient populations with chronic wounds and many important problems that remain to be solved, autologous epidermal cell suspension is a promising treatment for chronic wounds. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. Do epidermal lens cells facilitate the absorptance of diffuse light?

    Science.gov (United States)

    Brodersen, Craig R; Vogelmann, Thomas C

    2007-07-01

    Many understory plants rely on diffuse light for photosynthesis because direct light is usually scattered by upper canopy layers before it strikes the forest floor. There is a considerable gap in the literature concerning the interaction of direct and diffuse light with leaves. Some understory plants have well-developed lens-shaped epidermal cells, which have long been thought to increase the absorption of diffuse light. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat (Begonia erythrophylla, Citrus reticulata, and Ficus benjamina) and lens-shaped epidermal cells (B. bowerae, Colocasia esculenta, and Impatiens velvetea). In all species examined, more light was absorbed when leaves were irradiated with direct as opposed to diffuse light. When leaves were irradiated with diffuse light, more light was transmitted and more was reflected in both leaf types, resulting in absorptance values 2-3% lower than in leaves irradiated with direct light. These data suggest that lens-shaped epidermal cells do not aid the capture of diffuse light. Palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape.

  12. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    Science.gov (United States)

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  13. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    Science.gov (United States)

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana

    NARCIS (Netherlands)

    Roelfsema, MRG; Prins, HBA

    1995-01-01

    Abscisic acid-insensitive mutants of Arabidopsis thaliana L. var. Landsberg erecta were selected for their decreased sensitivity to ABA during germination. Two of these mutants, abi-1 and abi-2, display a wilty phenotype as adult plants, indicating disturbed water relations. Experiments were

  15. Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2015-04-01

    Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

  16. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  17. Multimodal nonlinear imaging of arabidopsis thaliana root cell

    Science.gov (United States)

    Jang, Bumjoon; Lee, Sung-Ho; Woo, Sooah; Park, Jong-Hyun; Lee, Myeong Min; Park, Seung-Han

    2017-07-01

    Nonlinear optical microscopy has enabled the possibility to explore inside the living organisms. It utilizes ultrashort laser pulse with long wavelength (greater than 800nm). Ultrashort pulse produces high peak power to induce nonlinear optical phenomenon such as two-photon excitation fluorescence (TPEF) and harmonic generations in the medium while maintaining relatively low average energy pre area. In plant developmental biology, confocal microscopy is widely used in plant cell imaging after the development of biological fluorescence labels in mid-1990s. However, fluorescence labeling itself affects the sample and the sample deviates from intact condition especially when labelling the entire cell. In this work, we report the dynamic images of Arabidopsis thaliana root cells. This demonstrates the multimodal nonlinear optical microscopy is an effective tool for long-term plant cell imaging.

  18. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cécile eALBENNE

    2013-05-01

    Full Text Available Plant cell wall proteins (CWPs progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cells walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last ten years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii the main protein families identified and the still missing peptides; (iii the persistent issue of the non-canonical CWPs; (iv the present challenges to overcome technological bottlenecks; and (v the perspectives beyond cell wall proteomics to understand CWP functions.

  19. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartment...

  20. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  1. Psoralens and coumarins for receptor targeting on epidermal cells

    Energy Technology Data Exchange (ETDEWEB)

    Jetter, M.M.

    1989-01-01

    Specific binding sites have been identified for the psoralens, discrete from DNA, in different epidermal cell lines. These receptors are saturable and are alkylated by the action of psoralens + UVA light. A psoralen receptor has been partially purified and established to be a protein of approximately 20,000 daltons. Inhibition of the binding of epidermal growth factor to its receptor and inhibition of the tyrosine kinase activity of the EGF receptor has been associated with PUVA treatment. These findings conflict with the general assumption that the biological effects of psoralens as photoactive compounds are associated with their ability to covalently bind to and crosslink DNA. In collaboration with Laskin's,laboratory, several classes of psoralen agonists were synthesized. These compounds include coumarins, furocoumarin and benzodipyran-2-one derivatives. The methods of preparation were varied and include variants of the Claisen rearrangement, acid and base-catalyzed condensations. The synthesized compounds were tested for their potential inhibition of {sup 125}I-EGF receptor binding. It was discovered that many of these agents showed potent inhibition activity similar to the psoralens. This data offers the possibility that sites of action, other than DNA, are involved in the mechanism by which photoactivated psoralens modulate epidermal cell lines.

  2. Mammalian Merkel cells are descended from the epidermal lineage

    Science.gov (United States)

    Morrison, Kristin M.; Miesegaes, George R.; Lumpkin, Ellen A.; Maricich, Stephen M.

    2009-01-01

    Merkel cells are specialized cells in the skin that are important for proper neural encoding of light touch stimuli. Conflicting evidence suggests that these cells are lineally descended from either the skin or the neural crest. To address this question, we used epidermal (Krt14Cre) and neural crest (Wnt1Cre) Cre-driver lines to conditionally delete Atoh1 specifically from the skin or neural crest lineages, respectively, of mice. Deletion of Atoh1 from the skin lineage resulted in loss of Merkel cells from all regions of the skin, while deletion from the neural crest lineage had no effect on this cell population. Thus, mammalian Merkel cells are derived from the skin lineage. PMID:19782676

  3. Streptococcus induces circulating CLA(+) memory T-cell-dependent epidermal cell activation in psoriasis.

    Science.gov (United States)

    Ferran, Marta; Galván, Ana B; Rincón, Catalina; Romeu, Ester R; Sacrista, Marc; Barboza, Erika; Giménez-Arnau, Ana; Celada, Antonio; Pujol, Ramon M; Santamaria-Babí, Luis F

    2013-04-01

    Streptococcal throat infection is associated with a specific variant of psoriasis and with HLA-Cw6 expression. In this study, activation of circulating psoriatic cutaneous lymphocyte-associated antigen (CLA)(+) memory T cells cultured together with epidermal cells occurred only when streptococcal throat extracts were added. This triggered the production of Th1, Th17, and Th22 cytokines, as well as epidermal cell mediators (CXCL8, CXCL9, CXCL10, and CXCL11). Streptococcal extracts (SEs) did not induce any activation with either CLA(-) cells or memory T cells cultured together with epidermal cells from healthy subjects. Intradermal injection of activated culture supernatants into mouse skin induced epidermal hyperplasia. SEs also induced activation when we used epidermal cells from nonlesional skin of psoriatic patients with CLA(+) memory T cells. Significant correlations were found between SE induced upregulation of mRNA expression for ifn-γ, il-17, il-22, ip-10, and serum level of antistreptolysin O in psoriatic patients. This study demonstrates the direct involvement of streptococcal infection in pathological mechanisms of psoriasis, such as IL-17 production and epidermal cell activation.

  4. Epidermal Langerhans cells, HIV-1 infection and psoriasis.

    Science.gov (United States)

    Zemelman, V; Van Neer, F; Roberts, N; Patel, P; Langtry, J; Staughton, R C

    1994-03-01

    Langerhans cells (LCs) subserve an important antigen-presenting function in the skin immune system. They bear CD4 receptors, which make them potential targets for infection with the human immunodeficiency virus (HIV-1). The observation of reduced numbers of LCs in the skin of patients with the acquired immunodeficiency syndrome (AIDS), and the association of severe psoriasis with HIV-1 infection, raise interesting questions regarding the role of LCs in the skin of HIV-1-positive psoriatic patients. In this study, LCs were quantified in the lesional and non-lesional skin of seven HIV-1-positive psoriatic patients, and the results were compared with age-, sex- and site-matched HIV-1-negative psoriatic patients. The number of LCs was determined by staining skin sections with S-100 polyclonal antibody, using the three-step avidin-biotin immunoperoxidase method. The S-100-positive cells above the basal layer were quantified in two ways: cells/mm2 of epidermal area, and cells/mm of length of basement membrane. HIV-1-positive psoriatic patients showed a reduction in the number of epidermal LCs compared with HIV-1-negative psoriatic patients using both methods of quantification, in both lesional and non-lesional skin (P < 0.05, Mann-Whitney test). In addition, a reduction in the number of LCs in lesional compared with non-lesional skin was observed in both HIV-1-positive and -negative patients when LCs were quantified per mm2 of epidermal area (P < 0.05, Wilcoxon test).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2014-01-01

    and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT...... of epithelial tissues. We hypothesize the existence of adaptation mechanisms that regulate the formation and stability of AJs in different cellular contexts to allow the dynamic behavior of these complexes during tissue homeostasis and remodeling....

  6. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis.

    Science.gov (United States)

    Yin, Chaoran; Zhang, Ting; Qiao, Liangjun; Du, Jia; Li, Shuang; Zhao, Hengguang; Wang, Fangfang; Huang, Qiaorong; Meng, Wentong; Zhu, Hongyan; Bu, Hong; Li, Hui; Xu, Hong; Mo, Xianming

    2014-07-25

    Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in murine skin. In vitro, TLR7-expressing cells comprised of two subpopulations that were competent to proliferate and exhibited distinct differentiation potentials. Three-dimensional (3D) organotypic culture and skin reconstitution assays showed that TLR7-expressing cells were able to reconstruct the interfollicular epidermis. Finally, TLR7-expressing cells maintained the intact interfollicular epidermal structures revealed in serial transplantation assays in vivo in mice. Taken together, our results suggest that TLR7-expressing cells comprise an interfollicular epidermal stem cell population.

  7. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  8. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    Directory of Open Access Journals (Sweden)

    Hiroko Mochizuki-Kawai

    Full Text Available In the petals of some species of flowers, programmed cell death (PCD begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP and S1/P1 nuclease (LoNUC genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12 drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.

  9. Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.

    Science.gov (United States)

    Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.

  10. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    in the basal layer of the interfollicular epidermis and in the bulge region of the hair follicle play a critical role for normal tissue maintenance. In wound healing, multipotent epidermal stem cells contribute to re-epithelization. It is possible that defects in growth control of either epidermal stem cells...

  11. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data demonstr...

  12. The interfollicular epidermal stem cell saga: sensationalism versus reality check.

    Science.gov (United States)

    Kaur, Pritinder; Potten, Christopher S

    2011-09-01

    Adult stem cells in rapidly renewing tissues have been classically defined as rare, relatively quiescent cells with the unique capacity to constantly self-renew and regenerate tissues during homeostasis. Although this view remains firmly embedded in the skin field, particularly in the area of hair follicle stem cell biology, it has been challenged by a number of notable publications in 2007. These papers leave an uncomfortable feeling with the reader if one believes that stem cells and transit amplifying cells are two polar opposites and 'never the twain shall meet.' Even if you do not subscribe to this extreme view, the implications appear to be far-reaching given that the majority of techniques devised for stem cell identification have used the fundamental tenet that the proliferating compartment is comprised of two distinct, mutually exclusive compartments, i.e. a minor proportion of long-lived quiescent stem cells with unlimited self-renewal and a large pool of rapidly cycling, short-lived transient amplifying cells with limited or no self-renewal capacity in normal steady-state conditions. However, these recent findings have resulted in papers that could be described as sensationalistic because they make little or no attempt to reconcile their observations with the large bulk of historical data with direct bearing on the interpretation of stem cell activity in normal steady-state conditions. Here, we offer some explanations that may help to integrate all of the data while presenting a case that both quiescent stem cells and cycling 'transit amplifying' cells contribute to epidermal replacement. © 2011 John Wiley & Sons A/S.

  13. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Science.gov (United States)

    Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L; Eckert, Richard L

    2013-01-01

    Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  14. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Directory of Open Access Journals (Sweden)

    Gautam Adhikary

    Full Text Available Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  15. Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells.

    Science.gov (United States)

    Zhao, Xiaoyu; Li, Ruili; Lu, Cunfu; Baluška, František; Wan, Yinglang

    2015-02-01

    Cholesterol-enriched microdomains, also called lipid rafts, are nanoscale membrane structures with a high degree of structural order. Since these microdomains play important roles in dynamic cytological events, such as cell signalling and membrane trafficking, the detection and tracking of microdomain behaviours are crucial to studies on modern membrane physiology. Currently, observation of microdomains is mostly based on the detection of specific raft-resident constituents using artificial cross-link fluorescent probes. However, only a few microdomain-specific fluorescent dyes are available for plant cell biology studies. In this study, the photophysical properties of di-4-ANEPPDHQ were analysed. The use of confocal laser scanning microscope (CLSM)-based methods in the visualisation of microdomains in living cells of Arabidopsis thaliana was assessed. The results confirmed that the generalised polarisation (GP) method can be used to quantitatively visualise the membrane orders in live plant cells. This dye was found to have low cytotoxicity in plant root epidermal cells and root hairs. These findings suggest that di-4-ANEPPDHQ is an appropriate tool for the visualisation of microdomains in living plant cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Basal Cell Carcinoma Arising on a Verrucous Epidermal Nevus: A Case Report

    Directory of Open Access Journals (Sweden)

    Analia Viana

    2015-02-01

    Full Text Available We report a case of basal cell carcinoma that appeared from an epidermal verrucous nevus in a 61-year-old patient. The onset of basal cell carcinoma in sebaceous nevi, basal cell nevi and dysplastic nevi is relatively common, but it is rarely associated with epidermal verrucous nevi. There is no consensus on whether the two lesions have a common cellular origin or whether they merely represent a collision of two distinct tumors. Since this association - as with other malignant tumors - is rare, there is no need for prophylactic removal of epidermal verrucous nevi.

  17. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O

    1996-01-01

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely...

  18. NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana.

    Science.gov (United States)

    Motose, Hiroyasu; Takatani, Shogo; Ikeda, Tatsuya; Takahashi, Taku

    2012-12-01

    NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.

  19. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  20. Cellular, ultrastructural and molecular analyses of epidermal cell development in the planarian Schmidtea mediterranea.

    Science.gov (United States)

    Cheng, Li-Chun; Tu, Kimberly C; Seidel, Chris W; Robb, Sofia M C; Guo, Fengli; Sánchez Alvarado, Alejandro

    2017-09-11

    The epidermis is essential for animal survival, providing both a protective barrier and cellular sensor to external environments. The generally conserved embryonic origin of the epidermis, but the broad morphological and functional diversity of this organ across animals is puzzling. We define the transcriptional regulators underlying epidermal lineage differentiation in the planarian Schmidtea mediterranea, an invertebrate organism that, unlike fruitflies and nematodes, continuously replaces its epidermal cells. We find that Smed-p53, Sox and Pax transcription factors are essential regulators of epidermal homeostasis, and act cooperatively to regulate genes associated with early epidermal precursor cell differentiation, including a tandemly arrayed novel gene family (prog) of secreted proteins. Additionally, we report on the discovery of distinct and previously undescribed secreted organelles whose production is dependent on the transcriptional activity of soxP-3, and which we term Hyman vesicles. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. From diffuse growth to planar polarity in Arabidopsis root epidermal cells

    Directory of Open Access Journals (Sweden)

    Daria eBalcerowicz

    2015-12-01

    Full Text Available Plant roots fulfill important functions as they serve in water and nutrient uptake, provide anchorage of the plant body in the soil and in some species form the site of symbiotic interactions with soil-living biota. Root hairs, tubular-shaped outgrowths of specific epidermal cells, significantly increase the root's surface area and aid in these processes. In this review we focus on the molecular mechanisms that determine the hair and non-hair cell fate of epidermal cells and that define the site on the epidermal cell where the root hair will be initiated (= planar polarity determination. In the model plant Arabidopsis, trichoblast and atrichoblast cell fate results from intra- and intercellular position-dependent signaling and from complex feedback loops that ultimately regulate GL2 expressing and non-expressing cells. When epidermal cells reach the end of the root expansion zone, root hair promoting transcription factors dictate the establishment of polarity within epidermal cells followed by the selection of the root hair initiation site at the more basal part of the trichoblast. Molecular players in the abovementioned processes as well as the role of phytohormones are discussed, and open areas for future experiments are identified.

  2. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells

    DEFF Research Database (Denmark)

    Gjetting, T.; Carver, Timothy L. W.; Skøt, Leif

    2004-01-01

    Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, attacked plant epidermal cells defend themselves against attempted fungal penetration by localized responses...... leading to papilla deposition and reinforcement of their cell wall. This conveys a race-nonspecific form of resistance. However, this defense is not complete, and a proportion of penetration attempts succeed in infection. The resultant mixture of infected and uninfected leaf cells makes it impossible...... to relate powdery mildew-induced gene expression in whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for generating transcript profiles from individual barley epidermal cells was established and proven useful for analyzing resistant and successfully infected cells...

  3. In situ localization of epidermal stem cells using a novel multi epitope ligand cartography approach.

    Science.gov (United States)

    Ruetze, Martin; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Knott, Anja

    2010-06-01

    Precise knowledge of the frequency and localization of epidermal stem cells within skin tissue would further our understanding of their role in maintaining skin homeostasis. As a novel approach we used the recently developed method of multi epitope ligand cartography, applying a set of described putative epidermal stem cell markers. Bioinformatic evaluation of the data led to the identification of several discrete basal keratinocyte populations, but none of them displayed the complete stem cell marker set. The distribution of the keratinocyte populations within the tissue was remarkably heterogeneous, but determination of distance relationships revealed a population of quiescent cells highly expressing p63 and the integrins alpha(6)/beta(1) that represent origins of a gradual differentiation lineage. This population comprises about 6% of all basal cells, shows a scattered distribution pattern and could also be found in keratinocyte holoclone colonies. The data suggest that this population identifies interfollicular epidermal stem cells.

  4. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl.

    Science.gov (United States)

    Crowell, Elizabeth Faris; Timpano, Hélène; Desprez, Thierry; Franssen-Verheijen, Tiny; Emons, Anne-Mie; Höfte, Herman; Vernhettes, Samantha

    2011-07-01

    It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.

  5. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    Directory of Open Access Journals (Sweden)

    Michael H Wilson

    2015-02-01

    Full Text Available Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS, through the rapid and late elongation zones (REZ, LEZ to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (subcellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species needed for cell expansion, and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18 and XTH19. The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root

  6. Epidermal Th22 and Tc17 Cells Form a Localized Disease Memory in Clinically Healed Psoriasis

    Science.gov (United States)

    Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona

    2014-01-01

    Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartment of the skin, TRM may contribute to tissue pathology during psoriasis. In this study, we investigated whether resolved psoriasis lesions contain TRM cells with the ability to maintain and potentially drive recurrent disease. Three common and effective therapies, narrowband-UVB treatment and long-term biologic treatment systemically inhibiting TNF-α or IL-12/23 signaling were studied. Epidermal T cells were highly activated in psoriasis and a high proportion of CD8 T cells expressed TRM markers. In resolved psoriasis, a population of cutaneous lymphocyte–associated Ag, CCR6, CD103, and IL-23R expressing epidermal CD8 T cells was highly enriched. Epidermal CD8 T cells expressing the TRM marker CD103 responded to ex vivo stimulation with IL-17A production and epidermal CD4 T cells responded with IL-22 production after as long as 6 y of TNF-α inhibition. Our data suggest that epidermal TRM cells are retained in resolved psoriasis and that these cells are capable of producing cytokines with a critical role in psoriasis pathogenesis. We provide a potential mechanism for a site-specific T cell–driven disease memory in psoriasis. PMID:24610014

  7. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Parvin, E-mail: parvinchy@ees.hokudai.ac.jp; Fugetsu, Bunshi

    2013-09-15

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS.

  8. Occurrence and sequence of a DnaJ protein in plant (Allium porrum) epidermal cells.

    Science.gov (United States)

    Bessoule, J J

    1993-05-24

    Antibodies raised against a purified fraction from microsomal membranes of leek epidermal cells were used to screen a lambda zap expression library from epidermal cells of leak plants. A near full-length clone was isolated. This cDNA contains an open reading-frame of 1,191 bp coding for a DnaJ protein (leek DNAJ 1 or LDJ1). Leek DnaJ1 represents the second protein of this type described in a pluricellular organism, the first being that sequenced from human cells.

  9. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  10. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle.

    Science.gov (United States)

    Lolle, S J; Berlyn, G P; Engstrom, E M; Krolikowski, K A; Reiter, W D; Pruitt, R E

    1997-09-15

    Although the plant epidermis serves primarily a protective role, during plant development some epidermal cells specialize, becoming competent to interact not only with pollen but also with other epidermal cells. In the former case, these interactions mediate recognition, germination, and pollen growth responses and, in the latter case, result in interorgan fusions which, most commonly, alter floral architecture in ways that are thought to promote reproductive success. In either case, all of the initial signaling events must take place across the cell wall and cuticle. In Arabidopsis, mutation of the FIDDLEHEAD gene alters the shoot epidermis such that all epidermal cells become competent to participate in both types of interactions. In fdh-1 mutants, epidermal cells manifest not only a contact-mediated fusion response but also interact with pollen. Since carpel epidermal derivatives manifest both of these properties, we postulated that fdh-1 epidermal cells were ectopically expressing a carpel-like program. In this report we demonstrate that manifestation of the fdh-1 phenotype does not require the product of the AGAMOUS gene, indicating that the phenotype is either independent of the carpel development program or that fdh-1 mutations activate a carpel-specific developmental program downstream of the AG gene. Furthermore, we demonstrate that plants bearing mutations in the fdh-1 gene show significant changes in cell wall and cuticular permeability. Biochemical analyses of the lipid composition of the crude cell wall fraction reveal that fdh-1 cell walls differ from wild-type and manifest significant changes in high-molecular-weight lipid peaks. These results suggest that cell wall and cuticular permeability may be important determinants in developmental signaling between interacting cells and implicate lipids as important factors in modulating the selectivity of the permeability barrier presented by the epidermal cell wall and cuticle. Copyright 1997 Academic Press.

  11. A stem cell proliferation burst forms new layers of P63 expressing suprabasal cells during zebrafish postembryonic epidermal development

    Directory of Open Access Journals (Sweden)

    Aida Guzman

    2013-09-01

    Organ growth during development is a highly regulated process with both temporal and spatial constraints. Epidermal stratification is essential for skin growth and development. Although the zebrafish has been well studied, it is not known when and how epidermal stratification occurs. This is because beyond the first five days of development our knowledge is currently limited. We found that epidermal stratification in zebrafish begins when the larvae reach a standard length (SL of 6 mm at approximately 25 days of age. Over the next four days (from a SL of 6 to 9 mm, epidermis thickness increases almost four-fold. This represents a sudden increase in organ size, since for the previous 20 days of development, the epidermis has been only two layers thick. This pattern is different from that observed in mammals that undergo continuous stratification from E14.5–E18.5. To study how stem cell proliferation gives rise to the new epidermal layers, we used a combination of markers: one for cell proliferation (proliferating cell nuclear-antigen PCNA and one for epidermal stem cells (P63 transcription factor. We identified, throughout the stratification process, two different waves of cell division. Initially, the most basal epidermal cells divided and generated a subset of suprabasal cells (possibly transient-amplifying cells; within the next several days, the basal cells stopped dividing, and the suprabasal cells began proliferation, giving rise to most of the cell types in the new layers. This part of the process is similar to what has been recently found during epidermal stratification in mammals.

  12. A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules.

    Science.gov (United States)

    Motose, Hiroyasu; Tominaga, Rumi; Wada, Takuji; Sugiyama, Munetaka; Watanabe, Yuichiro

    2008-06-01

    To study cellular morphogenesis genetically, we isolated loss-of-function mutants of Arabidopsis thaliana, designated ibo1. The ibo1 mutations cause local outgrowth in the middle of epidermal cells of the hypocotyls and petioles, resulting in the formation of a protuberance. In Arabidopsis, the hypocotyl epidermis differentiates into two alternate cell files, the stoma cell file and the non-stoma cell file, by a mechanism involving TRANSPARENT TESTA GLABRA1 (TTG1) and GLABRA2 (GL2). The ectopic protuberances of the ibo1 mutants were preferentially induced in the non-stoma cell files, which express GL2. TTG1-dependent epidermal patterning is required for protuberance formation in ibo1, suggesting that IBO1 functions downstream from epidermal cell specification. Pharmacological and genetic analyses demonstrated that ethylene promotes protuberance formation in ibo1, implying that IBO1 acts antagonistically to ethylene to suppress radial outgrowth. IBO1 is identical to NEK6, which encodes a Never In Mitosis A (NIMA)-related protein kinase (Nek) with sequence similarity to Neks involved in microtubule organization in fungi, algae, and animals. The ibo1-1 mutation, in which a conserved Glu residue in the activation loop is substituted by Arg, completely abolishes its kinase activity. The intracellular localization of GFP-tagged NEK6 showed that NEK6 mainly accumulates in cytoplasmic spots associated with cortical microtubules and with a putative component of the gamma-tubulin complex. The localization of NEK6 is regulated by the C-terminal domain, which is truncated in the ibo1-2 allele. These results suggest that the role of NEK6 in the control of cellular morphogenesis is dependent on its kinase action and association with the cortical microtubules.

  13. [Effects of transfection of human epidermal growth factor gene with adenovirus vector on biological characteristics of human epidermal cells].

    Science.gov (United States)

    Yin, Kai; Ma, Li; Shen, Chuan'an; Shang, Yuru; Li, Dawei; Li, Longzhu; Zhao, Dongxu; Cheng, Wenfeng

    2016-05-01

    To investigate the suitable transfection condition of human epidermal cells (hECs) with human epidermal growth factor (EGF) gene by adenovirus vector (Ad-hEGF) and its effects on the biological characteristics of hECs. hECs were isolated from deprecated human fresh prepuce tissue of circumcision by enzyme digestion method and then sub-cultured. hECs of the third passage were used in the following experiments. (1) Cells were divided into non-transfection group and 5, 20, 50, 100, 150, and 200 fold transfection groups according to the random number table (the same grouping method below), with 3 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in the latter six groups were transfected with Ad-hEGF gene in multiplicities of infection (MOI) of 5, 20, 50, 100, 150, and 200 respectively. The morphology of the cells was observed with inverted phase contrast microscope, and expression of green fluorescent protein of the cells was observed with inverted fluorescence microscope at transfection hour (TH) 24, 48, and 72. (2) Another three batches of cells were collected, grouped, and treated as above, respectively. Then the transfection rate of Ad-hEGF gene was detected by flow cytometer (n=3), the mass concentration of EGF in culture supernatant of cells was detected by enzyme-linked immunosorbent assay (n=6), and the proliferation activity of cells was detected by cell counting kit 8 (CCK8) and microplate reader (n=6) at TH 24, 48, and 72, respectively. (3) Cells were collected and divided into non-transfection group and transfection group, with 6 wells in each group. Cells in non-transfection group were cultured with culture supernatant of cells without transfection, while cells in transfection group were cultured with culture supernatant of cells which were transfected with Ad-hEGF gene in the optimum MOI (50). CCK8 and microplate reader were used to measure the biological activity of EGF secreted by cells on culture

  14. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  15. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  16. ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Page, B D; Zhang, W; Steward, K; Blumenthal, T; Priess, J R

    1997-07-01

    Epidermal cells are generated during Caenorhabditis elegans embryogenesis by several distinct lineage patterns. These patterns are controlled by maternal genes that determine the identities of early embryonic blastomeres. We show that the embryonically expressed gene elt-1, which was shown previously to encode a GATA-like transcription factor, is required for the production of epidermal cells by each of these lineages. Depending on their lineage history, cells that become epidermal in wild-type embryos become either neurons or muscle cells in elt-1 mutant embryos. The ELT-1 protein is expressed in epidermal cells and in their precursors. We propose that elt-1 functions at an early step in the specification of epidermal cell fates.

  17. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Šíša, Miroslav; Lacina, O.; Moťková, Kateřina; Langhansová, Lenka; Rezek, Jan; Vaněk, Tomáš

    2017-01-01

    Roč. 220, JAN (2017), s. 383-392 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA14-22593S Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Ibuprofen * Metabolism * Plant cells * Sequestration Subject RIV: CE - Biochemistry Impact factor: 5.099, year: 2016

  18. Calcium-calmodulin signalling is involved in light-induced acidification by epidermal leaf cells of pea, Pisum sativum L.

    NARCIS (Netherlands)

    Elzenga, JTM; Staal, M; Prins, HBA

    1997-01-01

    Pathways of signal transduction of red and blue light-dependent acidification by leaf epidermal cells were studied using epidermal strips of the Argenteum mutant of Pisum sativum. In these preparations the contribution of guard cells to the acidification is minimal. The hydroxypyridine nifedipine, a

  19. Beneficial Effects of the Genus Aloe on Wound Healing, Cell Proliferation, and Differentiation of Epidermal Keratinocytes.

    Science.gov (United States)

    Moriyama, Mariko; Moriyama, Hiroyuki; Uda, Junki; Kubo, Hirokazu; Nakajima, Yuka; Goto, Arisa; Akaki, Junji; Yoshida, Ikuyo; Matsuoka, Nobuya; Hayakawa, Takao

    2016-01-01

    Aloe has been used as a folk medicine because it has several important therapeutic properties. These include wound and burn healing, and Aloe is now used in a variety of commercially available topical medications for wound healing and skin care. However, its effects on epidermal keratinocytes remain largely unclear. Our data indicated that both Aloe vera gel (AVG) and Cape aloe extract (CAE) significantly improved wound healing in human primary epidermal keratinocytes (HPEKs) and a human skin equivalent model. In addition, flow cytometry analysis revealed that cell surface expressions of β1-, α6-, β4-integrin, and E-cadherin increased in HPEKs treated with AVG and CAE. These increases may contribute to cell migration and wound healing. Treatment with Aloe also resulted in significant changes in cell-cycle progression and in increases in cell number. Aloe increased gene expression of differentiation markers in HPEKs, suggesting roles for AVG and CAE in the improvement of keratinocyte function. Furthermore, human skin epidermal equivalents developed from HPEKs with medium containing Aloe were thicker than control equivalents, indicating the effectiveness of Aloe on enhancing epidermal development. Based on these results, both AVG and CAE have benefits in wound healing and in treatment of rough skin.

  20. Differential modulation of human epidermal Langerhans cell maturation by ultraviolet B radiation

    NARCIS (Netherlands)

    Nakagawa, S.; Koomen, C. W.; Bos, J. D.; Teunissen, M. B.

    1999-01-01

    UVB irradiation of the skin causes immunosuppression and Ag-specific tolerance in which Langerhans cells (LC) are involved. We tested the effect of UVB on LC that had migrated out of cultured epidermal sheets derived from the skin that was irradiated ex vivo (200, 400, 800, or 1600 J/m2). Two

  1. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    Harper, Peter; El-Hariry, Iman; Powles, Thomas

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  2. A dual immunocytochemical assay for oestrogen and epidermal growth factor receptors in tumour cell lines

    NARCIS (Netherlands)

    A.K. Sharma (Anisha K.); J.H. Horgan; R.L. McClelland (Robyn); A.G. Douglas-Jones (A.); T. van Agthoven (Ton); L.C.J. Dorssers (Lambert); R.I. Nicholson (R.)

    1994-01-01

    textabstractA new dual immunocytochemical assay for oestrogen receptor (ER) and epidermal growth factor receptor (EGFR) has been developed. It has been tested in a variety of conditions using cell culture lines and the results correlate well with those obtained from single immunocytochemical assays.

  3. Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots.

    Science.gov (United States)

    Graña, E; Sotelo, T; Díaz-Tielas, C; Araniti, F; Krasuska, U; Bogatek, R; Reigosa, M J; Sánchez-Moreiras, A M

    2013-02-01

    Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.

  4. Squamous cell carcinoma arising in a giant epidermal cyst of the perineum: a case report and literature review.

    Science.gov (United States)

    Sumi, Yuki; Yamamoto, Naoto; Kiyosawa, Tomoharu

    2012-09-01

    This case pertains to a 76-year-old woman with a giant cyst in the perineum. Extirpation was performed. The result of a pathological investigation was squamous cell carcinoma arising in an epidermal cyst. An epidermal cyst is necessary to conduct an examination bearing in mind the possibility of a malignant tumour.

  5. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  6. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  7. High-Resolution Cell-Type Specific Analysis of Cytokinins in Sorted Root Cell Populations of Arabidopsis thaliana.

    Science.gov (United States)

    Novák, Ondřej; Antoniadi, Ioanna; Ljung, Karin

    2017-01-01

    We describe a method combining fluorescence-activated cell sorting (FACS) with one-step miniaturized isolation and accurate quantification of cytokinins (CKs) using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to measure these phytohormones in specific cell types of Arabidopsis thaliana roots. The methodology provides information of unprecedented resolution about spatial distributions of CKs, and thus should facilitate attempts to elucidate regulatory networks involved in root developmental processes.

  8. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells.

    Science.gov (United States)

    Higaki, Takumi; Takigawa-Imamura, Hisako; Akita, Kae; Kutsuna, Natsumaro; Kobayashi, Ryo; Hasezawa, Seiichiro; Miura, Takashi

    2017-01-01

    Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines.

    Science.gov (United States)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M; Poulsen, H S

    1992-06-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell lung cancer cell lines express the EGF receptor.

  10. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  11. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes.

    Science.gov (United States)

    Martin, Emmanuel; Ouellette, Marie-Hélène; Jenna, Sarah

    2016-11-21

    The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell-cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis. © 2016 Martin et al.

  12. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  13. Isolation and In Vitro Characterization of Epidermal Stem Cells

    DEFF Research Database (Denmark)

    Moestrup, Kasper S; Andersen, Marianne Stemann; Jensen, Kim Bak

    2017-01-01

    Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized by a subs...... skin sorted by surface antigens associated with adult stem cell characteristics.......Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized...... by a substantial cellular heterogeneity. Analysis of bulk populations of cells by colony-forming assays can consequently be convoluted by a number of factors that are not controlled for in population wide studies. It is therefore advantageous to refine in vitro growth assays by sub-fractionation of cells using...

  14. Meis1 regulates epidermal stem cells and is required for skin tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Okumura

    Full Text Available Previous studies have shown that Meis1 plays an important role in blood development and vascular homeostasis, and can induce blood cancers, such as leukemia. However, its role in epithelia remains largely unknown. Here, we uncover two roles for Meis1 in the epidermis: as a critical regulator of epidermal homeostasis in normal tissues and as a proto-oncogenic factor in neoplastic tissues. In normal epidermis, we show that Meis1 is predominantly expressed in the bulge region of the hair follicles where multipotent adult stem cells reside, and that the number of these stem cells is reduced when Meis1 is deleted in the epidermal tissue of mice. Mice with epidermal deletion of Meis1 developed significantly fewer DMBA/TPA-induced benign and malignant tumors compared with wild-type mice, suggesting that Meis1 plays a role in both tumor development and malignant progression. This is consistent with the observation that Meis1 expression increases as tumors progress from benign papillomas to malignant carcinomas. Interestingly, we found that Meis1 localization was altered to neoplasia development. Instead of being localized to the stem cell region, Meis1 is localized to more differentiated cells in tumor tissues. These findings suggest that, during the transformation from normal to neoplastic tissues, a functional switch occurs in Meis1.

  15. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    Science.gov (United States)

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  16. ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans.

    Science.gov (United States)

    Koh, K; Rothman, J H

    2001-08-01

    The C. elegans epidermis is a simple epithelium comprised of three major cell types, the seam, syncytial and P cells. While specification of all major epidermal cells is known to require the ELT-1 GATA transcription factor, little is known about how the individual epidermal cell types are specified. We report that elt-5 and -6, adjacent genes encoding GATA factors, are essential for the development of the lateral epidermal cells, the seam cells. Inhibition of elt-5 and -6 function by RNA-mediated interference results in penetrant late embryonic and early larval lethality. Seam cells in affected animals do not differentiate properly: the alae, seam-specific cuticular structures, are generally absent and expression of several seam-specific markers is blocked. In addition, elt-3, which encodes another GATA factor normally expressed in non-seam epidermis, is often ectopically expressed in the seam cells of affected animals, demonstrating that ELT-5 and -6 repress elt-3 expression in wild-type seam cells. Seam cells in affected animals often undergo inappropriate fusion with the epidermal syncytia. Interference of elt-5 and -6 function during larval development can cause fusion of all seam cells with the surrounding syncytia and pronounced defects in molting. elt-5 and -6 are both expressed in seam cells and many other cells, and are apparently functionally interchangeable. Their expression is controlled by separable tissue-specific regulatory elements and the apportionment of monocistronic versus dicistronic transcription of both genes appears to be subject to cell-type-specific regulation. Collectively, these findings indicate that elt-5 and -6 function continuously throughout C. elegans development to regulate seam cell differentiation and cell fusion.

  17. Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells.

    Science.gov (United States)

    Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C

    2015-11-01

    Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  18. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  19. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness

    OpenAIRE

    Jiyoung You; Kyung-Baeg Roh; Zidan Li; Guangrong Liu; Jian Tang; Seoungwoo Shin; Deokhoon Park; Eunsun Jung

    2015-01-01

    Andrographis paniculata (A. paniculata, Chuanxinlian), a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE) on human epidermal stem cells (EpSCs), and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay ...

  20. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter intrapatient comparative trial

    NARCIS (Netherlands)

    Gardien, K.L.M.; Marck, R.E.; Bloemen, M.C.T.; Waaijman, T.; Gibbs, S.; Uhlrich, M.M.W.; Middelkoop, E.

    2016-01-01

    Standard treatment for large burns is transplantation with meshed split skin autografts (SSGs). A disadvantage of this treatment is that healing is accompanied by scar formation. Application of autologous epidermal cells (keratinocytes and melanocytes) may be a suitable therapeutic alternative,

  1. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  2. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis

    DEFF Research Database (Denmark)

    Kwaaitaal, Mark Adrianus Cornelis J; de Vries, S C; Russinova, E

    2005-01-01

    Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detect...

  3. Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor.

    Science.gov (United States)

    Frederiksen, K S; Abrahamsen, N; Cristiano, R J; Damstrup, L; Poulsen, H S

    2000-02-01

    In the present study, we wanted to determine whether efficient gene delivery using an epidermal growth factor (EGF)/DNA polyplex could be accomplished in small cell lung cancer (SCLC) cell lines expressing low EGF receptor (EGFR) levels. EGFR expression levels and transduction efficiencies with polyplexes were examined in five SCLC cell lines and two controls. EGFR expression was examined by binding assays and demonstrated low EGFR levels ranging from 3.6 to 87.4 fmol/mg protein. The SCLC cell lines exhibited high sensitivity to adenovirus infection, which was an important determinant for transduction efficiency when adenovirus was used as an endosomolytic agent. The transduction efficiencies with EGF/DNA polyplexes ranged from 41% +/- 3.5% to 73% +/- 4.6% in the EGFR-positive SCLC cell lines. In the controls lacking EGFRs, only 5% +/- 1.0% and 8% +/- 1.8% of the cells were transduced. Furthermore, the transduction efficiency could be reduced from 50% +/- 4.9% to 18% +/- 1.1% when excess EGF was added to compete with the EGF/DNA polyplexes. In the present study, receptor-targeted gene delivery to SCLC cell lines has been demonstrated for the first time. Our results indicate that even low receptor expression levels in the target cells are sufficient for efficient and specific in vitro gene delivery with EGF/DNA polyplexes.

  4. Crystallization and preliminary X-ray diffraction study of a cell-wall invertase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Verhaest, Maureen [Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, KU Leuven, E. Van Evenstraat 4, B-3000 Leuven (Belgium); Le Roy, Katrien [Laboratorium voor Moleculaire Plantenfysiologie, Faculteit Wetenschappen, Departement Biologie, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Sansen, Stefaan [Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, KU Leuven, E. Van Evenstraat 4, B-3000 Leuven (Belgium); De Coninck, Barbara [Laboratorium voor Moleculaire Plantenfysiologie, Faculteit Wetenschappen, Departement Biologie, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Lammens, Willem [Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, KU Leuven, E. Van Evenstraat 4, B-3000 Leuven (Belgium); Laboratorium voor Moleculaire Plantenfysiologie, Faculteit Wetenschappen, Departement Biologie, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); De Ranter, Camiel J. [Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, KU Leuven, E. Van Evenstraat 4, B-3000 Leuven (Belgium); Van Laere, André; Van den Ende, Wim [Laboratorium voor Moleculaire Plantenfysiologie, Faculteit Wetenschappen, Departement Biologie, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Rabijns, Anja, E-mail: anja.rabijns@pharm.kuleuven.ac.be [Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, KU Leuven, E. Van Evenstraat 4, B-3000 Leuven (Belgium)

    2005-08-01

    Crystals suitable for structural analysis have been prepared from a cell-wall invertase from A. thaliana. Cell-wall invertase 1 (AtcwINV1), a plant protein from Arabidopsis thaliana which is involved in the breakdown of sucrose, has been crystallized in two different crystal forms. Crystal form I grows in space group P3{sub 1} or P3{sub 2}, whereas crystal form II grows in space group C222{sub 1}. Data sets were collected for crystal forms I and II to resolution limits of 2.40 and 2.15 Å, respectively.

  5. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    OpenAIRE

    Damstrup, L; Rude Voldborg, B.; Spang-Thomsen, M.; Br?nner, N; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labe...

  6. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  7. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  8. The dynamic expression of the epidermal growth factor receptor and epidermal growth factor ligand family in a differentiating intestinal epithelial cell line.

    Science.gov (United States)

    Kuwada, S K; Li, X F; Damstrup, L; Dempsey, P J; Coffey, R J; Wiley, H S

    1999-01-01

    The Caco-2 intestinal epithelial cell line differentiates when cultured on plastic or permeable filters, and offers a valuable system to study events associated with enterocytic differentiation in vitro. Little is known as to whether the expression of the epidermal growth factor receptor (EGFR) and its ligands changes as intestinal epithelial cells differentiate. We found that total cellular EGFR protein and mRNA transcript levels were relatively unchanged during Caco-2 cell differentiation, but the expression of surface EGFR and patterns of steady state epidermal growth factor (EGF)-family ligand expression changed significantly. EGFR affinity, surface EGFR expression levels, and the repertoire of expressed EGF-family ligands, were different between Caco-2 cells cultured on plastic and filters. Functionally, EGFR-mediated cell proliferation and tyrosine phosphorylation of the signal transduction protein SHC could be inhibited in Caco-2 cells cultured on filters, but not on plastic. Thus, the substrate on which the cells were grown and the degree of cell differentiation strongly modulate EGFR affinity, EGFR surface expression, the steady state expression of EGF-family ligands, as well as, EGFR-mediated cellular responses. Our results suggest that the EGFR system is regulated during intestinal epithelial cell differentiation primarily at the level of ligand expression.

  9. Prevalence of Epidermal Growth Factor Receptor Mutations in Patients with Non-Small Cell Lung Cancer in Turkish Population.

    Science.gov (United States)

    Güler Tezel, Gaye; Şener, Ebru; Aydın, Çisel; Önder, Sevgen

    2017-12-01

    Epidermal growth factor receptor mutation analysis in non-small cell lung cancer is important for selecting patients who will receive treatment with tyrosine kinase inhibitors. In this study, we aimed to investigate the prevalence of epidermal growth factor receptor mutations and mutation patterns in the Turkish population. We retrospectively reviewed molecular pathology reports of 959 cases with lung cancer analysed for epidermal growth factor receptor mutations. We analysed all four epidermal growth factor receptor exon mutations using a real-time polymerase chain reaction platform. In this study, the epidermal growth factor receptor mutation rate in the Turkish population was 16.7% (160 of 959). The epidermal growth factor receptor mutation frequency was significantly higher in women (37.1%, n=96) than in men (9.1%, n=64) (pmutation rate was higher in the adenocarcinoma histologic type (pmutations were older than those without mutations (p=0.003). The most frequent mutations were exon 19 deletions (48.8%, 78/160) and exon 21 L858R point mutations (38.1.1%, 61/160). We also detected compound mutation patterns in three cases (1.9%). The prevalence of epidermal growth factor receptor mutations in the Turkish population was slightly higher than that in the Caucasian population and lower than that in the East Asian population. The results of this study may provide guidance in personalized therapy of non-small cell lung cancer in the Turkish population.

  10. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    Science.gov (United States)

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  11. [Ultrastructure of statocytes and cells of distal elongation zone of Arabidopsis thaliana under clinorotation].

    Science.gov (United States)

    Romanchuk, S M

    2010-01-01

    Results of the electron-microscopic investigation of root apices of Arabidopsis thaliana 3-, 5- and 7-days-old seedlings grown in the stationary conditions and under clinorotation are presented. It was shown the similarity in the root apex cell ultrastructure in control and under clinorotation. At the same time there were some differences in the ultrastructure of statocytes and the distal elongation zone under clinorotation. For the first time the sensitivity of ER-bodies, which are derivatives of GER and contain beta-glucosidase, to the influence of simulated microgravity was demonstrated by increased quantity and area of ER-bodies at the cell section as well as by higher variability of their form under clinorotation. A degree of these changes correlated with the duration of clinorotation. On the basis of experimental data a protective role of ER-bodies in adaptation of plants to microgravity is supposed.

  12. Topical retinoic acid changes the epidermal cell surface glycosylation pattern towards that of a mucosal epithelium

    DEFF Research Database (Denmark)

    Griffiths, C E; Dabelsteen, Erik; Voorhees, J J

    1996-01-01

    separate areas of buttock skin, with single applications of 0.1% RA, 2% SLS, or vehicle creams, followed by 4-day occlusion. Biopsies were assessed immunohistologically using highly specific monoclonal antibodies to cell surface carbohydrates (types 1, 2 and 3 chain structures), previously demonstrated...... for carbohydrate synthesis, are influenced by retinoids. Thus, we investigated whether epidermal cell surface glycosylation is altered in skin treated with topical RA, and contrasted it with changes induced by topical SLS. Skin biopsies were obtained from seven normal volunteers who had been treated, on three...

  13. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana.

    Science.gov (United States)

    Lin, Deshu; Ren, Huibo; Fu, Ying

    2015-01-01

    In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  16. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Isolation and identification of a distinct side population cancer cells in the human epidermal squamous cancer cell line A431.

    Science.gov (United States)

    Geng, Songmei; Wang, Qianqian; Wang, Jianli; Hu, Zhishang; Liu, Chunchun; Qiu, Junkang; Zeng, Weihui

    2011-04-01

    Side population (SP) cells have been suggested to be multipotent cancer stem cells. To address whether SP cells exist in epidermal squamous cancer cell line A431, A431 cells dyed with Hoechst 33342 were sorted through flow cytometry. The SP cells were then analyzed by colony-forming and cell proliferation assay. Further, tumorigenicity and microarray analysis were used to compare biological difference between SP and non-SP (NSP) cells. Our results showed that SP cells existed in the A431 cell line, showing higher proliferating and colony-forming ability than NSP cells. Tumors generated from SP cells were larger than those from the NSP cells in NOD/SCID mice. The mRNA microarray profiling revealed that five cancer marker gene expressions were up-regulated and one tumor suppressor gene expression was down-regulated. These findings suggest that SP cells in A431 could contribute to self-renewal, neoplastic transformation, and cancer metastasis of human epidermal squamous cell carcinoma.

  18. Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells : Inhibition by ABA is mediated through protein phosphatases

    NARCIS (Netherlands)

    Roelfsema, MRG; Staal, M; Prins, HBA

    The phytohormone abscisic acid (ABA) inhibits blue light-induced apoplastic acidification of guard cells. The signal transduction pathway of ABA, mediating this response, was studied using ABA-insensitive (abi) mutants of Arapidopsis thaliana. Apoplastic acidification was monitored with a flat

  19. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint

    Science.gov (United States)

    Gandarillas, Alberto

    2012-01-01

    Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621

  20. Response of mouse epidermal cells to single doses of heavy-particles

    Science.gov (United States)

    Leith, J. T.; Schilling, W. A.; Welch, G. P.

    1972-01-01

    The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions.

  1. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana.

    Science.gov (United States)

    Barbez, Elke; Dünser, Kai; Gaidora, Angelika; Lendl, Thomas; Busch, Wolfgang

    2017-06-13

    Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.

  2. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    Science.gov (United States)

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  3. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases....

  4. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    Science.gov (United States)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  5. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1.

    Science.gov (United States)

    Walford, Sally-Ann; Wu, Yingru; Llewellyn, Danny J; Dennis, Elizabeth S

    2012-08-01

    Gossypium hirsutum L. (cotton) fibres are specialized trichomes a few centimetres in length that grow from the seed coat. Few genes directly involved in the differentiation of these epidermal cells have been identified. These include GhMYB25-like and GhMYB25, two related MYB transcription factors that regulate fibre cell initiation and expansion. We have also identified a putative homeodomain leucine zipper (HD-ZIP) transcription factor, GhHD-1, expressed in trichomes and early fibres that might play a role in cotton fibre initiation. Here, we characterize GhHD-1 homoeologues from tetraploid G. hirsutum and show, using reporter constructs and quantitative real-time PCR (qRT-PCR), that they are expressed predominantly in epidermal tissues during early fibre development, and in other tissues bearing epidermal trichomes. Silencing of GhHD-1 reduced trichome formation and delayed the timing of fibre initiation. Constitutive overexpression of GhHD-1 increased the number of fibres initiating on the seed, but did not affect leaf trichomes. Expression of GhHD-1 in cotton silenced for different fibre MYBs suggest that in ovules it acts downstream of GhMYB25-like, but is unaffected in GhMYB25- or GhMYB109-silenced plants. Microarray analysis of silencing and overexpression lines of GhHD-1 indicated that it potentially regulates the levels of ethylene and reactive oxidation species (ROS) through a WRKY transcription factor and calcium-signalling pathway genes to activate downstream genes necessary for cell expansion and elongation. © 2012 CSIRO. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L.

    Science.gov (United States)

    Agrawal, V P; Lessire, R; Stumpf, P K

    1984-05-01

    The elongation system present in leek epidermal cells functions to synthesize very long chain fatty acids which, in turn, are the precursors to alkanes. The elongation system is microsomal, employs only saturated acyl components of the endogenous lipid pool as acceptors, utilizes malonyl-CoA as the C2 donor, has an absolute requirement for ATP, and is markedly inhibited by acetyl-ACP. Only saturated acyl-CoAs are readily elongated to very long chain fatty acids by malonyl-CoA in the absence of ATP. ACP is not required by the microsomal system.

  7. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Manpreet S. Chahal

    2010-07-01

    Full Text Available Phospholipase D2 (PLD2 generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  8. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  9. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs.

    Science.gov (United States)

    McMahill, Barbara G; Spriet, Mathieu; Sisó, Sílvia; Manzer, Michael D; Mitchell, Gaela; McGee, Jeannine; Garcia, Tanya C; Borjesson, Dori L; Sieber-Blum, Maya; Nolta, Jan A; Sturges, Beverly K

    2015-10-01

    This pilot feasibility study aimed to determine the outcome of canine epidermal neural crest stem cell (cEPI-NCSC) grafts in the normal spinal cords of healthy bred-for-research dogs. This included developing novel protocols for (a) the ex vivo expansion of cEPI-NCSCs, (b) the delivery of cEPI-NCSCs into the spinal cord, and (c) the labeling of the cells and subsequent tracing of the graft in the live animal by magnetic resonance imaging. A total of four million cEPI-NCSCs were injected into the spinal cord divided in two locations. Differences in locomotion at baseline and post-treatment were evaluated by gait analysis and compared with neurological outcome and behavioral exams. Histopathological analyses of the spinal cords and cEPI-NCSC grafts were performed at 3 weeks post-transplantation. Neurological and gait parameters were minimally affected by the stem cell injection. cEPI-NCSCs survived in the canine spinal cord for the entire period of investigation and did not migrate or proliferate. Subsets of cEPI-NCSCs expressed the neural crest stem cell marker Sox10. There was no detectable expression of markers for glial cells or neurons. The tissue reaction to the cell graft was predominantly vascular in addition to a degree of reactive astrogliosis and microglial activation. In the present study, we demonstrated that cEPI-NCSC grafts survive in the spinal cords of healthy dogs without major adverse effects. They persist locally in the normal spinal cord, may promote angiogenesis and tissue remodeling, and elicit a tissue response that may be beneficial in patients with spinal cord injury. It has been established that mouse and human epidermal neural crest stem cells are somatic multipotent stem cells with proved innovative potential in a mouse model of spinal cord injury (SCI) offering promise of a valid treatment for SCI. Traumatic SCI is a common neurological problem in dogs with marked similarities, clinically and pathologically, to the syndrome in people

  10. Using human epithelial amnion cells in human de-epidermized dermis for skin regeneration.

    Science.gov (United States)

    Jiang, Lei-Wei; Chen, Hongduo; Lu, Hongguang

    2016-01-01

    Human amniotic epithelial cells (hAECs) is a desirable reserve of stem cells. Human de-epidermized dermis (DED) retains basic tissue structure and parts of the basement membrane (BM) components at the acelluIar dermal surface, and provides a potential tool for skin regeneration. To evaluate the potential role of hAECs in skin regeneration, we used DED to perform organotypic culture of hAECs to develop organotypic skin. HAECs were isolated and cultured. Biological characteristics of hAECs were determined by immunocytochemistry and flow cytometry. To prepare DED, the epidermis was removed and then repeated freeze-thaw cycles. HAECs and fibroblast were seeded onto DED to perform the submerged culture for 3 days and then to be maintained at the air-liquid interface for 14 days to form organotypic culture. To identify whether the obtained DED retain the BM structure and components, the histological characteristics of DED and the BM were detected by immunohistochemistry. To evaluate whether the organotypic skin has similar histological characteristics with normal human skin, the marks of epidermal proliferation and differentiation and basement membrane component were detected by immunohistochemistry. Moreover, cell ultrastructure, cell-cell contact and ultrastructure of BM were examined under the transmission electron microscopy. HAECs has stem-cell characteristics with strong pluripotent Oct-4 and embryonic marker SSEA-4 expression. DED has effectively cleansed the cell components and continuous distributions of laminin and collagen IV. The histological appearance of tissue-engineered skin in vitro has 4 to 9 continuous layers of stratified epithelium and is similar to normal human skin in morphology. Immunohistochemical studies revealed that proliferation and differentiation markers such as Ki67, CK19, CK14, CK10, filaggrin but not CK18 expressed similar pattern characteristics to normal human epidermis. In addition, Periodic acid-Schiff stain showed that a uniform red

  11. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  12. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  13. Similar effects of phospholipase C and phorbol ester tumor promoters on primary mouse epidermal cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.; Lichti, U.; Strickland, J.E.; Blumberg, P.M.

    1985-11-01

    Interaction of tumor promoting phorbol esters with specific high affinity receptors is probably essential for many of the biological responses elicited by these agents. Since diacylglycerols which can be produced enzymatically from phospholipids by phospholipase C are postulated to be the physiological ligands for the phorbol ester receptor, the authors have examined primary cultures of mouse epidermal basal cells exposed to phospholipase C (Clostridium perfringens) for several biological and biochemical responses characteristic of treatment with 12-O-tetradecanoyl-phorbol-13-acetate, the most potent phorbol ester tumor promoter. Formation of diacylglycerols by treatment with phospholipase C was demonstrated by the dose-dependent release of radioactive diacylglycerols in cells prelabeled with (TH)arachidonic acid. Treatment with phospholipase C led to the morphological changes and to the reduction in epidermal growth factor binding (90%) associated with 12-O-tetradecanoylphorbol-13-acetate treatment. Continuous treatment at the same dose led to the induction of the enzymes ornithine decarboxylase and transglutaminase with a time course and extent similar to the inductions by 12-O-tetradecanoylphorbol-13-acetate. Treatment with phospholipase C yielded substantial suppression of the binding affinity of phorbol-12,13-dibutyrate for its receptors without reduction in total number of binding sites, consistent with the production by phospholipase C of a competitive inhibitor of phorbol ester binding.

  14. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  15. Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Bos, T.A.; Rutten, A.A.J.J.L.

    1995-01-01

    Epidermal cell proliferation and differentiation were investigated in vitro after exposure to the anionic surfactant sodium dodecyl sulfate (SDS). Human skin organ cultures were exposed topically to various concentrations of SDS for 22 h, after which the irritant was removed. Cell proliferation was

  16. Dimethylfumarate for psoriasis: Pronounced effects on lesional T-cell subsets, epidermal proliferation and differentiation, but not on natural killer T cells in immunohistochemical study.

    NARCIS (Netherlands)

    Bovenschen, H.J.; Langewouters, A.M.G.; Kerkhof, P.C.M. van de

    2010-01-01

    BACKGROUND: T-cell infiltration, epidermal hyperproliferation, and disturbed keratinization are pathologic hallmarks of plaque psoriasis. Oral fumaric acid esters are an effective therapy for psoriasis and are believed to exert their effects mainly through their anti-inflammatory properties.

  17. Difference in light-induced increase in ploidy level and cell size between adaxial and abaxial epidermal pavement cells of Phaseolus vulgaris primary leaves.

    Science.gov (United States)

    Kinoshita, Isao; Sanbe, Akiko; Yokomura, E-iti

    2008-01-01

    Changes in nuclear DNA content and cell size of adaxial and abaxial epidermal pavement cells were investigated using bright light-induced leaf expansion of Phaseolus vulgaris plants. In primary leaves of bean plants grown under high (sunlight) or moderate (ML; photon flux density, 163 micromol m(-2) s(-1)) light, most adaxial epidermal pavement cells had a nucleus with the 4C amount of DNA, whereas most abaxial pavement cells had a 2C nucleus. In contrast, plants grown under low intensity white light (LL; 15 micromol m(-2) s(-1)) for 13 d, when cell proliferation of epidermal pavement cells had already finished, had a 2C nuclear DNA content in most adaxial pavement cells. When these LL-grown plants were transferred to ML, the increase in irradiance raised the frequency of 4C nuclei in adaxial but not in abaxial pavement cells within 4 d. On the other hand, the size of abaxial pavement cells increased by 53% within 4 d of transfer to ML and remained unchanged thereafter, whereas adaxial pavement cells continuously enlarged for 12 d. This suggests that the increase in adaxial cell size after 4 d is supported by the nuclear DNA doubling. The different responses between adaxial and abaxial epidermal cells were not induced by the different light intensity at both surfaces. It was shown that adaxial epidermal cells have a different property than abaxial ones.

  18. New procedure for epidermal cell isolation using kiwi fruit actinidin, and improved culture of melanocytes in the presence of leukaemia inhibitory factor and forskolin.

    Science.gov (United States)

    Yarani, Reza; Mansouri, Kamran; Mohammadi-Motlagh, Hamid Reza; Bakhtiari, Mitra; Mostafaie, Ali

    2013-06-01

    Conventional isolation of epidermis from the dermis and disruption of epidermal sheets to liberate the cells, are performed using proteolytic enzymes such as thermolysin or collagenase. Selective population expansion of melanocytes is achieved by suppressing proliferation of keratinocytes and fibroblasts in epidermal cell suspensions, using phorbol esters and cholera toxin. Here, we introduce a new procedure for isolation of epidermal cells, using proteolytic activity of kiwi fruit actinidin, and also an improved growth medium for melanocytes in the presence of leukaemia inhibitory factor (LIF) and forskolin. Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one modified medium to discover optimization for these cells. We found that dermo-epidermal separation and epidermal sheet cell dispersion using kiwi fruit actinidin were considerably better than previously used methods, both from the aspect of less fibroblast and keratinocyte contamination, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation of epidermal cells. Supplementation of LIF and forskolin to new medium increased proliferation potential of melanocytes in comparison to exogenous mitogens. © 2013 Blackwell Publishing Ltd.

  19. Characterization of epidermal growth factor receptor and action on human breast cancer cells in culture.

    Science.gov (United States)

    Fitzpatrick, S L; LaChance, M P; Schultz, G S

    1984-08-01

    Epidermal growth factor (EGF) may play a role in regulating growth of breast cancer cells in vivo. We have examined the action of EGF on breast cancer cells in vitro and characterized the EGF receptor as a model system for its action in vivo. All of the fourteen breast cancer cell lines which grow attached to culture dishes specifically bound EGF, including one purportedly normal breast line (HBL-100). The one cell line examined which grows as a suspension, DU-4475, did not express measurable levels of EGF binding. The number of EGF binding sites per cell for the different cell lines varied from 200 EGF binding sites/cell (for MDA-MB-436) to 700,000 EGF binding sites/cell (for MDA-MB-231), with most cell lines having approximately 10,000 EGF binding sites/cell. Scatchard analysis of EGF binding to four of the breast cell lines indicated a single class of high-affinity binding sites for MDA-MB-231 cells (Kd = 200 pM; n = 220 fmol of EGF bound/mg of cell protein); and for T-47D cells (Kd = 4 nM, n = 85 fmol of EGF bound/mg of cell protein) and curvilinear plots for MCF-7 cells and HBL-100 cells. The EGF binding to MDA-MB-231 cells was specific for EGF and was maximum after 2 hr at 37 degrees, followed by a progressive loss of cell-associated radio-activity, which was prevented by the action of the lysosomal inhibitory agent chloroquine. Specific covalent binding of 125I-EGF to MDA-MB-231 cells indicated that the EGF receptor had molecular weights of 165,000 and 140,000. MCF-7 cells and T-47D cells grown in serum-free medium supplemented with 10 nM EGF for 3 days had significantly increased protein, DNA, and cell number, whereas MDA-MB-231 and ZR-75-1 cells did not respond significantly to EGF. These results indicate that EGF receptors are consistently expressed by breast cells grown attached to a surface but that some cell lines expressing EGF receptors do not respond mitogenically to EGF. The biochemical characteristics of EGF receptors in MDA-MD-231 breast cells

  20. Bioengineering a Human Plasma-Based Epidermal Substitute With Efficient Grafting Capacity and High Content in Clonogenic Cells

    Science.gov (United States)

    Alexaline, Maia M.; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T.; Doucet, Christelle; Fortunel, Nicolas O.

    2015-01-01

    Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. Significance This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. PMID:25848122

  1. Application of Microneedles to Skin Induces Activation of Epidermal Langerhans Cells and Dermal Dendritic Cells in Mice.

    Science.gov (United States)

    Takeuchi, Asuka; Nomoto, Yusuke; Watanabe, Mai; Kimura, Soichiro; Morimoto, Yasunori; Ueda, Hideo

    2016-08-01

    An adequate immune response to percutaneous vaccine application is generated by delivery of sufficient amounts of antigen to skin and by administration of toxin adjuvants or invasive skin abrasion that leads to an adjuvant effect. Microneedles penetrate the stratum corneum, the outermost layer of the skin, and enable direct delivery of vaccines from the surface into the skin, where immunocompetent dendritic cells are densely distributed. However, whether the application of microneedles to the skin activates antigen-presenting cells (APCs) has not been demonstrated. Here we aimed to demonstrate that microneedles may act as a potent physical adjuvant for successful transcutaneous immunization (TCI). We prepared samples of isolated epidermal and dermal cells and analyzed the expression of major histocompatibility complex (MHC) class II and costimulatory molecules on Langerhans or dermal dendritic cells in the prepared samples using flow cytometry. The expression of MHC class II and costimulatory molecules demonstrated an upward trend in APCs in the skin after the application of 500- and 300-µm microneedles. In addition, in the epidermal cells, application of microneedles induced more effective activation of Langerhans cells than did an invasive tape-stripping (positive control). In conclusion, the use of microneedles is likely to have a positive effect not only as an antigen delivery system but also as a physical technique inducing an adjuvant-like effect for TCI.

  2. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus. This will...

  3. IL-1β-Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity

    DEFF Research Database (Denmark)

    Nielsen, Morten M; Lovato, Paola; Macleod, Amanda S

    2014-01-01

    Substances that penetrate the skin surface can act as allergens and induce a T cell-mediated inflammatory skin disease called contact hypersensitivity (CHS). IL-17 is a key cytokine in CHS and was originally thought to be produced solely by CD4(+) T cells. However, it is now known that several cell...... types, including γδ T cells, can produce IL-17. In this study, we determine the role of γδ T cells, especially dendritic epidermal T cells (DETCs), in CHS. Using a well-established model for CHS in which 2,4-dinitrofluorobenzene (DNFB) is used as allergen, we found that γδ T cells are important players...... in CHS. Thus, more IL-17-producing DETCs appear in the skin following exposure to DNFB in wild-type mice, and DNFB-induced ear swelling is reduced by ∼50% in TCRδ(-/-) mice compared with wild-type mice. In accordance, DNFB-induced ear swelling was reduced by ∼50% in IL-17(-/-) mice. We show that DNFB...

  4. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  5. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum.

    Science.gov (United States)

    Di Stilio, Verónica S; Martin, Cathie; Schulfer, Anjelique F; Connelly, Caitlin F

    2009-08-01

    Here, we investigated the genetic underpinnings of pollination-related floral phenotypes in Thalictrum, a ranunculid with apetalous flowers. The variable presence of petaloid features in other floral organs correlates with distinct adaptations to insect vs. wind pollination. Conical cells are present in sepals or stamens of insect-pollinated species, and in stigmas. We characterized a Thalictrum ortholog of the Antirrhinum majus transcription factor MIXTA-like2, responsible for conical cells, from three species with distinct floral morphologies, representing two pollination syndromes. Genes were cloned by PCR and analysed phylogenetically. Expression analyses were conducted by quantitative PCR and in situ hybridization, followed by functional studies in transgenic tobacco. The cloned genes encode R2R3 MYB proteins closely related to Antirrhinum AmMYBML2 and Petunia hybrida PhMYB1. Spatial expression by in situ hybridization overlaps areas of conical cells. Overexpression in tobacco induces cell outgrowths in carpel epidermis and significantly increases the height of petal conical cells. We have described the first orthologs of AmMIXTA-like2 outside the core eudicots, likely ancestral to the MIXTA/MIXTA-like1 duplication. The conserved role in epidermal cell elongation results in conical cells, micromorphological markers for petaloidy. This adaptation to attract insect pollinators was apparently lost after the evolution of wind pollination in Thalictrum.

  6. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells.

    Science.gov (United States)

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A; Ackerman, Janet M; Yaswen, Paul; Vulpe, Chris D; Leitman, Dale C

    2016-05-01

    Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM, Yaswen P, Vulpe CD, Leitman DC. 2016. Parabens and human epidermal

  7. Loss of Necrotic Spotted Lesions 1 associates with cell death and defense responses in Arabidopsis thaliana.

    Science.gov (United States)

    Noutoshi, Yoshiteru; Kuromori, Takashi; Wada, Takuji; Hirayama, Takashi; Kamiya, Asako; Imura, Yuko; Yasuda, Michiko; Nakashita, Hideo; Shirasu, Ken; Shinozaki, Kazuo

    2006-09-01

    We isolated a lesion mimic mutant, necrotic spotted lesions 1 (nsl1), from Ds-tagged Arabidopsis thaliana accession No-0. The nsl1 mutant exhibits a growth retardation phenotype and develops spotted necrotic lesions on its rosette and cauline leaves. These phenotypes occur in the absence of pathogens indicating that nsl1 mutants may constitutively express defense responses. Consistent with this idea, nsl1 accumulates high levels of callose and autofluorescent phenolic compounds localized to the necrotic lesions. Furthermore RNA gel blot analysis revealed that genes associated with disease resistance activation are upregulated in the nsl1 mutants and these plants contain elevated levels of salicylic acid (SA). Crossing nsl1 with an SA deficient mutant, eds16-1, revealed that the nsl1 lesions and growth retardation are dependent upon SA. The nsl1 phenotypes are not suppressed under either the rar1-10 or sgt1b-1 genetic background. NSL1 encodes a novel 612aa protein which contains a membrane-attack complex/perforin (MACPF) domain, which is conserved in bacteria, fungi, mammals and plants. The possible modes of action of NSL1 protein in negative regulation of cell death programs and defense responses are discussed.

  8. AMIODARONE INDUCES THE SYNTHESIS OF HSPS IN SACCHAROMYCES CEREVISIAE AND ARABIDOPSIS THALIANA CELLS

    Directory of Open Access Journals (Sweden)

    Pyatrikas D.V.

    2012-08-01

    Full Text Available Many biotic and abiotic stresses cause an increase of cytosolic Ca2+ level in cells. Calcium is one of the most important second messengers, regulating many various activities in the cell and was known to affect expression of stress activated genes. Mild heat shock induces the expression of heat shock proteins (Hsps which protect cell from drastic heat shock exposure. There are some literature data permitting to suggest that transient elevation of cytosolic Ca2+ level in plant cells is important for activation of Hsps expression. On the other hand mitochondria are known to regulate the intracellular calcium and reactive oxygen species signaling. It has been shown recently that mild heat shock induces hyperpolarization of inner mitochondrial membrane in plant and yeast cells and this event is critically important for activation of Hsps expression. To reveal the relationship between mitochondrial activity, intracellular calcium homeostasis and Hsps expression an antiarrhythmic drug amiodarone (AMD have been used. AMD is known to cause transient increase of cytosolic Ca2+ level in Saccharomyces cerevisiae. Obtained results have showed that AMD treatment induced the synthesis of Hsp104p in S. cerevisiae cells and Hsp101p in A. thaliana cell culture. Induction of Hsp104p synthesis leads to enhanced yeast capability to survive lethal heat shock exposure. Development of S. cerevisiae thermotolerance depended significantly on the presence of Hsp104p. Elevation of Hsp104p level in the result of AMD treatment was shown to be governed by activity of Msn2p and Msn4p transcription factors. Deletion of the MSN2 and MSN4 genes abrogated the AMD ability to induce Hsp104p synthesis. Mild heat shock and AMD treatment induced the hyperpolarization of the inner mitochondrial membrane in yeast and Arabidopsis cells which accompanied by HSP synthesis and development of thermotolerance. It was suggested that increase of cytosolic Ca2+ level after AMD treatment

  9. Epidermal Growth Factor Receptor Mutations and Radiotherapy 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xing ZHONG

    2013-03-01

    Full Text Available Radiotherapy plays a pivotal role in the treatment for lung cancer. Epidermal growth factor receptor (EGFR mutation in non-small cell lung cancer (NSCLC which predicts tyrosine kinase inhibitor (TKI treatment response may also has effect on radiation response. NSCLC harboring kinase-domain mutations in EGFR exhibits enhanced radio-sensitivity due to dramatically diminished capacity to resolve radiation-induced DSBs (DNA double-strand breaks associating with the inefficiency of EGFR nuclear translocation. Recently, several preliminary clinical studies show certain efficacy of concurrent EGFR tyrosine kinase inhibitors and radiotherapy. However its further response in EGFR-mutated NSCLC is unclear. The correlation between EGFR mutation genotype and the radiotherapy response and clinical outcome is worthy of further study.

  10. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  11. Relationship between activation of epidermal growth factor receptor and cell dissociation in pancreatic cancer.

    Science.gov (United States)

    Tan, Xiaodong; Egami, Hiroshi; Ishikawa, Shinji; Nakagawa, Masahide; Ishiko, Takatoshi; Kamohara, Hidenobu; Hirota, Masahiko; Ogawa, Michio

    2004-11-01

    In our previous investigations, mitogen-activated protein kinase kinase 2 (MEK2)/extracellular signal-regulated kinase 2 (ERK2) signaling pathway was found to be correlated with the cell dissociation induced by dissociation factor (DF) in pancreatic cancer cells. In this study, the expressions of epidermal growth factor receptor (EGFR), phosphorylated EGFR (p-EGFR), and its downstream kinases MEK1/2 and ERK1/2, were analyzed to clarify the regulatory mechanism of cell dissociation in pancreatic cancer cells. Two hamster (PC-1.0 and PC-1) and two human (AsPC-1 and Capan-2) pancreatic cancer cell lines were used. Immunocytochemical study was performed using anti-EGFR, p-EGFR, phosphorylated MEK1/2 (p-MEK1/2), and phosphorylated ERK1/2 (p-ERK1/2) antibodies. DF-treatment markedly induced the expressions of EGFR, p-EGFR, p-MEK1/2, p-ERK1/2, as well as the dissociation of cell colonies in PC-1 and Capan-2 cells. In contrast, AG1478 (an EGFR inhibitor) treatment significantly induced the cell aggregation in PC-1.0 and AsPC-1 cells which usually grew as single cells, but strongly suppressed the expressions of EGFR, p-EGFR, p-MEK1/2, and p-ERK1/2. These observations demonstrate that activation of EGFR is closely involved in cell dissociation in pancreatic cancer through activating MEK/ERK signaling pathway.

  12. Spatial organization and isotubulin composition of microtubules in epidermal tendon cells of Artemia franciscana.

    Science.gov (United States)

    Criel, Godelieve R J; Van Oostveldt, Patrick; MacRae, Thomas H

    2005-02-01

    Epidermally derived tendon cells attach the exoskeleton (cuticle) of the Branchiopod crustacean, Artemia franciscana, to underlying muscle in the hindgut, while the structurally similar transalar tendon (epithelial) cells, which also arise from the epidermis and are polarized, connect dorsal and ventral exopodite surfaces. To establish these latter attachments the transalar tendon cells interact with cuticles on opposite sides of the exopodite by way of their apical surfaces and with one another via basal regions, or the cuticle attachments may be mediated through linkages with phagocytic storage cells found in the hemolymph. In some cases, phyllopod tendon cells attach directly to muscle cells. Tendon cells in the hindgut of Artemia possess microtubule bundles, as do the transalar cells, and they extend from the basal myotendinal junction to the apical domain located near the cuticle. The bundled microtubules intermingle with thin filaments reminiscent of microfilaments, but intermediate filament-like structures are absent. Microtubule bundles converging at apical cell surfaces contact structures termed apical invaginations, composed of cytoplasmic membrane infoldings associated with electron-dense material. Intracuticular rods protrude from apical invaginations, either into the cuticle during intermolt or the molting fluid in premolt. Confocal microscopy of immunofluorescently stained samples revealed tyrosinated, detyrosinated, and acetylated tubulins, the first time posttranslationally modified isoforms of this protein have been demonstrated in crustacean tendon cells. Microfilaments, as shown by staining with phalloidin, coincided spatially with microtubule bundles. Artemia tendon cells clearly represent an interesting system for study of cytoskeleton organization within the context of cytoplasmic polarity and the results in this article indicate functional cooperation of microtubules and microfilaments. These cytoskeletal elements, either acting independently

  13. Epoc-1: a POU-domain gene expressed in murine epidermal basal cells and thymic stromal cells.

    Science.gov (United States)

    Yukawa, K; Yasui, T; Yamamoto, A; Shiku, H; Kishimoto, T; Kikutani, H

    1993-11-15

    POU-domain transcription factors are known as developmental regulators which control organ development and cell phenotypes. In order to clarify the roles of POU-domain transcription factors in cell differentiation, we cloned a novel POU family gene, Epoc-1, from a murine thymus cDNA library. The amino acid (aa) sequence of the POU-specific domain of Epoc-1 is almost identical to those of Oct-1 and Oct-2. However, within the POU-homeodomain, 13 out of 60 aa differ between Epoc-1 and Oct-2. Recombinant Epoc-1 products were found to bind specifically to the octamer sequence. Epoc-1 was found to be expressed in skin, thymus, stomach and testis. In situ hybridization experiments and RNase protection assays indicated that Epoc-1 is expressed in the epidermal basal cells of the skin, which contain stem cells unipotent for keratinocyte differentiation and in thymic stromal elements. These results suggest that Epoc-1 might be one of the developmental regulators which controls epidermal development and thymic organogenesis.

  14. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    Science.gov (United States)

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    Full Text Available BACKGROUND: The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  16. Enterococcus faecalis Enhances Cell Proliferation through Hydrogen Peroxide-Mediated Epidermal Growth Factor Receptor Activation

    Science.gov (United States)

    Boonanantanasarn, Kanitsak; Gill, Ann Lindley; Yap, YoonSing; Jayaprakash, Vijayvel; Sullivan, Maureen A.

    2012-01-01

    Enterococcus faecalis is a member of the intestinal and oral microbiota that may affect the etiology of colorectal and oral cancers. The mechanisms by which E. faecalis may contribute to the initiation and progression of these cancers remain uncertain. Epidermal growth factor receptor (EGFR) signaling is postulated to play a crucial role in oral carcinogenesis. A link between E. faecalis and EGFR signaling in oral cancer has not been elucidated. The present study aimed to evaluate the association between E. faecalis and oral cancer and to determine the underlying mechanisms that link E. faecalis to EGFR signaling. We report the high frequency of E. faecalis infection in oral tumors and the clinical association with EGFR activation. Using human oral cancer cells, we support the clinical findings and demonstrate that E. faecalis can induce EGFR activation and cell proliferation. E. faecalis activates EGFR through production of H2O2, a signaling molecule that activates several signaling pathways. Inhibitors of H2O2 (catalase) and EGFR (gefitinib) significantly blocked E. faecalis-induced EGFR activation and cell proliferation. Therefore, E. faecalis infection of oral tumor tissues suggests a possible association between E. faecalis infection and oral carcinogenesis. Interaction of E. faecalis with host cells and production of H2O2 increase EGFR activation, thereby contributing to cell proliferation. PMID:22851748

  17. The Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report

    OpenAIRE

    Faramarzi, Hossein; Mehrabani, Davood; Fard, Maryam; Akhavan, Maryam; Zare, Sona; Bakhshalizadeh, Shabnam; Manafi, Amir; Kazemnejad, Somaieh; Shirazi, Reza

    2016-01-01

    BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differentiation into epidermal lineage. METHODS About 5-10 ml of menstrual blood (MB) was collected using ster...

  18. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness

    Directory of Open Access Journals (Sweden)

    Jiyoung You

    2015-09-01

    Full Text Available Andrographis paniculata (A. paniculata, Chuanxinlian, a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE on human epidermal stem cells (EpSCs, and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin β1 (CD29, the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor were measured using an enzyme-linked immunosorbent assay (ELISA. During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin β1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs. In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin β1 and VEGF expression

  19. The Histochemical Characterization of the Glycoconjugates in the Epidermal Mucous Cells of the Red Californian Earthworm, Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Kenan Çinar

    2014-01-01

    Full Text Available The aim of this study was to characterize the nature and regional distribution of the glycoconjugates secreted by epidermal mucous cells in Eisenia foetida (Annelida. Specimens were divided into six regions from anterior to posterior. The histochemistry was carried out by using standard histochemical methods. Histochemical staining properties of glycoconjugates in epidermal mucous cells were determined regionally. The epidermis of all regions contained strong to stronger PAS (+ cells in various degrees. The epidermis of the first, fourth, fifth, and sixth regions had strong to stronger AB pH 2.5 (+ cells. On the contrary, all regions contained weak to moderate AB pH 0.5 and AB pH 1.0 (+ cells. Most of mucous cells in epidermis of the first region contained both PAS (+ and AB (+ mucosubstances. All regions included weaker to weak AF (+ cells. All regions featured KOH/PAS (+ cells, with a slight reduction in reaction intensity in the epidermis of the last three regions. In this context, the different staining patterns observed in epidermal mucous cells hinted at their functional roles with respect to production of mucus with different physical properties. This study provided comprehensive information about the regional distribution patterns of the glycoconjugates and an opportunity to compare their distributional patterns in other annelids.

  20. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  1. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor.

    Science.gov (United States)

    Kippenberger, Stefan; Loitsch, Stefan; Guschel, Maike; Müller, Jutta; Knies, Yvonne; Kaufmann, Roland; Bernd, August

    2005-01-28

    Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.

  2. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  3. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  4. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  5. The Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report.

    Science.gov (United States)

    Faramarzi, Hossein; Mehrabani, Davood; Fard, Maryam; Akhavan, Maryam; Zare, Sona; Bakhshalizadeh, Shabnam; Manafi, Amir; Kazemnejad, Somaieh; Shirazi, Reza

    2016-01-01

    Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differentiation into epidermal lineage. About 5-10 ml of menstrual blood (MB) was collected using sterile Diva cups inserted into vagina during menstruation from volunteered healthy fertile women aged between 22-30 years. MB was transferred into Falcon tubes containing phosphate buffered saline (PBS) without Ca2(+) or Mg2(+) supplemented with 2.5 µg/ml fungizone, 100 µg/mL streptomycin, 100 U/mL penicillin and 0.5 mM EDTA. Mononuclear cells were separated using Ficoll-Hypaque density gradient centrifugation and washed out in PBS. The cell pellet was suspended in DMEM-F12 medium supplemented with 10% FBS and cultured in tissue culture plates. The isolated cells were co-cultured with keratinocytes derived from the foreskin of healthy newborn male aged 2-10 months who was a candidate for circumcision for differentiation into epidermal lineage. The isolated MenSCs were adhered to the plate and exhibited spindle-shaped morphology. Flow cytometric analysis revealed the expression of mesenchymal markers of CD10, CD29, CD73, and CD105 and lack of hematopoietic stem cells markers. An early success in derivation of epidermal lineage from MenSCs was visible. The MenSCs are a real source to design differentiation to epidermal cells that can be used non-invasively in various dermatological lesions and diseases.

  6. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  7. Contributions of the Epidermal Growth Factor Receptor to Acquisition of Platinum Resistance in Ovarian Cancer Cells.

    Science.gov (United States)

    Granados, Michaela L; Hudson, Laurie G; Samudio-Ruiz, Sabrina L

    2015-01-01

    Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer.

  8. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions.

    Science.gov (United States)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna; Gumbiner, Barry M

    2007-06-01

    E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta-catenin-dependent mechanism. It does not affect EGF receptor autophosphorylation or activation of ERK, but it inhibits transphosphorylation of Tyr845 and activation of signal transducers and activators of transcription 5. Thus, E-cadherin homophilic binding independent of other cell contacts directly transduces growth inhibition by a beta-catenin-dependent mechanism that inhibits selective signaling functions of growth factor receptors.

  9. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    Directory of Open Access Journals (Sweden)

    Vaibhavi Umesh

    Full Text Available The aggressive and rapidly lethal brain tumor glioblastoma (GBM is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.

  10. Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling

    Science.gov (United States)

    Umesh, Vaibhavi; Rape, Andrew D.; Ulrich, Theresa A.; Kumar, Sanjay

    2014-01-01

    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling. PMID:25000176

  11. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    Science.gov (United States)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M; Brünner, N; Skovgaard Poulsen, H

    1998-09-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines.

  12. New procedure for epidermal cell isolation using kiwi fruit actinidin, and improved culture of melanocytes in the presence of leukaemia inhibitory factor and forskolin

    DEFF Research Database (Denmark)

    Yarani, Reza; Mansouri, Kamran; Mohammadi-Motlagh, Hamid Reza

    2013-01-01

    factor (LIF) and forskolin. MATERIALS AND METHODS: Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one......, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. CONCLUSION: Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation...

  13. RhoA promotes epidermal stem cell proliferation via PKN1-cyclin D1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Epidermal stem cells (ESCs play a critical role in wound healing, but the mechanism underlying ESC proliferation is not well defined. Here, we explore the effects of RhoA on ESC proliferation and the possible underlying mechanism.Human ESCs were enriched by rapid adhesion to collagen IV. RhoA(+/+(G14V, RhoA(-/-(T19N and pGFP control plasmids were transfected into human ESCs. The effect of RhoA on cell proliferation was detected by cell proliferation and DNA synthesis assays. Induction of PKN1 activity by RhoA was determined by immunoblot analysis, and the effects of PKN1 on RhoA in terms of inducing cell proliferation and cyclin D1 expression were detected using specific siRNA targeting PKN1. The effects of U-46619 (a RhoA agonist and C3 transferase (a RhoA antagonist on ESC proliferation were observed in vivo.RhoA had a positive effect on ESC proliferation, and PKN1 activity was up-regulated by the active RhoA mutant (G14V and suppressed by RhoA T19N. Moreover, the ability of RhoA to promote ESC proliferation and DNA synthesis was interrupted by PKN1 siRNA. Additionally, cyclin D1 protein and mRNA expression levels were up-regulated by RhoA G14V, and these effects were inhibited by siRNA-mediated knock-down of PKN1. RhoA also promoted ESC proliferation via PKN in vivo.This study shows that the effect of RhoA on ESC proliferation is mediated by activation of the PKN1-cyclin D1 pathway in vitro, suggesting that RhoA may serve as a new therapeutic target for wound healing.

  14. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation.

    Science.gov (United States)

    Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian

    2013-07-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.

  15. Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC)

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Herre, Angela; Fahr, Alfred

    2013-01-01

    Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum...... barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence.......g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent...

  16. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species.

    Science.gov (United States)

    Kiani-Pouya, Ali; Roessner, Ute; Jayasinghe, Nirupama S; Lutz, Adrian; Rupasinghe, Thusitha; Bazihizina, Nadia; Bohm, Jennifer; Alharbi, Sulaiman; Hedrich, Rainer; Shabala, Sergey

    2017-09-01

    Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K(+) retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations. © 2017 John Wiley & Sons Ltd.

  17. Association between thyroid cancer and epidermal growth factor receptor mutation in female with nonsmall cell lung cancer

    OpenAIRE

    Seo Yun Kim; Hye-Ryoun Kim; Cheol Hyeon Kim; Jae Soo Koh; Hee Jong Baek; Chang-Min Choi; Joon Seon Song; Jae Cheol Lee; Im Il Na

    2017-01-01

    BACKGROUND: The aim of this study was to investigate the association between epidermal growth factor receptor (EGFR) mutation and thyroid cancer in female patients with nonsmall-cell lung cancer (NSCLC). METHODS: In a retrospective study, we examined 835 female patients who were diagnosed with NSCLC and underwent an EGFR mutation test between June 2003 and August 2013. The associations of EGFR mutation with thyroid cancer and a family history of thyroid cancer were evaluated using logisti...

  18. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  19. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile.

    Science.gov (United States)

    Xu, Ying-Ping; Qi, Rui-Qun; Chen, Wenbin; Shi, Yuling; Cui, Zhi-Zhong; Gao, Xing-Hua; Chen, Hong-Duo; Zhou, Li; Mi, Qing-Sheng

    2012-11-01

    Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.

  20. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation.

    Science.gov (United States)

    Kristensen, Lasse Sommer; Okholm, Trine Line Hauge; Venø, Morten Trillingsgaard; Kjems, Jørgen

    2017-12-28

    The expression patterns of endogenous circular RNA (circRNA) molecules during epidermal stem cell (EpSC) differentiation have not previously been explored. Here, we show that circRNAs are abundantly expressed in EpSCs and that their expression change dramatically during differentiation in a coordinated manner. Overall, circRNAs are expressed at higher levels in the differentiated cells, and many upregulated circRNAs are derived from developmental genes, including four different circRNAs from DLG1. The observed changes in circRNA expression were largely independent of host gene expression, and circRNAs independently upregulated upon differentiation are more prone to AGO2 binding and have more predicted miRNA binding sites compared to stably expressed circRNAs. In particular, upregulated circRNAs from the HECTD1 and ZNF91 genes have exceptionally high numbers of AGO2 binding sites and predicted miRNA target sites, and circZNF91 contains 24 target sites for miR-23b-3p, which is known to play important roles in keratinocyte differentiation. We also observed that upregulated circRNAs are less likely to be flanked by homologues inverted Alu repeats compared to stably expressed circRNAs. This coincide with DHX9 being upregulated in the differentiated keratinocytes. Finally, none of the circRNAs upregulated upon differentiation were also upregulated upon DNMT3A or DNMT3B knockdown, making it unlikely that epigenetic mechanisms are governing the observed circRNA expression changes. Together, we provide a map of circRNA expression in EpSCs and their differentiated counterparts and shed light on potential function and regulation of differentially expressed circRNAs.

  1. Epidermal growth factor stimulates Rac1 and p21-activated kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Beier, Imke; Düsing, Rainer; Vetter, Hans; Schmitz, Udo

    2008-01-01

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for vascular smooth muscle cells (VSMC) both in vitro and in vivo, thus contributing to the development of atherosclerosis and hypertension. Stimulation of Rho-family GTPases Rac/Cdc42 exerts pleiotropic cellular effects and have been demonstrated to contribute to EGF-induced proliferation in other cell systems. However, the effect of EGF on Rac/Cdc42 activation is unknown for VSMC. In the present report, we evaluated stimulation of Rac/Cdc42 by EGF in VSMC performing PAK-PBD binding assay. EGF treatment of VSMC induced time and concentration dependent binding of GTP-bound Rac1 to PAK-PBD peaking at 1 min and showing sustained activation up to 15 min. However, stimulation of Cdc42 could not be demonstrated. To further evaluate downstream effectors of Rac1 stimulation of p21-activated kinase (PAK) and c-Jun N-terminal kinase (JNK) by EGF was determined. In VSMC, EGF sequentially stimulated PAK, peaking at 5 min, and JNK, peaking at 15 min. Pretreatment of VSMC by EGF receptor specific tyrosine kinase inhibitor AG1478 and non-specific tyrosine kinase inhibitor genistein inhibited EGF-induced activation of Rac1, PAK and JNK, whereas tyrosine kinase inhibitors specific for Src (PP1) and specific for platelet-derived growth factor (AG1296) had no effect. Specific inhibition or Rac1 by NSC23766 attenuated EGF-induced [(3)H] thymidine incorporation in VSMC. Our data provide evidence for EGF-induced Rac1 activation and implicate PAK and JNK as downstream targets of Rac1 in EGF signal transduction in VSMC.

  2. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  3. Langerhans cells are not required for epidermal V gamma 3 T cell homeostasis and function

    NARCIS (Netherlands)

    Taveirne, Sylvie; De Colvenaer, Veerle; Van Den Broeck, Tina; Van Ammel, Els; Bennett, Clare L.; Taghon, Tom; Vandekerckhove, Bart; Plum, Jean; Clausen, Bjorn E.; Kaplan, Daniel H.; Leclercq, Georges

    This study tested the hypothesis that V gamma 3 TCR-bearing T cells are influenced by LCs. V gamma 3 T cells and LCs are located in the epidermis of mice. V gamma 3 T cells represent the main T cell population in the skin epithelium and play a crucial role in maintaining the skin integrity, whereas

  4. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  5. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells.

    Science.gov (United States)

    Yang, Xueyi; Moldovan, Nicanor I; Zhao, Qingmei; Mi, Shengli; Zhou, Zhenhui; Chen, Dan; Gao, Zhimin; Tong, Dewen; Dou, Zhongying

    2008-06-05

    It is crucial for the treatment of severe ocular surface diseases such as Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP) to find strategies that avoid the risks of allograft rejection and immunosuppression. Here, we report a new strategy for reconstructing the damaged corneal surface in a goat model of total limbal stem cell deficiency (LSCD) by autologous transplantation of epidermal adult stem cells (EpiASC). EpiASC derived from adult goat ear skin by explant culture were purified by selecting single cell-derived clones. These EpiASC were cultivated on denuded human amniotic membrane (HAM) and transplanted onto goat eyes with total LSCD. The characteristics of both EpiASC and reconstructed corneal epithelium were identified by histology and immunohistochemistry. The clinical characteristic of reconstructed corneal surface was observed by digital camera. Ten LSCD goats (10 eyes) were treated with EpiASC transplantation, leading to the restoration of corneal transparency and improvement of postoperative visual acuity to varying degrees in 80.00% (8/10) of the experimental eyes. The corneal epithelium of control groups either with HAM transplantation only or without any transplantation showed irregular surfaces, diffuse vascularization, and pannus on the entire cornea. The reconstructed corneal epithelium (RCE) expressed CK3, CK12, and PAX-6 and had the function of secreting glycocalyx-like material (AB-PAS positive). During the follow-up period, all corneal surfaces remained transparent and there were no serious complications. We also observed that the REC expressed CK1/10 weakly at six months after operation but not at 12 months after operation, suggesting that the REC was derived from grafted EpiASC. Our results showed that EpiASC repaired the damaged cornea of goats with total LSCD and demonstrated that EpiASC can be induced to differentiate into corneal epithelial cell types in vivo, which at least in part correlated with down

  6. Epidermal growth factor receptor as an adverse survival predictor in squamous cell carcinoma of the penis.

    Science.gov (United States)

    Silva Amancio, Alice Muglia Thomaz da; Cunha, Isabela Werneck da; Neves, José Ivanildo; Quetz, Josiane da Silva; Carraro, Dirce Maria; Rocha, Rafael Malagoli; Zequi, Stenio Cássio; Cubilla, Antonio Leopoldo; da Fonseca, Francisco Paulo; Lopes, Ademar; Cunha, Maria do Perpétuo Socorro Saldanha da; Lima, Marcos Venício Alves; Vassallo, José; Guimarães, Gustavo Cardoso; Soares, Fernando Augusto

    2017-03-01

    Penile carcinoma (PC) is more frequent in underdeveloped countries, generally is diagnosed at an advanced stage when therapeutic options are restricted, and thus is associated with high morbidity/mortality rates. Recent studies have demonstrated clinical benefits with epidermal growth factor receptor (EGFR)-targeted therapy in patients with PC, although there is no test that provides accurate patient selection. The aim of the present study was to evaluate the prognostic value of EGFR gene and protein status in tumor samples from patients with primary penile squamous cell carcinoma. We assessed the expression of wild-type and 2 mutant EGFR isoforms (delA746-E750 and mL858R) by immunohistochemistry in 139 samples, of which 49 were also evaluated for EGFR copy number by fluorescence in situ hybridization (FISH). Positive immunohistochemical staining of wild-type and mutant EGFR was evidenced by complete and strong membranous staining. For FISH analysis, cases were considered unaltered, polysomic, or amplified, as determined by signals of the EGFR gene and chromosome 7. An independent cohort of 107 PC samples was evaluated for mutations in EGFR, KRAS, and BRAF. Protein overexpression was noted in nearly half of the cases and was associated with cancer recurrence (P=.004) and perineural invasion (P=.005). Expression of the 2 mutated EGFR isoforms was not observed. The FISH status was not associated with protein expression. Altered FISH (polysomy and gene amplification) was an independent risk factor for dying of cancer. Only 1 patient of 107 presented KRAS mutations, and no mutations of EGFR or BRAF were observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology.

    Science.gov (United States)

    Engels, F M; van der Laan, F M; Leenhouts, H P; Chadwick, K H

    1980-09-01

    Investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed.

  8. iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-05-01

    Full Text Available Ochratoxin A (OTA is one of the most common and dangerous mycotoxins in the world. Previous work indicated that OTA could elicit spontaneous HR-like lesions formation Arabidopsis thaliana, reactive oxygen species (ROS play an important role in OTA toxicity, and their major endogenous source is mitochondria. However, there has been no evidence as to whether OTA induces directly PCD in plants until now. In this study, the presence of OTA in Arabidopsis thaliana leaves triggered accelerated respiration, increased production of mitochondrial ROS, the opening of ROS-dependent mitochondrial permeability transition pores and a decrease in mitochondrial membrane potential as well as the release of cytochrome c into the cytosol. There were 42 and 43 significantly differentially expressed proteins identified in response to exposure to OTA for 8 and 24 h, respectively, according to iTRAQ analysis. These proteins were mainly involved in perturbation of the mitochondrial electron transport chain, interfering with ATP synthesis and inducing PCD. Digital gene expression data at transcriptional level was consistent with the cell death induced by OTA being PCD. These results indicated that mitochondrial dysfunction was a prerequisite for OTA-induced PCD and the initiation and execution of PCD via a mitochondrial-mediated pathway.

  9. Identification of TROP2 (TACSTD2), an EpCAM-like molecule, as a specific marker for TGF-β1-dependent human epidermal Langerhans cells.

    Science.gov (United States)

    Eisenwort, Gregor; Jurkin, Jennifer; Yasmin, Nighat; Bauer, Thomas; Gesslbauer, Bernhard; Strobl, Herbert

    2011-10-01

    Langerin (CD207) expression is a hallmark of epidermal Langerhans cells (LCs); however, CD207(+) cells comprise several functional subsets. Murine studies showed that epidermal, but not dermal, CD207(+) cells require transforming growth factor-β 1 (TGF-β1) for development, whereas human data are lacking. Using gene profiling, we found that the surface molecule TROP2 (TACSTD2) is strongly and rapidly induced during TGF-β1-dependent LC commitment of human CD34(+) hematopoietic progenitor cells or monocytes. TROP2 is conserved between mouse and human, and shares substantial amino-acid identity with EpCAM, a marker for murine epidermal LCs. To our knowledge, neither TROP2 nor EpCAM expression has been analyzed in human dendritic cell (DC) subsets. We found that (i) all human epidermal LCs are TROP2(+)EpCAM(+); (ii) human dermis lacks CD207(+)EpCAM(-) or CD207(+)TROP2(-) DCs, i.e., equivalents of murine dermal CD207(+) DCs; and (iii) pulmonary CD207(+) cells are TROP2(-)EpCAM(-). Moreover, although EpCAM was broadly expressed by pulmonary and intestinal epithelial cells, as well as by bone marrow erythroid progenitor cells, these cells lacked TROP2. However, although TROP2 is expressed by human LCs as well as by human and murine keratinocytes, most murine LCs, except of a small subset, lacked TROP2. Therefore, TROP2 is a marker for human TGF-β1-dependent epidermal LCs.

  10. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    , and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...

  11. Transient Gene Expression in Epidermal Cells of Plant Leaves by Biolistic DNA Delivery

    OpenAIRE

    Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the pr...

  12. Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat.

    Science.gov (United States)

    Pilehvar-Soltanahmadi, Younes; Nouri, Mohammad; Martino, Mikaël M; Fattahi, Amir; Alizadeh, Effat; Darabi, Masoud; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah

    2017-08-15

    Electrospun nanofibrous scaffolds containing natural substances with wound healing properties such as Emu oil (EO) may have a great potential for increasing the efficiency of stem cell-based skin bioengineering. For this purpose, EO blended PCL/PEG electrospun nanofibrous mats were successfully fabricated and characterized using FE-SEM, FTIR and Universal Testing Machine. The efficiency of the scaffolds in supporting the adherence, cytoprotection, proliferation and differentiation of adipose tissue-derived stem cells (ADSCs) to keratinocyte was evaluated. GC/MS and HPLC were used to determine the composition of pure EO, which revealed to be mainly fatty acids and carotenoids. FE-SEM and cell proliferation assays showed that adhesion and proliferation of ADSCs on EO-PCL/PEG nanofibers was significantly higher than on PCL/PEG nanofibers. Additionally, EO-PCL/PEG nanofibers with free radical scavenging properties conferred a cytoprotective effect against cell-damaging free radicals, while the ability to support cell adhesion and growth was maintained or even improved. Immunostaining of ADSCs on EO-PCL/PEG nanofibers confirmed the change in morphology of ADSCs from spindle to polygonal shape suggesting their differentiation toward an epidermal linage. Moreover, the expression levels of the keratin 10, filaggrin, and involucrin that are involved in epidermal differentiation were upregulated in a stage-specific manner. This preliminary study shows that EO-PCL/PEG nanofibers could be a good candidate for the fabrication of wound dressings and skin bioengineered substitutes with ADSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation.

    Directory of Open Access Journals (Sweden)

    John T Connelly

    Full Text Available Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA blocked terminal differentiation on micro-patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1. Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human epidermal stem cells.

  14. Rainbow trout primary epidermal cell proliferation as an indicator of aquatic toxicity: an in vitro/in vivo exposure comparison.

    Science.gov (United States)

    Kilemade, Michael; Lyons-Alcantara, Maria; Rose, Tina; Fitzgerald, Richard; Mothersill, Carmel

    2002-10-02

    Little or no work has been carried out on primary cell cultures in terms of cellular proliferation and toxicity studies. Cell proliferation represents one of the most relevant cellular functions. Anti-PCNA antibodies have aroused considerable interest recently as potential immunocytochemical markers of proliferation for use in toxicity studies. In this study, PCNA methodology, which was developed primarily for mammalian tissues, was adapted to rainbow trout (Oncorhynchus mykiss (R.)) primary cultured epidermal cells exposed in vivo i.e. whole animal exposures and in vitro for the study of the ecotoxicological potential of the aromatic amine, 2,4-dichloroaniline (2,4-DCA), a member of a little studied and widespread class of aquatic pollutants. There are many approaches to assess the proliferative activity of cells. Immunocytochemical methods offer a high sensitivity and specificity. The immunohistochemical avidin-biotin complex (ABC) method was used for the detection and quantification of PCNA, one of the best-known endogenous proliferation markers, applying the mammalian monoclonal antibody PC-10 to formalin-fixed primary cultures of rainbow trout skin. Here we describe our experience with the immunocytochemical detection and quantification of this proliferation marker. Results indicate that the antibody cross reacts with the corresponding rainbow trout epitope and that the alterations in PCNA labelling in the in vivo and in vitro exposed cultures followed similar patterns. This paper presents data on the validation of rainbow trout primary epidermal culture as an in vitro ecotoxicity model with epidermal proliferation as an endpoint. It can be concluded that cellular proliferation could be used as an indicator of the aquatic toxicity potential of xenobiotics. Correlations between cellular proliferation responses in primary cultures derived from in vivo exposed rainbow trout and primary cultures exposed in vitro were assessed. A dose-response was evidenced in both

  15. Dimethylfumarate for psoriasis: Pronounced effects on lesional T-cell subsets, epidermal proliferation and differentiation, but not on natural killer T cells in immunohistochemical study.

    Science.gov (United States)

    Bovenschen, H Jorn; Langewouters, Annechien M G; van de Kerkhof, Peter C M

    2010-01-01

    T-cell infiltration, epidermal hyperproliferation, and disturbed keratinization are pathologic hallmarks of plaque psoriasis. Oral fumaric acid esters are an effective therapy for psoriasis and are believed to exert their effects mainly through their anti-inflammatory properties. To investigate the differential effects of dimethylfumarate (BG-12; FAG-201) for psoriasis on lesional T-cell subsets, natural killer (NK) T cells, and keratinocyte hyperproliferation and differentiation. A before-and-after clinical and immunohistochemical study as part of a larger clinical trial. Single outpatient clinic. Six patients with moderate-to-severe psoriasis. Dimethylfumarate 720 mg daily for 16 weeks. Biopsies were taken from the lesional skin of six psoriatic patients, at baseline and after 16 weeks of treatment with dimethylfumarate. Clinical severity scores were obtained (Psoriasis Area Severity Index [PASI] and psoriasis severity SUM scores). T-cell subsets (CD4+, CD8+, CD45RO+, CD45RA+, CD2+, CD25+), cells expressing NK receptors (CD94, CD161), an epidermal proliferation marker (Ki67), and a keratinization marker (K10) were immunohistochemically stained and, together with 'epidermal thickness,' quantified using image analysis. At week 16, the mean PASI and SUM scores were reduced by 55% (p T-cell subsets significantly declined. However, in both the lesional psoriatic dermis and epidermis, cells expressing NK receptors (CD94 and CD161) persisted after 16 weeks of treatment. Dimethylfumarate is an effective therapy for moderate-to-severe plaque psoriasis. The drug may act by reducing lesional T-cell subsets and normalizing epidermal hyperproliferation and keratinization, but does not reduce NKT cells.

  16. Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype.

    Science.gov (United States)

    Sulcova, Jitka; Maddaluno, Luigi; Meyer, Michael; Werner, Sabine

    2015-09-01

    Chronic skin inflammation resulting from a defective epidermal barrier is a hallmark of atopic dermatitis (AD). We previously demonstrated that mice lacking FGF receptors 1 and 2 in keratinocytes (K5-R1/R2 mice) develop an AD-like chronic dermatitis as a result of an impaired epidermal barrier. Here, we show that γδ T cells, which rapidly respond to various insults, accumulate in the epidermis of K5-R1/R2 mice before the development of histological abnormalities. Their number and activation further increase as the phenotype progresses, most likely as a consequence of increased expression of Il-2 and Il-7 and the stress-induced proteins Rae-1, H60c, Mult1, PlexinB2, and Skint1. To determine the role of γδ T cells in the skin phenotype, we generated quadruple mutant K5-R1/-R2 mice lacking γδ T cells. Surprisingly, loss of γδ T cells did not or only marginally affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, and accumulation and activation of different immune cells in the skin of K5-R1/R2 mice, possibly due to partial compensation by αβ T cells. These results demonstrate that γδ T cells do not contribute to the development or maintenance of chronic inflammation in response to a defect in the epidermal barrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    Science.gov (United States)

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  18. Nature of the Fatty Acid Synthetase Systems in Parenchymal and Epidermal Cells of Allium porrum L. Leaves.

    Science.gov (United States)

    Lessire, R; Stumpe, P K

    1983-11-01

    Fatty acid synthesis was compared in cell-free extracts of epidermis and parenchyma of Allium porrum L. leaves. Parenchyma extracts had the major fatty acid synthetase (FAS) activity (70-90%) of the whole leaf; palmitic acid was also the major fatty acid synthesized when acetyl-coenzyme A (CoA) was the primer, but when acetyl-acyl carrier protein (ACP) was employed, C(18:0) and C(16:0) were synthesized in equal proportion. With the epidermal FAS system when either acetyl-CoA or acetyl-ACP was tested in the presence of labeled malonyl-CoA, palmitic acid was the only product synthesized. Specific activities of the FAS enzyme activities were determined in both tissue extracts.The properties of malonyl-CoA:ACP transacylase were examined from the two different tissues. The molecular weights estimated by Sephadex G-200 chromatography were 38,000 for the epidermal enzyme and 45,000 for parenchymal enzyme. The optimal pH was for both enzymes 7.8 to 8.0 and the maximal velocity 0.4 to 0.5 micromoles per milligram protein per minute. These enzymes had different affinities for malonyl-CoA and ACP. For the malonyl-CoA:ACP transacylase of epidermis, the K(m) values were 5.6 and 13.7 micromolar for malonyl-CoA and ACP, respectively, and 4.2 and 21.7 micromolar for the parenchymal enzyme. These results suggest that the FAS system in both tissues are nonassociated, that the malonyl-CoA:ACP transacylases are isozymes, and that both in epidermis and in parenchyma tissue two independent FAS system occur. Evidence would suggest that beta-ketoacyl-ACP synthase II is present in the parenchymal cells but missing in the epidermal cell.

  19. Nature of the Fatty Acid Synthetase Systems in Parenchymal and Epidermal Cells of Allium porrum L. Leaves 1

    Science.gov (United States)

    Lessire, Rene; Stumpe, Paul K.

    1983-01-01

    Fatty acid synthesis was compared in cell-free extracts of epidermis and parenchyma of Allium porrum L. leaves. Parenchyma extracts had the major fatty acid synthetase (FAS) activity (70-90%) of the whole leaf; palmitic acid was also the major fatty acid synthesized when acetyl-coenzyme A (CoA) was the primer, but when acetyl-acyl carrier protein (ACP) was employed, C18:0 and C16:0 were synthesized in equal proportion. With the epidermal FAS system when either acetyl-CoA or acetyl-ACP was tested in the presence of labeled malonyl-CoA, palmitic acid was the only product synthesized. Specific activities of the FAS enzyme activities were determined in both tissue extracts. The properties of malonyl-CoA:ACP transacylase were examined from the two different tissues. The molecular weights estimated by Sephadex G-200 chromatography were 38,000 for the epidermal enzyme and 45,000 for parenchymal enzyme. The optimal pH was for both enzymes 7.8 to 8.0 and the maximal velocity 0.4 to 0.5 micromoles per milligram protein per minute. These enzymes had different affinities for malonyl-CoA and ACP. For the malonyl-CoA:ACP transacylase of epidermis, the Km values were 5.6 and 13.7 micromolar for malonyl-CoA and ACP, respectively, and 4.2 and 21.7 micromolar for the parenchymal enzyme. These results suggest that the FAS system in both tissues are nonassociated, that the malonyl-CoA:ACP transacylases are isozymes, and that both in epidermis and in parenchyma tissue two independent FAS system occur. Evidence would suggest that β-ketoacyl-ACP synthase II is present in the parenchymal cells but missing in the epidermal cell. PMID:16663268

  20. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties

    NARCIS (Netherlands)

    Donati, Giacomo; Rognoni, Emanuel; Hiratsuka, Toru; Liakath-Ali, Kifayathullah; Hoste, Esther; Kar, Gozde; Kayikci, Melis; Russell, Roslin; Kretzschmar, Kai; Mulder, Klaas W.; Teichmann, Sarah A.; Watt, Fiona M.

    2017-01-01

    The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6

  1. Topical photodynamic therapy significantly reduces epidermal Langerhans cells during clinical treatment of basal cell carcinoma.

    Science.gov (United States)

    Evangelou, G; Farrar, M D; Cotterell, L; Andrew, S; Tosca, A D; Watson, R E B; Rhodes, L E

    2012-05-01

    Topical photodynamic therapy (PDT) is a widely applied treatment for basal cell carcinoma (BCC). PDT-induced immunosuppression leading to reduced antitumour immune responses may be a factor in treatment failure. To examine the impact of topical PDT on leucocyte trafficking following clinical treatment of BCC. Superficial BCCs in eight white caucasian patients were treated with methyl aminolaevulinate (MAL)-PDT. Biopsies for immunohistochemical assessment were taken from BCCs pre-PDT, 1 h and 24 h post-PDT and from untreated healthy skin. Treatment of BCC with MAL-PDT produced a rapid neutrophil infiltration, commencing by 1 h and significantly increased at 24 h post-PDT (P cells fell sharply by 1 h post-PDT, and remained significantly reduced at 24 h post-PDT (both P cells during clinical treatment of BCC might potentially impact negatively on antitumour responses through reduced activation of tumour-specific effector cells. Investigation of modified PDT protocols with the aim to minimize immunosuppressive effects while maintaining antitumour efficacy is warranted. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  2. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Amstrup, J; Steffansen, B

    2001-01-01

    The human intestinal cell line Caco-2 was used as a model system to study the effects of epidermal growth factor (EGF) on peptide transport. EGF decreased apical-to-basolateral fluxes of [(14)C]glycylsarcosine ([(14)C]Gly-Sar) up to 50.2 +/- 3.6% (n = 6) of control values. Kinetic analysis......(max) decreased from 2.61 +/- 0.4 to 1.06 +/- 0.1 nmol x cm(-2) x min(-1) (n = 3, P T1 mRNA (using glucose-6-phosphate dehydrogenase mRNA as control......) in cells treated with EGF. Western blotting indicated a decrease in hPepT1 protein in cell lysates. We conclude that EGF treatment decreases Gly-Sar transport in Caco-2 cells by decreasing the number of peptide transporter molecules in the apical membrane....

  3. Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schiefelbein John

    2008-07-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors are critical components of the lateral inhibition machinery that mediates epidermal cell patterning in plants. Sequence analysis of the Arabidopsis genome using the BLAST program reveals that there are a total of six genes, including TRIPTYCHON (TRY, CAPRICE (CPC, TRICHOMELESS1 (TCL1, and ENHANCER of TRY and CPC 1, 2, and 3 (ETC1, ETC2 and ETC3 encoding single-repeat R3 MYB transcription factors that are approximately 50% identical to one another at the amino acid level. Previous studies indicate that these single-repeat R3 MYBs regulate epidermal cell patterning. However, each of the previous studies of these single-repeat R3 MYBs has been limited to an analysis of only a subset of these six genes, and furthermore, they have limited their attention to epidermal development in only one or two of the organs. In addition, the transcriptional regulation of these single-repeat R3 MYB genes remains largely unknown. Results By analyzing multiple mutant lines, we report here that TCL1 functions redundantly with other single-repeat R3 MYB transcription factors to control both leaf trichome and root hair formation. On the other hand, ETC1 and ETC3 participate in controlling trichome formation on inflorescence stems and pedicles. Further, we discovered that single-repeat R3 MYBs suppress trichome formation on cotyledons and siliques, organs that normally do not bear any trichomes. By using Arabidopsis protoplast transfection assays, we found that all single-repeat R3 MYBs examined interact with GL3, and that GL1 or WER and GL3 or EGL3 are required and sufficient to activate the transcription of TRY, CPC, ETC1 and ETC3, but not TCL1 and ETC2. Furthermore, only ETC1's transcription was greatly reduced in the gl3 egl3 double mutants. Conclusion Our comprehensive analysis enables us to draw broader conclusions about the role of single-repeat R3 MYB gene family than were possible in the earlier

  4. Mechanism of interleukin-1α transcriptional regulation of S100A9 in a human epidermal keratinocyte cell line

    Science.gov (United States)

    Bando, Mika; Zou, Xianqiong; Hiroshima, Yuka; Kataoka, Masatoshi; Ross, Karen F; Shinohara, Yasuo; Nagata, Toshihiko; Herzberg, Mark C; Kido, Jun-ichi

    2013-01-01

    S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/ macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells is not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein β (C/EBPβ). Mutated C/EBPβ binding sequences or C/EBPβ-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPβ-dependent transcriptional activity. PMID:23563247

  5. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  6. The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells.

    Directory of Open Access Journals (Sweden)

    Rania Hassan Mohamed

    Full Text Available Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.

  7. The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells.

    Science.gov (United States)

    Mohamed, Rania Hassan; Sutoh, Yoichi; Itoh, Yasushi; Otsuka, Noriyuki; Miyatake, Yukiko; Ogasawara, Kazumasa; Kasahara, Masanori

    2015-01-01

    Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L) gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.

  8. Prognostic impact of epidermal growth factor receptor on clear cell renal cell carcinoma: Does it change with different expression patterns?

    Directory of Open Access Journals (Sweden)

    Duygu Kankaya

    2016-01-01

    Full Text Available Introduction: The aim of this study was to assess whether epidermal growth factor receptor (EGFR overexpression was a significant prognostic factor in clear cell renal cell carcinoma (CRCC and whether its prognostic significance was affected by immunohistochemical expression patterns. Materials and Methods: Immunohistochemistry was performed on 100 cases of CRCC using an antibody against EGFR. Tumors were grouped by nuclear grade (NG as low-NG (NG1, 2 or high NG (NG3, 4, and by pathological stage as localized (pT1, 2, or locally invasive (pT3, 4. Clinical disease was grouped by clinical stage as early stage (stage I, II, or late stage (stage III, IV. Evaluation of the EGFR overexpression was based on cytoplasmic (EGFR Cyt , and membranous (EGFR Mem staining. Results: EGFR Cyt correlated with high NG (P = 0.001, lymphovascular invasion (P = 0.028, regional lymph node involvement (P = 0.027, metastasis (P = 0.001, late stage (P = 0.003, cancer-specific death (P = 0.036, and was a predictor for disease-specific survival (P = 0.012 whereas EGFR Mem correlated with only local invasion (P = 0.021 and perirenal invasion (P = 0.009 and did not show any correlation with cancer-specific death or disease specific survival. Conclusion: Our findings suggest that EGFR overexpression is an important prognostic factor in CRCC, and its prognostic value differs significantly with respect to the location of EGFR immunostaining. This prognostic difference may give direction on the management and treatment of CRCC patients.

  9. RhoC Mediates Epidermal Growth Factor-Stimulated Migration and Invasion in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Zohra Tumur

    2015-01-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in head and neck squamous cell carcinoma (HNSCC where it has been shown to promote tumor cell invasion upon phosphorylation. One mechanism by which EGFR promotes tumor progression is by activating signal cascades that lead to loss of E-cadherin, a transmembrane glycoprotein of the cell-cell adherence junctions; however mediators of these signaling cascades are not fully understood. One such mediator, RhoC, is activated upon a number of external stimuli, such as epidermal growth factor (EGF, but its role as a mediator of EGF-stimulated migration and invasion has not been elucidated in HNSCC. In the present study, we investigate the role of RhoC as a mediator of EGF-stimulated migration and invasion in HNSCC. We show that upon EGF stimulation, EGFR and RhoC were strongly activated in HNSCC. This resulted in activation of the phosphatidylinositol 3-Kinase Akt pathway (PI3K-Akt, phosphorylation of GSK-3β at the Ser9 residue, and subsequent down regulation of E-cadherin cell surface expression resulting in increased tumor cell invasion. Knockdown of RhoC restored E-cadherin expression and inhibited EGF-stimulated migration and invasion. This is the first report in HNSCC demonstrating the role RhoC plays in mediating EGF-stimulated migration and invasion by down-regulating the PI3K-Akt pathway and E-cadherin expression. RhoC may serve as a treatment target for HNSCC.

  10. Epidermal growth factor receptor mutation type III transfected into a small cell lung cancer cell line is predominantly localized at the cell surface and enhances the malignant phenotype.

    Science.gov (United States)

    Damstrup, Lars; Wandahl Pedersen, Mikkel; Bastholm, Lone; Elling, Folmer; Skovgaard Poulsen, Hans

    2002-01-01

    In the present study we transfected the epidermal growth factor receptor (EGFR)-negative small cell lung cancer cell line, GLC3, with the type III EGFR mutation (EGFRvIII). The EGFRvIII protein could be detected by Western blot analysis as a 145-kDa protein, which by immunohistochemistry appeared to be localized at the cell surface. Ultrastructurally EGFRvIII was expressed mainly at the cell surface with clusters at cell-cell contacts. In the in vitro invasion assay, GLC3-EGFRvIII cells had a approximately 5-fold increased invasion compared with uninduced GLC3-EGFRvIII, GLC3-Tet-On and the parental cell line. GLC3-Tet-On appeared uniform in size with adherence junctions at cell-cell contacts. In uninduced GLC3-EGFRvIII cells adherence junctions were also present but less distinct. In doxycycline-pretreated GLC3-EGFRvIII cells, adherence junctions were absent. We conclude that the expression of EGFRvIII results in a more malignant phenotype. This effect appears to involve the disruption of adherence junctions. Copyright 2002 Wiley-Liss, Inc.

  11. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds.

    Science.gov (United States)

    Bellini, Márcia Z; Caliari-Oliveira, Carolina; Mizukami, Amanda; Swiech, Kamilla; Covas, Dimas T; Donadi, Eduardo A; Oliva-Neto, Pedro; Moraes, Ângela M

    2015-03-01

    The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings

    Science.gov (United States)

    Iqbal, Amjad; Fry, Stephen C.

    2012-01-01

    Many plants exude allelochemicals – compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots – effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ∼25 and ∼450 μg ml−1 respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants. PMID:22268144

  13. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  14. Gastrin-Releasing Peptide Receptor Mediates Activation of the Epidermal Growth Factor Receptor in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sufi Mary Thomas

    2005-04-01

    Full Text Available Gastrin-releasing peptide receptor (GRPR and the epidermal growth factor receptor (EGFR are expressed in several cancers including non-small cell lung carcinoma (NSCLC. Here we demonstrate the activation of EGFR by the GRPR ligand, gastrin-releasing peptide (GRP, in NSCLC cells. GRP induced rapid activation of p44/42 MAPK in lung cancer cells through EGFR. GRP-mediated activation of MAPK in NSCLC cells was abrogated by pretreatment with the anti-EGFR-neutralizing antibody, C225. Pretreatment of NSCLC cells with neutralizing antibodies to the EGFR ligands, TGF-α or HB-EGF, also decreased GRP-mediated MAPK activation. On matrix metalloproteinase (MMP inhibition, GRP failed to activate MAPK in NSCLC cells. EGF and GRP both stimulated NSCLC proliferation, and inhibition of either EGFR or GRPR resulted in cell death. Combining a GRPR antagonist with the EGFR tyrosine kinase inhibitor, gefitinib, resulted in additive cytotoxic effects. Additive effects were seen at gefitinib concentrations from 1 to 18μM, encompassing the ID50 values of both gefitinib-sensitive and gefitinib-resistant NSCLC cell lines. Because a major effect of GRPR appears to be promoting the release of EGFR ligand, this study suggests that a greater inhibition of cell proliferation may occur by abrogating EGFR ligand release in consort with inhibition of EGFR.

  15. Spatial and temporal genetic heterogeneity of epidermal growth factor receptor gene status in a patient with non-small cell lung cancer: a case report

    Directory of Open Access Journals (Sweden)

    Ogata Makoto

    2011-11-01

    Full Text Available Abstract Introduction To date, an epidermal growth factor receptor-activating mutation is recognized as a genetic hallmark that predicts a good response to treatment with epidermal growth factor receptor tyrosine kinase inhibitor. However, there has been less long-term observation of the mutational status within the same patient. To the best of our knowledge, this is the first case report which illustrates the instability of the genetic status of pulmonary adenocarcinoma cells. Case presentation A 64-year-old Japanese woman with advanced lung adenocarcinoma had been undergoing various anticancer treatments, including epidermal growth factor receptor tyrosine kinase inhibitor, for seven years. She had been receiving locoregional treatment in addition to systemic treatment. She maintained a good performance status until seven years after the initial diagnosis, although she had local and distant recurrences. We analyzed the genetic status of the epidermal growth factor receptor gene in a series of specimens obtained from various tumor-containing lesions throughout the therapeutic period. The results of the genetic analyses clearly showed that the spatial and temporal genetic heterogeneity of the epidermal growth factor receptor gene status originated from an identical tumor ancestor. Conclusions An alternative paradigm to determine a therapeutic strategy for a patient with lung cancer should be considered given the genetic heterogeneity and instability of tumor cells.

  16. Downregulation of human epidermal growth factor receptor 2 by short hairpin RNA increases chemosensitivity of human ovarian cancer cells.

    Science.gov (United States)

    Ma, Li Shan; Yan, Q I; Huang, Yongfang; Zhao, Wenxia; Zhu, Y U

    2015-05-01

    The aim of the current study was to investigate the suppressive effects of pSilencer T7-human epidermal growth factor receptor 2 (HER2)-short hairpin RNA (shRNA) recombinant plasmids on human SKOV3 ovarian cancer cell growth and sensitivity to carboplatin (CBP). Three different pairs of shRNAs (shRNAa, shRNAb and shRNAc), targeting the HER2 gene, were selected and transfected into human SKOV3 cells, respectively. The expression levels of HER2 were then detected by immunohistochemical (IHC), semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. In addition, cell cycle and cell growth were investigated using cell counting kit-8 (CCK-8). The results of the IHC and western blot analyses revealed that shRNAb significantly inhibited HER2 protein expression in SKOV3 cells. shRNAb exhibited an improved effect on HER2 expression compared with shRNAa (Povarian cancer cells in vitro and induced chemotherapeutic sensitivity to CBP.

  17. Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis.

    Science.gov (United States)

    Sakai, Tatsuya; Honing, Hannie van der; Nishioka, Miki; Uehara, Yukiko; Takahashi, Mihoko; Fujisawa, Noriko; Saji, Kensuke; Seki, Motoaki; Shinozaki, Kazuo; Jones, Mark A; Smirnoff, Nicholas; Okada, Kiyotaka; Wasteneys, Geoffrey O

    2008-01-01

    The involvement of kinesin motor proteins in both cell-tip growth and cell-shape determination has been well characterized in various organisms. However, the functions of kinesins during cell morphogenesis in higher plants remain largely unknown. In the current study, we demonstrate that an armadillo repeat-containing kinesin-related protein, ARMADILLO REPEAT KINESIN1 (ARK1), is involved in root-hair morphogenesis. Microtubule polymers are more abundant in ark1 null allele root hairs, but analysis shows that these extra microtubules are concentrated in the endoplasm, and not in the cortical array, suggesting that ARK1 regulates tip growth by limiting the assembly and distribution of endoplasmic microtubules. The ARK1 gene has two homologues in the Arabidopsis genome, ARK2 and ARK3, and our results show that ARK2 is involved in root-cell morphogenesis. We further reveal that a NIMA-related protein kinase, NEK6, binds to the ARK family proteins and has pleiotropic effects on epidermal-cell morphogenesis, suggesting that NEK6 is involved in cell morphogenesis in Arabidopsis via microtubule functions associated with these armadillo repeat-containing kinesins. We discuss the function of NIMA-related protein kinases and armadillo repeat-containing kinesins in the cell morphogenesis of eukaryotes.

  18. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth facto...

  19. Acclimative changes in root epidermal cell fate in response to Fe and P deficiency: a specific role for auxin?

    Science.gov (United States)

    Schikora, A; Schmidt, W

    2001-01-01

    Root hair formation and the development of transfer cells in the rhizodermis was investigated in various existing auxin-related mutants of Arabidopsis thaliana and in the tomato mutant diageotropica. Wild-type Arabidopsis plants showed increased formation of root hairs when the seedlings were cultivated in Fe- or P-free medium. These extranumerary hairs were located in normal positions and in positions normally occupied by nonhair cells, e.g., over periclinal walls of underlying cortical cells. Defects in auxin transport or reduced auxin sensitivity inhibited the formation of root hairs in response to Fe deficiency completely but did only partly affect initiation and elongation of hairs in P-deficient roots. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-dichlorophenoxyacetic acid did not rescue the phenotype of the auxin-resistant axr2 mutant under control and Fe-deficient conditions, indicating that functional AXR2 product is required for translating the Fe deficiency signal into the formation of extra hairs. The development of extra hairs in axr2 roots under P-replete conditions was not affected by auxin antagonists, suggesting that this process is independent of auxin signaling. In roots of tomato, growth under Fe-deficient conditions induced the formation of transfer cells in the root epidermis. Transfer cell frequency was enhanced by application of 2,4-dichlorophenoxyacetic acid but was not inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid. In the diageotropica mutant, which displays reduced sensitivity to auxin, transfer cells appeared to develop in both Fe-sufficient and Fe-deficient roots. Similar to the wild type, no reduction in transfer cell frequency was observed after application of the above auxin transport inhibitor. These data suggest that auxin has no primary function in inducing transfer cell development; the formation of transfer cells, however, appears to be affected by

  20. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?

    Directory of Open Access Journals (Sweden)

    MF. Pompelli

    Full Text Available Stomata are crucial in land plant productivity and survival. In general, with lower irradiance, stomatal and epidermal cell frequency per unit leaf area decreases, whereas guard-cell length or width increases. Nevertheless, the stomatal index is accepted as remaining constant. The aim of this paper to study the influence of ordinary epidermal cells and stomata on leaf plasticity and the influence of these characteristics on stomata density, index, and sizes, in the total number of stomata, as well as the detailed distribution of stomata on a leaf blade. As a result, a highly significant positive correlation (R²a = 0.767 p < 0.001 between stomatal index and stomatal density, and with ordinary epidermal cell density (R²a = 0.500 p < 0.05, and a highly negative correlation between stomatal index and ordinary epidermal cell area (R²a = -0.571 p < 0.001, were obtained. However in no instance was the correlation between stomatal index or stomatal density and stomatal dimensions taken into consideration. The study also indicated that in coffee, the stomatal index was 19.09% in shaded leaves and 20.08% in full-sun leaves. In this sense, variations in the stomatal index by irradiance, its causes and the consequences on plant physiology were discussed.

  1. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    2009-12-01

    Full Text Available The adult subventricular zone (SVZ contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair.We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS. In our search for motile progenitor cells, we uncovered a population of motile betaIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr. This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFr(low neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-alpha, an EGFr-selective agonist. Indeed, acute exposure to TGF-alpha decreased the percentage of motile cells by approximately 40%.In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.

  2. Evaluation of epidermal growth factor interaction with cell surface and its accumulation in nuclei of lung carcinoma, epidermoid carcinoma and melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Jagodzinski, P.P.; Kaczmarski, W.; Trzeciak, W.H. [Polska Akademia Nauk, Poznan (Poland). Zaklad Genetyki Czlowieka

    1992-12-31

    Specificity of binding to cell surface and nuclear accumulation of labelled epidermal growth factor (EGF) was investigated in lung carcinoma (A549), epidermoid carcinoma (HEp-2) and melanoma (B16) cell lines. It was demonstrated that the labelled EGF was bound specifically to the cell surface in line A549, HEp-2 and B16 cells; the latter exhibiting the lowest binding capacity and highest binding affinity. Comparison of nuclear accumulation of the labelled growth factor in these cell lines indicated, that melanoma cell line specifically accumulated the {sup 125}I-EGF in nuclei whereas A549 and HEp-2 did not. Thus, in order to evaluate the effect of EGF in various cells, a strict control of binding affinity and background binding is required. (author). 19 refs, 3 figs, 1 tab.

  3. Increase in epidermal planar cell density accompanies decreased russeting of “Golden Delicious” apples treated with gibberellin A4+7

    Science.gov (United States)

    A two-year study was conducted in a “Golden Delicious” (Malus Xdomestica Borkh.) orchard having a high historical incidence of physiological fruit russeting, to examine the effect of gibberellin A4+7 (GA4+7) on apple epidermal cell size. Beginning at petal fall, four sequential applications of GA4+7...

  4. Effect of estrone on somatic and female gametophyte cell division and differentiation in Arabidospis thaliana cultured in vitro

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2014-04-01

    Full Text Available The aim of the study was to determine the effect of the mammalian female sex hormone estrone on differentiation of somatic tissues and on induction of autonomous endosperm in culture of female gametophyte cells of Arabidopsis thaliana ecotype Columbia (Col-0. In culture, estrone-stimulated development of autonomous endosperm (AE occurred in 14.7% of unpollinated pistils. The AE represented development stages similar to those of young endosperm after fertilization and AE of fis mutants in vivo. In the majority of ovules the AE was in a few-nucleate young stage. Some ovules showed more advanced stages of AE development, with nuclei and cytoplasm forming characteristic nuclear cytoplasmic domains (NCDs. Sporadically, AE was divided into regions characteristic for Arabidopsis endosperm formed after fertilization. Direct organogenesis (caulogenesis, rhizogenesis, callus proliferation and formation of trichome-like structures were observed during in vitro culture of hypocotyls and cotyledons of 3-day-old seedlings cultured on medium supplemented with estrone for 28 days. Histological analysis showed adventitious root formation and changes in explant anatomy caused by estrone.

  5. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability.

    Science.gov (United States)

    Schikora, A; Schmidt, W

    2001-04-01

    Iron-overaccumulating mutants were investigated with respect to changes in epidermal cell patterning and root reductase activity in response to iron starvation. In all mutants under investigation, ferric chelate reductase activity was up-regulated both in the presence and absence of iron in the growth medium. The induction of transfer cells in the rhizodermis appeared to be iron regulated in the pea (Pisum sativum L. cv Dippes Gelbe Viktoria and cv Sparkle) mutants bronze and degenerated leaflets, but not in roots of the tomato (Lycopersicon esculentum Mill. cv Bonner Beste) mutant chloronerva, suggesting that in chloronerva iron cannot be recognized by putative sensor proteins. Experiments with split-root plants supports the hypothesis that Fe(III) chelate reductase is regulated by a shoot-borne signal molecule, communicating the iron status of the shoot to the roots. In contrast, the formation of transfer cells was dependent on the local concentration of iron, implying that this shoot signal does not affect their formation. Different repression curves of the two responses imply that the induction of transfer cells occurs after the enhancement of electron transfer across the plasma membrane rather than being causally linked. Similar to transfer cells, the formation of extra root hairs in the Arabidopsis mutant man1 was regulated by the iron concentration of the growth medium and was unaffected by interorgan signaling.

  6. The influence of cytokinin-auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development.

    Science.gov (United States)

    Muraro, Daniele; Byrne, Helen; King, John; Voss, Ute; Kieber, Joseph; Bennett, Malcolm

    2011-08-21

    Root growth and development in Arabidopsis thaliana are sustained by a specialised zone termed the meristem, which contains a population of dividing and differentiating cells that are functionally analogous to a stem cell niche in animals. The hormones auxin and cytokinin control meristem size antagonistically. Local accumulation of auxin promotes cell division and the initiation of a lateral root primordium. By contrast, high cytokinin concentrations disrupt the regular pattern of divisions that characterises lateral root development, and promote differentiation. The way in which the hormones interact is controlled by a genetic regulatory network. In this paper, we propose a deterministic mathematical model to describe this network and present model simulations that reproduce the experimentally observed effects of cytokinin on the expression of auxin regulated genes. We show how auxin response genes and auxin efflux transporters may be affected by the presence of cytokinin. We also analyse and compare the responses of the hormones auxin and cytokinin to changes in their supply with the responses obtained by genetic mutations of SHY2, which encodes a protein that plays a key role in balancing cytokinin and auxin regulation of meristem size. We show that although shy2 mutations can qualitatively reproduce the effect of varying auxin and cytokinin supply on their response genes, some elements of the network respond differently to changes in hormonal supply and to genetic mutations, implying a different, general response of the network. We conclude that an analysis based on the ratio between these two hormones may be misleading and that a mathematical model can serve as a useful tool for stimulate further experimental work by predicting the response of the network to changes in hormone levels and to other genetic mutations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    Science.gov (United States)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  8. The aqueous extract of Brucea javanica suppresses cell growth and alleviates tumorigenesis of human lung cancer cells by targeting mutated epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Kim SH

    2016-11-01

    Full Text Available Seung-Hun Kim,1,* Chun-Yen Liu,1,* Po-Wei Fan,1 Chang-Heng Hsieh,1 Hsuan-Yuan Lin,1 Ming-Chung Lee,2 Kang Fang1 1Department of Life Science, National Taiwan Normal University, Taipei, 2Brion Research Institute of Taiwan, New Taipei City, Taiwan *These authors contributed equally to this work Abstract: As a practical and safe herbal medicine, the seeds of Brucea javanica (L. Merr., were used to cure patients suffering from infectious diseases such as malaria. Recent advances revealed that the herb could also be a useful cancer therapy agent. The study demonstrated that aqueous B. javanica (BJ extract attenuated the growth of human non-small-lung cancer cells bearing mutant L858R/T790M epidermal growth factor receptor (EGFR. The reduced cell viability in H1975 cells was attributed to apoptosis. Transfection of EGFR small hairpin RNA reverted the sensitivities. When nude mice were fed BJ extract, the growth of xenograft tumors, as established by H1975 cells, was suppressed. Additional histological examination and fluorescence analysis of the resected tissues proved that the induced apoptosis mitigated tumor growth. The work proved that the BJ extract exerted its effectiveness by targeting lung cancer cells carrying mutated EGFR while alleviating tumorigenesis. Aqueous BJ extract is a good candidate to overcome drug resistance in patients undergoing target therapy. Keywords: Brucea javanica, target therapy, epidermal growth factor receptor, human lung, herbal medicine, apoptosis

  9. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoltán Kevei

    Full Text Available The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes.

  10. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development.

    Science.gov (United States)

    Schmidt, W; Schikora, A

    2001-04-01

    Low bioavailability of phosphorus (P) and iron (Fe) induces morphogenetic changes in roots that lead to a higher surface-to-volume ratio. In Arabidopsis, an enlargement in the absorptive surface area is achieved by an increase in the length and frequency of hairs in roots of Fe- and P-deficient plants. The extra root hairs are often located in positions that are occupied with non-hair cells under normal conditions, i.e. over a tangential wall of underlying cortical cells. An involvement of auxin and ethylene in root epidermis cell development of Fe- and P-deficient plants was inferred from phenotypical analysis of hormone-related Arabidopsis mutants and from the application of substances that interfere with either synthesis, transport, or perception of the hormones. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-D caused a marked increase in root hair density in plants of all growth types and confers a phenotype characteristic of ethylene-overproducing mutants. Hormone insensitivity and application of hormone antagonists inhibited the initiation of extranumerary root hairs induced by Fe deficiency, but did not counteract the formation of extra hairs in response to P deprivation. A model is presented summarizing putative pathways for alterations in root epidermal cell patterning induced by environmental stress.

  11. Paricalcitol Inhibits Aldosterone-Induced Proinflammatory Factors by Modulating Epidermal Growth Factor Receptor Pathway in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jose L. Morgado-Pascual

    2015-01-01

    Full Text Available Chronic kidney disease is characterized by Vitamin D deficiency and activation of the renin-angiotensin-aldosterone system. Increasing data show that vitamin D receptor agonists (VDRAs exert beneficial effects in renal disease and possess anti-inflammatory properties, but the underlying mechanism remains unknown. Emerging evidence suggests that “a disintegrin and metalloproteinase” (ADAM/epidermal growth factor receptor (EGFR signalling axis contributes to renal damage. Aldosterone induces EGFR transactivation regulating several processes including cell proliferation and fibrosis. However, data on tubular epithelial cells is scarce. We have found that, in cultured tubular epithelial cells, aldosterone induced EGFR transactivation via TGF-α/ADAM17. Blockade of the TGF-α/ADAM17/EGFR pathway inhibited aldosterone-induced proinflammatory gene upregulation. Moreover, among the potential downstream mechanisms, we found that TGF-α/ADAM17/EGFR inhibition blocked ERK and STAT-1 activation in response to aldosterone. Next, we investigated the involvement of TGF-α/ADAM17/EGFR axis in VDRA anti-inflammatory effects. Preincubation with the VDRA paricalcitol inhibited aldosterone-induced EGFR transactivation, TGF-α/ADAM-17 gene upregulation, and downstream mechanisms, including proinflammatory factors overexpression. In conclusion, our data suggest that the anti-inflammatory actions of paricalcitol in tubular cells could depend on the inhibition of TGF-α/ADAM17/EGFR pathway in response to aldosterone, showing an important mechanism of VDRAs action.

  12. Metalloprobes: Synthesis, Characterization, and Potency of a Novel Gallium(III) Complex in Human Epidermal Carcinoma Cells

    Science.gov (United States)

    Harpstrite, Scott E.; Prior, Julie; Rath, Nigam P.; Sharma, Vijay

    2009-01-01

    Multidrug resistance (MDR) mediated by overexpression of the MDR1 gene product, P-glycoprotein (Pgp), represents one of the best characterized barriers to chemotherapeutic treatment in cancer and may be a pivotal factor in progression of Alzheimer’s disease (AD). Thus, agents capable of probing Pgp-mediated transport could be beneficial in biomedical imaging. Herein, we synthesized and structurally characterized a gallium(III) complex of the naphthol-Schiff base ligand (5). The crystal structure revealed octahedral geometry for the metallodrug. Cytotoxicity profiles of 5 were evaluated in KB-3-1 (Pgp−) and KB-8-5 (Pgp+) human epidermal carcinoma cell lines. Compared with an LC50 (the half-maximal cytotoxic concentration) value of 1.93 μM in drug-sensitive (Pgp−) cells, the gallium(III) complex 5 demonstrated an LC50 value > 100 μM in drug-resistant (Pgp+) cells, thus indicating that 5 was recognized by the Pgp as its substrate, thereby extruded from the cells and sequestered away from their cytotoxic targets. Radiolabeled analogues of 5 could be beneficial in noninvasive imaging of Pgp-mediated transport in vivo. PMID:17617464

  13. Sulforaphane suppresses PRMT5/MEP50 function in epidermal squamous cell carcinoma leading to reduced tumor formation.

    Science.gov (United States)

    Saha, Kamalika; Fisher, Matthew L; Adhikary, Gautam; Grun, Daniel; Eckert, Richard L

    2017-08-01

    Protein arginine methyltransferase 5 (PRMT5) cooperates with methylosome protein 50 (MEP50) to arginine methylate histone H3 and H4 to silence gene expression, and increased PRMT5 activity is associated with enhanced cancer cell survival. We have studied the role of PRMT5 and MEP50 in epidermal squamous cell carcinoma. We show that knockdown of PRMT5 or MEP50 results in reduced H4R3me2s formation, and reduced cell proliferation, invasion, migration and tumor formation. We further show that treatment with sulforaphane (SFN), a cancer preventive agent derived from cruciferous vegetables, reduces PRMT5 and MEP50 level and H4R3me2s formation, and this is associated with reduced cell proliferation, invasion and migration. The SFN-dependent reduction in PRMT5 and MEP50 level requires proteasome activity. Moreover, SFN-mediated responses are partially reversed by forced PRMT5 or MEP50 expression. SFN treatment of tumors results in reduced MEP50 level and H4R3me2s formation, confirming that that SFN impacts this complex in vivo. These studies suggest that the PRMT5/MEP50 is required for tumor growth and that reduced expression of this complex is a part of the mechanism of SFN suppression of tumor formation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effects of epidermal growth factor, platelet derived growth factor and growth hormone on cultured rat keratinocytes cells in vitro.

    Science.gov (United States)

    Safari, Manouchehr; Ghahari, Laya; Zoroufchi, M D Babak Hossein Zadeh

    2014-07-01

    Some growth factors, such as Epidermal Growth Factor (EGF), Growth Hormone (GH) and Platelet Derived Growth Factor (PDGF) have beneficial effects on keratinocyte proliferation and wound healing. Although the mechanism of these factors is unclear. In response to injury, growth factors are secreted by kinds of cutaneous cells. The goal of this project is to investigate the factors that could cause proliferate of the keratinocyte cells in vitro. The keratinocytes were removed from rat pups (10 days). Cultured in media with different concentration of GH, PDGF and EGF separately. The proliferation of cells was evaluated by the method of MTT and 3H-thymidine incorporation. Proliferation of keratinocytes was significantly higher in experimental groups than in control group. EGF maximally stimulated at 10 and 25 ng mL(-1). PDGF-BB maximally stimulated at 50 ng mL(-1), respectively. And maximal stimulation of GH was 2.5 IU L(-1). GH, PDGF-BB and EGF stimulate keratinocyte cells proliferation in different concentration. These growth factors could play in healing of the skin.

  15. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chris Ambrose

    Full Text Available Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3 localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.

  16. TAK1 is a central mediator of NOD2 signaling in epidermal cells*

    Science.gov (United States)

    Kim, Jae Young; Omori, Emily; Matsumoto, Kunihiro; Núñez, Gabriel; Ninomiya-Tsuji, Jun

    2008-01-01

    Muramyl dipeptide (MDP) is a peptidoglycan moiety derived from commensal and pathogenic bacteria, and a ligand of its intracellular sensor NOD2. Mutations in NOD2 are highly associated with Crohn's disease (CD), which is characterized by dysregulated inflammation in the intestine. However, the mechanism linking abnormality of NOD2 signaling and inflammation has yet to be elucidated. Here we show that TAK1 is an essential intermediate of NOD2 signaling. We found that TAK1 deletion completely abolished MDP-NOD2 signaling, activation of NF-κB and MAPKs and subsequent induction of cytokines/chemokines, in keratinocytes. NOD2 and its downstream effector RICK associated with and activated TAK1. TAK1-deficiency also abolished MDP-induced NOD2 expression. Because mice with epidermal specific deletion of TAK1 develop severe inflammatory conditions, we propose that TAK1 and NOD2 signaling are important for maintaining normal homeostasis of the skin and its ablation may impair the skin barrier function leading to inflammation. PMID:17965022

  17. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging.

    Science.gov (United States)

    Zhang, Fenni; Wang, Shaopeng; Yin, Linliang; Yang, Yunze; Guan, Yan; Wang, Wei; Xu, Han; Tao, Nongjian

    2015-10-06

    Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.

  18. Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- , simulated and sounding rocket micro-gravity

    Science.gov (United States)

    Hampp, Ruediger; Barjaktarović, Žarko; Babbick, Maren; Magel, Elisabeth; Nordheim, Alfred; Lamkemeyer, Tobias; Hampp, Ruediger

    Callus cell cultures of Arabidopsis thaliana exposed to hypergravity (8g), 2D clinorotation and random positioning exhibit changes in gene expression (Martzivanou et al., Protoplasma 229:155-162, 2003). In a recent investigation we could show that after 2 hrs of exposure also the protein complement shows treatment-related changes. These are indicative for reactive oxygen species being involved in the perception of / response to changes in the gravitational field. In the present study we have extended these investigations for a period of up to 16 hrs of exposure. We report on changes in abundance of 28 proteins which have been identified by nano HPLC-ESI-MS/MS, and which were altered in amount after 2 hrs of treatment. According to changes between 2 and 16 hrs we could distinguish four groups of proteins which either declined, increased from down-regulated to control levels, showed a transient decline or a transient increase. With regard to function, our data indicate stress relief or adaption to a new gravitational steady state under prolonged exposure. The latter assumption is supported by the appearance of a new set of 19 proteins which is changed in abundance after 8 hrs of hypergravity. A comparative analysis of the different treatments showed some similarities in response between 8g centrifugation and 2D clinorotation, while random positioning showed the least responses. In addition, we report on the impact of reduced gravitation on the phospho proteom. Cell cultures exposed to 12 min of microgravity as obtained on board of sounding rockets do not respond with alterations in total protein but in the degree of phosphorylation as demonstrated after 2D SDS PAGE separation and sequencing. On this basis we give evidence for signaling cascades involved in the transduction of gravitational signals.

  19. Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging

    Directory of Open Access Journals (Sweden)

    George Komis

    2017-05-01

    Full Text Available Katanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in KATANIN mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP. For this reason, we characterized microtubule organization and dynamics in growing and dividing cotyledon cells of Arabidopsis ktn1-2 mutant devoid of KATANIN 1 activity. In interphase epidermal cells of ktn1-2 cortical microtubules exhibited aberrant and largely isotropic organization, reduced bundling and showed excessive branched microtubule formation. End-wise microtubule dynamics were not much affected, although a significantly slower rate of microtubule growth was measured in the ktn1-2 mutant where microtubule severing was completely abolished. KATANIN 1 depletion also brought about significant changes in preprophase microtubule band (PPB organization and dynamics. In this case, many PPBs exhibited unisided organization and splayed appearance while in most cases they were broader than those of wild type cells. By recording PPB maturation, it was observed that PPBs in the mutant narrowed at a much slower pace compared to those in Col-0. The form of the mitotic spindle and the phragmoplast was not much affected in ktn1-2, however, the dynamics of both processes showed significant differences compared to wild type. In general, both mitosis and cytokinesis were considerably delayed in the mutant. Additionally, the mitotic spindle and the phragmoplast exhibited extensive rotational motions with the equatorial plane of the spindle being essentially uncoupled from the division plane set by the PPB. However, at the onset of its formation the phragmoplast undergoes rotational

  20. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system.

    Directory of Open Access Journals (Sweden)

    Rafael A Barrio

    Full Text Available A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems.

  1. Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells.

    Science.gov (United States)

    Sikder, Md Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Park, Su Hyun; Kim, Ju-Ock; Hong, Jang-Hee; Seok, Jeong Ho; Lee, Choong Jae

    2014-03-01

    We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

  2. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts

    Science.gov (United States)

    Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1 h, that was sustained for 24 h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1 h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH–CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. PMID:21920433

  3. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    Science.gov (United States)

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-05

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. New dynamics in an old friend: dynamic tubular vacuoles radiate through the cortical cytoplasm of red onion epidermal cells.

    Science.gov (United States)

    Wiltshire, Elizabeth J; Collings, David A

    2009-10-01

    The textbook image of the plant vacuole sitting passively in the centre of the cell is not always correct. We observed vacuole dynamics in the epidermal cells of red onion (Allium cepa) bulbs, using confocal microscopy to detect autofluorescence from the pigment anthocyanin. The central vacuole was penetrated by highly mobile transvacuolar strands of cytoplasm, which were also visible in concurrent transmitted light images. Tubular vacuoles also extended from the large central vacuole and radiated through the cortical cytoplasm. These tubules were thin, having a diameter of about 1.5 microm, and were connected to the central vacuole as shown by fluorescence recovery after photobleaching (FRAP) experiments. The tubules were bounded by the tonoplast, as revealed by transient expression of green fluorescent protein (GFP) targeted to the vacuolar membrane and through labeling with the dye MDY-64. Expression of endoplasmic reticulum-targeted GFP demonstrated that the vacuolar tubules were distinct from the cortical endoplasmic reticulum. Movement of the tubular vacuoles depended on actin microfilaments, as microfilament disruption blocked tubule movement and caused their collapse into minivacuoles. The close association of the tubules with GFP-tagged actin microfilaments suggests that the tubules are associated with myosin, and that tubules likely move along microfilaments. Tubular vacuoles do not require anthocyanin for their formation, as tubules were also present in white onion cells that lack anthocyanin. The function of these tubular vacuoles remains unknown, but as they greatly increase the surface area of the tonoplast, they might increase transport rates between the cytoplasm and vacuole.

  5. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts.

    Science.gov (United States)

    Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2011-12-15

    Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy.

    Science.gov (United States)

    Schreier, Barbara; Rabe, Sindy; Schneider, Bettina; Bretschneider, Maria; Rupp, Sebastian; Ruhs, Stefanie; Neumann, Joachim; Rueckschloss, Uwe; Sibilia, Maria; Gotthardt, Michael; Grossmann, Claudia; Gekle, Michael

    2013-02-01

    The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, contributes to parainflammatory dysregulation, possibly causing cardiovascular dysfunction and remodeling. The physiological role of cardiovascular EGFR is not completely understood. To investigate the physiological importance of EGFR in vascular smooth muscle cells and cardiomyocytes, we generated a mouse model with targeted deletion of the EGFR using the SM22 (smooth muscle-specific protein 22) promoter. While the reproduction of knockout animals was not impaired, life span was significantly reduced. Systolic blood pressure was not different between the 2 genotypes-neither in tail cuff nor in intravascular measurements-whereas total peripheral vascular resistance, diastolic blood pressure, and mean blood pressure were reduced. Loss of vascular smooth muscle cell-EGFR results in a dilated vascular phenotype with minor signs of fibrosis and inflammation. Echocardiography, necropsy, and histology revealed a dramatic eccentric cardiac hypertrophy in knockout mice (2.5-fold increase in heart weight), with increased stroke volume and cardiac output as well as left ventricular wall thickness and lumen. Cardiac hypertrophy is accompanied by an increase in cardiomyocyte volume, a strong tendency to cardiac fibrosis and inflammation, as well as enhanced NADPH-oxidase 4 and hypertrophy marker expression. Thus, in cardiomyocytes, EGFR prevents excessive hypertrophic growth through its impact on reactive oxygen species balance, whereas in vascular smooth muscle cells EGFR contributes to the appropriate vascular wall architecture and vessel reactivity, thereby supporting a physiological vascular tone.

  7. An Immunohistochemical Study of Anaplastic Lymphoma Kinase and Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Verma, Sonal; Kumar, Madhu; Kumari, Malti; Mehrotra, Raj; Kushwaha, R A S; Goel, Madhumati; Kumar, Ashutosh; Kant, Surya

    2017-07-01

    Lung cancer is one of the leading causes of cancer related death. Targeted treatment for specific markers may help in reducing the cancer related morbidity and mortality. To study expression of Anaplastic Lymphoma Kinase (ALK)and Epidermal Growth Factor Receptor (EGFR) mutations in patients of Non-Small Cell Lung Cancer NSCLC, that are the targets for specific ALK inhibitors and EGFR tyrosine kinase inhibitors. Total 69 cases of histologically diagnosed NSCLC were examined retrospectively for immunohistochemical expression of EGFR and ALK, along with positive control of normal placental tissue and anaplastic large cell lymphoma respectively. Of the NSCLC, Squamous Cell Carcinoma (SCC) accounted for 71.0% and adenocarcinoma was 26.1%. ALK expression was seen in single case of 60-year-old female, non-smoker with adenocarcinoma histology. EGFR expression was seen in both SCC (59.18%) and adenocarcinoma in (77.78%) accounting for 63.77% of all cases. Both ALK and EGFR mutation were mutually exclusive. EGFR expression was seen in 63.77% of cases, highlighting the importance of its use in routine analysis, for targeted therapy and better treatment results. Although, ALK expression was seen in 1.45% of all cases, it is an important biomarker in targeted cancer therapy. Also, the mutually exclusive expression of these two markers need further studies to develop a diagnostic algorithm for NSCLC patients.

  8. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  9. Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil.

    Science.gov (United States)

    Lehner, Arnaud; Dardelle, Flavien; Soret-Morvan, Odile; Lerouge, Patrice; Driouich, Azeddine; Mollet, Jean-Claude

    2010-10-01

    Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding 1) the ultrastructure of the pollen tube cell wall and 2) the immunolocalization of homogalacturonan and arabinan epitopes in 16 h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided. © 2010 Landes Bioscience

  10. c-Jun N-terminal kinase negatively regulates epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines.

    Science.gov (United States)

    Husvik, Camilla; Bryne, Magne; Halstensen, Trond S

    2009-12-01

    Epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression in squamous cell carcinomas is mediated through the extracellular signal-regulated kinase 1/2 and p38 pathways. Examination of a basaloid and a conventional oral squamous cell carcinoma cell line revealed that inhibition of c-Jun N-terminal kinase (JNK) with SP600125 increased EGF-induced (but not basal) COX-2 transcription 1.5-1.9-fold in extracellular signal-regulated kinase 1/2 and p38 pathway-dependent manners. Although JNK may phosphorylate the cyclosporine A-sensitive transcription factor, nuclear factor of activated T cells c3, it was seemingly not involved because cyclosporine A did not reduce EGF-induced COX-2 expression. Thus, JNK negatively regulated EGF-induced extracellular signal-regulated kinase 1/2 and/or p38-mediated COX-2 transcription, presumably through activating an unidentified phosphatase.

  11. Epidermal Growth Factor-Like Growth Factors Prevent Apoptosis of Alcohol-Exposed Human Placental Cytotrophoblast Cells1

    Science.gov (United States)

    Wolff, Garen S.; Chiang, Po Jen; Smith, Susan M.; Romero, Roberto; Armant, D. Randall

    2007-01-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0–100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1–2 h of exposure to 50 mM alcohol. Exposure to 25–50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism. PMID:17392498

  12. Epidermal growth factor receptor inhibition by erlotinib prevents vascular smooth muscle cell and monocyte-macrophage function in vitro.

    Science.gov (United States)

    Savikko, Johanna; Rintala, Jukka M; Rintala, Sini; Koskinen, Petri

    2015-06-01

    Vascular smooth muscle cells (VSMCs) and monocyte-macrophages play a central role during the development of chronic allograft injury, which still remains an important challenge in organ transplantation. Inflammation, fibrosis and accelerated arteriosclerosis are typical features for chronic allograft injury. Growth factors participate in cell proliferation, differentiation and migration in this pathological process. Here we studied the role of epidermal growth factor receptor (EGFR) in VSMC and monocyte-macrophage function in vitro. EGFR inhibition by erlotinib, a selective EGF tyrosine kinase inhibitor, was studied in VSMC proliferation and migration as well as monocyte-macrophage proliferation and differentiation. Rat coronary artery SMCs were used for VSMC studies. As a model for monocyte-macrophage proliferation and differentiation human monocytic cell line U937 was used. Phorbol ester TPA was used to induce these cells to differentiate into macrophages. Platelet-derived growth factor (PDGF)-B, a known VSMC inducer, caused 2.1-fold stimulation in VSMC proliferation compared to non-stimulated VSMC. Erlotinib prevented this VSMC proliferation in a dose-dependent manner, p < 0.001 in all groups compared to controls. PDGF-B stimulation increased VSMC migration to 2.5-fold when compared with non-stimulated cells. Erlotinib decreased VSMC migration dose-dependently and this effect was significant with all doses, p < 0.05. Erlotinib inhibited dose-dependently the proliferation of U937 monocytic cells, p < 0.001. Erlotinib prevented also TPA-induced macrophage differentiation in a dose-dependent way, p < 0.05. Erlotinib significantly prevents VSMC proliferation and migration in vitro. Erlotinib inhibited also significantly both monocyte proliferation and differentiation. Our data suggest that EGFR inhibition in VSMC and monocyte function has beneficial effects on chronic allograft injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Induction of epithelial-mesenchymal transition via activation of epidermal growth factor receptor contributes to sunitinib resistance in human renal cell carcinoma cell lines.

    Science.gov (United States)

    Mizumoto, Atsushi; Yamamoto, Kazuhiro; Nakayama, Yuko; Takara, Kohji; Nakagawa, Tsutomu; Hirano, Takeshi; Hirai, Midori

    2015-11-01

    Sunitinib is widely used for treating renal cell carcinoma (RCC). However, some patients do not respond to treatment with this drug. We aimed to study the association between sunitinib sensitivity and epithelial-mesenchymal transition (EMT) regulation via epidermal growth factor receptor (EGFR) signaling, which is a mechanism of resistance to anticancer drugs. Three RCC cell lines (786-O, ACHN, and Caki-1) were used, and then we evaluated cell viability, EMT regulatory proteins, and signal transduction with sunitinib treatment. Cell viability of 786-O cells was maintained after treatment with sunitinib. After treatment with sunitinib, EGFR phosphorylation increased in 786-O cells, resulting in an increase in the phosphorylation of extracellular signal-regulated kinase, nuclear translocation of β-catenin, and expression of mesenchymal markers. These results suggest that sunitinib induced EMT via activation of EGFR in 786-O cells, but not in ACHN and Caki-1 cells. Caki-1/SN cells, a resistant cell line generated by continuous exposure to sunitinib, displayed increased phosphorylation of EGFR. Cell viability in the presence of sunitinib was decreased by erlotinib, as the selective inhibitor of EGFR, treatment in 786-O and Caki-1/SN cells. Similarly, erlotinib suppressed sunitinib-induced EGFR activation and upregulated mesenchymal markers. Thus, we postulate that resistance to sunitinib in RCC may be associated with EMT caused by activation of EGFR. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  15. Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil

    OpenAIRE

    Lehner, Arnaud; Dardelle, Flavien; Soret-Morvan, Odile; Lerouge, Patrice; Driouich, Azeddine; Mollet, Jean-Claude

    2010-01-01

    Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Ara...

  16. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Schwab

    Full Text Available BACKGROUND: Different classes of small RNAs (sRNAs refine the expression of numerous genes in higher eukaryotes by directing protein partners to complementary nucleic acids, where they mediate gene silencing. Plants encode a unique class of sRNAs, called trans-acting small interfering RNAs (tasiRNAs, which post-transcriptionally regulate protein-coding transcripts, as do microRNAs (miRNAs, and both sRNA classes control development through their targets. TasiRNA biogenesis requires multiple components of the siRNA pathway and also miRNAs. But while 21mer siRNAs originating from transgenes can mediate silencing across several cell layers, miRNA action seems spatially restricted to the producing or closely surrounding cells. PRINCIPAL FINDINGS: We have previously described the isolation of a genetrap reporter line for TAS3a, the major locus producing AUXIN RESPONS FACTOR (ARF-regulating tasiRNAs in the Arabidopsis shoot. Its activity is limited to the adaxial (upper side of leaf primordia, thus spatially isolated from ARF-activities, which are located in the abaxial (lower side. We show here by in situ hybridization and reporter fusions that the silencing activities of ARF-regulating tasiRNAs are indeed manifested non-cell autonomously to spatially control ARF activities. CONCLUSIONS/SIGNIFICANCE: Endogenous tasiRNAs are thus mediators of a mobile developmental signal and might provide effective gene silencing at a distance beyond the reach of most miRNAs.

  18. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  19. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells

    Science.gov (United States)

    Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L. Andrew; Mineyuki, Yoshinobu

    2016-01-01

    The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs. PMID:27053663

  20. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres.

    Directory of Open Access Journals (Sweden)

    Ignacio Flores

    Full Text Available Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing, are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness.

  1. Epidermal homeostasis in long-term scaffold-enforced skin equivalents

    National Research Council Canada - National Science Library

    Stark, Hans-Jürgen; Boehnke, Karsten; Mirancea, Nicolae; Willhauck, Michael J; Pavesio, Alessandra; Fusenig, Norbert E; Boukamp, Petra

    2006-01-01

    Epidermal homeostasis is understood as the maintenance of epidermal tissue structure and function by a fine tuned regulatory mechanism balancing proliferation and cell loss by desquamation and apoptosis...

  2. Epidermal Growth Factor Receptor Mutation in a Patient with Squamous Cell Carcinoma of the Lung: Who Should Be Tested

    Directory of Open Access Journals (Sweden)

    Michael Schwitter

    2013-05-01

    Full Text Available We report the case of a 64-year-old ex-smoker with metastatic poorly differentiated squamous cell carcinoma (SCC of the lung and an epidermal growth factor receptor (EGFR mutation in exon 21 (p.L858R who achieved prolonged clinical benefit from treatment with an EGFR tyrosine kinase inhibitor (TKI. The initial diagnosis of SCC of the lung obtained by bronchoscopic biopsy was based on immunohistochemical staining only with positivity for cytokeratin (CK 5/6 and p63 because morphological diagnosis was not possible. Patients with non-small cell lung cancer (NSCLC, not otherwise specified (NOS favouring SCC are usually not tested for the presence of EGFR mutations, and therefore may not receive EGFR TKI therapy. A bronchoscopic rebiopsy showed small nests of undifferentiated tumour cells with weak immunoreactivity of some tumour cells for CK5/6, p63 and no positivity of some tumour cells for thyroid transcription factor-1. These findings suggested a mixed squamous/glandular immunophenotype that has been missed at the initial biopsy. Our clinical case illustrates the problem of tumour heterogeneity encountered in small bronchoscopic biopsies and the difficulties of evaluating the histological subtype in poorly differentiated carcinomas. Initial bronchoscopy should be performed by an experienced pulmonologist who attempts to obtain sufficient material from different areas of the tumour. In the era of targeted therapy, a remote smoking history in a patient with NOS favouring SCC should also lead to EGFR mutation testing to allow highly effective therapy to be offered to mutation-positive patients.

  3. The RNA-methyltransferase Misu (NSun2 poises epidermal stem cells to differentiate.

    Directory of Open Access Journals (Sweden)

    Sandra Blanco

    2011-12-01

    Full Text Available Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2 is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in enhanced quiescence and aberrant stem cell differentiation. Our results reveal that post-transcriptional RNA methylation can play a previously unappreciated role in controlling stem cell fate.

  4. Growth Media Induces Variation in Cell Wall Associated Gene Expression in Arabidopsis thaliana Pollen Tube

    Directory of Open Access Journals (Sweden)

    Mário Luís da Costa

    2013-06-01

    Full Text Available The influence of three different pollen germination media on the transcript profile of Arabidopsis pollen tubes has been assessed by real-time PCR on a selection of cell wall related genes, and by a statistical analysis of microarray Arabidopsis pollen tube data sets. The qPCR assays have shown remarkable differences on the transcript levels of specific genes depending upon the formulation of the germination medium used. With the aid of principal component analysis performed on existing microarray data, a subset of genes has been identified that is more prone to produce diverging transcript levels. A functional classification of those genes showed that the clusters with higher number of members were those for hydrolase activity (based in molecular function and for cell wall (based in cellular component. Taken together, these results may indicate that the nutrient composition of the pollen germination media influences pollen tube metabolism and that caution must be taken when interpreting transcriptomic data of pollen tubes.

  5. Examining communication between ultraviolet (UV)-damaged cutaneous nerve cells and epidermal keratinocytes in vitro.

    Science.gov (United States)

    Gruber, J V; Holtz, R

    2009-01-01

    The exposure of the skin to Ultraviolet (UV) radiation is a stressful event and the skin has multiple innate defense mechanisms to counter this threat. For instance, oxidatively damaged nerve cells will express neuroglobin, a hexa-coordinate heme protein, to scavenge free radicals such as nitric oxide (NO). Likewise, keratinocytes will express various anti-oxidant enzymes such as superoxide dismutase (SOD), which will defend the cells against oxidative threats. Nonetheless, cells will still express free radicals during excessive irradiation. A fundamental question that needs to be asked is: what do these cells communicate to one another during such stressful events? This paper will present results of an in vitro study in which dorsal root ganglion were irradiated with UV radiation to elicit oxidative events such as release of NO and calcitonin gene-related peptide (CGRP), a potent neuropeptide. Cell survival was also examined using the standard MTT assay. A plant-based neuroglobin mimic called phytoglobin was used as an NO scavenger to see if control of NO would influence CGRP expression and cell survival. Results of this study demonstrate that control of NO expression in irradiated nerve cells can influence CGRP expression and can also increase cell survival rates. Following this preliminary study, controlled amounts of the nerve cell growth media were added to cultures of normal human keratinocytes and the keratinocytes were allowed to interact with the nerve cell media for 24 h. Following this treatment period, human microarrays were run on the keratinocytes to see what genes were influenced in the keratinocytes as a result of contact with the irradiated nerve cell growth media. It was found that several critical genes expressed by the keratinocytes including NO synthase (NOS1), superoxide dismutase 1 (SOD1), transglutaminase 1 and 3 (TGM1 and TGM3), metallopeptidase inhibitor 1 (TIMP1), and filaggrin (FLG) were clearly influenced by the damaged nerve cells.

  6. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    Science.gov (United States)

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  7. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  8. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  9. The Cotton Transcription Factor TCP14 Functions in Auxin-Mediated Epidermal Cell Differentiation and Elongation1[C][W

    Science.gov (United States)

    Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian

    2013-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells. PMID:23715527

  10. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...

  11. Epidermal Notch1 recruits RORγ + group 3 innate lymphoid cells to orchestrate normal skin repair

    NARCIS (Netherlands)

    Z. Li (Zhi); T. Hodgkinson (Tom); E.J. Gothard (Elizabeth J.); S. Boroumand (Soulmaz); R. Lamb (Rebecca); I. Cummins (Ian); P. Narang (Priyanka); A. Sawtell (Amy); J. Coles (Jenny); G. Leonov (German); A. Reboldi (Andrea); C.D. Buckley; T. Cupedo (Tom); C. Siebel (Christian); A. Bayat (Ardeshir); M. Coles (Mark); C.A. Ambler (Carrie A.)

    2016-01-01

    textabstractNotch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal.

  12. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found......The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...

  13. Taxonomic significance of leaf epidermal anatomy of selected ...

    African Journals Online (AJOL)

    Leaf epidermal anatomy of selected Persicaria Mill. species of the family Polygonaceae revealed variation in size and shape of epidermal cells, stomata, glandular and non glandular trichomes. This study proves to be taxonomically important tool in the delimitation of taxa. Epidermal cell shapes are variable but mostly ...

  14. Taxonomic significance of leaf epidermal anatomy of selected ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Leaf epidermal anatomy of selected Persicaria Mill. species of the family Polygonaceae revealed variation in size and shape of epidermal cells, stomata, glandular and non glandular trichomes. This study proves to be taxonomically important tool in the delimitation of taxa. Epidermal cell shapes are.

  15. Attenuation fluctuations and local dermal reflectivity are indicators of immune cell infiltrate and epidermal hyperplasia in skin inflammation

    Science.gov (United States)

    Phillips, Kevin G.; Wang, Yun; Choudhury, Niloy; Levitz, David; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven

    2012-02-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses responsible for skin homeostasis. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of psoriasis remains under investigated. To elucidate the spatial-temporal morphological evolution of psoriasis we undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to non-invasively document dermal alterations due to immune cell infiltration and epidermal hyperplasia in an Imiquimod (IMQ) induced model of psoriasis-like inflammation in DBA2/C57Bl6 hybrid mice. Quantitative appraisal of dermal architectural changes was achieved through a three parameter fit of OCT axial scans in the dermis of the form A(z) = ρ exp(-mu;z +ɛ(z)). Ensemble averaging of the fit parameters over 2000 axial scans per mouse in each treatment arm revealed that the local dermal reflectivity ρ, decreased significantly in response to 6 day IMQ treatment (p = 0.0001), as did the standard deviation of the attenuation fluctuation std(ɛ(z)), (p = 0.04), in comparison to cream controls and day 1 treatments. No significant changes were observed in the average dermal attenuation rate, μ. Our results suggest these label-free OCT-based metrics can be deployed to investigate new therapeutic targets in animal models as well as aid in clinical staging of psoriasis in conjunction with the psoriasis area and severity index.

  16. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Ching Chang Cho

    Full Text Available The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.

  17. PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Chiara Zagni

    2017-07-01

    Full Text Available Tissue integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. In the skin, hair follicle stem cells (HFSCs that reside within the bulge maintain tissue homeostasis in response to activating cues that occur with each new hair cycle or upon injury. We found that PTEN, a major regulator of the PI3K-AKT pathway, controlled HFSC number and size in the bulge and maintained genomically stable pluripotent cells. This regulatory function is central for HFSC quiescence, where PTEN-deficiency phenotype is in part regulated by BMAL1. Furthermore, PTEN ablation led to downregulation of BMI-1, a critical regulator of adult stem cell self-renewal, and elevated senescence, suggesting the presence of a protective system that prevents transformation. We found that short- and long-term PTEN depletion followed by activated BMAL1, a core clock protein, contributed to accumulation of HFSC.

  18. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation.

    Science.gov (United States)

    Tapia, G; Morales-Quintana, L; Parra, C; Berbel, A; Alcorta, M

    2013-07-01

    The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.

  19. Impaired SHP2-Mediated Extracellular Signal-Regulated Kinase Activation Contributes to Gefitinib Sensitivity of Lung Cancer Cells with Epidermal Factor Receptor-Activating Mutations

    OpenAIRE

    Lazzara, Matthew J.; Lane, Keara M.; Chan, Richard; Jasper, Paul J; Yaffe, Michael B.; Sorger, Peter K.; Jacks, Tyler E.; Neel, Benjamin G.; Lauffenburger, Douglas A.

    2010-01-01

    Most non–small cell lung cancers (NSCLC) display elevated expression of epidermal growth factor receptor (EGFR), but response to EGFR kinase inhibitors is predominantly limited to NSCLC harboring EGFR-activating mutations. These mutations are associated with increased activity of survival pathways, including phosphatidylinositol 3-kinase/AKT and signal transducer and activator of transcription 3/5. We report that EGFR-activating mutations also surprisingly lead to decreased ability to activat...

  20. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    OpenAIRE

    Espina Palanco, Marta; Bo Mogensen, Klaus; G?hlke, Marina; Heiner, Zsuzsanna; Kneipp, Janina; Kneipp, Katrin

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix...

  1. Fermented milk containing Lactobacillus GG alleviated DSS-induced colitis in mice and activated epidermal growth factor receptor and Akt signaling in intestinal epithelial cells.

    Science.gov (United States)

    Yoda, Kazutoyo; He, Fang; Miyazawa, Kenji; Hiramatsu, Masaru; Yan, Fang

    2012-01-01

    Lactobacillus rhamnosus GG was assessed for its ability to alleviate DSS-induced colitis in mice and activate epidermal growth factor receptor and Akt signaling in intestinal epithelial cells. In this study mice were treated with DSS to induce colitis and they were given Lactobacillus GG fermented milk to assess the effect of probiotic on colitis. Lactobacillus GG fermented milk significantly reduced the colitis associated changes suggesting a protective effect against DSS induced colitis.

  2. Tacrolimus Reverses UVB Irradiation-Induced Epidermal Langerhans Cell Reduction by Inhibiting TNF-α Secretion in Keratinocytes via Regulation of NF-κB/p65

    Directory of Open Access Journals (Sweden)

    JiaLi Xu

    2018-02-01

    Full Text Available Background: Topical calcineurin inhibitors including tacrolimus and pimecrolimus are used in the treatment of many inflammatory skin diseases mainly via blocking T-cell proliferation. Our previous studies found that pimecrolimus 1% cream could reverse high-dose ultraviolet B (UVB irradiation-induced epidermal Langerhans cell (LC reduction via inhibition of LC migration. We conducted this study to investigate the effects of topical tacrolimus 0.03% ointment on high-dose UVB-irradiated human epidermal LCs.Methods: Twenty fresh human foreskin tissues were randomly divided into four groups as follows: Control, Tacrolimus (0.03%, UVB (180 mJ/cm2, and UVB (180 mJ/cm2 + Tacrolimus (0.03%. Four time points were set as follows: 0, 18, 24, and 48 h. We collected culture medium and tissues at each time point. The percentage of CD1a+ cells in the medium was detected by means of flow cytometry. Each tissue was prepared for immunohistochemistry, real-time quantitative PCR, and western blot. HaCaT cells were cultured and divided into four groups: Control, Tacrolimus (1 μg/ml, UVB (30 mJ/cm2, and UVB (30 mJ/cm2 + Tacrolimus (1 μg/ml. The cells were incubated for 24 h and prepared for real-time quantitative PCR and western blot.Results: Topical tacrolimus significantly reversed high-dose UVB irradiation-induced epidermal LC reduction and CD1a+ cell increment in culture medium. Tacrolimus significantly inhibited UVB irradiation-induced tumor necrosis factor-α (TNF-α and nuclear factor kappa B (NF-κB/p65 mRNA and protein expression in HaCaT cells. Tacrolimus also significantly inhibited high-dose UVB irradiation-induced TNF-α expression in cultured tissues. Finally, TNF-α antagonist (recombinant human TNF-α receptor II: IgG Fc fusion protein could significantly reverse UVB irradiation-induced epidermal LC reduction.Conclusion: Topical tacrolimus 0.03% could reverse UVB irradiation-induced epidermal LC reduction by inhibiting TNF-α secretion in

  3. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor...... the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced...... accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors...

  4. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ß-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Willats, William George Tycho; Knox, J.P.

    1996-01-01

    Seedlings of Arabidopsis thaliana were germinated and grown in medium containing ß-glucosyl Yariv reagent (ßGlcY), a synthetic phenyl glycoside that interacts specifically with arabinogalactan-proteins (AGPs), a class of plant cell surface proteoglycans. The effect of ßGlcY on the seedlings...... was to reduce the overall growth of both the root and the shoot. ßGlcY only accumulated in the root tissues and the reduced growth of the shoot appeared to be an indirect effect of impaired root growth. Reduced root growth was a consequence of a reduction in cell elongation during the postproliferation phase...... suspension-cultured cells that had been induced to elongate rather than proliferate, cell elongation was inhibited. The AGP-unreactive a-galactosyl Yariv reagent (aGalY) had no biological activity in either of these systems....

  5. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses.

    Science.gov (United States)

    Wang, Hsian-Yu; Hsu, Min-Kung; Wang, Kai-Hsuan; Tseng, Ching-Ping; Chen, Feng-Chi; Hsu, John T-A

    2016-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC) patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs. Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits cell adhesion-related response and greatly enhances the cell-killing effects of EGFR TKI (gefitinib for the PC9 cells; afatinib for the H1975 cells) in NSCLC cells, which would otherwise escape the TKI-induced apoptosis. Results from this study indicate that NSCLC cells can employ the adhesion response as a survival pathway to survive under EGFR-targeted therapy. Simultaneous targeting of EGFR signaling and adhesion pathways would further boost the efficacy of EGFR-targeted therapy in NSCLC.

  6. Stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer.

    Science.gov (United States)

    Petersson, M; Niemann, C

    2012-01-01

    The skin epithelium undergoes constant renewal, a process that is driven by stem cells (SCs) localising to the interfollicular epidermis and different regions of the hair follicle. Over the last years, tremendous progress has been made to unravel the physiological function of distinct stem and progenitor cell populations by using genetic lineage tracing in vivo, transplantation, clonogenicity approaches and live cell imaging. It turned out that these cell compartments constitute heterogeneous SC pools and that individual SCs respond differently to various signals sent by the microenvironment. Recent genetic manipulation experiments and elegant mouse models have shed light on the signalling pathways being crucial for self-renewal and lineage fate decisions during tissue homeostasis. Here, we summarise current concepts of SC function in mammalian skin and focus on the dynamic behaviour of SCs during morphogenesis and tissue regeneration of the skin epithelium. Clearly, understanding the cellular and molecular mechanisms of SC regulation and function during tissue homeostasis has enormous impact on our view of the pathogenesis of various skin diseases and will be beneficial for regenerative medicine. Recent experiments suggest an important role of tissue SCs in the process of skin tumour initiation and progression. For the future, the genuine challenge is to further dissect SC function in pathophysiological settings and to translate our knowledge to design novel efficient therapeutic strategies for treatment of cutaneous cancer.

  7. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells.

    NARCIS (Netherlands)

    Niessen, F.B.; Schalkwijk, J.; Vos, H.; Timens, W.

    2004-01-01

    The exact pathogenesis of hypertrophic scar and keloid formation is still unknown and a good therapy to prevent or treat these scars is lacking. Because immunological processes seem to be important in excessive scar formation, immunological cells and parameters were studied in a standardized breast

  8. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells

    NARCIS (Netherlands)

    Niessen, FB; Schalkwijk, J; Vos, H; Timens, W

    The exact pathogenesis of hypertrophic scar and keloid formation is still unknown and a good therapy to prevent or treat these scars is lacking. Because immunological processes seem to be important in excessive scar formation, immunological cells and parameters were studied in a standardized breast

  9. Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes.

    Science.gov (United States)

    Kozdęba, Marcin; Borowczyk, Julia; Zimoląg, Eliza; Wasylewski, Marcin; Dziga, Dariusz; Madeja, Zbigniew; Drukala, Justyna

    2014-03-01

    The occurrence of cyanobacterial toxic peptides, including microcystins (MCs), is an emerging health issue due to the eutrophication of water bodies. MCs have a strong influence on human cells, predominantly hepatocytes, however, toxicity was also observed in kidney, lung and dermal skin cells. Skin as the most external barrier of the human body is responsible for the maintenance of homeostasis of the whole organism. Simultaneously, skin cells may be the most exposed to MCs during recreational activity. The aim of this study was to examine the impact of MC-LR on processes indispensable for normal skin function and regeneration, namely, viability, migration and actin cytoskeleton organization of human keratinocytes. The results showed that short exposure to MC-LR does not affect proliferation of human skin keratinocytes but it is toxic after longer incubation in dose-dependent manner. Total disruption of the actin cytoskeleton was observed under the same MC-LR concentration. Furthermore, keratinocyte migration was inhibited at MC-LR concentrations of 50 μM after incubation for only 4 h. Some of the negative impacts of MC-LR on the examined cell processes may be partly reversible. The observed effects, regarding the possible high exposition of keratinocytes to toxins including MCs, are severe and may cause diverse health problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Epidermal Growth Factor Receptor and K-RAS status in two cohorts of squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Van Laethem Jean-Luc

    2010-05-01

    Full Text Available Abstract Background With the availability of effective anti-EGFR therapies for various solid malignancies, such as non-cell small lung cancer, colorectal cancer and squamous cell carcinoma of the head and neck, the knowledge of EGFR and K-RAS status becomes clinically important. The aim of this study was to analyse EGFR expression, EGFR gene copy number and EGFR and K-RAS mutations in two cohorts of squamous cell carcinomas, specifically anal canal and tonsil carcinomas. Methods Formalin fixed, paraffin-embedded tissues from anal and tonsil carcinoma were used. EGFR protein expression and EGFR gene copy number were analysed by means of immunohistochemistry and fluorescence in situ hybridisation. The somatic status of the EGFR gene was investigated by PCR using primers specific for exons 18 through 21. For the K-RAS gene, PCR was performed using exon 2 specific primers. Results EGFR immunoreactivity was present in 36/43 (83.7% of anal canal and in 20/24 (83.3% of tonsil squamous cell carcinomas. EGFR amplification was absent in anal canal tumours (0/23, but could be identified in 4 of 24 tonsil tumours. From 38 anal canal specimens, 26 specimens were successfully analysed for exon 18, 30 for exon 19, 34 for exon 20 and 30 for exon 21. No EGFR mutations were found in the investigated samples. Thirty samples were sequenced for K-RAS exon 2 and no mutation was identified. From 24 tonsil specimens, 22 were successfully analysed for exon 18 and all 24 specimens for exon 19, 20 and 21. No EGFR mutations were found. Twenty-two samples were sequenced for K-RAS exon 2 and one mutation c.53C > A was identified. Conclusion EGFR mutations were absent from squamous cell carcinoma of the anus and tonsils, but EGFR protein expression was detected in the majority of the cases. EGFR amplification was seen in tonsil but not in anal canal carcinomas. In our investigated panel, only one mutation in the K-RAS gene of a tonsil squamous cell carcinoma was identified

  11. Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion.

    Science.gov (United States)

    Minutti, Carlos M; Drube, Sebastian; Blair, Natalie; Schwartz, Christian; McCrae, Jame C; McKenzie, Andrew N; Kamradt, Thomas; Mokry, Michal; Coffer, Paul J; Sibilia, Maria; Sijts, Alice J; Fallon, Padraic G; Maizels, Rick M; Zaiss, Dietmar M

    2017-10-17

    Gastro-intestinal helminth infections trigger the release of interleukin-33 (IL-33), which induces type-2 helper T cells (Th2 cells) at the site of infection to produce IL-13, thereby contributing to host resistance in a T cell receptor (TCR)-independent manner. Here, we show that, as a prerequisite for IL-33-induced IL-13 secretion, Th2 cells required the expression of the epidermal growth factor receptor (EGFR) and of its ligand, amphiregulin, for the formation of a signaling complex between T1/ST2 (the IL-33R) and EGFR. This shared signaling complex allowed IL-33 to induce the EGFR-mediated activation of the MAP-kinase signaling pathway and consequently the expression of IL-13. Lack of EGFR expression on T cells abrogated IL-13 expression in infected tissues and impaired host resistance. EGFR expression on Th2 cells was TCR-signaling dependent, and therefore, our data reveal a mechanism by which antigen presentation controls the innate effector function of Th2 cells at the site of inflammation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Gene expression pattern of the epidermal growth factor receptor family and LRIG1 in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Thomasson Marcus

    2012-05-01

    Full Text Available Abstract Background Previous studies have revealed altered expression of epidermal growth factor receptor (EGFR-family members and their endogenous inhibitor leucine-rich and immunoglobulin-like domains 1 (LRIG1 in renal cell carcinoma (RCC. In this study, we analyzed the gene expression levels of EGFR-family members and LRIG1, and their possible associations with clinical parameters in various types of RCC. Methods Gene expression levels of EGFR–family members and LRIG1 were analyzed in 104 RCC samples, including 81 clear cell RCC (ccRCC, 15 papillary RCC (pRCC, and 7 chromophobe RCC (chRCC by quantitative real-time RT-PCR. Associations between gene expression levels and clinical data, including tumor grade, stage, and patient survival were statistically assessed. Results Compared to kidney cortex, EGFR was up-regulated in ccRCC and pRCC, LRIG1 and ERBB2 were down-regulated in ccRCC, and ERBB4 was strongly down-regulated in all RCC types. ERBB3 expression did not differ between RCC types or between RCC and the kidney cortex. The expression of the analyzed genes did not correlate with patient outcome. Conclusions This study revealed that the previously described up-regulation of EGFR and down-regulation of ERBB4 occurred in all analyzed RCC types, whereas down-regulation of ERBB2 and LRIG1 was only present in ccRCC. These observations illustrate the need to evaluate the different RCC types individually when analyzing molecules of interest and potential biological markers.

  13. Epidermal growth factor receptor-tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung: a meta-analysis.

    Science.gov (United States)

    Ameratunga, Malaka; Pavlakis, Nick; Gebski, Val; Broad, Adam; Khasraw, Mustafa

    2014-09-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) are well established in treating metastatic pulmonary adenocarcinoma, especially patients with activating EGFR mutations. EGFR mutations are rare in pulmonary squamous cell carcinomas (SCCs). There are conflicting data supporting the efficacy of EGFR-TKIs in advanced lung SCC. We analyzed the impact of EGFR-TKIs on progression-free survival (PFS) and overall survival (OS) in unselected patients with lung SCC. We searched for randomized controlled trials (RCTs) comparing EGFR-TKIs alone with placebo in patients with metastatic non-small cell lung cancer. RCTs in all settings (front line/maintenance/subsequent) were included. The primary outcome was OS in the SCC population. We used published hazard ratios (HRs), and when unavailable, unpublished data were sought. Pooled estimates of treatment effect on OS and PFS were calculated using the fixed-effects inverse variance weighted method. Eight eligible RCTs were included: 2 first-line, 6 second-line or beyond, evaluating 1781 patients. Data were available for OS in four studies (second-line; N=1420) and for PFS in four studies (3 second-line, 1 first-line; N=788). EGFR-TKIs significantly prolonged OS with a HR of 0.88 (95% confidence interval [CI] 0.78-1.00, P=0.04), and significantly prolonged PFS with a HR of 0.77 (95% CI 0.65-0.92, P=0.004). EGFR mutations are rare in lung SCC. However, EGFR-TKIs have a modest therapeutic effect compared to placebo in unselected patients with advanced pulmonary SCC, and can be considered in these patients. EGFR-mutation-independent mechanisms may explain efficacy of EGFR inhibitors in this setting. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Epidermal growth factor receptor somatic mutation analysis in 354 Chinese patients with non-small cell lung cancer.

    Science.gov (United States)

    Quan, Xueping; Gao, Hongjun; Wang, Zhikuan; Li, Jie; Zhao, Wentao; Liang, Wei; Yu, Qiang; Guo, Dongliang; Hao, Zhanping; Liu, Jingxin

    2018-02-01

    Lung cancer is one of the most common types of cancer worldwide, with the highest mortality rate of all types of cancer. In the present study, epidermal growth factor receptor (EGFR) mutations of 354 primary patients with non-small cell lung cancer (NSCLC) of Chinese ethnicity were detected following formalin-fixed and paraffin-embedded specimen DNA extraction, polymerase chain reaction amplification, and sanger sequencing. The total rate of occurrence of EGFR somatic mutation in these 354 patients was 48.02%. Of these detected EGFR mutations, 27.40% were located in exon 19 and 25.99% in exon 21. The most frequent mutation in exon 19 was E746-A750del (8.47%), and in exon 21, L858R (10.17%). EGFR mutation rates were significantly associated with sex [female vs. male: 60.13 vs. 38.81%; adjusted odds ratio (OR), 1.93, 95% confidence interval (CI), 1.07-3.51, P=0.029], age (<60 vs. ≥60; 58.62 vs. 40.67%; adjusted OR, 1.87; 95% CI, 1.20-2.92; P=0.006) and histology [adenocarcinoma (ADC) vs. non-ADC; 52.76 vs. 26.56%; adjusted OR, 2.35; 95% CI, 1.28-4.50; P=0.007]. The frequency of E746_A750del, Q787Q and L858R mutations were significantly different in ADC patients compared with squamous cell carcinoma patients (P<0.001). Furthermore, a novel EGFR mutation, M793K, was detected in 7 NSCLC patients with possible gefitinib resistance. The present study analyzed the EGFR exon 18-21 mutation occurrence profile for Chinese patients with NSCLC and identified significant associations between different EGFR mutations with demographic and histological factors. These results may offer clinical benefits and potential novel treatments.

  15. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin.

    Science.gov (United States)

    Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M

    1999-09-27

    Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost

  16. Molecular Mechanism of Erlotinib Resistance in Epidermal Growth Factor Receptor 
Mutant Non-small cell Lung Cancer Cell Line H1650

    Directory of Open Access Journals (Sweden)

    Ruili HAN

    2012-12-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR overexpression and mutations were existed in more than 40% of the lung cancer, and it’s the one of molecular targets in clinical treatment. But the EGFR tyrosine kinase inhibitors (TKI-resistance is becoming a challenging clinical problem as following the application of EGFR-TKIs, Gefitinib or Erlotinib. However, the mechanistic explanation for resistance in the some cases is still lacking. Here we researched the resistance mechanism of H1650 cells. Methods Using real-time RT-PCR to analyze the EGFR mRNA expression level in EGFR wild-type non-small cell lung cancer (NSCLC cells; MTT analysis detected the cytotoxicity for NSCLC cells to Erlotinib; Western blot analysis examined the mutant situations and the downstream signaling protein phosphorylation level in EGFR-mutant NSCLC cells with the treatment of Erlotinib or/and PI3K inhibitor, LY294002. Results In the EGFR wild-type NSCLC cells, the expression level of EGFR mRNA varied dramatically and all the cells showed resistant to Erlotinib; In the EGFR-mutant cells, HCC827 and H1650 (the same activating-mutation type, HCC827 cells were Erlotinib-sensitive as well as H1650 demonstrated primary relative resistance. Western blot analysis showed the loss of PTEN and the p-AKT level was not inhibited with the treatment of Erlotinib or/and LY294002 in H1650 cells, while HCC827 cells were no PTEN loss and definitively decrease of p-AKT level. Conclusion EGFR wild-type NSCLC cells were resistant to Erlotinib no matter of how EGFR mRNA expression level. EGFR-activating mutations correlated with responses to Erlotinib. The PTEN loss and activation of AKT signaling pathway contributed to Erlotinib resistance in EGFR-mutant NSCLC cell line H1650.

  17. Cytochemical and immunocytochemical investigations on epidermal mitochondria-rich cells in Salamandra salamandra salamandra (L.) larvae.

    Science.gov (United States)

    Restani, C; Pederzoli, A

    1997-12-01

    In the present study we set out to investigate the expression of E-cadherin, N-cadherin, beta 1-integrin, fibronectin and vitronectin in the mitochondria-rich cells (MRC) of the skin of Salamandra salamandra salamandra. Moreover MRC were stained with five lectins (Triticum vulgaris; Dolichos biflorus; Glycine max; Arachis hypogaea and Canavalia ensiformis). Larval MRC expressed both adhesion molecules and extracellular matrix glycoproteins and bound all lectins tested. Juvenile MRC did not react with the antisera utilized, but they stained with the lectins. Both the lectins and the regulatory molecules proved to be good cytochemical markers for distinguishing morphologically differentiated MRC during the larval life of Salamandra salamandra salamandra. The adhesion molecules and matrix glycoproteins are of great utility for maintaining the correct tissue architecture. In Salamandra salamandra salamandra larvae these molecules may be crucial for stability and for the correct localization and fate of all skin elements, including specialized cells such as larval MRC.

  18. Objective Quantification of Immune Cell Infiltrates and Epidermal Proliferation in Psoriatic Skin

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Nielsen, Ole H; Skak, Kresten

    2015-01-01

    Digital pathology and image analysis have developed extensively during the last couple of years. Especially the advance in whole-slide scanning, software, and computer processing makes it possible to apply these methods in tissue-based research. Today this task is dominated by tedious manual...... research. Published data of manual cell counts in psoriatic skin samples were in this study reevaluated using the digital image analysis (DIA) software. Whole slides immunohistochemically stained for CD3, CD4, CD8, CD45R0, and Ki-67 were scanned and quantitatively evaluated using simple threshold analysis....... Regression analysis with R values in the range of 0.85 to 0.95 indicates a good correlation between the manual count of cell numbers and the staining density obtained by automated DIA. Moreover, we show that the automated image analysis is reliable over a broad range of thresholds and that it is robust...

  19. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    In vitro studies with human cell lines have demonstrated that the death receptor Fas plays a role in ultraviolet (UV)-induced apoptosis. The purpose of the present study was to investigate the relation between Fas expression and apoptosis as well as clustering of Fas in human epidermis after...... clustering has a functional significance. Our results ar in accordance with previous findings from in vitro studies, and suggest that Fas is activated in vivo in human epidermis after UVB exposure....

  20. The effect of porphyrin and radiation on ferrochelatase and 5-aminolevulinic acid synthase in epidermal cells

    Energy Technology Data Exchange (ETDEWEB)

    He, D.; Behar, S.; Nomura, N.; Lim, H.W. [New York Univ. School of Medicine, Dermatology Service, Dept. of Veterans Affairs Medical Center, and Ronald O. Perelman Dept. of Dermatology (United States); Sassa, S. [The Rockefeller University, New York (United States); Taketani, S. [Kansai Medical Univ., Moriguchi (Japan)

    1995-12-31

    The effects of ultraviolet A (UVA) and blue light on ferrochelatase protein, and its mRNA level, in 5-aminolevulinic acid (ALA)-loaded A431 cells was evaluated. Western blot analysis of ferrochelatase protein showed a protein band of 43 kDA. There was a decrease in the protein concentration 24 h and 48 h after irradiation of these cells. In contrast, as judged by Northern blot analysis, there was no change in ferochelatase mRNA level. Measurement of ALA synthase activity showed an ALA dose-dependent but radiation-independent decrease of enzyme activity, suggesting an end-product feedback inhibition. Since reactive oxygen species generated by porphyrin-induced photochemical reaction may be involved in the decrease in ferrochelatase protein, the effect of scavengers of reactive oxygen species was evaluated by measuring porphyrin accumulation in irradiated, ALA-loaded A431 cells. Porphyrin accumulation was significantly decreased in the presence of singlet oxygen scavenger sodium azide (0.05 mM, 40.6% suppression) or hydroxyl radical scavenger mannitol (5.0 mM, 45% suppression). These data suggest that the photochemical reaction induced by porphyrin and irradiation resulted in a decrease in ferrochelatase protein content, but had no effect on ferrochelatase mRNA level nor on ALA synthase activity. The decrease in protein was partly mediated by the reactive oxygen species. (au).

  1. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  2. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  3. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    Directory of Open Access Journals (Sweden)

    Jamet Elisabeth

    2008-09-01

    Full Text Available Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins.

  4. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  5. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review.

    Science.gov (United States)

    Ghahremani, Mina; Stigter, Kyla A; Plaxton, William

    2016-09-01

    Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  6. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways.

    Science.gov (United States)

    Massimiani, M; Vecchione, L; Piccirilli, D; Spitalieri, P; Amati, F; Salvi, S; Ferrazzani, S; Stuhlmann, H; Campagnolo, L

    2015-05-01

    Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben

    2015-01-01

    Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals......)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which...... which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth....

  8. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  9. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2016-10-15

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and m

  10. The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration.

    Science.gov (United States)

    Dong, Ying; He, Yaowu; de Boer, Leonore; Stack, M Sharon; Lumley, John W; Clements, Judith A; Hooper, John D

    2012-03-23

    Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

  11. Transcriptional and secretomic profiling of epidermal cells exposed to alpha particle radiation.

    Science.gov (United States)

    Chauhan, Vinita; Howland, Matthew; Greene, Hillary Boulay; Wilkins, Ruth C

    2012-01-01

    Alpha (α)-particle emitters are probable isotopes to be used in a terrorist attack. The development of biological assessment tools to identify those who have handled these difficult to detect materials would be an asset to our current forensic capacity. In this study, for the purposes of biomarker discovery, human keratinocytes were exposed to α-particle and X-radiation (0.98 Gy/h at 0, 0.5, 1.0, 1.5 Gy) and assessed for differential gene and protein expression using microarray and Bio-Plex technology, respectively. Secretomic analysis of supernatants showed expression of two pro-inflammatory cytokines (IL-13 and PDGF-bb) to be exclusively affected in α-particle exposed cells. The highest dose of α-particle radiation modulated a total of 67 transcripts (fold change>|1.5|, (False discovery rate) FDR2 fold) included KIF20A, NEFM, C7orf10, HIST1H2BD, BMP6, and HIST1H2AC. Among the high expressing genes, five (CCNB2, BUB1, NEK2, CDC20, AURKA) were also differentially expressed at the medium (1.0 Gy) dose however, these genes were unmodulated following exposure to X-irradiation. Networks of these genes clustered around tumor protein-53 and transforming growth factor-beta signaling. This study has identified some potential gene /protein responses and networks that may be validated further to confirm their specificity and potential to be signature biomarkers of α-particle exposure.

  12. Epidermal growth factor and transforming growth factor-beta differently modulate the acute phase response elicited by interleukin-6 in cultured liver cells from man, rat and mouse.

    Science.gov (United States)

    Rokita, H; Bereta, J; Koj, A; Gordon, A H; Gauldie, J

    1990-01-01

    1. Complex effects of principal inflammatory cytokines (IL-6, IL-1, TNF, IFN-gamma) on acute phase protein synthesis and other metabolic processes in cultured liver cells are briefly reviewed. 2. Molecular properties and biological functions of transforming growth factor-beta and epidermal growth factor are compared. 3. The effects of these factors with respect to both amino acid uptake and acute phase protein synthesis are described in detail. The results are found to be different for rat or mouse hepatocytes and human hepatoma cells.

  13. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  14. E-Cadherin Homophilic Ligation Inhibits Cell Growth and Epidermal Growth Factor Receptor Signaling Independently of Other Cell Interactions

    OpenAIRE

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna; Gumbiner, Barry M.

    2007-01-01

    E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-c...

  15. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules.

    Science.gov (United States)

    Holt, Dennis B; Gupta, Vikas; Meyer, Dörte; Abel, Nikolaj B; Andersen, Stig U; Stougaard, Jens; Markmann, Katharina

    2015-10-01

    Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  17. Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar.

    Science.gov (United States)

    Ferris, Rachel; Long, L; Bunn, S M; Robinson, K M; Bradshaw, H D; Rae, A M; Taylor, Gail

    2002-06-01

    Genetic variation in stomatal initiation and density, and epidermal cell size and number were examined in a hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh in both ambient ([aCO2]) and elevated ([eCO2]) concentrations of CO2. We aimed to link anatomical traits with the underlying genetic map of F2 Family 331, composed of 350 markers across 19 linkage groups. Leaf stomatal and epidermal cell traits showed pronounced differences between the original parents. We considered the following traits in the F2 population: stomatal density (SD), stomatal index (SI), epidermal cell area (ECA) and the number of epidermal cells per leaf (ECN). In [eCO2], adaxial SD and SI were reduced in the F2 population, whereas ECA increased and ECN remained unchanged. In [aCO2], four putative quantitative trait loci (QTL) with logarithm of the odds ratio (LOD) scores greater than 2.9 were found for stomatal traits on linkage group B: adaxial SI (LOD scores of 5.4 and 5.2); abaxial SI (LOD score of 3.3); and SD (LOD score of 3.2). These results imply that QTL for SI and SD share linkage group B and are under genetic control. More moderate LOD scores (LOD scores >/= 2.5) suggest QTL for SI on linkage groups A and B and for SD on linkage groups B, D and X with a probable co-locating quantitative trait locus for SI and SD on linkage group D (position 46.3 cM). The QTL in both [aCO2] and [eCO2] for adaxial SD were co-located on linkage group X (LOD scores of 3.5 and 2.6, respectively) indicating a similar response across both treatments. Putative QTL were located on linkage group A (position 89.2 cM) for both leaf size and ECN in [aCO2] and for ECA at almost the same position. The data provide preliminary evidence that leaf stomatal and cell traits are amenable to QTL analysis.

  18. Dual epidermal growth factor receptor and vascular endothelial growth factor receptor inhibition with vandetanib sensitizes bladder cancer cells to cisplatin in a dose- and sequence-dependent manner.

    Science.gov (United States)

    Flaig, Thomas W; Su, Lih-Jen; McCoach, Caroline; Li, Yuan; Raben, David; Varella-Garcia, Marileila; Bemis, Lynne T

    2009-06-01

    To investigate the activity of the combination of vandetanib and cytotoxic agents using in vitro models of bladder cancer, as modern chemotherapy regimens are built around cisplatin, with gemcitabine or a taxane such as docetaxel also commonly added in combination for the treatment of advanced bladder cancer. Human bladder cancer cells HTB3, HT1376, J82, RT4, CRL1749, T24, SUP and HTB9 were cultured. The activity of gefitinib (ZD1839) and vandetanib (ZD6474) was assessed in these eight bladder cancer cell lines with a tetrazolium-based assay of cell viability. RT4 bladder cancer cells, determined to have moderate cisplatin resistance and also moderate sensitivity to vandetanib, were treated with vandetanib and cisplatin. RT4 and T24 cells were treated with six different regimens. The apoptosis and cell-cycle analysis were studied by flow cytometry. Expression of p21 and p27 was detected by Western blotting. Fluorescence in situ hybridization (FISH) analysis of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 was performed for all cell lines. At equal concentrations, vandetanib was a more potent inhibitor of cell viability, compared to gefitinib. At vandetanib concentrations of cell-cycle distribution showed that vandetanib treatment induced G1 arrest at high concentrations, but not at lower concentrations. High-concentration treatment was associated with increased levels of the cyclin-dependent kinase p27. FISH analysis showed that there was a low level of genomic gain, and no gene amplification. Mutational analysis of exons 18, 19, and 21 of EGFR in each cell line revealed no mutation. Vandetanib has synergistic activity when given at low concentration with cytotoxic chemotherapy. The addition of vandetanib to cisplatin-based chemotherapy regimens merits further study.

  19. Consequences of epidermal growth factor receptor (ErbB1) loss for vascular smooth muscle cells from mice with targeted deletion of ErbB1.

    Science.gov (United States)

    Schreier, Barbara; Döhler, Maria; Rabe, Sindy; Schneider, Bettina; Schwerdt, Gerald; Ruhs, Stefanie; Sibilia, Maria; Gotthardt, Michael; Gekle, Michael; Grossmann, Claudia

    2011-07-01

    Pathophysiological effects of the epidermal growth factor receptor (EGFR or ErbB1) include vascular remodeling. EGFR transactivation is proposed to contribute significantly to heterologous signaling and remodeling in vascular smooth muscle cells (VSMC). We investigated the importance of EGFR in primary VSMC from aorta of mice with targeted deletion of the EGFR (EGFR(Δ/Δ VSMC)→VSMC(EGFR-/-) and EGFR(Δ/+ VSMC)→VSMC(EGFR+/-)) and the respective littermate controls (EGFR(+/+ VSMC)→VSMC(EGFR+/+)) with respect to survival, pentose phosphate pathway activity, matrix homeostasis, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and Ca(2+) homeostasis. In VSMC(EGFR-/-), epidermal growth factor-induced signaling was abolished; VSMC(EGFR+/-) showed an intermediate phenotype. EGFR deletion enhanced spontaneous cell death, reduced pentose phosphate pathway activity, disturbed cellular matrix homeostasis (collagen III and fibronectin), and abolished epidermal growth factor sensitivity. In VSMC(EGFR-/-) endothelin-1- or α(1)-adrenoceptor-induced ERK1/2 phosphorylation and the fraction of Ca(2+) responders were significantly reduced, whereas responsive cells showed a significantly stronger Ca(2+) signal. Oxidative stress (H(2)O(2)) induced ERK1/2 activation in VSMC(EGFR+/+) and VSMC(EGFR+/-) but not in VSMC(EGFR-/-). The Ca(2+) signal was enhanced in VSMC(EGFR-/-), similar to purinergic stimulation by ATP. In conclusion, EGFR was found to be important for basal VSMC homeostasis and ERK1/2 activation by the tested G-protein-coupled receptors or radical stress. Ca(2+) signaling was modulated by EGFR differentially with respect to the fraction of responders and magnitude of the signal. Thus, EGFR seems to be Janus-faced for VSMC biology.

  20. Esvaziamento cervical no carcinoma epidermóide da tonsila Neck dissection in squamous cell carcinoma of the tongue

    Directory of Open Access Journals (Sweden)

    Ali Amar

    2005-02-01

    Full Text Available Avaliar o significado prognóstico dos níveis linfáticos acometidos por metástases nos carcinomas epidermóides da região tonsilar. OBJETIVO: Definir o tipo de esvaziamento cervical eletivo mais apropriado. FORMA DE ESTUDO: Série de casos. MATERIAL E MÉTODO: 51 pacientes com tumor de região tonsilar tratados entre 1992 e 2001. A incidência de metástases foi avaliada nos diferentes níveis linfonodais, bem como sua relação com a extensão do tumor primário para os subsítios anatômicos adjacentes. RESULTADOS: Nos pacientes cN0 foram encontradas metástases apenas nos níveis I e II. Entre os pacientes pN+ com metástases no nível I, 6/7 apresentavam extensão da lesão para a cavidade oral. CONCLUSÃO: O esvaziamento supraomohioideo (níveis I, II e III mostrou ser o mais adequado para o tratamento eletivo do pescoço nos tumores da região tonsilar que se estendem para a cavidade oral. Nos casos N0 restritos à orofaringe, o esvaziamento apenas dos níveis II e III mostrou-se a melhor indicação terapêutica.AIM: The purpose of this study was to assess the prognosis of patients with tonsillar squamous cell carcinoma with different stages of lymph node involvement and to determine the best elective neck dissection for those cases. STUDY DESIGN: Case series. MATERIAL AND METHOD: 51 patients with tonsillar tumors were treated between 1992 and 2001. The incidence of different tumor-node-metastasis stages was evaluated according to primary tumor extension. RESULTS: cN0 patients had metastases in stages I and II only. Among pN+ subjects with stage I metastases, 6/7 had primary tumor extending to oral cavity. CONCLUSION: Supraomohyoid neck dissection (stages I, II and III is the elective treatment of choice when tonsillar primary tumor extends to oral cavity. When primary tumors are limited to the oropharynx, selective neck dissection of stages II and III proved to be more adequate.

  1. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  2. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  3. Release of infectious cells from epidermal ulcers in Ichthyophonus sp.–infected Pacific Herring (Clupea pallasii): Evidence for multiple mechanisms of transmission

    Science.gov (United States)

    Hershberger, Paul K.; Gregg, Jacob L.; Kocan, R.M.

    2010-01-01

    A common clinical sign of ichthyophoniasis in herring and trout is “sandpaper” skin, a roughening of the epidermis characterized by the appearance of small papules, followed by ulceration and sloughing of the epithelium; early investigators hypothesized that these ulcers might be a means of transmitting the parasite, Ichthyophonus sp., without the necessity of ingesting an infected host. We examined the cells associated with the epidermal lesions and confirmed that they were viable Ichthyophonus sp. cells that were readily released from the skin into the mucous layer and ultimately into the aquatic environment. The released cells were infectious when injected into the body cavity of specific-pathogen-free herring. Our hypothesis is that different mechanisms of transmission occur in carnivorous and planktivorous hosts: Planktonic feeders become infected by ingestion of ulcer-derived cells, while carnivores become infected by ingestion of whole infected fish.

  4. Genetic interactions among vestigial, hairy, and Notch suggest a role of vestigial in the differentiation of epidermal and neural cells of the wing and halter of Drosophila melanogaster.

    Science.gov (United States)

    Abu-Issa, R; Cavicchi, S

    1996-09-01

    In this paper we describe the results of genetic analysis of the vestigial locus by studying its interactions with hairy and Notch loci in Drosophila melanogaster. Different vestigial alleles in homo- and heterozygous combination with different hairy alleles show synergism in increasing both cell death and formation of ectopic bristles and produce ectopic veins. Interactions between N and vg also show synergism in increasing cell death and formation of ectopic bristles. Only synergism in cell death is seen between h and N. The interactions indicate that vg product plays a role in the differentiation of epidermal and neural cells of the wing disc by interacting with N and h products either directly or indirectly. Mechanisms of molecular interactions among the three loci are discussed.

  5. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells.

    Directory of Open Access Journals (Sweden)

    Rudolf Götz

    Full Text Available TrkB mediates the effects of brain-derived neurotrophic factor (BDNF in neuronal and nonnneuronal cells. Based on recent reports that TrkB can also be transactivated through epidermal growth-factor receptor (EGFR signaling and thus regulates migration of early neurons, we investigated the role of TrkB in migration of lung tumor cells. Early metastasis remains a major challenge in the clinical management of non-small cell lung cancer (NSCLC. TrkB receptor signaling is associated with metastasis and poor patient prognosis in NSCLC. Expression of this receptor in A549 cells and in another adenocarcinoma cell line, NCI-H441, promoted enhanced migratory capacity in wound healing assays in the presence of the TrkB ligand BDNF. Furthermore, TrkB expression in A549 cells potentiated the stimulatory effect of EGF in wound healing and in Boyden chamber migration experiments. Consistent with a potential loss of cell polarity upon TrkB expression, cell dispersal and de-clustering was induced in A549 cells independently of exogeneous BDNF. Morphological transformation involved extensive cytoskeletal changes, reduced E-cadherin expression and suppression of E-cadherin expression on the cell surface in TrkB expressing tumor cells. This function depended on MEK and Akt kinase activity but was independent of Src. These data indicate that TrkB expression in lung adenoma cells is an early step in tumor cell dissemination, and thus could represent a target for therapy development.

  6. Human Mena+11a isoform serves as a marker of epithelial phenotype and sensitivity to epidermal growth factor receptor inhibition in human pancreatic cancer cell lines.

    Science.gov (United States)

    Pino, Maria S; Balsamo, Michele; Di Modugno, Francesca; Mottolese, Marcella; Alessio, Massimo; Melucci, Elisa; Milella, Michele; McConkey, David J; Philippar, Ulrike; Gertler, Frank B; Natali, Pier Giorgio; Nisticò, Paola

    2008-08-01

    hMena, member of the enabled/vasodilator-stimulated phosphoprotein family, is a cytoskeletal protein that is involved in the regulation of cell motility and adhesion. The aim of this study was to determine whether or not the expression of hMena isoforms correlated with sensitivity to EGFR tyrosine kinase inhibitors and could serve as markers with potential clinical use. Human pancreatic ductal adenocarcinoma cell lines were characterized for in vitro sensitivity to erlotinib, expression of HER family receptors, markers of epithelial to mesenchymal transition, and expression of hMena and its isoform hMena(+11a). The effects of epidermal growth factor (EGF) and erlotinib on hMena expression as well as the effect of hMena knockdown on cell proliferation were also evaluated. hMena was detected in all of the pancreatic tumor cell lines tested as well as in the majority of the human tumor samples [primary (92%) and metastatic (86%)]. Intriguingly, in vitro hMena(+11a) isoform was specifically associated with an epithelial phenotype, EGFR dependency, and sensitivity to erlotinib. In epithelial BxPC3 cells, epidermal growth factor up-regulated hMena/hMena(+11a) and erlotinib down-regulated expression. hMena knockdown reduced cell proliferation and mitogen-activated protein kinase and AKT activation in BxPC3 cells, and promoted the growth inhibitory effects of erlotinib. Collectively, our data indicate that the hMena(+11a) isoform is associated with an epithelial phenotype and identifies EGFR-dependent cell lines that are sensitive to the EGFR inhibitor erlotinib. The availability of anti-hMena(+11a)-specific probes may offer a new tool in pancreatic cancer management if these results can be verified prospectively in cancer patients.

  7. A multi-scale model of the interplay between cell signalling and hormone transport in specifying the root meristem of Arabidopsis thaliana.

    Science.gov (United States)

    Muraro, D; Larrieu, A; Lucas, M; Chopard, J; Byrne, H; Godin, C; King, J

    2016-09-07

    The growth of the root of Arabidopsis thaliana is sustained by the meristem, a region of cell proliferation and differentiation which is located in the root apex and generates cells which move shootwards, expanding rapidly to cause root growth. The balance between cell division and differentiation is maintained via a signalling network, primarily coordinated by the hormones auxin, cytokinin and gibberellin. Since these hormones interact at different levels of spatial organisation, we develop a multi-scale computational model which enables us to study the interplay between these signalling networks and cell-cell communication during the specification of the root meristem. We investigate the responses of our model to hormonal perturbations, validating the results of our simulations against experimental data. Our simulations suggest that one or more additional components are needed to explain the observed expression patterns of a regulator of cytokinin signalling, ARR1, in roots not producing gibberellin. By searching for novel network components, we identify two mutant lines that affect significantly both root length and meristem size, one of which also differentially expresses a central component of the interaction network (SHY2). More generally, our study demonstrates how a multi-scale investigation can provide valuable insight into the spatio-temporal dynamics of signalling networks in biological tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The epidermal cell structure of the secondary pollen presenter in Vangueria infausta (Rubiaceae: Vanguerieae) suggests a functional association with protruding onci in pollen grains.

    Science.gov (United States)

    Tilney, Patricia M; van Wyk, Abraham E; van der Merwe, Chris F

    2014-01-01

    Secondary pollen presentation is a well-known phenomenon in the Rubiaceae with particularly conspicuous pollen presenters occurring in the tribe Vanguerieae. These knob-like structures are formed by a modification of the upper portion of the style and stigma, together known as the stylar head complex. In the flower bud and shortly before anthesis, the anthers surrounding the stylar head complex dehisce and release pollen grains which adhere to the pollen presenter. The epidermal cells of the pollen presenter facing the anthers are radially elongated with a characteristic wall thickening encircling the anticlinal walls of each cell towards the distal end. These cells were studied in the pollen presenter of Vangueria infausta using electron and light microscopy in conjunction with histochemical tests and immunohistochemical methods. Other prominent thickenings of the cell wall were also observed on the distal and proximal walls. All these thickenings were found to be rich in pectin and possibly xyloglucan. The terms "thickenings of Igersheim" and "bands of Igersheim" are proposed to refer, respectively, to these wall structures in general and those encircling the anticlinal walls of each cell near the distal end. The epidermal cells have an intricate ultrastructure with an abundance of organelles, including smooth and rough endoplasmic reticulum, Golgi apparatus, mitochondria and secretory vesicles. This indicates that these cells are likely to have an active physiological role. The pollen grains possess prominent protruding onci and observations were made on their structure and development. Walls of the protruding onci are also rich in pectin. Pectins are hydrophilic and known to be involved in the dehydration and rehydration of pollen grains. We hypothesise that the thickenings of Igersheim, as well as the protruding onci of the pollen grains, are functionally associated and part of the adaptive syndrome of secondary pollen presentation, at least in the Vanguerieae.

  9. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    Science.gov (United States)

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  10. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana.

    Science.gov (United States)

    Park, Jong-A; Kim, Tae-Wuk; Kim, Seong-Ki; Kim, Woo Taek; Pai, Hyun-Sook

    2005-08-15

    The very long chain fatty acids (VLCFAs) are synthesized by the microsomal fatty acid elongation system in plants. We investigated cellular function of NbECR putatively encoding enoyl-CoA reductase that catalyzes the last step of VLCFA elongation in Nicotiana benthamiana. Virus-induced gene silencing of NbECR produced necrotic lesions with typical cell death symptoms in leaves. In the affected tissues, ablation of the epidermal cell layer preceded disintegration of the whole leaf cell layers, and disorganized cellular membrane structure was evident. The amount of VLCFAs was reduced in the NbECR VIGS lines, suggesting NbECR function in elongation of VLCFAs. The results demonstrate that NbECR encodes a putative enoyl-CoA reductase and that the NbECR activity is essential for membrane biogenesis in N. benthamiana.

  11. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation

    Czech Academy of Sciences Publication Activity Database

    Motlík, Jan; Klíma, Jiří; Dvořánková, B.; Smetana, K. Jr.

    2007-01-01

    Roč. 67, - (2007), s. 105-111 ISSN 0093-691X Grant - others:GA ČR(CZ) GA304/04/0171 Institutional research plan: CEZ:AV0Z50450515 Keywords : pig * stem cell * epidermis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.911, year: 2007

  12. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    Directory of Open Access Journals (Sweden)

    Marta Espina Palanco

    2016-06-01

    Full Text Available We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS and surface enhanced hyper-Raman scattering (SEHRS. Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts.

  13. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering.

    Science.gov (United States)

    Espina Palanco, Marta; Bo Mogensen, Klaus; Gühlke, Marina; Heiner, Zsuzsanna; Kneipp, Janina; Kneipp, Katrin

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts.

  14. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tomo eTsuzuki

    2013-10-01

    Full Text Available The Mg-chelatase H subunit (CHLH has been shown to mediate chlorophyll biosynthesis, as well as plastid-to-nucleus and abscisic acid (ABA-mediated signaling. A recent study using a novel CHLH mutant, rtl1, indicated that CHLH specifically affects ABA-induced stomatal closure, but also that CHLH did not serve as an ABA receptor in Arabidopsis thaliana. However, the molecular mechanism by which CHLH engages in ABA-mediated signaling in guard cells remains largely unknown. In the present study, we examined CHLH function in guard cells and explored whether CHLH expression might influence stomatal aperture. Incubation of rtl1 guard cell protoplasts with ABA induced expression of the ABA-responsive genes RAB18 and RD29B, as also observed in wild-type (WT cells, indicating that CHLH did not affect the expression of ABA-responsive genes. Earlier, ABA was reported to inhibit blue light (BL-mediated stomatal opening, at least in part through dephosphorylating/inhibiting guard cell H+-ATPase (which drives opening. Therefore, we immunohistochemically examined the phosphorylation status of guard cell H+-ATPase. Notably, ABA inhibition of BL-induced phosphorylation of H+-ATPase was impaired in rtl1 cells, suggesting that CHLH influences not only ABA-induced stomatal closure but also inhibition of BL-mediated stomatal opening by ABA. Next, we generated CHLH-GFP-overexpressing plants using CER6 promoter, which induces gene expression in the epidermis including guard cells. CHLH-transgenic plants exhibited a closed stomata phenotype even when brightly illuminated. Moreover, plant growth experiments conducted under water-deficient conditions showed that CHLH transgenic plants were more tolerant of drought than WT plants. In summary, we show that CHLH is involved in the regulation of stomatal aperture in response to ABA, but not in ABA-induced gene expression, and that manipulation of stomatal aperture via overexpression of CHLH in guard cells improves plant

  15. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate.

    Directory of Open Access Journals (Sweden)

    Rose-Anne Romano

    Full Text Available BACKGROUND: One major defining characteristic of the basal keratinocytes of the stratified epithelium is the expression of the keratin genes K5 and K14. The temporal and spatial expression of these two genes is usually tightly and coordinately regulated at the transcriptional level. This ensures the obligate pairing of K5 and K14 proteins to generate an intermediate filament (IF network that is essential for the structure and function of the proliferative keratinocytes. Our previous studies have shown that the basal-keratinocyte restricted transcription factor p63 is a direct regulator of K14 gene. METHODOLOGY/PRINCIPAL FINDINGS: Here we provide evidence that p63, specifically the DeltaN isoform also regulates the expression of the K5 gene by binding to a conserved enhancer within the 5' upstream region. By using specific antibodies against DeltaNp63, we show a concordance in the expression between basal keratins and DeltaNp63 proteins but not the TAp63 isoforms during early embryonic skin development. We demonstrate, that contrary to a previous report, transgenic mice expressing DeltaNp63 in lung epithelium exhibit squamous metaplasia with de novo induction of K5 and K14 as well as transdifferentiation to the epidermal cell lineage. Interestingly, the in vivo epidermal inductive properties of DeltaNp63 do not require the C-terminal SAM domain. Finally, we show that DeltaNp63 alone can restore the expression of the basal keratins and reinitiate the failed epidermal differentiation program in the skin of p63 null animals. SIGNIFICANCE: DeltaNp63 is a critical mediator of keratinocyte stratification program and directly regulates the basal keratin genes.

  16. Microscopic observations show invasion of inflammatory cells in the limb blastema and epidermis in pre-metamorphic frog tadpoles which destroy the Apical Epidermal CAP and impede regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-03-01

    Some limb regeneration in tadpoles of Rana dalmatina occurs at stages 44-48 when small hind-limbs are present while scarring occurs at stages 51-52 when forelimbs have developed and metamorphosis is approaching. Ultrastructural analysis of cells forming the regenerating blastema detects mesenchymal cells and an Apical Epidermal Cap (AEC) in regenerating limb blastema 5-6 days post-amputation at stages 46-48. In contrast, granulocytes and numerous macrophages and lymphocytes prevail over mesenchymal cells in limb blastema at stages 51-52, which are destined to form scars. An increase in inflammatory cells in limb blastema prior to metamorphosis suggests a negative influence of immune cells on limb regeneration. Inflammatory cells invade the apical wound epidermis where stem keratinocytes are likely destroyed, impeding the formation of an AEC, the microregion which leads to limb regeneration. The invasion of immune cells, however, may also represent a physiological consequence of the death of cell populations in the tadpoles occurring with approaching metamorphosis. The passage from an aquatic to a terrestrial life in this frog elicits the typical amniote scarring reaction after wounding, and the limb cannot regenerate. The present observations sustain the hypothesis that the evolution of the adaptive immunity in tetrapods while efficiently preserving adult self-condition, determined the loss of tissue regeneration since the embryonic antigens evocated in blastema cells are removed by immune cells of the adult. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Epidermal hairs of Acanthaceae

    NARCIS (Netherlands)

    Ahmad, Khwaja J.

    1978-01-01

    Structure and distribution of the foliar epidermal hairs of 109 species and two varieties belonging to 39 genera of the family Acanthaceae have been studied. Both glandular and non-glandular epidermal hairs have been recorded in the investigated taxa. The glandular hairs may be subsessile or

  18. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

    Science.gov (United States)

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2011-02-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G(2)M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure.

  19. Quantitation of the mRNA expression of the epidermal growth factor system: selective induction of heparin-binding epidermal growth factor-like growth factor and amphiregulin expression by growth factor stimulation of prostate stromal cells.

    Science.gov (United States)

    Sørensen, B S; Tørring, N; Bor, M V; Nexo, E

    2000-09-01

    The epidermal growth factor (EGF) system is a rapidly expanding system of growth factors involved in many aspects of normal and cancerous growth. We have developed a method for the quantitation of mRNA coding for all six growth factors activating the human EGF receptor (HER-1) and for the quantitation of mRNA for the receptors HER-1 and its preferred dimerization partner, HER-2. The method is based on the generation of specific RNA standards, which are amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) with the sample RNA and a set of calibrators. The resulting calibration curve is used to quantitate the unknown samples, which require only a single RT-PCR reaction. Our method has the advantage that quantitation is based on coamplification of an internal RNA standard, thereby controlling both the PCR and RT reactions. In addition, the RNA standards for all growth factors and receptors are combined in a single RT reaction, which minimizes variation and allows the quantitation of all eight mRNA species with only 0.1 microg RNA. This makes the method suitable for studies in which the supply of material is limited. The developed method has enabled us to demonstrate that prostate stromal cells in primary culture express EGF, heparin-binding EGF (HB-EGF), amphiregulin, betacellulin, and epiregulin as well as the HER-1 and HER-2 receptors, whereas no transforming growth factor-alpha mRNA is found. Furthermore, activation of the EGF system in these cells by stimulation with HB-EGF or EGF in mitogenic doses causes a selective increase in the expression of amphiregulin and HB-EGF mRNA (more than 15-fold and 25-fold, respectively), whereas there is no increase in the expression of mRNA for the other growth factors or receptors. In accord with the increase in amphiregulin mRNA, the amount of amphiregulin peptide released from the cells is also increased. The selective induction of amphiregulin and HB-EGF by growth factor stimulation may represent a mechanism

  20. Impact of clinical parameters and systemic inflammatory status on epidermal growth factor receptor-mutant non-small cell lung cancer patients readministration with epidermal growth factor receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Chen, Yu-Mu; Lai, Chien-Hao; Rau, Kun-Ming; Huang, Cheng-Hua; Chang, Huang-Chih; Chao, Tung-Ying; Tseng, Chia-Cheng; Fang, Wen-Feng; Chung, Yu-Hsiu; Wang, Yi-Hsi; Su, Mao-Chang; Huang, Kuo-Tung; Liu, Shih-Feng; Chen, Hung-Chen; Chang, Ya-Chun; Chang, Yu-Ping; Wang, Chin-Chou; Lin, Meng-Chih

    2016-11-08

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) readministration to lung cancer patients is common owing to the few options available. Impact of clinical factors on prognosis of EGFR-mutant non-small cell lung cancer (NSCLC) patients receiving EGFR-TKI readministration after first-line EGFR-TKI failure and a period of TKI holiday remains unclear. Through this retrospective study, we aimed to understand the impact of clinical factors in such patients. Of 1386 cases diagnosed between December 2010 and December 2013, 80 EGFR-mutant NSCLC patients who were readministered TKIs after failure of first-line TKIs and intercalated with at least one cycle of cytotoxic agent were included. We evaluated clinical factors that may influence prognosis of TKI readministration as well as systemic inflammatory status in terms of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR). Baseline NLR and LMR were estimated at the beginning of TKI readministration and trends of NLR and LMR were change amount from patients receiving first-Line TKIs to TKIs readministration. Median survival time since TKI readministration was 7.0 months. In the univariable analysis, progression free survival (PFS) of first-line TKIs, baseline NLR and LMR, and trend of LMR were prognostic factors in patients receiving TKIs readministration. In the multivariate analysis, only PFS of first-line TKIs (p factors. Longer PFS of first-line TKIs, low baseline NLR, and high trend of LMR were good prognostic factors in EGFR-mutant NSCLC patients receiving TKI readministration.

  1. Novel Gd-Loaded Silicon Nanohybrid: A Potential Epidermal Growth Factor Receptor Expressing Cancer Cell Targeting Magnetic Resonance Imaging Contrast Agent.

    Science.gov (United States)

    Sinha, Sougata; Tong, Wing Yin; Williamson, Nathan H; McInnes, Steven J P; Puttick, Simon; Cifuentes-Rius, Anna; Bhardwaj, Richa; Plush, Sally E; Voelcker, Nicolas H

    2017-12-13

    Continuing our research efforts in developing mesoporous silicon nanoparticle-based biomaterials for cancer therapy, we employed here porous silicon nanoparticles as a nanocarrier to deliver contrast agents to diseased cells. Nanoconfinement of small molecule Gd-chelates (L1-Gd) enhanced the T1 contrast dramatically compared to distinct Gd-chelate (L1-Gd) by virtue of its slow tumbling rate, increased number of bound water molecules, and their occupancy time. The newly synthesized Gd-chelate (L1-Gd) was covalently grafted on silicon nanostructures and conjugated to an antibody specific for epidermal growth factor receptor (EGFR) via a hydrazone linkage. The salient feature of this nanosized contrast agent is the capability of EGFR targeted delivery to cancer cells. Mesoporous silicon nanoparticles were chosen as the nanocarrier because of their high porosity, high surface area, and excellent biodegradability. This type of nanosized contrast agent also performs well in high magnetic fields.

  2. Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha

    DEFF Research Database (Denmark)

    Lax, I; Johnson, A; Howk, R

    1988-01-01

    receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF......The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected...... receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors....

  3. Protective Effect of Dermal Brimonidine Applications Against UV Radiation-induced Skin Tumors, Epidermal Hyperplasia and Cell Proliferation in the Skin of Hairless Mice.

    Science.gov (United States)

    Bouvier, Guy; Learn, Douglas B; Nonne, Christelle; Feraille, Gérard; Vial, Emmanuel; Ruty, Bernard

    2015-11-01

    Brimonidine at 0.18%, 1% and 2% concentrations applied topically in hairless mice significantly decreased tumor burden and incidences of erythema, flaking, wrinkling and skin thickening induced by UVR. The unbiased median week to tumor ≥1 mm was increased by the 1% and 2% concentrations. The tumor yield was reduced by all concentrations at week 40 for all tumor sizes but the ≥4 mm tumors with the 0.18% concentration. At week 52, the tumor yield was reduced for all tumor sizes and all brimonidine concentrations. The tumor incidence was reduced by all concentrations at week 40 for all tumor sizes, but the ≥4 mm tumor with the 0.18% concentration and at week 52 for all tumor sizes with the 1% and 2% concentrations and with the 0.18% concentration only for the ≥4 mm tumors. Reductions in ≥4 mm tumor incidences compared to the vehicle control group were 54%, 91% and 86% by week 52 for the 0.18%, 1% and 2% concentrations, respectively. Brimonidine at 2% applied 1 h before or just after UVB irradiation on hairless mice decreased epidermal hyperplasia by 23% and 32% and epithelial cell proliferation by 59% and 64%, respectively, similar to an epidermal growth factor receptor (EGFR) inhibitor. © 2015 The American Society of Photobiology.

  4. Noninvasive penetration of 5 nm hyaluronic acid molecules across the epidermal barrier (in vitro) and its interaction with human skin cells.

    Science.gov (United States)

    Nashchekina, Yu A; Raydan, M

    2018-02-01

    Hyaluronic acid represents one of the major components of the extracellular environment. The main challenge remains in the ability to deliver these molecules noninvasively across the skin barrier, which can be overcome by the reduction in size to an extent that allows these molecules to pass across the skin barrier. The aim of this study was to measure the penetration and bioavailability of low molecular weight hyaluronic acid to cross an epidermal barrier model. Determining the quantity of hyaluronic acid in the test solutions was carried with method of photocolorimetry analysis. Investigation of the interaction of cells with LMWHA was studied with a confocal microscope. The study showed that LMWHA is able to cross the epidermis. Most effective penetration level is during the first 6 hours reaching 75%, and then the concentration started to decline and reached the equilibrium state within the following 2 hours. Confocal laser microscopy demonstrated different distribution and behavior of these molecules among the keratinocytes and fibroblasts. Reducing the size of hyaluronic acid to 5 nm enhance their transport across the epidermal layer. The concentration of hyaluronic acid molecules was higher on the fibroblast surface in comparison to their extracellular environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents.

    Science.gov (United States)

    Guo, Rui; Pan, Fuqiang; Tian, Yanping; Li, Hongli; Li, Shirong; Cao, Chuan

    2016-06-01

    ClC-3, a member of the ClC chloride (Cl(-)) channel family, has recently been proposed as the primary Cl(-) channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl(-) current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl(-) channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies.

  6. Epidermal growth factor can optimize a serum-free culture system for bone marrow stem cell proliferation in a miniature pig model.

    Science.gov (United States)

    Wang, Xuan; Zheng, Feng; Liu, Ousheng; Zheng, Shutao; Liu, Yishan; Wang, Yuehong; Tang, Zhangui; Zhong, Liangjun

    2013-12-01

    Bone marrow-derived mesenchymal stem cells have become an attractive cell source for periodontal ligament regeneration treatment because of their potential to engraft to several tissue types after injury. Most researchers have focused on the transplantation process, but few have paid attention to cell safety concerns and rapid proliferation before transplantation. Using serum-free medium to culture stem cells may be an effective method to avoid problems associated with exogenous serum and the addition of growth factors to promote cell proliferation. Here, we randomly divided our serum-free cultures and treated them with different levels of epidermal growth factor (EGF). We then evaluated changes in rates of cell adhesion, proliferation, apoptosis, and cell cycle ratio as well as their differentiation potential. The data showed that all of these parameters were significantly different when comparing serum-free cultures with and without 10 nM/L EGF (p 0.05). In summary, our results demonstrate that 10 nM/L EGF was the optimal dose for serum-free culture, which can replace traditional standard serum medium for in vitro expansion of miniature pig bone marrow-derived mesenchymal stem cells.

  7. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  8. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  9. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  10. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhengyu [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Yang, Qi; Cui, Mei; Liu, Yanping [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Wang, Tao; Zhao, Hong [Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Dong, Qiang, E-mail: qiang_dong163@163.com [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China)

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  11. VERO stable cell lines expressing full-length human epidermal growth factor receptors 2 and 3: platforms for subtractive phage display.

    Science.gov (United States)

    Hedayatizadeh-Omran, Akbar; Valadan, Reza; Rafiei, Alireza; Tehrani, Mohsen; Alizadeh-Navaei, Reza

    2015-09-01

    Cross-talk between human epidermal growth factor receptor 2 and 3 (HER2 and HER3) may potentially contribute to therapeutic resistance in human breast cancer. Subtractive phage display allows highly specific selection for antibody fragments directed against cells surface HER2 and HER3. The strategies to select conformation- and activation-specific antibodies against HER2 and HER3 require tightly regulated HER2 and HER3 expressing cells that allow controlled activation/inactivation of these receptors during panning procedures. To achieve this, first, we found that the VERO cell line is an appropriate cell line for heterogeneous expression of HER2 and HER3, and then we established a panel of VERO stable cell lines expressing high levels of HER2 and HER3 alone and in combination. We also showed that HER2 and HER3 expressed in VERO cells were biologically active and could form heterodimer following neuregulin1 treatment. The cell line established here not only provided platforms for phage display-based methods but also could be used in any HER-related studies.

  12. Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474: Cytotoxic and biomolecular effects.

    Science.gov (United States)

    Azzariti, Amalia; Porcelli, Letizia; Xu, Jian-Ming; Simone, Grazia Maria; Paradiso, Angelo

    2006-08-28

    To analyze the biological effects of prolonged in vitro exposure of HT-29 and LoVo colon cancer cell lines to gefitinib (Iressa), an inhibitor of epidermal growth factor receptor (EGFR) activity, and ZD6474, an inhibitor of both KDR and EGFR activities. Cells were treated with each drug for up to 2 wk using either a continuous or an intermittent (4 d of drug exposure followed by 3 d of washout each week) schedule. In both cell types, prolonged exposure (up to 14 d) to gefitinib or ZD6474 produced a similar inhibition of cell growth that was persistent and independent of the treatment schedule. The effects on cell growth were associated with a pronounced inhibition of p-EGFR and/or p-KDR expression. Treatment with gefitinib or ZD6474 also inhibited the expression of EGFR downstream signal molecules, p-Erk1/2 and p-Akt, although the magnitude of these effects varied between treatments and cell lines. Furthermore, expression of the drug resistance-related protein ABCG2 was shown to significantly increase after 14 d of continuous exposure to the two drugs. We conclude that long-term exposure of colon cancer cells to gefitinib and ZD6474 does not modify their cytotoxic effects but it might have an effect on sensitivity to classical cytotoxic drugs.

  13. Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa™) and to the antiangiogenic agent ZD6474: Cytotoxic and biomolecular effects

    Science.gov (United States)

    Azzariti, Amalia; Porcelli, Letizia; Xu, Jian-Ming; Simone, Grazia Maria; Paradiso, Angelo

    2006-01-01

    AIM: To analyze the biological effects of prolonged in vitro exposure of HT-29 and LoVo colon cancer cell lines to gefitinib (Iressa™), an inhibitor of epidermal growth factor receptor (EGFR) activity, and ZD6474, an inhibitor of both KDR and EGFR activities. METHODS: Cells were treated with each drug for up to 2 wk using either a continuous or an intermittent (4 d of drug exposure followed by 3 d of washout each week) schedule. RESULTS: In both cell types, prolonged exposure (up to 14 d) to gefitinib or ZD6474 produced a similar inhibition of cell growth that was persistent and independent of the treatment schedule. The effects on cell growth were associated with a pronounced inhibition of p-EGFR and/or p-KDR expression. Treatment with gefitinib or ZD6474 also inhibited the expression of EGFR downstream signal molecules, p-Erk1/2 and p-Akt, although the magnitude of these effects varied between treatments and cell lines. Furthermore, expression of the drug resistance-related protein ABCG2 was shown to significantly increase after 14 d of continuous exposure to the two drugs. CONCLUSION: We conclude that long-term exposure of colon cancer cells to gefitinib and ZD6474 does not modify their cytotoxic effects but it might have an effect on sensitivity to classical cytotoxic drugs. PMID:16937523

  14. Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt.

    Science.gov (United States)

    Brusevold, Ingvild J; Aasrum, Monica; Bryne, Magne; Christoffersen, Thoralf

    2012-08-01

    Cell migration is a necessary part of malignant invasiveness. Oral squamous cell carcinomas (OSCC) have a great tendency for local invasive growth. We have investigated signalling pathways involved in cell migration induced by epidermal growth factor (EGF) and hepatocyte growth factor (HGF) in OSCC cells and examined the effects of various experimental and clinically approved anti-tumour signal inhibitors on the migratory activity. Migration was studied in three human OSCC cell lines, using a scratch wound assay in vitro and time-lapse cinematography. Specific phosphorylation of signalling proteins was assessed by Western blotting. In the E10 cell line, EGF and HGF induced phosphorylation of EGF receptor (EGFR) and Met, respectively, phosphorylation of ERK1/2, p38 and Akt, and dose-dependent activation of cell migration. Addition of the EGFR-specific inhibitors cetuximab (antibody) or gefitinib (tyrosine kinase blocker) abolished cell migration elicited by EGF. Similarly, a Met kinase inhibitor (SU11274) blocked HGF-induced cell migration. Furthermore, when three cell lines were treated with blockers of the MEK/ERK, p38 or the PI-3 kinase/Akt pathways, the migratory response to both EGF and HGF was inhibited, but to varying degrees. Notably, in E10 and D12 cells, HGF-induced migration was particularly sensitive to PI-3 K-inhibition, while in C12 cells, both HGF- and EGF-induced migration were highly sensitive to p38-blockade. The results demonstrate that the MEK/ERK, p38 and PI-3 kinase pathways are all involved in mediating the increased migration in OSCC cell lines induced by EGF and HGF, but their relative importance and the effects of specific signal inhibitors differ. © 2012 John Wiley & Sons A/S.

  15. A Whole-Genome Microarray Study of Arabidopis Thaliana Cell Cultures Exposed to Real and Simulated Partial-G Forces: A Comparison of Parabolic Flight and Clinostat Data

    Science.gov (United States)

    Fengler, S.; Spirer, I.; Neef, M.; Ecke, M.; Hauslage, J.; Hampp, R.

    2015-09-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial-g forces during parabolic flight and clinostat experiments (0.38 g, 0. 16 g and 0.5 g). To investigate gravity-dependent alterations in gene expression, samples were metabolically quenched and used for microarray analysis. An attempt to identify the potential threshold acceleration showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term ~sg during a regular parabolic flight, the number of differentially expressed genes under partial-g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial-g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and ~sg). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold altered in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of identical genes was detected within seconds of exposure to 0.38 g.

  16. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    Science.gov (United States)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  17. The proliferative effects of Pyropia yezoensis peptide on IEC-6 cells are mediated through the epidermal growth factor receptor signaling pathway.

    Science.gov (United States)

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Choi, Jeong-Wook; Kim, Young-Min; Nam, Taek-Jeong

    2015-04-01

    For a number of years, seaweed has been used as a functional food in Asian countries, particularly in Korea, Japan and China. Pyropia yezoensis is a marine red alga that has potentially beneficial biological activities. In this study, we examined the mechanisms through which a Pyropia yezoensis peptide [PYP1 (1-20)] induces the proliferation of IEC-6 cells, a rat intestinal epithelial cell line, and the involvement of the epidermal growth factor receptor (EGFR) signaling pathway. First, cell viability assay revealed that PYP1 (1-20) induced cell proliferation in a concentration-dependent manner. Subsequently, we examined the mechanisms responsible for this induction of proliferation induced by PYP1 (1-20). EGFR is widely expressed in mammalian epithelial tissues, and the binding of this ligand affects a variety of cell physiological parameters, such as cell growth and proliferation. PYP1 (1-20) increased the expression of EGFR, Shc, growth factor receptor-bound protein 2 (Grb2) and son of sevenless (SOS). EGFR also induced the activation of the Ras signaling pathway through Raf, MEK and extracellular signal-regulated kinase (ERK) phosphorylation. In addition, cell cycle analysis revealed the expression of cell cycle-related proteins. The results demonstrated an increased number of cells in the G1 phase and an enhanced cell proliferation. In addition, the upregulation of cyclin D, cyclin E, Cdk2, Cdk4 and Cdk6 was observed accompanied by a decreased in p21 and p27 expression. These findings suggest that PYP1 (1-20) stimulates the proliferation of rat IEC-6 cells by activating the EGFR signaling pathway. Therefore, PYP1 (1-20) may be a potential source for the development of bio-functional foods which promotes the proliferation of intestinal epithelial cells.

  18. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel

    Directory of Open Access Journals (Sweden)

    Uysal-Onganer Pinar

    2007-11-01

    Full Text Available Abstract Background Although a high level of functional voltage-gated sodium channel (VGSC expression has been found in strongly metastatic human and rat prostate cancer (PCa cells, the mechanism(s responsible for the upregulation is unknown. The concentration of epidermal growth factor (EGF, a modulator of ion channels, in the body is highest in prostatic fluid. Thus, EGF could be involved in the VGSC upregulation in PCa. The effects of EGF on VGSC expression in the highly metastatic human PCa PC-3M cell line, which was shown previously to express both functional VGSCs and EGF receptors, were investigated. A quantitative approach, from gene level to cell behaviour, was used. mRNA levels were determined by real-time PCR. Protein expression was studied by Western blots and immunocytochemistry and digital image analysis. Functional assays involved measurements of transverse migration, endocytic membrane activity and Matrigel invasion. Results Exogenous EGF enhanced the cells' in vitro metastatic behaviours (migration, endocytosis and invasion. Endogenous EGF had a similar involvement. EGF increased VGSC Nav1.7 (predominant isoform in PCa mRNA and protein expressions. Co-application of the highly specific VGSC blocker tetrodotoxin (TTX suppressed the effect of EGF on all three metastatic cell behaviours studied. Conclusion 1 EGF has a major involvement in the upregulation of functional VGSC expression in human PCa PC-3M cells. (2 VGSC activity has a significant intermediary role in potentiating effect of EGF in human PCa.

  19. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana

    Science.gov (United States)

    In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, p...

  20. Investigation of roles for LRR-RLKs PNL1 and PNL2 in asymmetric cell division in Arabidopsis thaliana

    OpenAIRE

    Rodriguez, Maiti Celina

    2008-01-01

    Asymmetric cell division is a vital component of plant development. It enables cell differentiation and cell diversity. A key component of asymmetric cell division is cell signaling. Signals are believed to control polarization and orientation of asymmetric divisions during stomatal development. The findings of this report suggest that PNL1 and PNL2, two LRR-RLKs found in Arabidopsis and closely related to maize PAN1 LRR-RLK, are possibly involved in the signaling events occurring during the ...

  1. An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations.

    Science.gov (United States)

    McCarthy, Avery; Chung, Michelle; Ivanov, Alexander G; Krol, Marianna; Inman, Michael; Maxwell, Denis P; Hüner, Norman P A

    2016-07-20

    An established cell suspension culture of Arabidopsis thaliana var. Landsberg erecta was grown in liquid media containing 0-15%(w/v) sucrose. Exponential growth rates of about 0.40d-1 were maintained between 1.5-6%(w/v) sucrose, which decreased to about 0.30d-1 between 6 and 15%(w/v) sucrose. Despite the presence of external sucrose, cells maintained a stay-green phenotype at 0-15% (w/v) sucrose. Sucrose stimulated transcript levels of genes involved in the chlorophyll biosynthetic pathway (ChlH, ChlI2, DVR). Although most of the genes associated with photosystem II and photosystem I reaction centers and light harvesting complexes as well as genes associated with the cytochrome b6f and the ATP synthase complexes were downregulated or remained unaffected by high sucrose, immunoblotting indicated that protein levels of PsaA, Lhcb2 and Rubisco per gram fresh weight changed minimallyon a Chl basis as a function of external sucrose concentration. The green cell culture was photosynthetically competent based on light-dependent, CO2-saturated rates of O2 evolution as well as Fv/Fm and P700 oxidation. Similar to Arabidopsis WT seedlings, the suspension cells etiolated in the dark and but remained green in the light. However, the exponential growth rate of the cell suspension cultures in the dark (0.45±0.07d-1) was comparable to that in the light (0.42±0.02d-1). High external sucrose levels induced feedback inhibition of photosynthesis as indicated by the increase in excitation pressure measured as a function of external sucrose concentration. Regardless, the cell suspension culture still maintained a stay-green phenotype in the light at sucrose concentrations from 0 to 15%(w/v) due, in part, to a stimulation of photoprotection through nonphotochemical quenching. The stay-green, sugar-insensitive phenotype of the cell suspension contrasted with the sugar-dependent, non-green phenotype of Arabidopsis Landsberg erecta WT seedlings grown at comparable external sucrose

  2. Morphologic transformation of human breast epithelial cells MCF-10A: dependence on an oxidative microenvironment and estrogen/epidermal growth factor receptors

    Directory of Open Access Journals (Sweden)

    Yusuf Rita

    2010-09-01

    Full Text Available Abstract Background MCF-10A, immortalized but non-transformed human breast epithelial cells, are widely used in research examining carcinogenesis. The studies presented here were initiated with the observation that MCF-10A cells left in continuous culture for prolonged periods without re-feeding were prone to the development of transformed foci. We hypothesized that the depletion of labile culture components led to the onset of processes culminating in the observed cell transformation. The purpose of this study was to define the factors which promoted transformation of this cell line. Results Changes in levels of phenol red (PHR, hydrocortisone (HC, and epidermal growth factor (EGF with or without estrogen treatment indicated that both oxidative stress- and estrogen receptor alpha (ERα-mediated pathways contribute to cell transformation. Gene array and Western blotting analyses of cells maintained in our laboratory and of those from other sources documented detectable ERα and ERbeta (ERβ in this ERα-negative cataloged cell line. Results also indicate the possibility of a direct association of EGF receptor (EGFR and ERα in these cells as well as the formation and high induction of a novel ternary complex that includes ERβ (ERα/ERβ/EGFR in cells grown under conditions facilitating transformation. Conclusions Our studies resulted in the development of a growth protocol where the effects of chronic, physiologically relevant alterations in the microenvironment on cellular transformation were examined. From our results, we were able to propose a model of transformation within the MCF-10A cell line in which oxidative stress, ER and EGFR play essential roles. Overall, our work indicates that the immediate microenvironment of cells exerts powerful growth cues which ultimately determine their transformation potential.

  3. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshida

    Full Text Available Epithelial-mesenchymal transition (EMT is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs in non-small cell lung cancer (NSCLC. The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8, a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin, ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.

  4. Cross-Validation Study for Epidermal Growth Factor Receptor and KRAS Mutation Detection in 74 Blinded Non-small Cell Lung Carcinoma Samples: A Total of 5550 Exons Sequenced by 15 Molecular French Laboratories (Evaluation of the EGFR Mutation Status for the Administration of EGFR-TKIs in Non-Small Cell Lung Carcinoma [ERMETIC] Project—Part 1)

    National Research Council Canada - National Science Library

    Beau-Faller, Michèle; Degeorges, Armelle; Rolland, Estelle; Mounawar, Mounia; Antoine, Martine; Poulot, Virginie; Mauguen, Audrey; Barbu, Véronique; Coulet, Florence; Prétet, Jean-Luc; Bièche, Ivan; Blons, Hélène; Boyer, Jean-Christophe; Buisine, Marie-Pierre; de Fraipont, Florence; Lizard, Sarab; Olschwang, Sylviane; Saulnier, Patrick; Prunier-Mirebeau, Delphine; Richard, Nicolas; Danel, Claire; Brambilla, Elisabeth; Chouaid, Christos; Zalcman, Gérard; Hainaut, Pierre; Michiels, Stefan; Cadranel, Jacques

    2011-01-01

    INTRODUCTION:The Evaluation of the epidermal growth factor receptor (EGFR) Mutation status for the administration of EGFR-Tyrosine Kinase Inhibitors in non-small cell lung Carcinoma (NSCLC) (ERMETIC...

  5. Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation

    National Research Council Canada - National Science Library

    Gord, Alexander; Holmes, William R; Dai, Xing; Nie, Qing

    2014-01-01

    .... Using a new stochastic, multi-scale computational modelling framework, the anisotropic subcellular element method, we investigate the role of cell morphology and biophysical cell-cell interactions...

  6. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  7. A comprehensive two-dimensional gel protein database of noncultured unfractionated normal human epidermal keratinocytes: towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Madsen, Peder; Rasmussen, H H

    1991-01-01

    A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved......, melanocytes, fibroblasts, dermal microvascular endothelial cells, peripheral blood mononuclear cells and sweat duct cells. The keratinocyte 2-D gel protein database will be updated yearly in the November issue of Electrophoresis. Udgivelsesdato: 1991-Nov...

  8. Histological transformation of adenocarcinoma to small cell carcinoma lung as a rare mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors: Report of a case with review of literature.

    Science.gov (United States)

    Hui, Monalisa; Uppin, Shantveer G; Stalin, Bala Joseph; Sadashivudu, G

    2018-01-01

    A subset of non-small cell lung carcinoma (NSCC) harbor active mutations of epidermal growth factor receptor (EGFR). In these, EGFR tyrosine kinase inhibitors (EGFR-TKIs) are recommended as the first-line treatment. Though drug resistance is inevitable, histological transformation to small cell lung carcinoma (SCLC) is a rare mechanism for acquired resistance. Here we report one such rare case of histological transformation of pulmonary adenocarcinoma to small cell lung carcinoma in 46 year old male treated with Gefitinib.

  9. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hyper-g, and to simulated and sounding rocket micro-g

    Science.gov (United States)

    Hampp, R.; Babbick, M.

    Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143

  10. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data.

    Science.gov (United States)

    Hausmann, N; Fengler, S; Hennig, A; Franz-Wachtel, M; Hampp, R; Neef, M

    2014-01-01

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular, short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide (H2 O2 ) and cytosolic Ca(2+) were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion for RNA; acid/base for NADPH, NADP) at typical stages of a parabola [1 g before pull up; end of pull up (1.8 g), end of microgravity (20 s) and end of pull out (1.8 g)]. Cells exhibited an increase in both Ca(2+) and H2 O2 with the onset of microgravity, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating Ca(2+) -dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca(2+) - and ROS-related gene products. The same material was also used for analysis of phosphopeptides with 2-D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of ROS. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses.

    Science.gov (United States)

    Kuramitsu, S; Ohno, M; Ohka, F; Shiina, S; Yamamichi, A; Kato, A; Tanahashi, K; Motomura, K; Kondo, G; Kurimoto, M; Senga, T; Wakabayashi, T; Natsume, A

    2015-10-01

    The epidermal growth factor receptor variant III (EGFRvIII) is exclusively expressed on the cell surface in ~50% of glioblastoma multiforme (GBM). This variant strongly and persistently activates the phosphatidylinositol 3-kinase-Akt signaling pathway in a ligand-independent manner resulting in enhanced tumorigenicity, cellular motility and resistance to chemoradiotherapy. Our group generated a recombinant single-chain variable fragment (scFv) antibody specific to the EGFRvIII, referred to as 3C10-scFv. In the current study, we constructed a lentiviral vector transducing the chimeric antigen receptor (CAR) that consisted of 3C10-scFv, CD3ζ, CD28 and 4-1BB (3C10-CAR). The 3C10-CAR-transduced peripheral blood mononuclear cells (PBMCs) and CD3(+) T cells specifically lysed the glioma cells that express EGFRvIII. Moreover, we demonstrated that CAR CD3(+) T cells migrated to the intracranial xenograft of GBM in the mice treated with 3C10-CAR PBMCs. An important and novel finding of our study was that a thalidomide derivative lenalidomide induced 3C10-CAR PBMC proliferation and enhanced the persistent antitumor effect of the cells in vivo. Lenalidomide also exhibited enhanced immunological synapses between the effector cells and the target cells as determined by CD11a and F-actin polymerization. Collectively, lentiviral-mediated transduction of CAR effectors targeting the EGFRvIII showed specific efficacy, and lenalidomide even intensified CAR cell therapy by enhanced formation of immunological synapses.

  12. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Binglian Zheng

    2014-07-01

    Full Text Available In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1, a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation.

  13. SNX3-dependent regulation of epidermal growth factor receptor (EGFR) trafficking and degradation by aspirin in epidermoid carcinoma (A-431) cells.

    Science.gov (United States)

    Chiow, Kher Hsin; Tan, Yingrou; Chua, Rong Yuan; Huang, Dachuan; Ng, Mah Lee Mary; Torta, Federico; Wenk, Markus R; Wong, Siew Heng

    2012-05-01

    Since being introduced globally as aspirin in 1899, acetylsalicylic acid has been widely used as an analgesic, anti-inflammation, anti-pyretic, and anti-thrombotic drug for years. Aspirin had been reported to down-regulate surface expression of CD40, CD80, CD86, and MHCII in myeloid dendritic cells (DC), which played essential roles in regulating the immune system. We hypothesized that the down-regulation of these surface membrane proteins is partly due to the ability of aspirin in regulating trafficking/sorting of endocytosed surface membrane proteins. By using an established epidermoid carcinoma cell line (A-431), which overexpresses the epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR), we show that aspirin (1) reduces cell surface expression of EGFR and (2) accumulates endocytosed-EGFR and -TfnR in the early/sorting endosome (ESE). Further elucidation of the mechanism suggests that aspirin enhances recruitment of SNX3 and SNX5 to membranes and consistently, both SNX3 and SNX5 play essential roles in the aspirin-mediated accumulation of endocytosed-TfnR at the ESE. This study sheds light on how aspirin may down-regulate surface expression of EGFR by inhibiting/delaying the exit of endocytosed-EGFR from the ESE and recycling of endocytosed-EGFR back to the cell surface.

  14. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    Science.gov (United States)

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells.

    Science.gov (United States)

    Coffey, R J; Hawkey, C J; Damstrup, L; Graves-Deal, R; Daniel, V C; Dempsey, P J; Chinery, R; Kirkland, S C; DuBois, R N; Jetton, T L; Morrow, J D

    1997-01-21

    Nonsteroidal antiinflammatory drugs reduce the risk of colon cancer, possibly via cyclooxygenase (COX) inhibition. The growth factor-inducible COX-2, which is overexpressed in neoplastic colonic tissue, is an attractive target to mediate this effect. Herein we have exploited the ability of a human colon cancer cell line, HCA-7 Colony 29, to polarize when cultured on Transwell (Costar) filters to study COX-2 production and the vectorial release of prostaglandins (PGs). Administration of type alpha transforming growth factor to the basolateral compartment, in which the epidermal growth factor receptor (EGFR) resides, results in a marked induction of COX-2 immunoreactivity at the base of the cells and the unexpected appearance of COX-2 in the nucleus. The increase in COX-2 protein is associated with a dose- and time-dependent increase in PG levels in the basolateral, but not apical, medium. Amphiregulin is the most abundantly expressed EGFR ligand in these cells, and the protein is present at the basolateral surface. EGFR blockade reduces baseline COX-2 immunoreactivity, PG levels, and mitogenesis in a concentration-dependent manner. Two specific COX-2 inhibitors, SC-58125 and NS 398, also, in a dose-dependent manner, attenuate baseline and type alpha transforming growth factor-stimulated mitogenesis, although PG levels are decreased > 90% at all concentrations of inhibitor tested. These findings show that activation of the EGFR stimulates COX-2 production and its translocation to the nucleus, vectorial release of PGs, and mitogenesis in polarized HCA-7 Colony 29 cells.

  16. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells

    Science.gov (United States)

    Coffey, Robert J.; Hawkey, Chris J.; Damstrup, Lars; Graves-Deal, Ramona; Daniel, Vincent C.; Dempsey, Peter J.; Chinery, Rebecca; Kirkland, Susan C.; DuBois, Raymond N.; Jetton, Thomas L.; Morrow, Jason D.

    1997-01-01

    Nonsteroidal antiinflammatory drugs reduce the risk of colon cancer, possibly via cyclooxygenase (COX) inhibition. The growth factor-inducible COX-2, which is overexpressed in neoplastic colonic tissue, is an attractive target to mediate this effect. Herein we have exploited the ability of a human colon cancer cell line, HCA-7 Colony 29, to polarize when cultured on Transwell (Costar) filters to study COX-2 production and the vectorial release of prostaglandins (PGs). Administration of type α transforming growth factor to the basolateral compartment, in which the epidermal growth factor receptor (EGFR) resides, results in a marked induction of COX-2 immunoreactivity at the base of the cells and the unexpected appearance of COX-2 in the nucleus. The increase in COX-2 protein is associated with a dose- and time-dependent increase in PG levels in the basolateral, but not apical, medium. Amphiregulin is the most abundantly expressed EGFR ligand in these cells, and the protein is present at the basolateral surface. EGFR blockade reduces baseline COX-2 immunoreactivity, PG levels, and mitogenesis in a concentration-dependent manner. Two specific COX-2 inhibitors, SC-58125 and NS 398, also, in a dose-dependent manner, attenuate baseline and type α transforming growth factor-stimulated mitogenesis, although PG levels are decreased >90% at all concentrations of inhibitor tested. These findings show that activation of the EGFR stimulates COX-2 production and its translocation to the nucleus, vectorial release of PGs, and mitogenesis in polarized HCA-7 Colony 29 cells. PMID:9012840

  17. Obestatin stimulates Akt signalling in gastric cancer cells through beta-arrestin-mediated epidermal growth factor receptor transactivation.

    Science.gov (United States)

    Alvarez, Carlos J P; Lodeiro, María; Theodoropoulou, Marily; Camiña, Jesús P; Casanueva, Felipe F; Pazos, Yolanda

    2009-06-01

    Obestatin was identified as a gut peptide encoded by the ghrelin gene that interacts with the G protein-coupled receptor, GPR39. In this work, a sequential analysis of its transmembrane signalling pathway has been undertaken to characterize the intracellular mechanisms responsible for Akt activation. The results show that Akt activation requires the phosphorylation of T308 in the A-loop by the phosphoinositide-dependent kinase 1 (PDK1) and S473 within the HM by the mammalian target of rapamycin (mTOR) kinase complex 2 (mTORC2: Rictor, mLST8, mSin1, mTOR kinase) with participation neither of G(i)(/o)-protein nor Gbetagamma dimers. Obestatin induces the association of GPR39/beta-arrestin 1/Src signalling complex resulting in the transactivation of the epidermal growth factor receptor (EGFR) and downstream Akt signalling. Upon administration of obestatin, phosphorylation of mTOR (S2448) and p70S6K1 (T389) rise with a time course that parallels that of Akt activation. Based on the experimental data obtained, a signalling pathway involving a beta-arrestin 1 scaffolding complex and EGFR to activate Akt signalling is proposed.

  18. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  19. Epidermal growth factor induces WISP-2/CCN5 expression in estrogen receptor-alpha-positive breast tumor cells through multiple molecular cross-talks.

    Science.gov (United States)

    Banerjee, Snigdha; Sengupta, Krishanu; Saxena, Neela K; Dhar, Kakali; Banerjee, Sushanta K

    2005-03-01

    Epidermal growth factor (EGF) is a mitogen for estrogen receptor (ER)-positive breast tumor cells, and it has been proven that EGF occasionally mimicked estrogen action and cross-talks with ER-alpha to exert its activity. Therefore, the present study was undertaken to explore whether EGF is able to modulate the expression of Wnt-1-induced signaling protein-2/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 5 (WISP-2/CCN5), an estrogen-responsive gene, in normal and transformed cell lines of the human breast and, if so, whether this induction is critical for EGF mitogenesis and what downstream signaling pathways are associated with this event. Here, we show that EGF-induced WISP-2 expression in ER- and EGF receptor-positive noninvasive MCF-7 breast tumor cells was dose and time dependent and that expression was modulated at transcription level. A synergism was seen in combination with estrogen. Moreover, small interfering RNA-mediated inhibition of WISP-2/CCN5 activity in MCF-7 cells resulted in abrogation of proliferation by EGF. The multiple molecular cross-talks, including the interactions between phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways and two diverse receptors (i.e., ER-alpha and EGFR), were essential in the event of EGF-induced WISP-2/CCN5 up-regulation in MCF-7 cells. Moreover, EGF action on WISP-2/CCN5 is restricted to ER- and EGFR-positive noninvasive breast tumor cells, and this effect of EGF cannot be instigated in ER-alpha-negative and EGFR-positive normal or invasive breast tumor cells by introducing ER-alpha. Finally, regulation of phosphorylation of ER-alpha and EGFR may play critical roles in EGF-induced transcriptional activation of WISP-2 gene in breast tumor cells.

  20. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors.

    Science.gov (United States)

    Schappa, Jill T; Frantz, Aric M; Gorden, Brandi H; Dickerson, Erin B; Vallera, Daniel A; Modiano, Jaime F

    2013-10-15

    Targeted toxins have the potential to overcome intrinsic or acquired resistance of cancer cells to conventional cytotoxic agents. Here, we hypothesized that EGFuPA-toxin, a bispecific ligand-targeted toxin (BLT) consisting of a deimmunized Pseudomonas exotoxin (PE) conjugated to epidermal growth factor and urokinase, would efficiently target and kill cells derived from canine hemangiosarcoma (HSA), a highly chemotherapy resistant tumor, as well as cultured hemangiospheres, used as a surrogate for cancer stem cells (CSC). EGFuPA-toxin showed cytotoxicity in four HSA cell lines (Emma, Frog, DD-1 and SB) at a concentration of ≤100 nM, and the cytotoxicity was dependent on specific ligand-receptor interactions. Monospecific targeted toxins also killed these chemoresistant cells; in this case, a "threshold" level of EGFR expression appeared to be required to make cells sensitive to the monospecific EGF-toxin, but not to the monospecific uPA-toxin. The IC₅₀ of CSCs was higher by approximately two orders of magnitude as compared to non-CSCs, but these cells were still sensitive to EGFuPA-toxin at nanomolar (i.e., pharmacologically relevant) concentrations, and when targeted by EGFuPA-toxin, resulted in death of the entire cell population. Taken together, our results support the use of these toxins to treat chemoresistant tumors such as sarcomas, including those that conform to the CSC model. Our results also support the use of companion animals with cancer for further translational development of these cytotoxic molecules. Copyright © 2013 UICC.

  1. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  2. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Liangliang Chen

    2016-10-01

    Full Text Available How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1 mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

  3. YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Chun-Chia Cheng

    Full Text Available Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068 was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.

  4. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    Science.gov (United States)

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  5. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    Science.gov (United States)

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  6. Helium-Neon Laser Irradiation Promotes the Proliferation and Migration of Human Epidermal Stem Cells In Vitro: Proposed Mechanism for Enhanced Wound Re-epithelialization

    Science.gov (United States)

    Liao, Xuan; Xie, Guang-Hui; Cheng, Biao; Li, Sheng-Hong; Xie, Shan; Xiao, Li-Ling; Fu, Xiao-Bing

    2014-01-01

    Abstract Objective: The present study was conducted to investigate the effects of helium-neon (He-Ne) laser irradiation on the proliferation, migration, and differentiation of cultured human epidermal stem cells (ESCs). Background data: A He-Ne laser with a wavelength of 632.8 nm is known to have photobiological effects, and is widely used for accelerating wound healing; however, the cellular mechanisms involved have not been completely understood. Methods: The ESCs were prepared from human foreskin, and irradiated by using He-Ne laser at 632.8 nm with 2 J/cm2. The ESC proliferation, migration, and differentiation were examined by using XTT assay, scratch assay, and flow cytometry technology, respectively. The phosphorylation of extracellular signal-regulated kinases (ERK) was analyzed by using Western blotting. Results: He-Ne laser irradiation markedly promoted cell proliferation and migration accompanied by an increase in the phosphorylation of ERK, but did not significantly influence cell differentiation. Conclusion: Our data indicated that photostimulation with a He-Ne laser resulted in a significant increase in human ESC proliferation and migration in vitro, which might contribute, at least partially, to accelerated wound re-epithelialization by low-level laser therapy. PMID:24661127

  7. Upregulation of Mitf by Phenolic Compounds-Rich Cymbopogon schoenanthus Treatment Promotes Melanogenesis in B16 Melanoma Cells and Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Myra O. Villareal

    2017-01-01

    Full Text Available Melanin provides inherent protection against skin cancer by absorbing broad-spectrum radiant energy of UV radiation. Cutaneous malignant melanoma incidence has recently been observed to increase and the frequency is closely associated with the skin color, highlighting the importance of skin pigmentation. Here, we showed how melanin biosynthesis is enhanced by treatment with phenolic compounds-rich Cymbopogon schoenanthus (CYM in B16 murine melanoma cells and human epidermal melanocytes (HEM. CYM increased the melanin content of the cells by upregulating the expression of tyrosinase (TYR, tyrosinase-related protein 1 (TRP1, and dopachrome tautomerase (DCT at the protein and mRNA levels, comparable to the effect of α-melanocyte-stimulating hormone (MSH, in both B16 cells and HEM. Moreover, global gene expression analysis showed that at least 44 pigmentation-associated genes were modulated, including the microphthalmia-associated transcription factor (Mitf and its transcriptional regulators (Sox10, Pax3, and Lef1. Upregulation of copper transport-associated gene Atp7b indicates that CYM also promotes tyrosinase activity. CYM upregulated Mitf and possibly activates tyrosinase enzyme, providing evidence for its possible use to promote melanogenesis and as a therapeutic agent against hypopigmentation disorders.

  8. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Keith A. Cengel

    2007-04-01

    Full Text Available Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor o was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFRactivated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  9. Phorbol ester or epidermal growth-factor-induced MUC5AC mucin gene expression and production from airway epithelial cells are inhibited by apigenin and wogonin.

    Science.gov (United States)

    Kim, Ju-Ock; Sikder, Md Asaduzzaman; Lee, Hyun Jae; Rahman, Mustafizur; Kim, Jang-Hyun; Chang, Gyu Tae; Lee, Choong Jae

    2012-12-01

    In this study, we investigated whether apigenin and wogonin affect MUC5AC mucin production and gene expression induced by phorbol ester (phorbol 12-myristate 13-acetate, PMA) or epidermal growth factor (EGF) from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with each agent for 30 min and then stimulated with PMA or EGF for 24 h, respectively. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). The results were as follows: (i) apigenin and wogonin were found to inhibit the production of MUC5AC mucin protein induced by PMA or EGF; (ii) both compounds also inhibited the expression of MUC5AC mucin gene induced by PMA or EGF. These results suggest that apigenin and wogonin can inhibit mucin gene expression and production of mucin protein, by directly acting on airway epithelial cells. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization.

    Science.gov (United States)

    Liao, Xuan; Xie, Guang-Hui; Liu, Hong-Wei; Cheng, Biao; Li, Sheng-Hong; Xie, Shan; Xiao, Li-Ling; Fu, Xiao-Bing

    2014-04-01

    The present study was conducted to investigate the effects of helium-neon (He-Ne) laser irradiation on the proliferation, migration, and differentiation of cultured human epidermal stem cells (ESCs). A He-Ne laser with a wavelength of 632.8 nm is known to have photobiological effects, and is widely used for accelerating wound healing; however, the cellular mechanisms involved have not been completely understood. The ESCs were prepared from human foreskin, and irradiated by using He-Ne laser at 632.8 nm with 2 J/cm(2). The ESC proliferation, migration, and differentiation were examined by using XTT assay, scratch assay, and flow cytometry technology, respectively. The phosphorylation of extracellular signal-regulated kinases (ERK) was analyzed by using Western blotting. He-Ne laser irradiation markedly promoted cell proliferation and migration accompanied by an increase in the phosphorylation of ERK, but did not significantly influence cell differentiation. Our data indicated that photostimulation with a He-Ne laser resulted in a significant increase in human ESC proliferation and migration in vitro, which might contribute, at least partially, to accelerated wound re-epithelialization by low-level laser therapy.

  11. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  12. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  13. 3D Plant cell architecture of Arabidopsis thaliana (Brassicaceae) using focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bhawana; Miller, Joyce L; Cahoon, A Bruce

    2014-06-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. • Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. • Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. • The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  14. Phosphorylation of epidermal growth factor receptor at serine 1047 in cultured lung alveolar epithelial cells by bradykinin B2 receptor stimulation.

    Science.gov (United States)

    Izumi, Shunsuke; Higa-Nakamine, Sayomi; Nishi, Hiroyuki; Torihara, Hidetsugu; Uehara, Ayako; Sugahara, Kazuhiro; Kakinohana, Manabu; Yamamoto, Hideyuki

    2017-09-09

    Accumulating evidence indicates that epidermal growth factor receptor (EGFR) is desensitized by phosphorylation of serine 1047 (Ser1047). We and other groups have reported that stimulation of a receptor of tumor-necrosis factor α (TNFα) and Toll-like receptor 5 (TLR5) induced the phosphorylation of Ser1047 through activation of p38 mitogen-activated protein kinase (p38 MAPK) in cultured lung alveolar epithelial A549 cells. However, phosphorylation of EGFR at Ser1047 by stimulation of any G-protein coupled receptors (GPCRs) has not been reported in any cultured cells. In the present study, we first confirmed that A549 cells expressed bradykinin (BK) B2 receptor, and then, we examined whether BK treatment of A549 cells activated MAPKs and induced the phosphorylation of EGFR at Ser1047. Immunoblotting analysis and reporter gene assays indicated that BK activated the pathways of extracellular signal-regulated kinase (ERK) and p38 MAPK. Inhibitor studies suggested that Gq/11 was mainly involved in the activation of ERK and p38 MAPK. We found that stimulation of the BK B2 receptor, but not the BK B1 receptor, induced phosphorylation of EGFR at Ser1047. Pharmacological experiments indicated that both ERK and p38 MAPK were involved in the phosphorylation of EGFR. These results strongly suggested that BK regulates EGFR functions in lung alveolar epithelial cells. In addition, we found that BK treatment increased the mRNA level of dual specificity MAPK phosphatase 5 (DUSP5) in an ERK-dependent manner, which suggested that a negative feedback mechanism of ERK existed in the cells. Copyright © 2017. Published by Elsevier Ltd.

  15. Combined treatment with troglitazone and lovastatin inhibited epidermal growth factor-induced migration through the downregulation of cysteine-rich protein 61 in human anaplastic thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Li-Han Chin

    Full Text Available Our previous studies have demonstrated that epidermal growth factor (EGF can induce cell migration through the induction of cysteine-rich protein 61 (Cyr61 in human anaplastic thyroid cancer (ATC cells. The aim of the present study was to determine the inhibitory effects of combined treatment with the peroxisome proliferator-activated receptor-γ (PPARγ ligand troglitazone and the cholesterol-lowering drug lovastatin at clinically achievable concentrations on ATC cell migration. Combined treatment with 5 μM troglitazone and 1 μM lovastatin exhibited no cytotoxicity but significantly inhibited EGF-induced migration, as determined using wound healing and Boyden chamber assays. Cotreatment with troglitazone and lovastatin altered the epithelial-to-mesenchymal-transition (EMT -related marker gene expression of the cells; specifically, E-cadherin expression increased and vimentin expression decreased. In addition, cotreatment reduced the number of filopodia, which are believed to be involved in migration, and significantly inhibited EGF-induced Cyr61 mRNA and protein expression as well as Cyr61 secretion. Moreover, the phosphorylation levels of 2 crucial signal molecules for EGF-induced Cyr61 expression, the cAMP response element-binding protein (CREB and extracellular signal-regulated kinase (ERK, were decreased in cells cotreated with troglitazone and lovastatin. Performing a transient transfection assay revealed that the combined treatment significantly suppressed Cyr61 promoter activity. These results suggest that combined treatment with low doses of troglitazone and lovastatin effectively inhibits ATC cell migration and may serve as a novel therapeutic strategy for metastatic ATC.

  16. Epidermal growth factor receptor variant III in head and neck squamous cell carcinoma is not relevant for targeted therapy and irradiation.

    Science.gov (United States)

    Thomas Koch, Dominik; Pickhard, Anja; Gebel, Lena; Buchberger, Anna Maria S; Bas, Murat; Mogler, Carolin; Reiter, Rudolf; Piontek, Guido; Wirth, Markus

    2017-05-16

    The epidermal growth factor receptor (EGFR) is an important regulator of cell growth and survival, and is highly variable in tumor cells. The most prevalent variation of the EGFR extracellular domain is the EGFR variant III (EGFRvIII). Some studies imply that EGFRvIII may be responsible for the poor response to the monoclonal EGFR-antibody Cetuximab, used therapeutically in head and neck squamous cell carcinoma (HNSCC). Due to inconsistent data in the literature regarding EGFRvIII prevalence and clinical relevance in HNSCC, especially its predictive value, we examined EGFRvIII-transfected cell lines and patient tissue samples. In contrast to other recent publications, we were able to demonstrate EGFRvIII expression in HNSCC. However, we noted that the different detection methods yielded inconsistent results. Furthermore, our EGFRvIII transfected and EGFR wild type cell lines exhibited similar characteristics and response rates in the performed in vitro experiments. We conducted various inhibition and combined irradiation experiments using three EGFRvIII-transfected cell lines. Moreover, a patient cohort of 149 cases consisting of formalin fixed and paraffin embedded (FFPE) and fresh-frozen specimens was assayed via reverse transcriptase PCR (rtPCR) with gel electrophoresis and sequencing for EGFRvIII prevalence. In the rtPCR assays, we used five previously published EGFRvIII primers and EGFRvIII-positive glioblastoma tissue as a positive control. In addition, immunohistochemical staining was conducted. EGFRvIII can be detected in HNSCC patient samples. Nevertheless, the low prevalence and similar response rates to targeted drugs and irradiation in vitro cast doubt regarding the clinical relevance of EGFRvIII in HNSCC.

  17. Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Cai ZX

    2016-06-01

    Full Text Available Zuxun Cai Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou City, People’s Republic of China Objective: To investigate the relationship between serum carcinoembryonic antigen (CEA level and epidermal growth factor receptor (EGFR gene mutations in non-small-cell lung cancer (NSCLC patients and to analyze the influence of CEA level on postoperative survival time in lung cancer patients. Methods: A total of 296 patients who were treated in Thoracic Surgery Department of Henan Provincial Chest Hospital from September 2011 to September 2013 were recruited. The level of tumor markers, such as CEA, was determined before the surgery, and EGFR gene mutations were detected after surgery. Thereby, the relationship between tumor makers, including CEA, and EGFR mutation and its influence on prognosis could be investigated. Results: Among 296 patients, the positive rate of EGFR gene mutation was 37.84% (112/296; the mutation occurred more frequently in nonsmokers, adenocarcinoma patients, women, and patients aged <60 years (P<0.05. Both tumor markers and chemosensitivity indicators were related to the profile of EGFR mutations. Elevated squamous cell carcinoma and Cyfra21-1 as well as positively expressed ERCC1 were more common in patients with wild-type EGFR (P<0.05, whereas increased CEA level was observed more frequently in patients with EGFR gene mutation (P=0.012. The positive rate of EGFR gene mutations was higher as the serum CEA level increased, that is, the positive rate in patients with serum CEA level <5, 5–20, and >20 µg/L was 39.81%, 45.32%, and 65.47%, respectively (P=0.004. Logistic regression analysis showed that CEA level was an independent factor in predicting EGFR gene mutations, and serum CEA level was also an independent factor in affecting the prognosis of NSCLC patients, as the overall 2-year survival rate was 73.86% in elevated CEA group and 86.43% in normal group (P<0.01. Conclusion: The prognosis of

  18. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  19. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  20. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa

    NARCIS (Netherlands)

    Akkerman, M.; Franssen-Verheijen, M.A.W.; Immerzeel, P.; Hollander, den L.; Schel, J.H.N.; Emons, A.M.C.

    2012-01-01

    Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the

  1. SRPP, a Cell Wall Protein is Involved in Development and Protection of Seeds and Root Hairs in Arabidopsis thaliana.

    Science.gov (United States)

    Tanaka, Natsuki; Uno, Hiroshi; Okuda, Shohei; Gunji, Shizuka; Ferjani, Ali; Aoyama, Takashi; Maeshima, Masayoshi

    2017-04-01

    Enhancement of root hair development in response to phosphate (Pi) deficit has been reported extensively. Root hairs are involved in major root functions such as the absorption of water, acquisition of nutrients and secretion of organic acids and enzymes. Individual root hair cells maintain these functions and appropriate structure under various physiological conditions. We carried out a study to identify protein(s) which maintain the structure and function of root hairs, and identified a protein (SEED AND ROOT HAIR PROTECTIVE PROTEIN, SRPP) that was induced in root hairs under Pi-deficient conditions. Promoter assay and mRNA quantification revealed that SRPP was expressed in root hairs and seeds. A knockout mutant, srpp-1, consistently displayed defects in root hairs and seeds. Root hairs in srpp-1 were short and the phenotypes observed under Pi-deficient conditions were also detected in ethylene-treated srpp-1 plants. Propidium iodide stained most root hairs of srpp-1 grown under Pi-deficient conditions, suggesting cell death. In addition to root hairs, most srpp-1 seeds were withered and their embryos were dead. SRPP tagged with green fluorescent protein was detected in the cell wall. Electron microscopy showed abnormal morphology of the cell wall. Wild-type phenotypes were restored when the SRPP gene was expressed in srpp-1. These data strongly suggest that SRPP contributes to the construction of robust cell walls, whereby it plays a key role in the development of root hairs and seeds. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Evaluating Inhibition of the Epidermal Growth Factor (EGF-Induced Response of Mutant MCF10A Cells with an Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Jun Xi

    2012-11-01

    Full Text Available Many cancer treatments rely on inhibition of epidermal growth factor (EGF-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D, to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the ΔD-response (change in energy dissipation factor and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in ΔD-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.

  3. Analysis of Mutations in Epidermal Growth Factor Receptor Gene in Korean Patients with Non-small Cell Lung Cancer: Summary of a Nationwide Survey

    Directory of Open Access Journals (Sweden)

    Sang Hwa Lee

    2015-11-01

    Full Text Available Background: Analysis of mutations in the epidermal growth factor receptor gene (EGFR is important for predicting response to EGFR tyrosine kinase inhibitors. The overall rate of EGFR mutations in Korean patients is variable. To obtain comprehensive data on the status of EGFR mutations in Korean patients with lung cancer, the Cardiopulmonary Pathology Study Group of the Korean Society of Pathologists initiated a nationwide survey. Methods: We obtained 1,753 reports on EGFR mutations in patients with lung cancer from 15 hospitals between January and December 2009. We compared EGFR mutations with patient age, sex, history of smoking, histologic diagnosis, specimen type, procurement site, tumor cell dissection, and laboratory status. Results: The overall EGFR mutation rate was 34.3% in patients with non-small cell lung cancer (NSCLC and 43.3% in patients with adenocarcinoma. EGFR mutation rate was significantly higher in women, never smokers, patients with adenocarcinoma, and patients who had undergone excisional biopsy. EGFR mutation rates did not differ with respect to patient age or procurement site among patients with NSCLC. Conclusions EGFR mutation rates and statuses were similar to those in published data from other East Asian countries.

  4. Rapid stimulation of fluid-phase endocytosis and exocytosis by insulin, insulin-like growth factor-I, and epidermal growth factor in KB cells.

    Science.gov (United States)

    Miyata, Y; Hoshi, M; Koyasu, S; Kadowaki, T; Kasuga, M; Yahara, I; Nishida, E; Sakai, H

    1988-09-01

    Effects of growth factors on fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells were examined by measuring horseradish peroxidase (HRP) as a marker. Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) promoted HRP accumulation. They also stimulated the efflux of the preloaded HRP from the cells. From these results it follows that these growth factors stimulate the influx as well as the efflux of HRP, because the accumulation rate is the sum of the influx rate and the efflux rate. The stimulation of both HRP accumulation and HRP efflux was rapidly induced within 2-4 min of the addition of growth factors and persisted for at least 60 min. The concentrations eliciting half-maximal stimulatory effects of insulin, IGF-I, and EGF were about 5 X 10(-7), 1 X 10(-9), and 5 X 10(-10) M, respectively. aIR-3 (anti-type I IGF receptor antibody) completely blocked the stimulation of HRP accumulation by IGF-I but very slightly inhibited the stimulation by insulin. The 528 IgG (anti-EGF receptor antibody) inhibited the stimulation of HRP accumulation by EGF. These results indicated that each of these growth factors stimulates the HRP accumulation mediated by the corresponding (homologous) growth factor receptors. The rapid stimulation of fluid-phase influx and efflux may constitute one of the common early cellular responses to growth factors.

  5. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody.

    Science.gov (United States)

    Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Boakye, Ken; Lacy, Eilyn R; Sanders, Renouard; Sepulveda, Manuel A; Moores, Sheri L; Chiu, Mark L

    2015-10-09

    The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Analysis of the prognostic value of soluble epidermal growth factor receptor plasma concentration in advanced non-small-cell lung cancer patients.

    Science.gov (United States)

    Jantus-Lewintre, Eloisa; Sirera, Rafael; Cabrera, Andrea; Blasco, Ana; Caballero, Cristina; Iranzo, Vega; Rosell, Rafael; Camps, Carlos

    2011-09-01

    Epidermal growth factor receptor (EGFR) is overexpressed in a variety of epithelial malignancies including lung cancer. A soluble fragment of the EGFR extracellular domain (sEGFR) can be detected in the blood of patients who have non-small-cell lung cancer (NSCLC), but its clinical/ prognostic role must be further elucidated. sEGFR concentration was retrospectively determined by enzyme-linked immunosorbent assay in plasma samples from 308 advanced NSCLC patients (before treatment) and 109 healthy controls and correlated with clinico-pathological variables. The concentration of sEGFR was lower in NSCLC patients than in controls (P concentration and demographic/clinical characteristics such as gender, Eastern Cooperative Oncology Group performance status, stage, and number or location of the metastatic sites. sEGFR was lower in patients with progressive disease or in squamous cell carcinoma compared with adenocarcinoma, but these differences were not significant. Patients with sEGFR ≤ 34.56 ng/mL showed a shorter overall survival (median 9.1 versus 12.2 months, P = .019) than others. Moreover, in multivariate analysis, sEGFR remained a significant independent prognostic marker. Low baseline sEGFR is associated with reduced survival in advanced NSCLC. Therefore, our findings in this large cohort of patients suggest that the determination of sEGFR concentration provides valuable prognostic information. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell.

    Science.gov (United States)

    Scott, Rod J; Armstrong, Susan J; Doughty, James; Spielman, Melissa

    2008-07-01

    In animal reproduction, thousands of sperm may compete to fertilize a single egg, but polyspermy blocks prevent multiple fertilization that would otherwise lead to death of the embryo. In flowering plants, successful seed development requires that only two sperm are delivered to the embryo sac, where each must fertilize a female gamete (egg or central cell) to produce the embryo and endosperm. Therefore, polyspermy must be avoided, not only to prevent abnormalities in offspring, but to ensure double fertilization. It is not understood how each sperm fertilizes only one female gamete, nor has the existence of polyspermy barriers been directly tested in vivo. Here, we sought evidence for polyspermy blocks in angiosperms using the polyspermic tetraspore (tes) mutant of Arabidopsis, which allows in-vivo challenge of egg and central cell with multiple male gametes. We show that tes mutant pollen tubes can transmit more than one sperm pair to an embryo sac, and that sperm from more than one pair can participate in fertilization. We detected endosperms but not embryos with ploidies that could only result from multiple fertilization. Our results therefore demonstrate an in-vivo polyspermy block on the egg, but not the central cell of a flowering plant.

  8. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Aluminum (Al is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104 was cloned from cabbage (Brassica oleracea. BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La, cadmium (Cd, zinc (Zn, or copper (Cu. Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  9. Assessment of epidermal growth factor receptor and K-ras mutation status in cytological stained smears of non-small cell lung cancer patients: correlation with clinical outcomes.

    Science.gov (United States)

    Lozano, Maria D; Zulueta, Javier J; Echeveste, Jose I; Gúrpide, Alfonso; Seijo, Luis M; Martín-Algarra, Salvador; Del Barrio, Anabel; Pio, Ruben; Idoate, Miguel Angel; Labiano, Tania; Perez-Gracia, Jose Luis

    2011-01-01

    Epidermal growth factor receptor (EGFR) and K-ras mutations guide treatment selection in non-small cell lung cancer (NSCLC) patients. Although mutation status is routinely assessed in biopsies, cytological specimens are frequently the only samples available. We determined EGFR and K-ras mutations in cytological samples. DNA was extracted from 150 consecutive samples, including 120 Papanicolau smears (80%), 10 cell blocks (7%), nine fresh samples (6%), six ThinPrep® tests (4%), and five body cavity fluids (3.3%). Papanicolau smears were analyzed when they had >50% malignant cells. Polymerase chain reaction and direct sequencing of exons 18-21 of EGFR and exon 2 of K-ras were performed. EGFR mutations were simultaneously determined in biopsies and cytological samples from 20 patients. Activity of EGFR tyrosine kinase inhibitors (TKIs) was assessed. The cytological diagnosis was adenocarcinoma in 110 samples (73%) and nonadenocarcinoma in 40 (27%) samples. EGFR mutations were identified in 26 samples (17%) and K-ras mutations were identified in 18 (12%) samples. EGFR and K-ras mutations were mutually exclusive. In EGFR-mutated cases, DNA was obtained from stained smears in 24 cases (92%), pleural fluid in one case (4%), and cell block in one case (4%). The response rate to EGFR TKIs in patients harboring mutations was 75%. The mutation status was identical in patients who had both biopsies and cytological samples analyzed. Assessment of EGFR and K-ras mutations in cytological samples is feasible and comparable with biopsy results, making individualized treatment selection possible for NSCLC patients from whom tumor biopsies are not available.

  10. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  11. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  12. Plaque psoriasis vs. atopic dermatitis and lichen planus: a comparison for lesional T-cell subsets, epidermal proliferation and differentiation.

    NARCIS (Netherlands)

    Bovenschen, H.J.; Seijger, M.M.B.; Kerkhof, P.C.M. van de

    2005-01-01

    BACKGROUND: T-cell infiltration in plaque psoriasis has recently been an important subject of investigation. Interestingly, comparative analyses of the disease-specific composition of the lesional T-cell infiltrate in plaque psoriasis and other inflammatory dermatoses have only sparsely been

  13. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment.

    Science.gov (United States)

    Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K

    2016-08-05

    While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.

  14. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    Science.gov (United States)

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  15. Gene mutation characteristics of nonsmall-cell lung carcinoma patients with wild-type epidermal growth factor receptor and sensitivity to Tarceva therapy.

    Science.gov (United States)

    Cui, Yan; Xu, Jie; Xin, Liang; Tian, Ye; Zhan, Zhongli; Qi, Daliang

    2015-08-01

    To explore characteristic gene mutations in nonsmall-cell lung carcinoma (NSCLC) patients with wild-type epidermal growth factor receptor (EGFR) and sensitivity to Tarceva therapy; to observe the efficacy and safety of Tarceva therapy for NSCLC patients with wild-type EGFR. NSCLC patients with wild-type EGFR and KRAS were selected. Their tumor specimens were assessed for mutations in seven key genes in pathways downstream of EGFR, including HRAS, NRAS, BRAF, PIK3CA, AKT1, MEK1, and PTEN. Then the patients were subjected to Tarceva therapy to explore the relationship between curative effects and any gene mutations. Among 10 cases, one NRAS mutation was detected in one patient who was resistant to Tarceva, and no mutations were detected in the other patients. Seven cases responded to Tarceva; 1 case obtained partial relief, and 6 cases were in stable condition. Patients with wild-type EGFR can also benefit from Tarceva therapy. However, an association between Tarceva therapy sensitivity and mutations in genes downstream of EGFR was not detected.

  16. Dose effect of cigarette smoking on frequency and spectrum of epidermal growth factor receptor gene mutations in Korean patients with non-small cell lung cancer.

    Science.gov (United States)

    Lee, Young Joo; Shim, Hyo Sub; Kang, Young Ae; Hong, Su Jung; Kim, Hyun Ki; Kim, Hoguen; Kim, Se Kyu; Choi, Sung Ho; Kim, Joo-Hang; Cho, Byoung Chul

    2010-12-01

    This study aimed to determine the dose effect of smoking on the mutational frequency and spectrum of epidermal growth factor receptor (EGFR) gene in Korean non-small cell lung cancer (NSCLC). Detailed smoking histories were obtained from 324 consecutively enrolled Korean NSCLC patients. Mutational status of EGFR (exon 18-21) was determined using nested polymerase chain reaction amplification. A total of 108 EGFR mutations (33.3%) were identified in 107 patients. Decreased EGFR mutation rate with increased smoking dose was observed, with 48.0% (82 of 171) in never smokers, 23.1% (15 of 65) in former smokers, and 11.4% (10 of 88) in current smokers. The incidence of EGFR mutation was significantly lower in patients who smoked for more than 25 pack-years (P smoking cigarettes less than 10 years ago (P smoke years (5.0 vs. 25.0 years in exon 20, P = 0.024), fewer total pack-years (6.3 vs. 38.9 pack-years in exon 20, P = 0.079), and more smoke-free years (11.1 vs. 3.6 years in exon 20, P = 0.027), compared with those in exon 20. Mutations in exon 19 or 21 were associated with female (P Smoking dosage affects the incidence of EGFR mutations. EGFR mutations in exon 19 or 21 are associated with low exposure to cigarette smoke, whereas EGFR mutation in exon 20 is more common in smokers.

  17. Application of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor as the First-line Therapy in Patients with Advanced Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chunsun LI

    2010-01-01

    Full Text Available Background and objective Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI has been widely used as the second- and third-line therapy in patients with advanced non-small cell lung cancer (NSCLC. However, its effect in the first-line treatment is unclear. The aim of this study was to evaluate the efficacy and safety of EGFRTKI as first-line therapy. Methods The clinical characteristics, responses rate, disease control rate and overall survival were retrospectively analyzed in 77 chemonaive patients with advanced NSCLC. All of the patients received oral gefitinib (250 mg/d or erlotinib (150 mg/d until disease progression or unacceptable toxicity occurrence. Results The overall response rate was 33.8% and the disease control rate was 68.8%. The median progression-free survival and the median survival time were 6.0 months and 8.9 months, respectively. One-year survival rate was 61.4%. Responses correlated significantly with histology, PS score, smoking history, skin rash, EGFR mutations and serum CEA. Histology and skin rash were the independent predictors of survival. Common toxicities were skin rash and mild diarrhea. EGFR-TKI could improve the clinical symptoms and the quality of life. Conclusion EGFR-TKI is effective and well tolerated as first-line therapy in patients with advanced NSCLC.

  18. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  19. Efficacy of 50 Hz electromagnetic fields on human epidermal stem cell transplantation seeded in collagen sponge scaffolds for wound healing in a murine model.

    Science.gov (United States)

    Bai, Wen-Fang; Xu, Wei-Cheng; Zhu, Hong-Xiang; Huang, Hong; Wu, Bo; Zhang, Ming-Sheng

    2017-04-01

    To explore the possible efficacy of electromagnetic fields (EMF) for skin tissue engineering, effects of EMF exposure on epidermal stem cells (ESC) seeded in collagen sponge scaffolds for wound healing in a murine model were investigated. The wound models of a full-thickness defect established with 36 7 ∼ 8-week-old nude mice were randomly divided into three groups: a control group, an ESC-only group, and an ESC with EMF exposure group (frequency of 50 Hz, magnetic induction of 5 mT, 60 min per day for 20 days). ESC were separated from human foreskin and cultured in vitro, and then transplanted with collagen sponge scaffolds as a delivery vehicle to wounds of the ESC-only group, and ESC with EMF exposure group was exposed to EMF after ESC transplantation. Effects of EMF on morphological changes and expression of β1 integrin in regenerated skins were observed. Wound healing rates and healing times were collected to evaluate the efficacy of repairment. Results showed that human ESC were successfully transplanted to nude mice, which facilitated the formation of intact skin on nude mice. In contrast to other groups, the wound healing of ESC with EMF exposure group was the fastest (P healing of ESC transplantation, and restore structural integrity of regenerated skin. Bioelectromagnetics. 38:204-212,2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Correlation between familial cancer history and epidermal growth factor receptor mutations in Taiwanese never smokers with non-small cell lung cancer: a case-control study.

    Science.gov (United States)

    Cheng, Po-Chung; Cheng, Yun-Chung

    2015-03-01

    Lung cancer is a leading cause of cancer deaths in the world. Cigarette smoking remains a prominent risk factor, but lung cancer incidence has been increasing in never smokers. Genetic abnormalities including epidermal growth factor receptor (EGFR) mutations predominate in never smoking lung cancer patients. Furthermore, familial aggregations of patients with these mutations reflect heritable susceptibility to lung cancer. The correlation between familial cancer history and EGFR mutations in never smokers with lung cancer requires investigation. This was a retrospective case-control study that evaluated the prevalence of EGFR mutations in lung cancer patients with familial cancer history. Never smokers with lung cancer treated at a hospital in Taiwan between April 2012 and May 2014 were evaluated. Inclusion criteria were never smokers with non-small cell lung cancer (NSCLC). Exclusion criteria involved patients without records of familial cancer history or tumor genotype. This study included 246 never smokers with lung cancer. The study population mainly involved never smoking women with a mean age of 60 years, and the predominant tumor histology was adenocarcinoma. Lung cancer patients with familial cancer history had an increased prevalence of EGFR mutations compared to patients without family history [odds ratio (OR): 5.9; 95% confidence interval (CI): 3.3-10.6; Pnever smoking lung cancer patients with familial cancer history. Moreover, a sizable proportion of never smoking cancer patients harbored these mutations. These observations have implications for the treatment of lung cancer in never smokers.

  1. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    Science.gov (United States)

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  2. [Detection of epidermal growth factor receptor gene mutations in different types of non-small cell lung cancer by droplet digital PCR and amplification refractory mutation system].

    Science.gov (United States)

    Li, R; Ye, S B; He, Y; Wang, X; Wu, N; Xia, Q Y; Shen, Q; Shi, S S

    2017-11-08

    Objective: To compare amplification refractory mutation system(ARMS) and droplet digital PCR (ddPCR) in the detection of epidermal growth factor receptor (EGFR) gene mutations in patients with non-small cell lung cancer (NSCLC), and to investigate the clinical value of ddPCR. Methods: A total of 79 specimens of NSCLC, including 22 cases of cell block, 18 cases of surgical specimens, 12 cases of biopsy specimens and 27 cases of plasma samples, were analyzed for the mutation status of EGFR gene by ARMS and droplet digital PCR method. Results: In 18 cases of surgical specimens and 12 cases of biopsy specimens, the detection results by the two methods were identical with positive rates of 9/18 and 5/12, respectively. In 22 cases of effusion cell blocks, ARMS detected 19-del and L858R of EGFR gene in two cases, in which droplet digital PCR detected 19-del+ T790M mutations in one case and L858R+ T790M mutation in another. L858R mutation was detected by droplet digital PCR in one case but ARMS assay was negative. The remaining 19 cases were consistent by the two methods. In blood samples, the positive rate was 33.3%(9/27) by ARMS and 37.0%(10/27) by droplet digital PCR. Two cases showed L858R and 19-del+ T790M mutation by droplet digital PCR but ARMS assay detected only 19-del. The remaining 25 cases were consistent by the two methods. Conclusion: Droplet digital PCR method is more sensitive and accurate than ARMS for the detection of EGFR mutations in pleural fluid and blood samples, can be used in clinical test.

  3. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    Science.gov (United States)

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  4. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  5. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    Directory of Open Access Journals (Sweden)

    Wasland Kaarin

    2011-06-01

    Full Text Available Abstract Background Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. Methods The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation and promoter of p27kip1 (ChIP assay were examined in presence of genistein in cells with mutated p53 (HT-29 and wild type p53 (HCT116. Silencing of p53 determined activity of FOXO3 when it is bound to p53. Results Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state. Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut complex leads to elevated p27kip1 expression and promotes cell cycle arrest. Conclusion These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer.

  6. [Staphylococcal epidermal exfoliation (Ritter's disease)].

    Science.gov (United States)

    Ruiz Maldonado, R; Tamayo, L; Vazquez, V; Dominguez, J

    1976-01-01

    According to the authors the best designation of Ritter's disease would be "staphilococcic epidermal exfoliation" SEE. The physiopathological and agnoslogical basis for this denomination could be the following: 1st The "S. aureus" is the ehtiological agent of the SSE in man. The Koch postulates necessary to confirm this hypothesis have been accomplished. 2nd "Staphylococcus aureus" produces a thermostable toxin that is active indepently of the staphilococcus and gives rise to the separation of the cells of the stratum granulosus of the epidermis and eventually exfoliation in suckling babies and in the newborn mouse. 3rd The "Staphylococcus aureus" may be present on the skin or in other localisations such as the bowel or pharinx. 4th The viable "S. aureus" when administered subcutaneously to the adult mice gives rise to lesions clinically and histologically similar to the impetigo observed in children. 5th The "S. aureus" killed by means of autoclave (that is, the staphylococcic toxine by itself does not give rise to any lesion when administered to the healthy adult mouse). Neijther has the SEE been observed in healthy adult man. The authors reach the conclusion that the SSE and the toxic epidermal necrolysis are basically different according to the histopathology therapeutic response and prognosis and they must be considered as independant entities.

  7. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  8. The continuing role of epidermal growth factor receptor tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung

    OpenAIRE

    Tan, Wan Ling; Ng, Quan-Sing

    2016-01-01

    Squamous cell carcinoma (SCC) of the lung represents about 20-30% of non-small cell lung cancers (NSCLC) and is associated with a poorer prognosis with limited treatment options. Erlotinib is an approved, standard second-line therapy in this setting, besides docetaxel. The LUX-Lung 8 study has shown superior overall survival (OS), progression-free survival (PFS), as well as disease control rates for treatment with afatinib compared to erlotinib in this head-to-head trial in patients with prev...

  9. Direct evidence for the critical role of NFAT3 in benzo[a]pyrene diol-epoxide-induced cell transformation through mediation of inflammatory cytokine TNF induction in mouse epidermal Cl41 cells.

    Science.gov (United States)

    Ouyang, Weiming; Hu, Yu; Li, Jingxia; Ding, Min; Lu, Yongju; Zhang, Dongyun; Yan, Yan; Song, Lun; Qu, Qingshan; Desai, Dhimant; Amin, Shantu; Huang, Chuanshu

    2007-10-01

    Nuclear factor of activated T cell (NFAT)-3 is a member of the transcription factor NFAT family, which has been demonstrated to be responsible for the up-regulation of the pro-inflammatory cytokine tumor necrosis factor (TNF) in the immune system. Our most recent studies have also shown that TNF is able to induce cell transformation in mouse epidermal Cl41 cells by induction of cyclooxygenase-2 (COX-2) expression. To provide direct evidence for NFAT3 in the environmental carcinogen-caused carcinogenic effect, (+/-)-benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), an ultimate environmental carcinogen metabolized from benzo[a]pyrene, was utilized. We found that exposure of Cl41 cells to B[a]PDE was able to induce cell transformation in Cl41 cells, while specific knock-down of NFAT3 resulted in the dramatic inhibition of this cell transformation. The tumorigenicity of B[a]PDE-caused transformed cells was confirmed in nude mice, whereas the tumor formation of B[a]PDE-treated NFAT3 small interference RNA (siRNA) knock-down cells was significantly reduced. Further studies showed that the role of NFAT3 in B[a]PDE-caused cell transformation was mediated by up-regulation of its downstream targeted gene TNF. This conclusion was based on the findings that inhibition of NFAT3 activation by either FK506 or NFAT3 siRNA dramatically down-regulated the TNF induction upon B[a]PDE exposure, and that knock-down of TNF by its specific siRNA also led to abrogation of B[a]PDE-induced cell transformation in Cl41 cells and their tumorigenicity in nude mice. Collectively, these results provide direct evidence for the important role of NFAT3 activation in B[a]PDE-induced cell transformation by up-regulation of TNF expression in mouse epidermal Cl41 cells, further suggesting that B[a]PDE may exert its tumor promotion effect on skin carcinogenesis, at least partially, by inducing TNF expression.

  10. Behavioral and neural responses of toads to salt solutions correlate with basolateral membrane potential of epidermal cells of the skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Baula, Victor; Tuttle, Wendy

    2007-01-01

    low, V(b) transiently hyperpolarized to values near the equilibrium potential for K(+) and corresponded with the reduced neural response. These results support the hypothesis that chemosensory function of the skin is analogous to that of mammalian taste cells but utilizes paracellular ion transport...

  11. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl

    NARCIS (Netherlands)

    Crowell, E.F.; Timpano, H.; Desprez, T.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Höfte, H.; Vernhettes, S.

    2011-01-01

    It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel

  12. Tratamento endoscópico do câncer epidermóide do esôfago Endoscopic treatment of squamous cell esophageal cancer

    Directory of Open Access Journals (Sweden)

    Fauze Maluf-Filho

    2006-06-01

    Full Text Available OBJETIVOS: Procurou-se avaliar o papel atual dos procedimentos terapêuticos endoscópicos no manejo do pacientes com carcinoma epidermóide do esôfago. LEVANTAMENTO DE DADOS: Utilizando o banco de dados do PubMed (U.S. National Library of Medicine, analisaram-se as publicações sobre o tema nos últimos 10 anos, cotejando-as com a experiência desenvolvida no Serviço de Endoscopia Gastrointestinal do Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo. SÍNTESE DOS DADOS: Neste campo, destacam-se a ressecção endoscópica do câncer esofágico precoce e a tunelização do tumor avançado daquele órgão. A ressecção endoscópica da mucosa do câncer epidermóide precoce do esôfago é indicada quando a lesão é confinada ao epitélio (m1 ou à lamina própria (m2. A taxa de sobrevida conhecida de 5 anos após a ressecção endoscópica da mucosa do tumor epidermóide intramucoso do esôfago aproxima-se de 95%. CONCLUSÕES: Baseado nas evidências disponíveis, parece razoável indicar a ressecção endoscópica da mucosa como tratamento de primeira escolha para pacientes com carcinoma esofágico epidermóide intramucoso. Existem vários métodos endoscópicos paliativos para o alívio da disfagia em câncer esofágico avançado. A escolha variará de acordo com as características anatômicas e a localização do tumor, as preferências do paciente, a disponibilidade e a capacitação do centro assistencial. A taxa de sucesso técnico da colocação de próteses metálicas auto-expansíveis em estenose maligna praticamente atinge 100%. A taxa de efeito paliativo em longo prazo da disfagia aproxima-se de 80%, o que faz com que esta opção seja, até o momento, o tratamento paliativo de escolha para os sintomas de obstrução causados pelo câncer esofágico de células escamosas.OBJECTIVE: In this article, it was evaluated the role of endoscopic procedures for the management of squamous cell

  13. MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis

    Science.gov (United States)

    Kazanaviciute, Vaiva; Magyar, Zoltan; Ayatollahi, Zahra; Unterwurzacher, Verena; Choopayak, Chonnanit; Boniecka, Justyna; Murray, James A. H.; Bogre, Laszlo; Meskiene, Irute

    2010-01-01

    In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells. PMID:21203456

  14. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Julija Umbrasaite

    2010-12-01

    Full Text Available In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

  15. AUTOIMMUNE EPIDERMAL BLISTERING DISEASES

    OpenAIRE

    Ana Maria Abreu Velez; Juliana Calle; Howard, Michael S.

    2013-01-01

    Autoimmune bullous skin diseases (ABDs) are uncommon, potentially fatal diseases of skin and mucous membranes which are associated with deposits of autoantibodies and complement against distinct molecules of the epidermis and dermal/epidermal basement membrane zone (BMZ). These autoantibodies lead to a loss in skin molecular integrity, which manifests clinically as formation of blisters or erosions. In pemphigus vulgaris, loss of adhesion occurs within the epidermis. The pioneering work of Er...

  16. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells.

    Science.gov (United States)

    Quah, Chin Chew; Kim, Kah Hwi; Lau, Mei Siu; Kim, Wee Ric; Cheah, Swee Hung; Gundamaraju, Rohit

    2014-01-01

    The preference for a fairer skin-tone has become a common trend among both men and women around the world. In this study, seaweeds Sargassum polycystum and Padina tenuis were investigated for their in vitro and in vivo potentials in working as skin whitening agents. Seaweed has been used as a revolutionary skin repairing agent in both traditional and modern preparations. The high antioxidant content is one of the prime reasons for its potent action. It has been employed in traditional Chinese and Japanese medicine. For centuries, most medical practitioners in the Asian cultures have known seaweed as an organic source of vitamins, minerals, fatty acids like omega-3 and omega-6 and antioxidants. The present objective of the study was to evaluate the potent dermal protective effect of the two seaweeds Sargassum polycystum and Padina tenuis on human cell lines and guinea pigs. Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments. Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically. SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.

  17. Epidermal Growth Factor and Estrogen Act by Independent Pathways to Additively Promote the Release of the Angiogenic Chemokine CXCL8 by Breast Tumor Cells

    Directory of Open Access Journals (Sweden)

    Karin Haim

    2011-03-01

    Full Text Available The tumor microenvironment contains multiple cancer-supporting factors, whose joint activities promote malignancy. Here, we show that epidermal growth factor (EGF and estrogen upregulate in an additive manner the transcription and the secretion of the angiogenic chemokine CXCL8 (interleukin 8 [IL-8] in breast tumor cells. In view of published findings on cross-regulatory interactions between EGF receptors and estrogen receptors in breast tumor cells, we asked whether the additive effects of EGF and estrogen were due to their ability to (1 induce intracellular cross talk and amplify shared regulatory pathways or (2 act in independent mechanisms, which complement each other. We found that stimulation by EGF alone induced the release of CXCL8 through signaling pathways involving ErbB2, ErbB1, Erk, and phosphoinositide 3-kinase (PI3K. ErbB2 and Erk were also involved in estrogen activities on CXCL8 but to a lower extent than with EGF. However, in the joint stimulatory setup, the addition of estrogen to EGF has led to partial (ErbB2, ErbB1, Erk or complete (PI3K shutoff of the involvement of these activation pathways in CXCL8 up-regulation. Furthermore, when costimulation by EGF + estrogen was applied, the effects of estrogen were channeled to regulation of CXCL8 at the transcription level, acting through the transcription factor estrogen receptor α (ERα. In parallel, in the joint stimulation, EGF acted independently at the transcription level through AP-1, to upregulate CXCL8 expression. The independent activities of EGF and estrogen on CXCL8 transcription reinforce the need to introduce simultaneous targeting of ErbBs and ERα to achieve effective therapy in breast cancer.

  18. Heparin-binding epidermal growth factor expression in KATO-III cells after Helicobacter pylori stimulation under the influence of strychnos Nux vomica and Calendula officinalis.

    Science.gov (United States)

    Hofbauer, Roland; Pasching, Eva; Moser, Doris; Frass, Michael

    2010-07-01

    Previous studies have shown the stimulating effect of Helicobacter pylori on the gene expression of heparin-binding epidermal growth factor (HB-EGF) using the gastric epithelial cell line KATO-III. Strychnos Nux vomica (Nux vomica) and Calendula officinalis are used in highly diluted form in homeopathic medicine to treat patients suffering from gastritis and gastric ulcers. To investigate the influence of Nux vomica and Calendula officinalis on HB-EGF-like growth factor gene expression in KATO-III cells under the stimulation of H. pylori strain N6 using real-time PCR with and without addition of Nux vomica and Calendula officinalis as a 10c or 12c potency. Baseline expression and stimulation were similar to previous experiments, addition of Nux vomica 10c and Calendula officinalis 10c in a 43% ethanolic solution led to a significant reduction of H. pylori induced increase in gene expression of HB-EGF (reduced to 53.12+/-0.95% and 75.32+/-1.16% vs. control; p<0.05), respectively. Nux vomica 12c reduced HB-EGF gene expression even in dilutions beyond Avogadro's number (55.77+/-1.09%; p<0.05). Nux vomica 12c in a 21.5% ethanol showed a smaller effect (71.80+/-3.91%, p<0.05). This effect was only be observed when the drugs were primarily prepared in ethanol, not in aqueous solutions. The data suggest that both drugs prepared in ethanolic solution are potent inhibitors of H. pylori induced gene expression. 2010 Elsevier Ltd. All rights reserved.

  19. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    Science.gov (United States)

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  20. Melatonin sensitizes H1975 non-small-cell lung cancer cells harboring a T790M-targeted epidermal growth factor receptor mutation to the tyrosine kinase inhibitor gefitinib.

    Science.gov (United States)

    Yun, Miyong; Kim, Eun-Ok; Lee, Duckgue; Kim, Ji-Hyun; Kim, Jaekwang; Lee, Hyemin; Lee, Jihyun; Kim, Sung-Hoon

    2014-01-01

    The use of tyrosine kinase inhibitors (TKIs) to target active epidermal growth factor receptor (EGFR)-harbouring mutations has been effective in patients with advanced non-small-cell lung cancer (NSCLC). However, the use of TKIs in NSCLS patients with somatic EGFR mutations, particularly T790M, causes drug resistance. Thus, in the present study, we investigated overcoming resistance against the TKI gefitinib by combination treatment with melatonin in H1975 NSCLC cells harbouring the T790M somatic mutation. H1975 and HCC827 cells were treated with melatonin in combination with gefitinib, and cell viability, cell cycle progression, apoptosis, and EGFR, AKT, p38, Bcl-2, Bcl-xL, caspase 3 and Bad protein levels were examined. Treatment with melatonin dose-dependently decreased the viability of H1975 cells harbouring the T790M somatic mutation compared to HCC827 cells with an EGFR active mutation. Melatonin-mediated cell death resulted in decreased phosphorylation of EGFR and Akt, leading to attenuated expression of survival proteins, such as Bcl-2, Bcl-xL and survivin, and activated caspase 3 in H1975 cells, but not in HCC827 cells. However, we did not observe a significant change in expression of cell cycle proteins, such as cyclin D, cyclin A, p21 and CDK4 in H1975 cells. Surprisingly, co-treatment of gefitinib with melatonin effectively decreased the viability of H1975 cells, but not HCC827 cells. Moreover, co-treatment of H1975 cells caused consistent down-regulation of EGFR phosphorylation and induced apoptosis compared to treatment with gefitinib or melatonin alone. Our findings demonstrate that melatonin acts as a potent chemotherapeutic agent by sensitising to gefitinib TKI-resistant H1975 cells that harbour a EGFR T790M mutation. © 2014 S. Karger AG, Basel.

  1. Melatonin Sensitizes H1975 Non-Small-Cell Lung Cancer Cells Harboring a T790M-Targeted Epidermal Growth Factor Receptor Mutation to the Tyrosine Kinase Inhibitor Gefitinib

    Directory of Open Access Journals (Sweden)

    Miyong Yun

    2014-08-01

    Full Text Available Background/Aims: The use of tyrosine kinase inhibitors (TKIs to target active epidermal growth factor receptor (EGFR-harbouring mutations has been effective in patients with advanced non-small-cell lung cancer (NSCLC. However, the use of TKIs in NSCLS patients with somatic EGFR mutations, particularly T790M, causes drug resistance. Thus, in the present study, we investigated overcoming resistance against the TKI gefitinib by combination treatment with melatonin in H1975 NSCLC cells harbouring the T790M somatic mutation. Methods: H1975 and HCC827 cells were treated with melatonin in combination with gefitinib, and cell viability, cell cycle progression, apoptosis, and EGFR, AKT, p38, Bcl-2, Bcl-xL, caspase 3 and Bad protein levels were examined. Results: Treatment with melatonin dose-dependently decreased the viability of H1975 cells harbouring the T790M somatic mutation compared to HCC827 cells with an EGFR active mutation. Melatonin-mediated cell death resulted in decreased phosphorylation of EGFR and Akt, leading to attenuated expression of survival proteins, such as Bcl-2, Bcl-xL and survivin, and activated caspase 3 in H1975 cells, but not in HCC827 cells. However, we did not observe a significant change in expression of cell cycle proteins, such as cyclin D, cyclin A, p21 and CDK4 in H1975 cells. Surprisingly, co-treatment of gefitinib with melatonin effectively decreased the viability of H1975 cells, but not HCC827 cells. Moreover, co-treatment of H1975 cells caused consistent down-regulation of EGFR phosphorylation and induced apoptosis compared to treatment with gefitinib or melatonin alone. Conclusions: Our findings demonstrate that melatonin acts as a potent chemotherapeutic agent by sensitising to gefitinib TKI-resistant H1975 cells that harbour a EGFR T790M mutation.

  2. The continuing role of epidermal growth factor receptor tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung.

    Science.gov (United States)

    Tan, Wan Ling; Ng, Quan-Sing

    2016-02-01

    Squamous cell carcinoma (SCC) of the lung represents about 20-30% of non-small cell lung cancers (NSCLC) and is associated with a poorer prognosis with limited treatment options. Erlotinib is an approved, standard second-line therapy in this setting, besides docetaxel. The LUX-Lung 8 study has shown superior overall survival (OS), progression-free survival (PFS), as well as disease control rates for treatment with afatinib compared to erlotinib in this head-to-head trial in patients with previously treated advanced SCC of the lung, with manageable side effect profile. This is the first and largest prospective phase III trial comparing two different tyrosine kinase inhibitors in patients with advanced SCC of the lung. Whether the results would be practice-changing remains to be seen, especially with the advent of novel immunotherapeutic agents such as nivolumab, which is recently approved for advanced lung SCC.

  3. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...

  4. Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors

    Directory of Open Access Journals (Sweden)

    Haura Eric B

    2006-11-01

    Full Text Available Abstract Background Increased focus surrounds identifying patients with advanced non-small cell lung cancer (NSCLC who will benefit from treatment with epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI. EGFR mutation, gene copy number, coexpression of ErbB proteins and ligands, and epithelial to mesenchymal transition markers all correlate with EGFR TKI sensitivity, and while prediction of sensitivity using any one of the markers does identify responders, individual markers do not encompass all potential responders due to high levels of inter-patient and inter-tumor variability. We hypothesized that a multivariate predictor of EGFR TKI sensitivity based on gene expression data would offer a clinically useful method of accounting for the increased variability inherent in predicting response to EGFR TKI and for elucidation of mechanisms of aberrant EGFR signalling. Furthermore, we anticipated that this methodology would result in improved predictions compared to single parameters alone both in vitro and in vivo. Results Gene expression data derived from cell lines that demonstrate differential sensitivity to EGFR TKI, such as erlotinib, were used to generate models for a priori prediction of response. The gene expression signature of EGFR TKI sensitivity displays significant biological relevance in lung cancer biology in that pertinent signalling molecules and downstream effector molecules are present in the signature. Diagonal linear discriminant analysis using this gene signature was highly effective in classifying out-of-sample cancer cell lines by sensitivity to EGFR inhibition, and was more accurate than classifying by mutational status alone. Using the same predictor, we classified human lung adenocarcinomas and captured the majority of tumors with high levels of EGFR activation as well as those harbouring activating mutations in the kinase domain. We have demonstrated that predictive models of EGFR TKI sensitivity can

  5. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  6. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    DEFF Research Database (Denmark)

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin......, to metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed...

  7. [Effects of estrogen on epidermis growth of mice and proliferation of human epidermal cell line HaCaT and its mechanism].

    Science.gov (United States)

    Zhou, Tao; Chen, Jing; Huang, Zongwei; Fang, Li; Chen, Yu; Chen, Yajie; Peng, Yizhi

    2016-05-01

    To observe the effects of estrogen on epidermis growth of mice and proliferation of keratinocytes (human epidermal cell line HaCaT), and to explore its mechanism. (1) Five adult C57BL/6 mice in estrus cycle were identified by vaginal exfoliative cytology diagnosis and set as estrus group, while another 5 adult C57BL/6 mice with ovary resected before sexual development were set as ovariectomized group. The full-thickness skin from the tail root of mice in two groups were collected. The thickness of epidermis was observed and measured after HE staining. The distribution of proliferating cell nuclear antigen (PCNA)-positive cells in epidermis was observed by immunohistochemical staining, the number of which was counted. (2) HaCaT cells in logarithmic growth phase were cultured with RPMI 1640 nutrient solution containing 10% fetal bovine serum, and they were divided into negative control group (NC), pure estradiol group (PE), protein kinase B (Akt) inhibitor group (AI), and extracellular signal-regulated kinase (ERK) inhibitor group (EI) according to the random number table, with 20 wells in each group. To nutrient solution of each group, 1 μL dimethyl sulfoxide, 1 μL 17β-estradiol (100 nmol/L), 1 μL LY294002 (10 μmol/L), and 1 μL PD98059 (30 μmol/L) were added in group NC, group PE, group AI, and group EI respectively, and the last two groups were added with 1 μL 17β-estradiol (100 nmol/L) in addition. At post culture hour (PCH) 0 (immediately after culture), 24, 48, 72, 5 wells of cells from each group were collected to detect the proliferation activity of cells by cell counting kit 8 and microplate reader. (3) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 wells in each group. At PCH 72, cell cycle distribution was detected by flow cytometer to calculate proliferation index (PI) of cells. (4) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above

  8. Outcome in advanced non-small cell lung cancer patients with successful rechallenge after recovery from epidermal growth factor receptor tyrosine kinase inhibitor-induced interstitial lung disease.

    Science.gov (United States)

    Kashiwabara, Kosuke; Semba, Hiroshi; Fujii, Shinji; Tsumura, Shinsuke

    2017-04-01

    Several non-small cell lung cancer (NSCLC) cases of successful rechallenge with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) after recovery from gefitinib or erlotinib-induced interstitial lung disease (ILD) have been reported, but it is not clear whether the rechallenge affects the outcome. We retrospectively evaluated the difference in the outcome between advanced NCLC patients with active EGFR mutations who received EGFR-TKI rechallenge after recovery from EGFR-TKI-induced ILD and those who did not. EGFR-TKI-induced ILD occurred in 11 (10%) of 110 patients receiving gefitinib, five (7%) of 73 patients receiving erlotinib and one (8%) of 13 patients receiving afatinib. Diffuse alveolar damage pattern ILD was observed in six cases, four of which had chemotherapy-related death. Five of 13 patients who had recovered from ILD received EGFR-TKI rechallenge with concurrent oral administration of prednisolone 0.5 mg/kg after the strict informed consent of the risk for the recurrence of severe ILD. All of the five patients achieved a partial response. The median overall survival from the occurrence of EGFR-TKI-induced ILD was longer in patients with EGFR-TKI rechallenge than that in patients without (15.5 vs. 3.5 months, p = 0.029). The adverse events of EGFR-TKI rechallenge were tolerable, but one case receiving EGFR-TKI rechallenge with the suspected drug exhibited the recurrence of grade 3 ILD after the discontinuation of prednisolone. EGFR-TKI rechallenge with concurrent prednisolone therapy might be salvage therapy in advanced NSCLC patients with active EGFR mutations after recovery from EGFR-TKI-induced ILD.

  9. Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L.

    Directory of Open Access Journals (Sweden)

    Siranet Roeurn

    2016-10-01

    Full Text Available Mesembryanthemum crystallinum L., a halophytic species, displays modified trichomes, epidermal bladder cells (EBC, on the surfaces of its aerial organs. EBCs serve to sequester excessive salt from underlying metabolically active tissues. To elucidate the molecular determinants governing EBC development in the common ice plant, we constructed a cDNA-based suppression subtractive hybridization library and identified genes differentially expressed between the wild-type and the EBC-less mutant. After hybridization, 38 clones were obtained. Among them, 24 clones had homology with plant genes of known functions, whose roles might not be directly related to EBC-morphology, while 14 clones were homologous to genes of unknown functions. After confirmation by northern blot analysis, 12 out of 14 clones of unknown functions were chosen for semi-quantitative RT-PCR analysis, and the results revealed that three clones designated as MW3, MW21, and MW31 preferentially expressed in the EBC-less mutant, whereas the other two designated as WM10 and WM28 preferentially expressed in the wild type. Among these genes, the expression of a putative jasmonate-induced gene, designated as WM28 was completely suppressed in the EBC-mutant. In addition, the deletion of C-box cis-acting element was found in the promoter region of WM28 in the EBC-less mutant. Overexpression of WM28 in Arabidopsis resulted in increased trichome number due to the upregulation of key trichome-related genes GLABRA1 (GL1, and GLABRA3 (GL3. These results demonstrate that WM28 can be an important factor responsible for EBC formation, and also suggest the similarity of developmental mechanism between trichome in Arabidopsis and EBC in common ice plant.

  10. ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17.

    Directory of Open Access Journals (Sweden)

    Derek Sham

    Full Text Available The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H(2O(2 participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y(2 receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y(2R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y(2R activation as a proximal step in EGFR transactivation and downstream signaling.

  11. Direct sequencing and amplification refractory mutation system for epidermal growth factor receptor mutations in patients with non-small cell lung cancer.

    Science.gov (United States)

    Chu, Huili; Zhong, Chen; Xue, Guoliang; Liang, Xiuju; Wang, Jun; Liu, Yingxin; Zhao, Shiwei; Zhou, Qian; Bi, Jingwang

    2013-11-01

    Treatment with epidermal growth factor receptor (EGFR) tyrosine inhibitors (EGFR-TKIs) provides encouraging outcomes for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations. Pleural effusion is a common complication of NSCLC. We compared direct DNA sequencing and ADx Amplification Refractory Mutation System (ADx-ARMS) to detect EGFR mutations in malignant pleural effusion samples. We obtained 24 samples from pleural effusion fluid of NSCLC patients. Three common types of EGFR mutations were examined by direct sequencing and ADx-ARMS analysis. The sensitivity of the methods was compared and the relationship between EGFR mutations and response rates of the patients determined. In 14/24 patients, we detected EGFR mutations (58.3%) by ADx-ARMS, and in 10 samples (41.7%) by direct sequencing. In 6 samples, EGFR mutations were on exon 19, and in 8 samples, mutations were on exon 21 by ADx-ARMS. By contrast, we found EGFR mutations in 4 samples on exon 19, and in 6 samples on exon 21 by direct sequencing. Neither method showed mutations on exon 20. Among the 24 patients, there was 83.3% concordance for the methods. In 18/24 patients, gefitinib treatment was administered, including 10 patients with mutations who showed improved response compared to 8 of the wild-type patients (Pmutation analysis by ADx-ARMS was the most sensitive compared to direct sequencing, and provided more reliable EGFR mutation assessments. ADx-ARMS could be introduced into the clinical practice to identify NSCLC patients likely to benefit from TKI treatment, especially those with malignant pleural effusion.

  12. Comparison of the epidermal growth factor receptor protein expression between primary non-small cell lung cancer and paired lymph node metastases: implications for targeted nuclide radiotherapy

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2010-01-01

    Full Text Available Abstract Background The knowledge of Epidermal growth factor receptor (EGFR expression in metastases of NSCLC was limited. In receptor-mediated targeted nuclide radiotherapy, tumor cells are killed with delivered radiation and therapeutic efficiency is mainly dependent on the receptor expression. Thus, the level and stability of receptor expression in both primary tumors and corresponding metastases is crucial in the assessment of a receptor as target. The goal of this study was to evaluate whether EGFR is suitable as target for clinical therapy. Methods Expression of EGFR was investigated immunohistochemically in paired samples of lymph node metastases and corresponding NSCLC primary lesions (n = 51. EGFR expression was scored as 0, 1+, 2+ or 3+. Results Positive (1+, 2+ or 3+ EGFR immunostaining was evident in 36 of 47 (76.6% analysed NSCLC primary tumors, and in 78.7% of the corresponding lymph node metastases. When EGFR expression is classified as positive or negative, discordance between the primary tumors and the corresponding metastases was observed in 5 cases (10.6%. EGFR overexpression (2+ or 3+ was found in 53.2% (25/47 of the NSCLC primary tumors and 59.6% of the corresponding metastases. Nine out of the 47 paired samples (19.2% were discordant: Only three patients who had EGFR overexpression in the primary tumors showed EGFR downregulation (0 or 1+ in lymph node metastases, while six patients changed the other way around. Conclusions The EGFR expression in the primary tumor and the corresponding metastasis is discordant in about 10% of the patients. When overexpression is considered, the discordance is observed in about 20% of the cases. However, concerning EGFR overexpression in the primary tumors, similar expression in the metastases could be predicted with a reasonably high probability, which is encouraging for testing of EGFR targeted nuclide radiotherapy.

  13. Predictive Value of Epidermal Growth Factor (EGF andLaminin-5 for Clinicopathologic Oral squamous Cell Carcinoma (OSCC Staging and Grading in Lranian Population

    Directory of Open Access Journals (Sweden)

    Shima Nafarzadeh

    2010-11-01

    Full Text Available Background:Squamous cell carcinoma (SCC constitutes the main oral malignancy.Parallel to better understanding of molecular and genetic patterns of tumor behavior, more precise correlation of tumor markers such as Epidermal Growth Factor (EGF and Laminin-5 are sought to estimate macroscopic and microscopic tumor status.Methods:We conducted a cross-sectional study collecting oral SCC samples during 2006-2007 from Pathology Department of Shahid Beheshti Dental School. Mmunohistochemical staining with antibodies against EGFR and laminin-5 along with staining degree were reported by two experienced pathologist including degree of staining (low, medium , high, and pathological grading and clinical staging obtained from medical records .   Results: Forty two patients' paraffin blocks of SCC examined with mean age 58( 18.72 yrs ranged between 21-88, female to male ratio of 1.33:1 was observed. The study analyses revealed a significant correlation between the expression of laminin-5 with tumor stage and grade (P< 0.001 r=0.547 and r=0.545 respectively, yet no significant correlation between expression of EGFR and tumor stage or grade (P=0.894 r=-0.018 and P=0.543 r=0.86 respectively. Considering high degree of staining and stage IV; sensitivity, specifity ,positive predictive value (PPV and negative predictive value (NPVof 44%, 54%, 44% and 78% calculated for ERGF and 55%, 78%,58% and 86% for laminin-5 respectively.Considering high degree of staining and grade 3;sensitivity,specifity,positive predictive value (PPV and negative predictive value (NPV of 57%, 57%,17% and 86% calculated for EGFR and 85%, %82, 50% and 96% for Laminin-5 espectively.Conclusion: We concluded that laminin-5 has a better prediction for developing higher tumor stage or grade but further research needed for identifying the precise role of EGFR.

  14. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters.

    Science.gov (United States)

    Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna

    2016-02-01

    The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.

  15. Immune sensitization against epidermal antigens in polymorphous light eruption

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B. (Univ. of San Luis Potosi (Mexico))

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption.

  16. Morphometric study of microvessels, epidermal characteristics and inflammation in psoriasis vulgaris with their correlations

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Boruah

    2013-01-01

    Full Text Available Background: Vascular proliferation, inflammation and epidermal changes are important features in the pathogenesis of psoriasis. Aims: In this study we attempted an objective evaluation of these parameters using morphometry. Methods: Inflammation, microvessels and epidermal parameters were assessed in 50 newly diagnosed cases of psoriasis vulgaris (between 01 Nov 2008 and 31 Oct 2011 by morphometry. Parameters studied were microvessel density, microvessel caliber, inflammatory cell density in dermis, ratio between inner and outer epidermal length, maximum epidermal thickness, minimum epidermal thickness and difference between maximum epidermal thickness and minimum epidermal thickness. Results: Microvessel caliber showed moderate correlation (r = 0.645 and microvessel density, weak correlation (r = 0.226 with inflammatory cell density in dermis. Both these parameters also showed mild positive correlation with "ratio between inner and outer epidermal length". All parameters except minimum epidermal thickness showed mild positive correlation with inflammatory cell density in dermis. Conclusion: All microvessels and epidermal parameters showed positive correlation with dermal inflammation; and epidermal parameters exhibited positive correlation with micro-vascular dilation. It is likely that inflammation is a key factor in the pathogenesis of psoriasis.

  17. Morphometric study of microvessels, epidermal characteristics and inflammation in psoriasis vulgaris with their correlations.

    Science.gov (United States)

    Boruah, Dibyajyoti; Moorchung, Nikhil; Vasudevan, Biju; Malik, Ajay; Chatterjee, Manas

    2013-01-01

    Vascular proliferation, inflammation and epidermal changes are important features in the pathogenesis of psoriasis. In this study we attempted an objective evaluation of these parameters using morphometry. Inflammation, microvessels and epidermal parameters were assessed in 50 newly diagnosed cases of psoriasis vulgaris (between 01 Nov 2008 and 31 Oct 2011) by morphometry. Parameters studied were microvessel density, microvessel caliber, inflammatory cell density in dermis, ratio between inner and outer epidermal length, maximum epidermal thickness, minimum epidermal thickness and difference between maximum epidermal thickness and minimum epidermal thickness. Microvessel caliber showed moderate correlation (r = 0.645) and microvessel density, weak correlation (r = 0.226) with inflammatory cell density in dermis. Both these parameters also showed mild positive correlation with "ratio between inner and outer epidermal length". All parameters except minimum epidermal thickness showed mild positive correlation with inflammatory cell density in dermis. All microvessels and epidermal parameters showed positive correlation with dermal inflammation; and epidermal parameters exhibited positive correlation with micro-vascular dilation. It is likely that inflammation is a key factor in the pathogenesis of psoriasis.

  18. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  19. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    NARCIS (Netherlands)

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  20. Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines

    NARCIS (Netherlands)

    Bijnsdorp, Irene V.; Kruyt, Frank A. E.; Fukushima, Masakazu; Smid, Kees; Gokoel, Shanti; Peters, Godefridus J.

    The pyrimidine trifluorothymidine (TFT) inhibits thymidylate synthase (TS) and can be incorporated into the DNA. TFT, as part of TAS-102, is clinically evaluated in phase II studies as an oral chemotherapeutic agent. Erlotinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor

  1. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    Science.gov (United States)

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  2. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  3. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Science.gov (United States)

    Poterlowicz, Krzysztof; Yarker, Joanne L; Malashchuk, Igor; Lajoie, Brian R; Mardaryev, Andrei N; Gdula, Michal R; Sharov, Andrey A; Kohwi-Shigematsu, Terumi; Botchkarev, Vladimir A; Fessing, Michael Y

    2017-09-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  4. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    Science.gov (United States)

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  5. Carcinomas epidermóides do pulmão na doença vibroacústica Respiratory squamous cell carcinomas in vibroacoustic disease

    Directory of Open Access Journals (Sweden)

    José Reis Ferreira

    2006-09-01

    Full Text Available Enquadramento: Em 1987, observou-se durante a autópsia de um doente com doença vibroacústica (VAD dois tumores: Um carcinoma de células renais e um glioma maligno cerebral. Desde 1987, tem-se vigiado o aparecimento de tumores em doentes com a VAD. Até à data, num universo de 945 indivíduos, há 46 casos de tumores malignos, dos quais 11 são múltiplos. Dos 11 casos de tumores do aparelho respiratório, todos eram carcinomas epidermóides (CE. O presente estudo aborda as características morfológicas destes tumores. Métodos: Foram recolhidos fragmentos destes tumores (biópsia endoscópica ou cirúrgica de 11 doentes do sexo masculino (idade média: 58±9 anos, 3 não fumadores: 2 na glote e 9 no pulmão. Dos 3 não fumadores, 2 tinham tumores do pulmão e 1 tinha tumor da glote. Todos eram trabalhadores ou reformados da indústria aeronáutica, pilotos militares ou de linhas comerciais. Foram fixados fragmentos para microscopia óptica e electrónica. Para os estudos imuno-histoquímicos usou-se coloração com cromagranina e sinaptofisina. Resultados: Todos os tumores pulmonares se localizaram no brônquio do lobo superior direito, e a sua histologia era de tumores epidermóides pouco diferenciados. A pesquisa com marcadores neuroendócrinos foi negativa. Nove doentes faleceram. Os 2 sobreviventes são grandes fumadores (> 2 maços/dia. A média de idade de aparecimento do tumor em pilotos de helicóptero estava abaixo dos 50 anos, enquanto para os outros dois grupos profissionais era superior a 50. Os hábitos tabágicos não tiveram influência na progressão e desfecho dos casos. Conclusões: O CE constitui aproximadamente 40% dos tumores pulmonares na população em geral. Face aos actuais resultados, torna-se muito importante especificar o tipo histológico exacto do tumor em todos os estudos estatísticos. Não surpreende a idade mais jovem de início dos tumores em pilotos de helicóptero, atendendo aos resultados dos estudos

  6. Effectiveness and cost-effectiveness of erlotinib versus gefitinib in first-line treatment of epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer patients in Hong Kong.

    Science.gov (United States)

    Lee, Vivian W Y; Schwander, Bjoern; Lee, Victor H F

    2014-06-01

    To compare the effectiveness and cost-effectiveness of erlotinib versus gefitinib as first-line treatment of epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer patients. DESIGN. Indirect treatment comparison and a cost-effectiveness assessment. Hong Kong. Those having epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer. Erlotinib versus gefitinib use was compared on the basis of four relevant Asian phase-III randomised controlled trials: one for erlotinib (OPTIMAL) and three for gefitinib (IPASS; NEJGSG; WJTOG). The cost-effectiveness assessment model simulates the transition between the health states: progression-free survival, progression, and death over a lifetime horizon. The World Health Organization criterion (incremental cost-effectiveness ratio product/capita: cost-effectiveness. The best fit of study characteristics and prognostic patient characteristics were found between the OPTIMAL and I