Sample records for thalamic reticular networking

  1. The thalamic reticular nucleus: structure, function and concept. (United States)

    Pinault, Didier


    On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis. Indeed, our knowledge of the actual functioning of the TRN is still sprinkled with unresolved questions. Therefore, the time has come to join forces and discuss some recent cellular and network findings concerning this diencephalic GABAergic structure, which plays important roles during various states of consciousness. On the whole, the present critical survey emphasizes the TRN's complexity, and provides arguments combining anatomy, physiology and cognitive psychology.

  2. State-dependent architecture of thalamic reticular subnetworks. (United States)

    Halassa, Michael M; Chen, Zhe; Wimmer, Ralf D; Brunetti, Philip M; Zhao, Shengli; Zikopoulos, Basilis; Wang, Fan; Brown, Emery N; Wilson, Matthew A


    Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK: Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo (United States)

    Muñoz, Fabián; Fuentealba, Pablo


    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  4. Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. (United States)

    Troyano-Rodriguez, Eva; Lladó-Pelfort, Laia; Santana, Noemi; Teruel-Martí, Vicent; Celada, Pau; Artigas, Francesc


    The neurobiological basis of action of noncompetitive N-methyl-D-aspartate acid receptor (NMDA-R) antagonists is poorly understood. Electrophysiological studies indicate that phencyclidine (PCP) markedly disrupts neuronal activity with an overall excitatory effect and reduces the power of low-frequency oscillations (LFO; <4 Hz) in thalamocortical networks. Because the reticular nucleus of the thalamus (RtN) provides tonic feed-forward inhibition to the rest of the thalamic nuclei, we examined the effect of PCP on RtN activity, under the working hypothesis that NMDA-R blockade in RtN would disinhibit thalamocortical networks. Drug effects (PCP followed by clozapine) on the activity of RtN (single unit and local field potential recordings) and prefrontal cortex (PFC; electrocorticogram) in anesthetized rats were assessed. PCP (.25-.5 mg/kg, intravenous) reduced the discharge rate of 19 of 21 RtN neurons to 37% of baseline (p < .000001) and the power of LFO in RtN and PFC to ~20% of baseline (p < .001). PCP also reduced the coherence between PFC and RtN in the LFO range. A low clozapine dose (1 mg/kg intravenous) significantly countered the effect of PCP on LFO in PFC but not in RtN and further reduced the discharge rate of RtN neurons. However, clozapine administration partly antagonized the fall in coherence and phase-locking values produced by PCP. PCP activates thalamocortical circuits in a bottom-up manner by reducing the activity of RtN neurons, which tonically inhibit thalamic relay neurons. However, clozapine reversal of PCP effects is not driven by restoring RtN activity and may involve a cortical action. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. (United States)

    Pinault, D; Bourassa, J; Deschênes, M


    This study describes the axonal projections of single thalamic reticular (TR) neurons within the visual thalamus in rats. Experiments were performed under urethane anesthesia and reticular cells were labeled by extracellular or juxtacellular microiontophoretic applications of biocytin. The axonal arborizations of 19 TR cells projecting to the dorsal lateral geniculate nucleus (DLG) or to the lateral dorsal/lateral posterior complex (LD/LP) were reconstructed from serial horizontal sections. It was found that single TR cells projected within the limits of a single thalamic nucleus, either the DLG or the LD/LP complex, where their terminal fields formed rostrocaudally oriented rods (length: approximately 800 microns; diameter: approximately 100 microns) densely packed with grape-like boutons and varicosities. In addition, none of the labeled TR cells possessed recurrent axonal collaterals that ramified within the reticular complex itself. The functional implications of these morphological data for the synchronization of thalamic oscillations are discussed.

  6. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun


    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2

  7. Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: A computational study (United States)

    Liu, Suyu; Wang, Qingyun


    Presently, we improve a computational framework of thalamocortical circuits related to the Taylor's model to investigate the relationship between thalamic reticular nucleus (RE) excitability and epilepsy. By using bifurcation analysis, we explore the RE's excitability dynamics mechanism in the processes of seizure generation, development and transition. Results show that the seizure-free state, absence seizures, clonic seizures and tonic seizures can be formed as the RE excitability is changed in this established model. Importantly, it is verified that physiological changing GABAA inhibition in RE can elicit absence seizures and clonic seizures and the pathological transitions between these two seizures. Furthermore, when the level of AMPA connection is decreased or increased, this proposed model embraces absence seizures and clonic seizures, and tonic seizures, respectively. Except that, bifurcation mechanisms of dynamical transition of different seizures are analyzed in detail. In addition, hybrid regulations of the reticular nucleus excitability for epileptic seizures are proven to be valid within the suitable levels of AMPA and GABAA connection. Hopefully, the obtained results could be helpful for effective control of epileptic activities with additional pharmacological interference.

  8. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. (United States)

    Crandall, Shane R; Govindaiah, G; Cox, Charles L


    The low-threshold transient calcium current (I(T)) plays a critical role in modulating the firing behavior of thalamic neurons; however, the role of I(T) in the integration of afferent information within the thalamus is virtually unknown. We have used two-photon laser scanning microscopy coupled with whole-cell recordings to examine calcium dynamics in the neurons of the strategically located thalamic reticular nucleus (TRN). We now report that a single somatic burst discharge evokes large-magnitude calcium responses, via I(T), in distal TRN dendrites. The magnitude of the burst-evoked calcium response was larger than those observed in thalamocortical projection neurons under the same conditions. We also demonstrate that direct stimulation of distal TRN dendrites, via focal glutamate application and synaptic activation, can locally activate distal I(T), producing a large distal calcium response independent of the soma/proximal dendrites. These findings strongly suggest that distally located I(T) may function to amplify afferent inputs. Boosting the magnitude ensures integration at the somatic level by compensating for attenuation that would normally occur attributable to passive cable properties. Considering the functional architecture of the TRN, elongated nature of their dendrites, and robust dendritic signaling, these distal dendrites could serve as sites of intense intra-modal/cross-modal integration and/or top-down modulation, leading to focused thalamocortical communication.

  9. mGluR-mediated calcium signalling in the thalamic reticular nucleus. (United States)

    Neyer, Christina; Herr, David; Kohmann, Denise; Budde, Thomas; Pape, Hans-Christian; Coulon, Philippe


    The thalamic reticular nucleus (TRN) plays a major role in modulating the transfer of information from the thalamus to the cortex. GABAergic inhibition via the TRN is differentially regulated by metabotropic glutamate receptors (mGluRs) and the effect of mGluRs on the membrane potential, on ion channels, and on the plasticity of electrical coupling of TRN neurons has been studied previously. Although mGluRs are generally known to trigger Ca(2+) transients, mGluR-mediated Ca(2+)-transients in TRN neurons have not yet been investigated. In this study, we show that mGluRs can trigger Ca(2+)-transients in TRN neurons, that these transients depend on intracellular Ca(2+)-stores, and are mediated by IP3 receptors. Ca(2+) transients caused by the group I mGluR agonist DHPG elicit a current that is sensitive to flufenamic acid and has a reversal potential around -40mV. Our results add mGluR-mediated Ca(2+)-signalling in the TRN to the state-dependent modulators of the thalamocortical system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Differential Responses of Thalamic Reticular Neurons to Nociception in Freely Behaving Mice (United States)

    Huh, Yeowool; Cho, Jeiwon


    Pain serves an important protective role. However, it can also have debilitating adverse effects if dysfunctional, such as in pathological pain conditions. As part of the thalamocortical circuit, the thalamic reticular nucleus (TRN) has been implicated to have important roles in controlling nociceptive signal transmission. However studies on how TRN neurons, especially how TRN neuronal subtypes categorized by temporal bursting firing patterns—typical bursting, atypical bursting and non-bursting TRN neurons—contribute to nociceptive signal modulation is not known. To reveal the relationship between TRN neuronal subtypes and modulation of nociception, we simultaneously recorded behavioral responses and TRN neuronal activity to formalin induced nociception in freely moving mice. We found that typical bursting TRN neurons had the most robust response to nociception; changes in tonic firing rate of typical TRN neurons exactly matched changes in behavioral nociceptive responses, and burst firing rate of these neurons increased significantly when behavioral nociceptive responses were reduced. This implies that typical TRN neurons could critically modulate ascending nociceptive signals. The role of other TRN neuronal subtypes was less clear; atypical bursting TRN neurons decreased tonic firing rate after the second peak of behavioral nociception and the firing rate of non-bursting TRN neurons mostly remained at baseline level. Overall, our results suggest that different TRN neuronal subtypes contribute differentially to processing formalin induced sustained nociception in freely moving mice. PMID:27917114

  11. Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model. (United States)

    Willis, Adam M; Slater, Bernard J; Gribkova, Ekaterina D; Llano, Daniel A


    The thalamic reticular nucleus (TRN) is a shell of GABAergic neurons that surrounds the dorsal thalamus. Previous work has shown that TRN neurons send GABAergic projections to thalamocortical (TC) cells to form reciprocal, closed-loop circuits. This has led to the hypothesis that the TRN is responsible for oscillatory phenomena, such as sleep spindles and absence seizures. However, there is emerging evidence that open-loop circuits are also found between TRN and TC cells. The implications of open-loop configurations are not yet known, particularly when they include time-dependent nonlinearities in TC cells such as low-threshold bursting. We hypothesized that low-threshold bursting in an open-loop circuit could be a mechanism by which the TRN could paradoxically enhance TC activation, and that enhancement would depend on the relative timing of TRN vs. TC cell stimulation. To test this, we modeled small circuits containing TC neurons, TRN neurons, and layer 4 thalamorecipient cells in both open- and closed-loop configurations. We found that open-loop TRN stimulation, rather than universally depressing TC activation, increased cortical output across a broad parameter space, modified the filter properties of TC neurons, and altered the mutual information between input and output in a frequency-dependent and T-type calcium channel-dependent manner. Therefore, an open-loop model of TRN-TC interactions, rather than suppressing transmission through the thalamus, creates a tunable filter whose properties may be modified by outside influences onto the TRN. These simulations make experimentally testable predictions about the potential role for the TRN for flexible enhancement of cortical activation. Copyright © 2015 the American Physiological Society.

  12. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. (United States)

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert


    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  13. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. (United States)

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P


    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  14. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus (United States)

    Bullock, Daniel; Barbas, Helen


    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203

  15. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. (United States)

    Ochoa-Sanchez, Rafael; Comai, Stefano; Lacoste, Baptiste; Bambico, Francis Rodriguez; Dominguez-Lopez, Sergio; Spadoni, Gilberto; Rivara, Silvia; Bedini, Annalida; Angeloni, Debora; Fraschini, Franco; Mor, Marco; Tarzia, Giorgio; Descarries, Laurent; Gobbi, Gabriella


    Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.

  16. Reticular synthesis of porous molecular 1D nanotubes and 3D networks (United States)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.


    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  17. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network. (United States)

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard


    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  18. Fibroblast reticular cells engineer a blastema extracellular network during digit tip regeneration in mice. (United States)

    Marrero, Luis; Simkin, Jennifer; Sammarco, Mimi; Muneoka, Ken


    The regeneration blastema which forms following amputation of the mouse digit tip is composed of undifferentiated cells bound together by an organized network of fibers. A monoclonal antibody (ER-TR7) that identifies extracellular matrix (ECM) fibers produced by fibroblast reticular cells during lymphoid organogenesis was used to characterize the ECM of the digit, the blastema, and the regenerate. Digit fibroblast reticular cells produce an ER-TR7+ ECM network associated with different tissues and represent a subset of loose connective tissue fibroblasts. During blastema formation there is an upregulation of matrix production that returns to its pre-existing level and anatomical pattern in the endpoint regenerate. Co-localization studies demonstrate a strong spatial correlation between the ER-TR7 antigen and collagen type III (COL3) in histological sections. ER-TR7 and COL3 are co-induced in cultured digit fibroblasts following treatment with tumor necrosis factor alpha and a lymphotoxin beta receptor agonist. These results provide an initial characterization of the ECM during digit regeneration and identify a subpopulation of fibroblasts involved in producing the blastema provisional matrix that is remodeled during the regeneration response.

  19. Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs.

    Directory of Open Access Journals (Sweden)

    Frederik Graw

    Full Text Available Secondary lymphoid organs (SLO, such as lymph nodes and the spleen, display a complex micro-architecture. In the T cell zone the micro-architecture is provided by a network of fibroblastic reticular cells (FRC and their filaments. The FRC network is thought to enhance the interaction between immune cells and their cognate antigen. However, the effect of the FRC network on cell interaction cannot be quantified to date because of limitations in immunological methodology. We use computational models to study the influence of different densities of FRC networks on the probability that two cells meet. We developed a 3D cellular automaton model to simulate cell movements and interactions along the FRC network inside lymphatic tissue. We show that the FRC network density has only a small effect on the probability of a cell to come into contact with a static or motile target. However, damage caused by a disruption of the FRC network is greatest at FRC densities corresponding to densities observed in the spleen of naïve mice. Our analysis suggests that the FRC network as a guiding structure for moving T cells has only a minor effect on the probability to find a corresponding dendritic cell. We propose alternative hypotheses by which the FRC network might influence the functionality of immune responses in a more significant way.

  20. Influence of the Fibroblastic Reticular Network on Cell-Cell Interactions in Lymphoid Organs (United States)

    Graw, Frederik; Regoes, Roland R.


    Secondary lymphoid organs (SLO), such as lymph nodes and the spleen, display a complex micro-architecture. In the T cell zone the micro-architecture is provided by a network of fibroblastic reticular cells (FRC) and their filaments. The FRC network is thought to enhance the interaction between immune cells and their cognate antigen. However, the effect of the FRC network on cell interaction cannot be quantified to date because of limitations in immunological methodology. We use computational models to study the influence of different densities of FRC networks on the probability that two cells meet. We developed a 3D cellular automaton model to simulate cell movements and interactions along the FRC network inside lymphatic tissue. We show that the FRC network density has only a small effect on the probability of a cell to come into contact with a static or motile target. However, damage caused by a disruption of the FRC network is greatest at FRC densities corresponding to densities observed in the spleen of naïve mice. Our analysis suggests that the FRC network as a guiding structure for moving T cells has only a minor effect on the probability to find a corresponding dendritic cell. We propose alternative hypotheses by which the FRC network might influence the functionality of immune responses in a more significant way. PMID:22457613

  1. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy

    Directory of Open Access Journals (Sweden)

    Andrew P. Bagshaw


    Full Text Available The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE, and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN, the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE.

  2. Effective connectivity of ascending and descending frontal-thalamic pathways during sustained attention: Complex brain network interactions in adolescence


    Jagtap, Pranav; Diwadkar, Vaibhav A.


    Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectu...

  3. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device (United States)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.


    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  4. Reticular substance


    Trelles, J. O.; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú; Beteta, Edmunod; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú


    In addressing the issue of the reticular substance, nothing better than to repeat the phrase HARVEY CUSHING, who opens his book on the hypothalamus, "there is nothing really new and exciting in the sun, which is new to us seems to be something new something old "and JEAN LHERMITTE adds," that doubted the accuracy of this reflection, which is nothing more than an old idea, we would advise you to take the actual evolution of neurology ". And we paraphrase the master, we reopened the debate on t...

  5. Effective connectivity of ascending and descending frontal-thalamic pathways during sustained attention: Complex brain network interactions in adolescence (United States)

    Jagtap, Pranav; Diwadkar, Vaibhav A.


    Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian Model Selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: While positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. PMID:27145923

  6. Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration

    Directory of Open Access Journals (Sweden)

    Sobocinski Gregg P


    Full Text Available Abstract Background The lymph node (LN is a crossroads of blood and lymphatic vessels allowing circulating lymphocytes to efficiently recognize foreign molecules displayed on antigen presenting cells. Increasing evidence indicates that after crossing high endothelial venules, lymphocytes migrate within the node along the reticular network (RN, a scaffold of fibers enwrapped by fibroblastic reticular cells (FRC. Light microscopy has shown that the RN contains specific extracellular matrix (ECM proteins, which are putative molecular "footholds" for migration, and are known ligands for lymphocyte integrin adhesion receptors. Results To investigate whether ECM proteins of the RN are present on the outer surface of the FRC and are thus accessible to migrating lymphocytes, ultrastructural immunohistochemical staining of cynomolgus monkey LN was performed using antibodies to human ECM proteins that were successfully employed at the light microscopic level. The fibrillar collagens I and III were observed primarily within the reticular network fibers themselves. In contrast, the matrix proteins laminin, fibronectin, collagen IV, and tenascin were observed within the reticular fibers and also on the outer membrane surface of the FRC. Conclusions These findings suggest a molecular basis for how the RN functions as a pathway for lymphocyte migration within the lymph node.

  7. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons.

    Directory of Open Access Journals (Sweden)

    Miloslav eKolaj


    Full Text Available Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT, derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH that exhibit significant diurnal change. Their resting membrane potential is maintained by various ionic conductances that include inward rectifier (Kir, hyperpolarization-activated nonselective cation (HCN and TWIK-related acid sensitive (TASK K+ channels. Firing patterns are regulated by high voltage-activated (HVA and low voltage-activated (LVA Ca2+ conductances. Moreover, transient receptor potential (TRP-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa contribute to unique slow afterhyperpolarizing potentials (sAHPs that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. We also report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins. This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS physiology and in CNS disorders that involve the dorsomedial thalamus.

  8. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske


    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  9. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. (United States)

    Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril


    Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito

  10. Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. (United States)

    Upadhyay, Neeraj; Suppa, Antonio; Piattella, Maria Cristina; Giannì, Costanza; Bologna, Matteo; Di Stasio, Flavio; Petsas, Nikolaos; Tona, Francesca; Fabbrini, Giovanni; Berardelli, Alfredo; Pantano, Patrizia


    To assess functional rearrangement following neurodegeneration in the thalamus and dentate nucleus in patients with progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). We recruited 19 patients with PSP, 11 with CBS and 14 healthy subjects. All the subjects underwent resting-state (rs) fMRI using a 3T system. Whole brain functional connectivity of the thalamus and dentate nucleus were calculated by means of a seed-based approach with FEAT script in FSL toolbox. Thalamic volume was calculated by means of FIRST, and the dentate area by means of Jim software. Both thalamic volume and dentate area were significantly smaller in PSP and CBS patients than in healthy subjects. No significant difference emerged in thalamic volume between PSP and CBS patients, whereas dentate area was significantly smaller in PSP than in CBS. Thalamic functional connectivity was significantly reduced in both patient groups in various cortical, subcortical and cerebellar areas. By contrast, changes in dentate nucleus functional connectivity differed in PSP and CBS: it decreased in subcortical and prefrontal cortical areas in PSP, but increased asymmetrically in the frontal cortex in CBS. Evaluating the dentate nucleus size and its functional connectivity may help to differentiate patients with PSP from those with CBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder. (United States)

    Jung, Wi Hoon; Yücel, Murat; Yun, Je-Yeon; Yoon, Youngwoo B; Cho, Kang Ik K; Parkes, Linden; Kim, Sung Nyun; Kwon, Jun Soo


    Dysfunction of corticostriatal loops has been proposed to underlie certain cognitive and behavioral problems associated with various neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) characterized by repetitive, unwanted thoughts, and behaviors. Although functional abnormalities in the loops involving the orbitofronto-striato-thalamic (OFST) circuitry in patients with OCD have been reported, our understanding of a link between disruptions in the architecture of the intrinsic functional network of the OFST circuit and their symptoms remain incomplete. Using resting-state functional MRI in conjunction with unsupervised clustering and multilevel functional connectivity (FC) techniques, FC of the OFST network and its topological organization in 61 OCD patients versus 61 matched controls were characterized. Patients exhibited disruptions in small-world properties of the OFST circuit, which indicates an imbalance between functional integration and segregation. Patients also showed decreased FC between the central orbitofrontal cortex and dorsomedial striatum but increased FC between the medial thalamus and striatal areas. Using one of the largest samples of unmedicated OCD patients to date, our findings provide evidence supporting the OFST dysconnection hypothesis in OCD as a basic pathophysiological mechanism underlying the disorder, showing the disruption of FC between specific cortical, striatal, and thalamic clusters and aberrant topological patterns of the OFST circuit. Hum Brain Mapp 38:109-119, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Spotlight on reticular pseudodrusen

    Directory of Open Access Journals (Sweden)

    Rabiolo A


    Full Text Available Alessandro Rabiolo,1 Riccardo Sacconi,1,2 Maria Vittoria Cicinelli,1 Lea Querques,1,3 Francesco Bandello,1 Giuseppe Querques1 1Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan, 2Eye Clinic, Department of Neurological and Movement Sciences, University of Verona, Verona, 3G. B. Bietti Foundation-IRCCS, Rome, Italy Abstract: Age-related macular degeneration (AMD is a leading cause of vision loss in patients >50 years old. The hallmark of the disease is represented by the accumulation of extracellular material between retinal pigment epithelium and the inner collagenous layer of Bruch’s membrane, called drusen. Although identified almost 30 years ago, reticular pseudodrusen (RPD have been recently recognized as a distinctive phenotype. Unlike drusen, they are located in the subretinal space. RPD are strongly associated with late AMD, especially geographic atrophy, type 2 and 3 choroidal neovascularization, which, in turn, are less common in typical AMD. RPD identification is not straightforward at fundus examination, and their identification should employ at least 2 different imaging modalities. In this narrative review, we embrace all aspects of RPD, including history, epidemiology, histology, imaging, functional test, natural history and therapy. Keywords: age-related macular degeneration, choroidal neovascularization, geographic atrophy, reticular macular degeneration, reticular drusen, reticular macular disease, reticular pseudodrusen, subretinal drusenoid deposit

  13. Broca's area - thalamic connectivity. (United States)

    Bohsali, Anastasia A; Triplett, William; Sudhyadhom, Atchar; Gullett, Joseph M; McGregor, Keith; FitzGerald, David B; Mareci, Thomas; White, Keith; Crosson, Bruce


    Broca's area is crucially involved in language processing. The sub-regions of Broca's area (pars triangularis, pars opercularis) presumably are connected via corticocortical pathways. However, growing evidence suggests that the thalamus may also be involved in language and share some of the linguistic functions supported by Broca's area. Functional connectivity is thought to be achieved via corticothalamic/thalamocortical white matter pathways. Our study investigates structural connectivity between Broca's area and the thalamus, specifically ventral anterior nucleus and pulvinar. We demonstrate that Broca's area shares direct connections with these thalamic nuclei and suggest a local Broca's area-thalamus network potentially involved in linguistic processing. Thalamic connectivity with Broca's area may serve to selectively recruit cortical regions storing multimodal features of lexical items and to bind them together during lexical-semantic processing. In addition, Broca's area-thalamic circuitry may enable cortico-thalamo-cortical information transfer and modulation between BA 44 and 45 during language comprehension and production. Published by Elsevier Inc.

  14. Examining Intrinsic Thalamic Resting State Networks Using Graph Theory Analysis : Implications for mTBI detection (United States)


    Lippincott, Williams and Wilkins, 2010. [14] E.R. Kandel , J.H. Schwartz, and T.M. Jessell, Principles of Neural Science, 4th ed., New York, NY, USA...Network homogeneity reveals decreased integrity of default-mode network in ADHD”, J Neuroscience Met. Vol. 169, no. 1, pp. 249-254, 2008. [25

  15. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.


    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  16. [Hypersomnia and thalamic and brain stem stroke: a study of seven patients]. (United States)

    Blanco, M; Espinosa, M; Arpa, J; Barreiro, P; Rodríguez-Albariño, A


    Thalamic and brainstem strokes are a cause of organic hypersomnia. In thalamic lesions it has been attributed to disruption of ascending activating impulses from the brainstem reticular formation and to insufficient spindling and slow-wave production, which depends upon activities of reticular thalamic nucleus and thalamocortical neurons, respectively. Reported sleep disorders in brainstem lesions have occasionally been contradictory and that is because of the presence of nearby structures in the brainstem with different functions in sleep-waking cycle. The aim of the study is to present the results of polysomnographic records in patients with thalamic and/or brainstem vascular lesions, and to correlate them with the anatomical structures affected. We have performed a polysomnographic study, (8-channel system), in patients with thalamic and/or brainstem strokes. All of them showed alterations of sleep-wake cycle. Neuroimaging studies were carried out in all patients. We report seven patients, 4 males and 3 females. Two cases presented thalamic strokes, in 3 the lesion was located in the brainstem and 2 patients had thalamo-mesencephalic lesions. All of them developed hypersomnia with an increase of NREM sleep. In patients with bilateral mesencephalic lesions we found that REM sleep was diminished as well. We have confirmed that lesions affecting thalamus and mesencephalic or pontine tegmental reticular formation are a cause of hypersomnia. The observation that this sleepiness is transient, supports the evidence of an extrathalamic alternative activating route.

  17. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. (United States)

    Destexhe, Alain


    Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

  18. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Serafim [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Terry, John R. [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)]. E-mail:; Breakspear, Michael [Black Dog Institute, Randwick, NSW 2031 (Australia); School of Psychiatry, UNSW, NSW 2030 (Australia)


    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling.

  19. Thalamic activity and biochemical changes in individuals with neuropathic pain following spinal cord injury (United States)

    Gustin, S.M.; Wrigley, P.J.; Youssef, A.M.; McIndoe, L.; Wilcox, S.L.; Rae, C.D.; Edden, R; Siddall, P.J.; Henderson, L.A.


    There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury to 11 people with similar injuries and no neuropathic pain and 21 age and gender matched healthy controls. Quantitative arterial spinal labelling was used to measure thalamic activity and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain following spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain. PMID:24530612

  20. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations. (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung


    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thalamic alexia with agraphia

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto


    Full Text Available Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left - right, and single photon emission computed tomography demonstrated hypoperfusion in the left thalamus that extended to the frontal and parietal cortices. Cortical cognitive deficits, including alexia with agraphia, may occur as the result of thalamic lesions. The probable mechanism is a diaschisis phenomenon involving thalamic tract disconnections.

  2. Thalamic semantic paralexia

    Directory of Open Access Journals (Sweden)

    Michael Hoffmann


    Full Text Available Alexia may be divided into different subtypes, with semantic paralexia being particularly rare. A 57 year old woman with a discreet left thalamic stroke and semantic paralexia is described. Language evalution with the Boston Diagnostic Aphasia Battery confirmed the semantic paralexia (deep alexia. Multimodality magnetic resonance imaging brain scanning excluded other cerebral lesions. A good recovery ensued.

  3. Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling (United States)

    Mak-McCully, Rachel A.; Deiss, Stephen R.; Rosen, Burke Q.; Jung, Ki-Young; Sejnowski, Terrence J.; Bastuji, Hélène; Rey, Marc


    Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model

  4. Optimal reinforcing of reticular structures Optimal reinforcing of reticular structures

    Directory of Open Access Journals (Sweden)

    Juan Santiago Mejía


    Full Text Available This article presents an application of Genetic Algorithms (GA and Finite Element Analysis (FEA to solve a structural optimisation problem on reticular plastic structures. Structural optimisation is used to modify the original shape by placing reinforcements at optimum locations. As a result, a reduction in the maximum stress by 14,70% for a structure with a final volume increase of 8,36% was achieved. This procedure solves the structural optimisation problem by adjusting the original mold and thereby avoiding the re-construction of a new one.Este artículo presenta una aplicación de Algoritmos Genéticos (GA y Análisis por Elementos Finitos (FEA a la solución de un problema de optimización estructural en estructuras reticulares plásticas. Optimización estructurales usada para modificar la forma original colocando refuerzos en posiciones óptimas. Como resultado se obtuvo una reducción en el esfuerzo máximo de 14,70% para una estructura cuyo volumen original aumento en 8,36%. Este procedimiento soluciona el problema de optimización estructural ajustando el molde original y evitando la manufactura de un nuevo molde.

  5. Thalamic Lesions: A Radiological Review

    Directory of Open Access Journals (Sweden)

    Dimitri Renard


    Full Text Available Background. Thalamic lesions are seen in a multitude of disorders including vascular diseases, metabolic disorders, inflammatory diseases, trauma, tumours, and infections. In some diseases, thalamic involvement is typical and sometimes isolated, while in other diseases thalamic lesions are observed only occasionally (often in the presence of other typical extrathalamic lesions. Summary. In this review, we will mainly discuss the MRI characteristics of thalamic lesions. Identification of the origin of the thalamic lesion depends on the exact localisation inside the thalamus, the presence of extrathalamic lesions, the signal changes on different MRI sequences, the evolution of the radiological abnormalities over time, the history and clinical state of the patient, and other radiological and nonradiological examinations.

  6. Control of Absence Seizures by the Thalamic Feed-Forward Inhibition. (United States)

    Chen, Mingming; Guo, Daqing; Xia, Yang; Yao, Dezhong


    As a subtype of idiopathic generalized epilepsies, absence epilepsy is believed to be caused by pathological interactions within the corticothalamic (CT) system. Using a biophysical mean-field model of the CT system, we demonstrate here that the feed-forward inhibition (FFI) in thalamus, i.e., the pathway from the cerebral cortex (Ctx) to the thalamic reticular nucleus (TRN) and then to the specific relay nuclei (SRN) of thalamus that are also directly driven by the Ctx, may participate in controlling absence seizures. In particular, we show that increasing the excitatory Ctx-TRN coupling strength can significantly suppress typical electrical activities during absence seizures. Further, investigation demonstrates that the GABAA- and GABAB-mediated inhibitions in the TRN-SRN pathway perform combination roles in the regulation of absence seizures. Overall, these results may provide an insightful mechanistic understanding of how the thalamic FFI serves as an intrinsic regulator contributing to the control of absence seizures.

  7. Gamma band activity in the reticular activating system (RAS

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano


    Full Text Available This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by preconscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the

  8. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation. (United States)

    Li, Guoshi; Henriquez, Craig S; Fröhlich, Flavio


    The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  9. Altered thalamic connectivity during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano


    Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine and cereb......Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine...... and cerebellar network connectivity during spontaneous migraine attacks. Methods Seventeen patients with episodic migraine without aura underwent resting-state fMRI scan during and outside of a spontaneous migraine attack. Primary endpoint was a difference in functional connectivity between the attack...

  10. Pseudocortical and dissociate discriminative sensory dysfunction in a thalamic stroke. (United States)

    Notturno, Francesca; Sepe, Rosamaria; Caulo, Massimo; Uncini, Antonino; Committeri, Giorgia


    In thalamic lesions a pseudocortical syndrome has been occasionally described but the effect of the lesion on the cortical network of tactile recognition has never been studied. We report a patient who developed tactile agnosia in the left hand after right thalamic stroke, configuring a pseudocortical sensory syndrome. The discriminative sensory dysfunction was dissociate because only tactile agnosia and mild pseudoathetosis were present. A functional magnetic resonance imaging (fMRI) study showed that tactile recognition with the unaffected hand recruited a bilateral fronto-parietal network. During recognition with the left hand the activation was restricted and lateralized to the ipsilateral hemisphere. In this patient with pseudocortical discriminative sensory dysfunction the lack of activation of the whole cortical network, implicated in tactile recognition, demonstrates that pseudocortical is functionally equivalent to cortical tactile agnosia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Slow waves in mutually inhibitory neuronal networks (United States)

    Jalics, Jozsi


    A variety of experimental and modeling studies have been performed to investigate wave propagation in networks of thalamic neurons and their relationship to spindle sleep rhythms. It is believed that spindle oscillations result from the reciprocal interaction between thalamocortical (TC) and thalamic reticular (RE) neurons. We consider a network of TC and RE cells reduced to a one-layer network model and represented by a system of singularly perturbed integral-differential equations. Geometric singular perturbation methods are used to prove the existence of a locally unique slow wave pulse that propagates along the network. By seeking a slow pulse solution, we reformulate the problem to finding a heteroclinic orbit in a 3D system of ODEs with two additional constraints on the location of the orbit at two distinct points in time. In proving the persistence of the singular heteroclinic orbit, difficulties arising from the solution passing near points where normal hyperbolicity is lost on a 2D critical manifold are overcome by employing results by Wechselberger [Singularly perturbed folds and canards in R3, Thesis, TU-Wien, 1998].

  12. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)


    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  13. Communication skills and thalamic lesion: Strategies of rehabilitation. (United States)

    Amaddii, Luisa; Centorrino, Santi; Cambi, Jacopo; Passali, Desiderio


    To describe the speech rehabilitation history of patients with thalamic lesions. Thalamic lesions can affect speech and language according to diverse thalamic nuclei involved. Because of the strategic functional position of the thalamus within the cognitive networks, its lesion can also interfere with other cognitive processes, such as attention, memory and executive functions. Alterations of these cognitive domains contribute significantly to language deficits, leading to communicative inefficacy. This fact must be considered in the rehabilitation efforts. Whereas evaluation of cognitive functions and communicative efficiency is different from that of aphasic disorder, treatment should also be different. The treatment must be focused on specific cognitive deficits with belief in the regaining of communicative ability, as well as it occurs in therapy of pragmatic disorder in traumatic brain injury: attention process training, mnemotechnics and prospective memory training. According to our experience: (a) there is a close correlation between cognitive processes and communication skills; (b) alterations of attention, memory and executive functions cause a loss of efficiency in the language use; and (c) appropriate cognitive treatment improves pragmatic competence and therefore the linguistic disorder. For planning a speech-therapy it is important to consider the relationship between cognitive functions and communication. The cognitive/behavioral treatment confirms its therapeutic efficiency for thalamic lesions. Copyright © 2014 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  14. Electrophysiology and Pharmacology of the Corticothalamic Input to Lateral Thalamic Nuclei: an Intracellular Study in the Cat. (United States)

    Deschêenes, Martin; Hu, Bin


    Though most experimental evidence indicates that the corticothalamic (CT) pathway would exert a direct excitatory action on thalamic relay neurons, the electrophysiological features of this excitation have never been clearly described. A methodological problem in previous electrophysiological studies was that direct corticofugal effects on relay cells could not be separated from those mediated by collateral activation of reticular thalamic neurons. In the present study, the reticular complex was lesioned by kainic acid and the CT response of relay neurons of the ventral lateral nucleus was recorded intracellularly in cats under pentobarbital or urethane anaesthesia. Following reticular thalamic lesions, a prominent depolarization was triggered in thalamic relay cells by stimulation of the CT pathway. This depolarization strongly drove spike discharges, and its amplitude augmented when the stimulation rate exceeded 2 Hz. Tetanizing the CT input with short trains (100 - 200 Hz for 200 - 300 ms) produced a similar augmentation to test volleys for 15 - 30 s after the tetanos. The CT excitation and its frequency-dependent augmentation were depressed by ketamine injection or by local application of N-methyl-D-aspartate (NMDA) antagonists. The augmenting phenomenon appeared strictly homosynaptic. For instance, it did not appear during repetitive stimulation of the cerebellar input, nor did the CT input potentiate subthreshold synaptic potentials of cerebellar origin during a conditioning procedure. Conversely, the cerebellar excitation was depressed when it occurred during the CT depolarization. It is concluded that the direct synaptic responses induced by CT fibres in relay neurons are mediated at least partly by the activation of NMDA receptors. Moreover, the marked non-linear additivity of cerebellar and CT synaptic potentials raises questions concerning the presumed improvement of thalamic transmission of peripheral informations ensured by the CT input. Instead, both

  15. Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Shin Teng

    Full Text Available Bipolar disorder is characterized by internally affective fluctuations. The abnormality of inherently mental state can be assessed using resting-state fMRI data without producing task-induced biases. In this study, we hypothesized that the resting-state connectivity related to the frontal, striatal, and thalamic regions, which were associated with mood regulations and cognitive functions, can be altered for bipolar disorder. We used the Pearson's correlation coefficients to estimate functional connectivity followed by the hierarchical modular analysis to categorize the resting-state functional regions of interest (ROIs. The selected functional connectivities associated with the striatal-thalamic circuit and default mode network (DMN were compared between bipolar patients and healthy controls. Significantly decreased connectivity in the striatal-thalamic circuit and between the striatal regions and the middle and posterior cingulate cortex was observed in the bipolar patients. We also observed that the bipolar patients exhibited significantly increased connectivity between the thalamic regions and the parahippocampus. No significant changes of connectivity related to the frontal regions in the DMN were observed. The changed resting-state connectivity related to the striatal-thalamic circuit might be an inherent basis for the altered emotional and cognitive processing in the bipolar patients.

  16. Neuronal networks and energy bursts in epilepsy. (United States)

    Wu, Y; Liu, D; Song, Z


    Epilepsy can be defined as the abnormal activities of neurons. The occurrence, propagation and termination of epileptic seizures rely on the networks of neuronal cells that are connected through both synaptic- and non-synaptic interactions. These complicated interactions contain the modified functions of normal neurons and glias as well as the mediation of excitatory and inhibitory mechanisms with feedback homeostasis. Numerous spread patterns are detected in disparate networks of ictal activities. The cortical-thalamic-cortical loop is present during a general spike wave seizure. The thalamic reticular nucleus (nRT) is the major inhibitory input traversing the region, and the dentate gyrus (DG) controls CA3 excitability. The imbalance between γ-aminobutyric acid (GABA)-ergic inhibition and glutamatergic excitation is the main disorder in epilepsy. Adjustable negative feedback that mediates both inhibitory and excitatory components affects neuronal networks through neurotransmission fluctuation, receptor and transmitter signaling, and through concomitant influences on ion concentrations and field effects. Within a limited dynamic range, neurons slowly adapt to input levels and have a high sensitivity to synaptic changes. The stability of the adapting network depends on the ratio of the adaptation rates of both the excitatory and inhibitory populations. Thus, therapeutic strategies with multiple effects on seizures are required for the treatment of epilepsy, and the therapeutic functions on networks are reviewed here. Based on the high-energy burst theory of epileptic activity, we propose a potential antiepileptic therapeutic strategy to transfer the high energy and extra electricity out of the foci. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Bilateral paramedian thalamic syndrome after infection. (United States)

    Kamaşak, Tülay; Sahin, Sevim; Eyüboğlu, İlker; Reis, Gökce Pinar; Cansu, Ali


    Although bilateral paramedian thalamic infarctions occur more frequently in adults than in children, they are rare entities at any age. The syndrome is thought to result from occlusion of the artery of Percheron, which arises as a common trunk from one of the posterior cerebral arteries to supply both paramedian thalamic regions. We describe two children with acute ischemic infarction involving both paramedian thalami developing after infection. The first patient developed mutism with ataxia after chicken pox infection. The second child developed headache, somnolence, agitation, and speech dysfunction following an upper respiratory tract infection. Bilateral thalamic lesions were documented on magnetic resonance imaging of both children. Bilateral infarctions of the paramedian thalamus may result in severe illness and impairment. Common clinical manifestations include disorientation, confusion, hypersomnolence, deep coma and "coma vigil," or akinetic mutism (awake unresponsiveness), as well as severe memory impairment. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)


    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  19. Language disturbances from mesencephalo-thalamic infarcts. Identification of thalamic nuclei by CT-reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F. (Ospedale Civile di Gorizia (Italy). Div. di Neurologia); Biasizzo, E. (Ospedale di Udine (Italy). Servizio di Neuroradiologia)


    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.).

  20. Thalamic morphology in schizophrenia and schizoaffective disorder. (United States)

    Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G


    Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne


    . SIGNIFICANCE STATEMENT: This multicenter imaging study shows morphological thalamic abnormalities in a large cohort of patients with episodic migraine compared with healthy subjects using state-of-the-art MRI and advanced, fully automated multiatlas segmentation techniques. The results stress that migraine...... is a disorder of the CNS in which not only is brain function abnormal, but also brain structure is undergoing significant remodeling....... techniques in substantial patient populations are lacking. In the present study, we investigated changes of thalamic volume and shape in a large multicenter cohort of patients with migraine. High-resolution T1-weighted MRI data acquired at 3 tesla in 131 patients with migraine (38 with aura; 30.8 ± 9 years...

  2. Two Case Report With Bilateral Thalamic Infarct

    Directory of Open Access Journals (Sweden)

    Utku Cenikli


    Full Text Available Bilateral thalamic infarction is a rare clinical condition. Thalamo-perforan arteries are arise from the same vascular territory in nearly one third of the cases and oclussion of it causes bilateral infacts. Clinical presentation can be altered mental status, decrease alertness, memory problems, mood disorders, cognitive problems and vertical gaze palsy. In this report we present two cases with different clinical status.

  3. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  4. Reticular pattern detection in dermoscopy: an approach using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Marlene Machado

    Full Text Available Abstract Introduction Dermoscopy is a non-invasive in vivo imaging technique, used in dermatology in feature identification, among pigmented melanocytic neoplasms, from suspicious skin lesions. Often, in the skin exam is possible to ascertain markers, whose identification and proper characterization is difficult, even when it is used a magnifying lens and a source of light. Dermoscopic images are thus a challenging source of a wide range of digital features, frequently with clinical correlation. Among these markers, one of particular interest to diagnosis in skin evaluation is the reticular pattern. Methods This paper presents a novel approach (avoiding pre-processing, e.g. segmentation and filtering for reticular pattern detection in dermoscopic images, using texture spectral analysis. The proposed methodology involves a Curvelet Transform procedure to identify features. Results Feature extraction is applied to identify a set of discriminant characteristics in the reticular pattern, and it is also employed in the automatic classification task. The results obtained are encouraging, presenting Sensitivity and Specificity of 82.35% and 76.79%, respectively. Conclusions These results highlight the use of automatic classification, in the context of artificial intelligence, within a computer-aided diagnosis strategy, as a strong tool to help the human decision making task in clinical practice. Moreover, the results were obtained using images from three different sources, without previous lesion segmentation, achieving to a rapid, robust and low complexity methodology. These properties boost the presented approach to be easily used in clinical practice as an aid to the diagnostic process.

  5. Thalamic hemorrhage. A prospective study of 100 patients. (United States)

    Kumral, E; Kocaer, T; Ertübey, N O; Kumral, K


    The clinical features of thalamic hemorrhage in terms of localization are of great interest in many studies. To better understand the relationship between the localization of thalamic hemorrhage and clinical features. we evaluated the characteristics of patients with four different topographic types of thalamic hemorrhage. We prospectively studied 100 patients with thalamic hemorrhage who were admitted consecutively to our primary care unit. We divided them into two groups according to large (> 2 cm in diameter and/or > 4 mL in volume) and small thalamic hemorrhage. Four topographic subgroups (large and small) were compared to identify clinical syndromes associated with distinct lesion locations. All patients with posterolateral thalamic hemorrhage had severe sensorimotor deficit. Neuropsychological disturbances in patients with posterolateral thalamic hemorrhage were prominent, with primarily transcortical aphasia in those with left-sided lesions and hemineglect and anosognosia in those with right-sided lesions. Several variants of vertical gaze dysfunction, skew ocular deviation, gaze preference toward the site of the lesion, and miotic pupils were frequent in posterolateral thalamic hemorrhage, particularly in the large type. Patients with small and large anterolateral thalamic hemorrhage were characterized by severe motor and sensory deficits; language and oculomotor disturbances were also observed, although less frequently than in posterolateral hemorrhage. Sensorimotor deficits were observed in patients with medial thalamic hemorrhage (moderate in small hemorrhages and severe in large hemorrhages because of involvement of the adjacent internal capsule). Language disturbances in patients with left-sided lesions and neglect in patients with right-sided lesions were seen only in large medial thalamic hemorrhage. Dorsal thalamic hemorrhage was rare and characterized by mild and transient sensorimotor disturbances. Among patients with dorsal thalamic hemorrhages

  6. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus. (United States)

    Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris


    The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Reduced thalamic and pontine connectivity in Kleine-Levin syndrome

    Directory of Open Access Journals (Sweden)

    Maria eEngström


    Full Text Available The Kleine-Levin syndrome is a rare sleep disorder, characterized by exceptionally long sleep episodes. The neuropathology of the syndrome is unknown and treatment is often inadequate. The aim of the study was to improve understanding of the underlying neuropathology, related to cerebral networks, in Kleine-Levin syndrome during sleep episodes. One patient with Kleine-Levin syndrome and congenital nystagmus, was investigated by resting state functional Magnetic Resonance Imaging during both asymptomatic and hypersomnic periods. Fourteen healthy subjects were also investigated as control samples. Functional connectivity was assessed from seed regions of interest in the thalamus and the dorsal pons. Thalamic connectivity was normal in the asymptomatic patient whereas the connectivity between the brain stem, including dorsal pons, and the thalamus was diminished during hypersomnia. These results suggest that the patient’s nystagmus and hypersomnia might have their pathological origin in adjacent dorsal pontine regions. This finding provides additional knowledge of the cerebral networks involved in the neuropathology of this disabling disorder. Furthermore, these findings regarding a rare syndrome have broad implications and results could be of interest to researchers and clinicians in the whole field of sleep medicine.

  8. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy. (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E


    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  9. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro. (United States)

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb


    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  10. Reticular theory versus neuron theory in the work of Camillo Golgi. (United States)

    Cimino, G


    In 1873 Golgi invented a revolutionary method for microscopic research of the nervous system, based on a particular technique for staining nerve cells, which came to be known as "black reaction". Thanks to this method, he was able to provide a thorough and precise description of nerve cells in various regions of the cerebro-spinal axis, clearly distinguishing the axon from the dendrites. He drew up a new classification of cells on the basis of the structure of their nervous prolongation, and he criticized Gerlach's theory of the "protoplasmic network". Golgi claimed to observe in the gray matter an extremely dense and intricate network, composed of a web of intertwined branches of axons coming from different cell layers ("diffuse nervous network"). This structure, which emerges from the axons and is therefore essentially different from that hypothesized by Gerlach, appeared in his view to be the main organ of the nervous system, the organ that connected different cerebral areas both anatomically and functionally by means of the transmission of an electric nervous impulse. Golgi's reticular theory, along with the other reticular theories of the nervous system prevalent at the end of the nineteenth century, had in a certain sense overturned the 'atomistic-reductionist' principle that lay behind the cell theory. These theories were in fact based on a holistic model, according to which the cerebro-spinal axis was considered to be a continuous structure, and its functions the result of a collective action. At the end of the 1880's, Ramon y Cajal began to elaborate the neuron theory, using Golgi's microscopic technique. Golgi, however, did not accept this theory, and a controversy arose between the two scientists that was not put to rest even after the rivals were both awarded the Nobel Prize in 1906. If we look at the reasons for which Golgi opposed the neuron theory, we can see that they derived not so much from disagreement over the actual data observed, as from a

  11. Slow fluctuations of single unit activities of hippocampal and thalamic neurons in cats. I. Relation to natural sleep and alert states. (United States)

    Kodama, T; Mushiake, H; Shima, K; Nakahama, H; Yamamoto, M


    Spontaneous unit discharges during the natural sleep-wakefulness cycle in two different neuronal groups, the hippocampal pyramidal cells and thalamic ventrobasal neurons, have been analyzed. The results show that both neurons fire with white-noise-like fluctuations during the slow-wave sleep, and with slow fluctuations with power spectral densities inversely proportional to the frequency in the frequency range of 0.02-1.0 Hz, during the paradoxical sleep. This confirms that the characteristics of fluctuations in neuronal activities of the mesencephalic reticular formation observed in our previous study are more general phenomena in the cat's brain. Partly similar behavior of spectral densities is also observed during the alert state. These observations are quantitatively confirmed by the statistical time series analysis of the spike density processes of spontaneous activities.

  12. Left upper lobe mass and diffuse reticular-nodular infiltrate. (United States)

    Jackson, H D; Carney, K J; Knautz, M A; Tenholder, M F


    We encountered a clinical problem in a young man who presented with a left upper lobe mass and a diffuse reticular-nodular infiltrate. We thought we had appropriately applied Murphy's Law (the famed bank robber who "went where the money is"), and Ockham's Razor (the philosopher William of Ockham [1285 to 1349]-"Entities are not to be multiplied beyond necessity") as we rapidly diagnosed the lung mass with computed tomography, scintigraphy, and fine-needle aspiration. However, when his invaluable previous chest radiographs arrived, bronchoscopy with transbronchial biopsy, bronchoalveolar lavage, brushings, and postbronchoscopy sputum revealed the more ominous diagnosis in this patient. This case illustrates the complementary nature of current imaging and bronchoscopy techniques; but, even more importantly, it demonstrates the value of the history coupled with the previous radiograph. Even an unusual case can provide lessons in cost containment.

  13. Automatic identification of reticular pseudodrusen using multimodal retinal image analysis. (United States)

    van Grinsven, Mark J J P; Buitendijk, Gabriëlle H S; Brussee, Corina; van Ginneken, Bram; Hoyng, Carel B; Theelen, Thomas; Klaver, Caroline C W; Sánchez, Clara I


    To examine human performance and agreement on reticular pseudodrusen (RPD) detection and quantification by using single- and multimodality grading protocols and to describe and evaluate a machine learning system for the automatic detection and quantification of reticular pseudodrusen by using single- and multimodality information. Color fundus, fundus autofluoresence, and near-infrared images of 278 eyes from 230 patients with or without presence of RPD were used in this study. All eyes were scored for presence of RPD during single- and multimodality setups by two experienced observers and a developed machine learning system. Furthermore, automatic quantification of RPD area was performed by the proposed system and compared with human delineations. Observers obtained a higher performance and better interobserver agreement for RPD detection with multimodality grading, achieving areas under the receiver operating characteristic (ROC) curve of 0.940 and 0.958, and a κ agreement of 0.911. The proposed automatic system achieved an area under the ROC of 0.941 with a multimodality setup. Automatic RPD quantification resulted in an intraclass correlation (ICC) value of 0.704, which was comparable with ICC values obtained between single-modality manual delineations. Observer performance and agreement for RPD identification improved significantly by using a multimodality grading approach. The developed automatic system showed similar performance as observers, and automatic RPD area quantification was in concordance with manual delineations. The proposed automatic system allows for a fast and accurate identification and quantification of RPD, opening the way for efficient quantitative imaging biomarkers in large data set analysis. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows. (United States)

    Sato, Shigeru; Ikeda, Aya; Tsuchiya, Yoshiyuki; Ikuta, Kentaro; Murayama, Isao; Kanehira, Masahiro; Okada, Keiji; Mizuguchi, Hitoshi


    The objective of this study was to determine whether subacute ruminal acidosis (SARA) could be diagnosed by continuous measurements of the reticular pH, as compared with the ruminal pH, using healthy cows fed a control diet and SARA cows fed a rumen acidosis-inducing diet. The reticular and ruminal pH were measured simultaneously by a radio transmission pH measurement system. The mean reticular pH at 1-h intervals decreased gradually from the morning feeding to the next feeding time in both healthy and SARA cows, though the decrease in the ruminal pH was observed to be more drastic as compared with that observed in the reticular pH. The threshold of the 1-h mean pH in the reticulum for a diagnosis of SARA was considered to be 6.3, and a significant positive correlation was observed between the reticular and ruminal pH. No differences in the concentrations of lactic acid, ammonia nitrogen, and volatile fatty acids were noted between the reticular and ruminal fluids in SARA cows. These results demonstrate that the reticular pH can be used to detect SARA in cows, as opposed to using the ruminal pH.

  15. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens (United States)

    Varela, C.; Kumar, S.; Yang, J. Y.; Wilson, M. A.


    The reuniens nucleus in the midline thalamus projects to the medial prefrontal cortex (mPFC) and the hippocampus, and has been suggested to modulate interactions between these regions, such as spindle–ripple correlations during sleep and theta band coherence during exploratory behavior. Feedback from the hippocampus to the nucleus reuniens has received less attention but has the potential to influence thalamocortical networks as a function of hippocampal activation. We used the retrograde tracer cholera toxin B conjugated to two fluorophores to study thalamic projections to the dorsal and ventral hippocampus and to the prelimbic and infralimbic subregions of mPFC. We also examined the feedback connections from the hippocampus to reuniens. The goal was to evaluate the anatomical basis for direct coordination between reuniens, mPFC, and hippocampus by looking for double-labeled cells in reuniens and hippocampus. In confirmation of previous reports, the nucleus reuniens was the origin of most thalamic afferents to the dorsal hippocampus, whereas both reuniens and the lateral dorsal nucleus projected to ventral hippocampus. Feedback from hippocampus to reuniens originated primarily in the dorsal and ventral subiculum. Thalamic cells with collaterals to mPFC and hippocampus were found in reuniens, across its anteroposterior axis, and represented, on average, about 8 % of the labeled cells in reuniens. Hippocampal cells with collaterals to mPFC and reuniens were less common (~1 % of the labeled subicular cells), and located in the molecular layer of the subiculum. The results indicate that a subset of reuniens cells can directly coordinate activity in mPFC and hippocampus. Cells with collaterals in the hippocampus–reuniens–mPFC network may be important for the systems consolidation of memory traces and for theta synchronization during exploratory behavior. PMID:23571778

  16. Complement Factor H 402H Variant and Reticular Macular Disease (United States)

    Smith, R. Theodore; Merriam, Joanna E.; Sohrab, Mahsa A.; Pumariega, Nicole M.; Barile, Gaetano; Blonska, Anna M.; Haans, Raymond; Madigan, David; Allikmets, Rando


    Objective To determine the association of high-risk alleles in the complement factor H (CFH; Y402H, rs1061170) and age-related maculopathy susceptibility (ARMS2; A69S, rs10490924) genes with reticular macular disease (RMD), a major clinical subphenotype of age-related macular degeneration (AMD). Methods Using retinal images from the Columbia Macular Genetics Study, we identified 67 subject individuals with RMD. A comparison group of 64 subjects with AMD without RMD was matched by ethnicity, age, sex, and AMD clinical stage. Results In the RMD group, 53 of 67 subjects (79.1%) were female, the mean age was 83 years, and 47 of 67 (70.1%) had late AMD, with closely matched values in the non-RMD group. The frequencies of the CFH 402H allele were 39.6% in the RMD group (53 of 134 individuals) and 58.6% in the non-RMD group (75 of 128 individuals) (χ2=8.8; P=.003; odds ratio, 0.46 [95% confidence interval, 0.28–0.76]). The corresponding frequencies of the risk allele for ARMS2 were 44.0% (40 of 128 individuals) and 31.3% (40 of 128 individuals), respectively (χ2=4.0; P=.045; odds ratio, 1.73 [95% confidence interval, 1.04–2.90]). Homozygosity for 402Hwas particularly associated with the absence of RMD, occurring in 8 of 67 subjects (11.9%) with RMD vs 24 of 64 subjects (37.5%) without RMD(P χ.001). Retinal macular disease also was associated with hypertension among male patients. Conclusions The AMD-associated CFH 402H risk variant is significantly associated with the absence of RMD but enhanced risk for RMD is conferred by the ARMS2 69S AMD risk allele. These results are consistent with the hypothesis that 402H may confer a survival benefit against certain infections, some of which may cause RMD. Clinical Relevance Reticular macular disease may be genetically distinct from the rest of AMD. PMID:21825189

  17. Reticular Formation and Pain: The Past and the Future

    Directory of Open Access Journals (Sweden)

    Isabel Martins


    Full Text Available The involvement of the reticular formation (RF in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM and the caudal ventrolateral medulla (VLM. Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life

  18. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. (United States)

    Pinault, D


    We describe a novel and very effective single-cell labeling method with unique advantages for revealing the axonal and dendritic fields of any extracellularly recorded neuron. This procedure involves the use of fine glass micro-pipettes (tip diameter: approximately 1 micron), which contain biocytin or Neurobiotin dissolved in a salt solution, for the simultaneous juxtacellular recording and tracer iontophoresis. Once a neuron is well-isolated and identified, low intensity ( 86%) far exceeds that obtained by direct intracellular injections of tracers as shown by the labeling of a large sample of 100 individual cells (from 115 attempts) in the thalamic reticular (Rt) nucleus of 33 rats. We thereby demonstrate that Rt cells project to restricted regions of a single thalamic nucleus, including anterior thalamic nuclei, and that the thalamus and Rt complex have reciprocal connections. The juxtacellular procedure thus represents an ideal directed single-cell labeling tool for determination of functional properties, for subsequent identification, for delineation of overall neuronal architecture and for tracing neuronal pathways, provided care is taken to avoid the possible drawbacks and pitfalls that are illustrated and discussed in the present paper.

  19. Characterization of human fibroblastic reticular cells as potential immunotherapeutic tools. (United States)

    Valencia, Jaris; Jiménez, Eva; Martínez, Víctor G; Del Amo, Beatriz G; Hidalgo, Laura; Entrena, Ana; Fernández-Sevilla, Lidia M; Del Río, Francisco; Varas, Alberto; Vicente, Ángeles; Sacedón, Rosa


    Fibroblastic reticular cells (FRCs) are essential players during adaptive immune responses not only as a structural support for the encounter of antigen-presenting cells and naive T lymphocytes but also as a source of modulatory signals. However, little is known about this cell population in humans. To address the phenotypical and functional analysis of human FRCs here we established splenic (SP) and mesenteric lymph node (LN) CD45(-)CD31(-)CD90(+)podoplanin(+) myofibroblastic cell cultures. They shared the phenotypical characteristics distinctive of FRCs, including the expression of immunomodulatory factors and peripheral tissue antigens. Nevertheless, human FRCs also showed particular features, some differing from mouse FRCs, like the lack of nitric oxide synthase (NOS2) expression after interferon (IFN)γstimulation. Interestingly, SP-FRCs expressed higher levels of interleukin (IL)-6, BMP4, CCL2, CXCL12 and Notch molecules, and strongly adapted their functional profile to lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C) and IFNγ stimulation. In contrast, we found higher expression of transforming growth factor (TGF)β and Activin A in LN-FRCs that barely responded via Toll-Like Receptor (TLR)3 and constitutively expressed retinaldehyde dehydrogenase 1 enzyme, absent in SP-FRCs. This study reveals human FRCs can be valuable models to increase our knowledge about the physiology of human secondary lymphoid organs in health and disease and to explore the therapeutic options of FRCs. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. On the reticular construction concept of covalent organic frameworks

    Directory of Open Access Journals (Sweden)

    Binit Lukose


    Full Text Available The concept of reticular chemistry is investigated to explore the applicability of the formation of Covalent Organic Frameworks (COFs from their defined individual building blocks. Thus, we have designed, optimized and investigated a set of reported and hypothetical 2D COFs using Density Functional Theory (DFT and the related Density Functional based tight-binding (DFTB method. Linear, trigonal and hexagonal building blocks have been selected for designing hexagonal COF layers. High-symmetry AA and AB stackings are considered, as well as low-symmetry serrated and inclined stackings of the layers. The latter ones are only slightly modified compared to the high-symmetry forms, but show higher energetic stability. Experimental XRD patterns found in literature also support stackings with highest formation energies. All stacking forms vary in their interlayer separations and band gaps; however, their electronic densities of states (DOS are similar and not significantly different from that of a monolayer. The band gaps are found to be in the range of 1.7–4.0 eV. COFs built of building blocks with a greater number of aromatic rings have smaller band gaps.

  1. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. (United States)

    Rastogi, Neelesh; Smith, R Theodore


    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila


    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  3. Bilateral thalamic infarction with psychiatric symptoms: case report

    Directory of Open Access Journals (Sweden)

    Betül Tekin Güveli


    Full Text Available Introduction: Thalamus is a mass of gray matter, which plays a role in the transmission of sensory and motor information to the primary sensory and motor centers of the cerebral cortex, cerebellum and basal ganglia. Vascular lesions of thalamus may occur in different syndromes depending on the affected nuclei. In this report, a case with acute evolving personality and behavior changes and detected bilateral thalamic infarction will be presented. Case: A 40-year-old male patient was brought to the psychiatric ER with complaints of acute excessive sleep and behavioral changing. His neurological examination was normal except for limited cooperation and dysarthria. There was hyperintensity in bilateral paramedian thalamic regions in diffusion MRI and hypointensity in the right side in the ADC. During clinical observation the patient occasionally had visual hallucinations and attempted suicide. The psychiatrist diagnosed the patient with psychotic disorder due to his general medical condition and olanzapine 10 mg / day was prescribed. Etiological tests were normal. The patient was discharged after clinical improvement on the tenth day of hospitalization. Conclusion: Bilateral thalamic infarcts are very rare in all ischemic cerebrovascular diseases and typically result in changing of consciousness, gaze palsy and memory. The most common etiological cause of bilateral thalamic infarct is cardioembolism and the prognosis is generally good. Thalamic infarcts have a clinical spectrum varying according to the location of the lesion and may even just be present with psychiatric symptoms. In acute or subacute personality and behavior changes in a patient with no history of psychiatric disorders, thalamic lesions should be considered.

  4. Bilateral paramedian thalamic artery infarcts: report of 10 cases. (United States)

    Jiménez Caballero, Pedro Enrique


    The paramedian thalamic arteries can arise as a pair from each P1 of the posterior cerebral artery, but they may also arise equally from a common trunk off one P1, thus supplying thalamus bilaterally. Such a common trunk is called the artery of Percheron and supplies the mesial aspects of both thalami and the rostral midbrain. This is a retrospective review of 1,253 consecutive patients with ischemic stroke enrolled in a stroke registry within an 8-year period (January 2001-December 2008). All were evaluated with detailed clinical and neuropsychological evaluation, magnetic resonance imaging (MRI), blood studies, electrocardiogram, and transthoracic echocardiography. All standard risk factors were recorded in these patients. Ten patients (0.7%) in this series presented with a first-ever thalamic stroke demonstrating bilateral paramedian thalamic lesions on MRI. The main cause of bilateral paramedian thalamic infarctions was small artery disease (60%), followed by cardioembolism (40%). A well-defined clinical picture is shown in bilateral paramedian thalamic artery infarcts. These patients had disorder's consisting of consciousness, memory dysfunctions, various types of vertical gaze paresis, and psychological changes. Although neurologic deficits and hypersomnia recovered to large extent in patients with paramedian thalamic infarcts, cognitive deficits that were mainly linked with bilateral and left-sided lesions often persisted. Vertical gaze paresis tended to improve and never seriously disturbed the patient's activities. We believe that these kinds of strokes have been commonly overlooked, especially without widespread use of MRI. Copyright (c) 2010 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Orthostatic tremor responds to bilateral thalamic deep brain stimulation. (United States)

    Lyons, Mark K; Behbahani, Mandana; Boucher, Orland K; Caviness, John N; Evidente, Virgilio Gerald H


    Orthostatic tremor (OT) is a disabling movement disorder manifested by postural and gait disturbance. Primarily a condition of elderly people, it can be progressive in up to 15% of patients. The primary treatments are medications that are often ineffective. A 75-year-old male presented with a 10-year history of progressive and disabling OT. He had tried various medications without significant benefits. He underwent bilateral thalamic Vim deep brain stimulation (DBS). At 30-month follow-up, he has had continued significant improvement of his OT. Bilateral thalamic DBS may be a viable option for medically refractory OT.

  6. Thalamic syndrome as the heralding manifestation of atlantoaxial dislocation (United States)

    Verma, Rajesh; Sahu, Ritesh; Ojha, B K; Junewar, Vivek


    In India, Atlantoaxial dislocation (AAD) is the commonest skeletal craniovertebral junction (CVJ) anomaly, followed by occipitalisation of atlas and basilar invagination. The usual presentation is progressive neurological deficit (76–95% cases) involving the high cervical cord, lower brainstem and cranial nerves. The association between vertebro-basilar insufficiency and skeletal CVJ anomalies is well recognised and angiographic abnormalities of the vertebrobasilar arteries and their branches have been reported; however, initial presentation of CVJ anomaly as thalamic syndrome due to posterior circulation stroke is extremely rare. Here, we report one such rare case of thalamic syndrome as the initial presentation of CVJ anomaly with AAD. PMID:23314448

  7. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling. (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan


    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  8. The ventral-hypothalamic input route: a common neural network for abstract cognition and sexuality. (United States)

    Motofei, Ion G; Rowland, David L


    Classically, external receptors of the body transmit information from the environment to the cerebral cortex via the thalamus. This review explains and argues that only concrete external information is transmitted from peripheral receptors to the cortex via a thalamic route, while abstract and sexual external information are actually transmitted from peripheral receptors to the cortex through a cognitive hypothalamic route. Sexual function typically implies participation of two distinct partners, ensuring reproduction in many species including humans. Human sexual response involves participation of multiple (environmental, biological, psychological) kinds of stimuli and processing, so the understanding of sexual control and response supposes integration between the classical physiological mechanisms with the more complex processes of our 'mind'. Cognition and sexuality are two relational functions, which are dependent on concrete (colours, sounds, etc.) and/or abstract (gestures, facial expression, how you move, the way you say something seemingly trivial, etc.) environmental cues. Abstract cues are encoded independent of the specific object features of the stimuli, suggesting that such cues should be transmitted and interpreted within the brain through a system different than the classical thalamo-cortical network that operates on concrete (material) information. Indeed, data show that the cerebral cortex is capable of interpreting two distinct (concrete and abstract) formats of information via distinct and non-compatible brain areas. We expand upon this abstract-concrete dichotomy of the brain, positing that the two distinct cortical networks should be uploaded with distinct information from the environment via two distinct informational input routes. These two routes would be represented by the two distinct routes of the ascending reticular activating system (ARAS), namely the classical/dorsal thalamic input route for concrete information and the ventral

  9. Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study (United States)

    Sinjab, Barah; Martinian, Lillian; Sisodiya, Sanjay M; Thom, Maria


    Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25–87 years) and eight controls (age range 38–85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in

  10. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Ca(v)3.2 T-type calcium channel activity and reticular thalamic neuron firing

    Czech Academy of Sciences Publication Activity Database

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, I.; Pamphlett, R.; Weiss, Norbert


    Roč. 10, č. 6 (2016), s. 466-477 ISSN 1933-6950 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : ALS * amyotrophic lateral sclerosis * biophysics * CACNA1H * Ca(v)3 * 2 channel Subject RIV: CE - Biochemistry Impact factor: 2.042, year: 2016

  11. Thalamic abscess caused by a rare pathogen: streptococcus ...

    African Journals Online (AJOL)

    Streptococcus constellatus is a microorganism that lives commensally in the oropharyngeal region, urogenital region, and intestinal tract. However, it can cause infection in patients with certain predisposing factors. Rarely, this microorganism can cause a brain abscess. Thalamic localization of brain abscesses is much rarer ...

  12. Neuroanatomical considerations of isolated hearing loss in thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Nitin Agarwal, M.D.


    Conclusion: Presumably, this neurological deficit was caused by a hypertensive hemorrhage in the posterior right thalamus. The following case and discussion will review the potential neuroanatomical pathways that we suggest could make isolated hearing loss be part of a “thalamic syndrome.”

  13. Effects of Intralaminar Thalamic Stimulation on Language Functions (United States)

    Bhatnagar, Subhash C.; Mandybur, George T.


    Fifteen neurosurgical subjects, who were undergoing thalamic chronic electrode implants as a treatment for dyskinesia and chronic pain, were evaluated on a series of neurolinguistic functions to determine if the stimulation of the centromedianum nucleus of the thalamus affected language and cognitive processing. Analysis of the data revealed that…

  14. Hypertensive thalamic hemorrhage. Clinical symptoms and outcomes in 40 cases

    Energy Technology Data Exchange (ETDEWEB)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime


    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis.

  15. Reduced heat pain thresholds after sad-mood induction are associated with changes in thalamic activity. (United States)

    Wagner, Gerd; Koschke, Mandy; Leuf, Tanja; Schlösser, Ralf; Bär, Karl-Jürgen


    Negative affective states influence pain processing in healthy subjects in terms of augmented pain experience. Furthermore, our previous studies revealed that patients with major depressive disorder showed increased heat pain thresholds on the skin. Potential neurofunctional correlates of this finding were located within the fronto-thalamic network. The aim of the present study was to investigate the neurofunctional underpinnings of the influence of sad mood upon heat pain processing in healthy subjects. For this purpose, we used a combination of the Velten Mood Induction procedure and a piece of music to induce sad affect. Initially we assessed heat pain threshold after successful induction of sad mood outside the MR scanner in Experiment 1. We found a highly significant reduction in heat pain threshold on the left hand and a trend for the right. In Experiment 2, we applied thermal pain stimuli on the left hand (37, 42, and 45 degrees C) in an MRI scanner. Subjects were scanned twice, one group before and after sad-mood induction and another group before and after neutral-mood induction, respectively. Our main finding was a significant group x mood-induction interaction bilaterally in the ventrolateral nucleus of the thalamus indicating a BOLD signal increase after sad-mood induction and a BOLD signal decrease in the control group. We present evidence that induced sad affect leads to reduced heat pain thresholds in healthy subjects. This is probably due to altered lateral thalamic activity, which is potentially associated with changed attentional processes.

  16. High field fMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei

    Directory of Open Access Journals (Sweden)

    Coraline Danielle Metzger


    Full Text Available Thalamocortical loops, connecting functionally segregated, higher order cortical regions and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla.Using an event related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex (CM/PF. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behaviour such as sexual

  17. Gap junctions in developing thalamic and neocortical neuronal networks

    NARCIS (Netherlands)

    Niculescu, Dragos; Lohmann, C.


    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and

  18. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT. (United States)

    Paavo, Maarjaliis; Lee, Winston; Merriam, John; Bearelly, Srilaxmi; Tsang, Stephen; Chang, Stanley; Sparrow, Janet R


    We sought to determine whether information revealed from the reflectance, autofluorescence, and absorption properties of RPE cells situated posterior to reticular pseudodrusen (RPD) could provide insight into the origins and structure of RPD. RPD were studied qualitatively by near-infrared fundus autofluorescence (NIR-AF), short-wavelength fundus autofluorescence (SW-AF), and infrared reflectance (IR-R) images, and the presentation was compared to horizontal and en face spectral domain optical coherence tomographic (SD-OCT) images. Images were acquired from 23 patients (39 eyes) diagnosed with RPD (mean age 80.7 ± 7.1 [SD]; 16 female; 4 Hispanics, 19 non-Hispanic whites). In SW-AF, NIR-AF, and IR-R images, fundus RPD were recognized as interlacing networks of small scale variations in IR-R and fluorescence (SW-AF, NIR-AF) intensities. Darkened foci of RPD colocalized in SW-AF and NIR-AF images, and in SD-OCT images corresponded to disturbances of the interdigitation (IZ) and ellipsoid (EZ) zones and to more pronounced hyperreflective lesions traversing photoreceptor-attributable bands in SD-OCT images. Qualitative assessment of the outer nuclear layer (ONL) revealed thinning as RPD extended radially from the outer to inner retina. In en face OCT, hyperreflective areas in the EZ band correlated topographically with hyporeflective foci at the level of the RPE. The hyperreflective lesions corresponding to RPD in SD-OCT scans are likely indicative of degenerating photoreceptor cells. The darkened foci at positions of RPD in NIR-AF and en face OCT images indicate changes in the RPE monolayer with the reduced NIR-AF and en face OCT signal suggesting a reduction in melanin that could be accounted for by RPE thinning.

  19. Differential diagnosis of bilateral thalamic lesions; Differenzialdiagnose bilateral Thalamuslaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Linn, J.; Brueckmann, H. [Universitaetsklinikum Muenchen (Germany). Abt. fuer Neuroradiologie; Hoffmann, L.A. [Universitaetsklinikum Muenchen (Germany). Inst. fuer Klinische Neuroimmunologie; Danek, A. [Universitaetsklinikum Muenchen (Germany). Klinik und Poliklinik fuer Neurologie


    A multitude of different diseases can result in bilateral thalamic lesions. These include vascular pathologies requiring prompt therapeutic intervention, such as basilar thrombosis or thrombosis of the internal cerebral veins, as well as tumors, infectious or demyelinating diseases, and toxic-metabolic lesions. Therefore, detailed knowledge of the typical radiological findings for the various diseases is essential for determining the correct diagnosis. This review provides a synopsis of the radiological findings for the most important bithalamic lesions and an overview of the literature.

  20. Thalamic volume as a biomarker for disorders of consciousness (United States)

    Rubeaux, Mathieu; Mahalingam, Jamuna Jayashri; Gomez, Francisco; Nelson, Marvin; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Laureys, Steven; Soddu, Andrea; Lepore, Natasha


    Disorders of consciousness (DOC) may be characterized by the degree at which consciousness is impaired, and include for example vegetative state (VS) and minimally conscious state (MCS) patients. Using a reliable marker as a measure of the level of consciousness in such patients is of utmost necessity and importance for their appropriate diagnosis and prognosis. Identification of VS and MCS states based on their behaviors sometimes leads to incorrect inferences due to the influence of a range of factors like motor impairment, fluctuating arousal levels and rapidly habituating responses to name a few.1 The extent of damage in the thalamus, a structure known for its role in arousal regulation, may provide an imaging biomarker to better differentiate between VS and MCS. In this study, we manually segmented the thalamus from T1-weighted brain MRI images in a large cohort of 19 VS and 23 MCS subjects that were examined using the French version of the Coma Recovery Scale Revised (CRS-R).2 This scale is the most trustworthy behavioural diagnosis tool3 for patients with DOC available. The aim was to determine whether a relationship between thalamus volume and consciousness level exists. Results show that total thalamic volume tends to decrease over time after a severe brain injury. Moreover, for subjects in chronic state, the thalamic volume seems to differ with respect to the degree of consciousness that was diagnosed. Finally, for these same chronic patients, the total thalamic volume is varying linearly as a function of the CRS-R score obtained, indicating that thalamic volume may be used as a biomarker to measure the level of consciousness.

  1. Injury of the mammillothalamic tract in patients with thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Hyeok Gyu eKwon


    Full Text Available Objective:Injury of the mammillothalamic tract(MTT has been suggested as one of the plausible pathogenic mechanisms of memory impairment in patients with thalamic hemorrhage; however, it has not been clearly demonstrated so far. We attempted to investigate whether injury of the MTT documented by diffusion tensor tractography(DTT following thalamic hemorrhage correlates with cognitive impairment. Methods:We recruited 22 patients with a thalamic hemorrhage and 20 control subjects. MTTs were reconstructed using the probabilistic tractography method. Patients were classified into two subgroups: Reconstructed group-patients whose MTT was reconstructed in the affected hemisphere and Non-reconstructed group-patients whose MTT was not reconstructed.Results:MTT was reconstructed in five(22.7%,Reconstructed group patients in the affected hemisphere and was not reconstructed in the remaining 17 patients(77.3%,Non-reconstructed group. In addition, the MTT was not reconstructed even in the unaffected hemisphere in four patients(23.5% in Non-reconstructed group. Fractional anisotropy and mean diffusivity values of the affected hemisphere in Reconstructed group also did not show significant differences from those in the unaffected hemisphere of Reconstructed group and the control group(p>0.05. However, the tract volume of the affected hemisphere in Reconstructed group was significantly lower than that of the unaffected hemisphere in Reconstructed group and the control group(pConclusion:A large portion of patients with thalamic hemorrhage appeared to suffer severe injury of the ipsi-lesional MTT(77.3% and 18.2% of these patients appeared to suffer severe injury even in the contra-lesional MTT. In addition, the remaining 22.7% of patients who had preserved integrity of the ipsi-lesional MTT appeared to suffer partial injury of the ipsi-lesional MTT.

  2. Decrease of thalamic gray matter following limb amputation. (United States)

    Draganski, B; Moser, T; Lummel, N; Gänssbauer, S; Bogdahn, U; Haas, F; May, A


    Modern neuroscience has elucidated general mechanisms underlying the functional plasticity of the adult mammalian brain after limb deafferentation. However, little is known about possible structural alterations following amputation and chronic loss of afferent input in humans. Using voxel-based morphometry (VBM), based on high-resolution magnetic resonance images, we investigated the brain structure of 28 volunteers with unilateral limb amputation and compared them to healthy controls. Subjects with limb amputation exhibited a decrease in gray matter of the posterolateral thalamus contralateral to the side of the amputation. The thalamic gray matter differences were positively correlated with the time span after the amputation but not with the frequency or magnitude of coexisting phantom pain. Phantom limb pain was unrelated to thalamic structural variations, but was positively correlated to a decrease in brain areas related to the processing of pain. No gray matter increase was detected. The unilateral thalamic differences may reflect a structural correlate of the loss of afferent input as a secondary change following deafferentation.

  3. The nature and function of fibroblastoid reticular cells in the hemopoietic stroma

    NARCIS (Netherlands)

    A.H. Piersma (Aldert)


    textabstractThe experimental work of this thesis, described in the appendix papers, is aimed at characterization of the nature and function of fibroblastic reticular cells in the hemopoietic stroma. A number of experimental models was employed to elucidate different aspects of these cells. In the

  4. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation. (United States)

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi


    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus. (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat


    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  6. A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei (United States)

    May, Paul J.; Warren, Susan; Bohlen, Martin O.; Barnerssoi, Miriam


    The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger–Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger–Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger–Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger–Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space. PMID:26615603

  7. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. (United States)

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup


    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The α2δ subunit and absence epilepsy: Beyond calcium channels?

    NARCIS (Netherlands)

    Celli, R.; Santolini, I.; Guiducci, M.; Luijtelaar, E.L.J.M. van; Parisi, P.; Striano, P.; Gradini, R.; Battaglia, G.; Ngomba, R.T.; Nicoletti, F.


    Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the

  9. Transient Relay Function of Midline Thalamic Nuclei during Long-Term Memory Consolidation in Humans (United States)

    Thielen, Jan-Willem; Takashima, Atsuko; Rutters, Femke; Tendolkar, Indira; Fernández, Guillén


    To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a…

  10. Clinical analysis of electrolyte imbalance in thalamic hemorrhage patients within 24 h after admission. (United States)

    Guo, Zhenwei; Wang, Tianzhu; Zhang, John H; Qin, Xinyue


    We have observed that patients with thalamic hemorrhage are more likely to have electrolyte disturbances than those with non-thalamic hemorrhage. Here, we are attempting to provide some comprehensive information on electrolyte disturbances in patients with thalamic hemorrhage. Retrospectively, 67 patients with thalamic hemorrhage (TH group) and 256 with non-thalamic hemorrhage (N-TH group) were found from computer tomography images. Electrolytes of these patients were tested within 24 h after hospitalization. Chi-square test was used to compare the incidence of electrolyte imbalance. Serum K+ levels were found to be abnormal in 37.31% of the patients in the TH group and 24.21% in the N-TH group, and the difference was significant (pelectrolyte disturbances (42.50%) was higher than that of patients with normal electrolyte levels (14.81%, pelectrolyte imbalance is higher in patients with thalamic hemorrhage than in those with non-thalamic hemorrhage. The reason may be partly related to the location of the hemorrhage. Electrolyte disturbance may contribute to the higher mortality of patients with thalamic hemorrhage.

  11. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor

    NARCIS (Netherlands)

    Limousin, P.; Speelman, J. D.; Gielen, F.; Janssens, M.


    Thalamic stimulation has been proposed to treat disabling tremor. The aims of this multicentre study were to evaluate the efficacy and the morbidity of thalamic stimulation in a large number of patients with parkinsonian or essential tremor. One hundred and eleven patients were included in the study

  12. The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study. (United States)

    Jang, Sung Ho; Kwon, Hyeok Gyu


    The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. Precise evaluation of the ARAS is important for diagnosis and management of patients with impaired consciousness. In the current study, we attempted to reconstruct the portion of the ARAS from the pontine reticular formation (RF) to the hypothalamus in normal subjects, using diffusion tensor imaging (DTI). A total of 31 healthy subjects were recruited for this study. DTI scanning was performed using 1.5-T, and the ARAS from the pontine RF to the hypothalamus was reconstructed. Values of fractional anisotropy, mean diffusivity, and tract volume of the ARAS from the pontine RF to the hypothalamus were measured. In all subjects, the ARAS from the pontine RF to the hypothalamus originated from the RF at the level of the mid-pons, where the trigeminal nerve could be seen, ascended through the periaqueductal gray matter of the midbrain anterolaterally to the anterior commissure level, and then terminated into the hypothalamus. No significant differences in DTI parameters were observed between the left and right hemispheres and between males and females (phypothalamus in normal subjects using DTI. We believe that the reconstruction methodology and the results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. (United States)

    Crosson, Bruce


    Recent literature on thalamic aphasia and thalamic activity during neuroimaging is selectively reviewed followed by a consideration of recent anatomic and physiological findings regarding thalamic structure and functions. It is concluded that four related corticothalamic and/or thalamocortical mechanisms impact language processing: (1) selective engagement of task-relevant cortical areas in a heightened state of responsiveness in part through the nucleus reticularis (NR), (2) passing information from one cortical area to another through corticothalamo-cortical mechanisms, (3) sharpening the focus on task-relevant information through corticothalamo-cortical feedback mechanisms, and (4) selection of one language unit over another in the expression of a concept, accomplished in concert with basal ganglia loops. The relationship and interaction of these mechanisms is discussed and integrated with thalamic aphasia and neuroimaging data into a theory of thalamic functions in language. Published by Elsevier Inc.

  14. Resting state functional thalamic connectivity abnormalities in patients with post-stroke sleep apnoea: a pilot case-control study. (United States)

    Sacchetti, M L; Di Mascio, M T; Tinelli, E; Mainero, C; Russo, G; Fiorelli, M; Calistri, V; de Lena, C; Minni, A; Caramia, F


    Sleep apnoea is common after stroke, and has adverse effects on the clinical outcome of affected cases. Its pathophysiological mechanisms are only partially known. Increases in brain connectivity after stroke might influence networks involved in arousal modulation and breathing control. The aim of this study was to investigate the resting state functional MRI thalamic hyper-connectivity of stroke patients affected by sleep apnoea (SA) with respect to cases not affected, and to healthy controls (HC). A series of stabilized strokes were submitted to 3T resting state functional MRI imaging and full polysomnography. The ventral-posterior-lateral thalamic nucleus was used as seed. At the between groups comparison analysis, in SA cases versus HC, the regions significantly hyper-connected with the seed were those encoding noxious threats (frontal eye field, somatosensory association, secondary visual cortices). Comparisons between SA cases versus those without SA revealed in the former group significantly increased connectivity with regions modulating the response to stimuli independently to their potentiality of threat (prefrontal, primary and somatosensory association, superolateral and medial-inferior temporal, associative and secondary occipital ones). Further significantly functionally hyper-connections were documented with regions involved also in the modulation of breathing during sleep (pons, midbrain, cerebellum, posterior cingulate cortices), and in the modulation of breathing response to chemical variations (anterior, posterior and para-hippocampal cingulate cortices). Our preliminary data support the presence of functional hyper connectivity in thalamic circuits modulating sensorial stimuli, in patients with post-stroke sleep apnoea, possibly influencing both their arousal ability and breathing modulation during sleep.

  15. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat. (United States)

    Perkins, Eddie; May, Paul J; Warren, Susan


    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.


    Naysan, Jonathan; Jung, Jesse J; Dansingani, Kunal K; Balaratnasingam, Chandrakumar; Freund, K Bailey


    To report the association of pure type 2 neovascularization (NV) in age-related macular degeneration occurring almost exclusively in patients with reticular pseudodrusen. An observational retrospective cohort study of all eyes receiving antivascular endothelial growth factor therapy for newly diagnosed neovascular age-related macular degeneration by a single practitioner over a 6-year period. Only patients with treatment-naive, pure type 2 NV who also had either pre-neovascular imaging of the study eye or imaging of a nonneovascular fellow eye available to determine baseline characteristics including drusen type and choroidal thickness were incuded. Of 694 patients treated for neovascular age-related macular degeneration, only 8 met the inclusion criteria with pure type 2 NV. Of these, 7 (88%) had exclusively reticular pseudodrusen (5 in the nonneovascular fellow eye, 2 in the study eye before developing NV). Six (75%) patients in the affected neovascular eye and 6 (75%) in the fellow nonneovascular eye had choroidal thickness age-related macular degeneration, occurring almost exclusively in patients with reticular pseudodrusen and thin choroids.

  17. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei. (United States)

    Butler, William N; Taube, Jeffrey S


    The head direction (HD) circuit is a complex interconnected network of brain regions ranging from the brain stem to the cortex. Recent work found that HD cells corecorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high-frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar preferred firing directions. Here, we demonstrate that the same high-frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were corecorded bilaterally, we observed the same high-frequency (~150- to 200-Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN. NEW & NOTEWORTHY This study used bilateral recording electrodes to examine whether head direction cells recorded simultaneously in both the left and right thalamus show coordinated firing. Cross-correlations of the cells' spike trains revealed a high-frequency oscillatory pattern similar to that seen in cross-correlations between pairs

  18. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.


    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  19. Isolated thalamic agraphia with impaired grapheme formation and micrographia. (United States)

    Sakurai, Yasuhisa; Yoshida, Yukinaga; Sato, Koki; Sugimoto, Izumi; Mannen, Toru


    Two patients with isolated thalamic agraphia are described. Both showed kanji (Japanese morphograms) agraphia due to impaired character recall, grapheme deformity and micrographia (progressive reduction in character size during writing) after a lesion that involved the ventral lateral and ventroposterolateral nuclei. Single photon emission computed tomography with a (99m)Tc-ethylcysteinate dimer revealed hypoperfusion in the left precentral gyrus (Brodmann Area 6) and anterior supramarginal gyrus in both. Six months later, the extent of blood flow reduction decreased in the supramarginal gyrus in both patients and the precentral gyrus in patient 1. By this time, the writing impairment improved to nearly the normal range. Our study suggests that kanji agraphia (corresponding to lexical agraphia in Western countries) with poor grapheme formation and micrographia arises from a lesion in the ventral lateral and ventroposterolateral nuclei in the left thalamus. The accompaniment of poor grapheme formation and micrographia may reflect disruption of the cortico-subcortical motor circuit involving the putamen, thalamus, premotor cortex and sensorimotor cortex. It is also suggested that multiple cortical sites can be a target for secondary dysfunction that yields agraphia in a thalamic lesion, and that the recovery of reduced cortical blood flow does not always proceed in parallel with that of agraphia.

  20. Thalamocortical projections of the anteroventral thalamic nucleus in the rabbit. (United States)

    Shibata, Hideshi; Yoshiko, Honda


    The anterior thalamic nuclei are one of the regions that play critical roles in behavioral learning and memory functions. A part of the anterior thalamic nuclei, the anteroventral nucleus (AV) is well developed and differentiated into the parvocellular (AVp) and magnocellular (AVm) division in the rabbit. The AV is crucial for learning discriminative avoidance conditioning. Although communication between the AV and cortex is considered important in learning, little is known about the neural connections of the AV in the rabbit. Thus, this study used anterograde tracer biotinylated dextran amine and the retrograde tracer cholera toxin B subunit to examine the organization of the thalamocortical projections of the AV. Our data show that each division of the AV provides a unique set of projections to restricted regions and layers of the retrosplenial cortex and presubiculum. In addition, the AVp projects to layers I and IV of retrosplenial areas 29 and 30 and to layers I and VI of the presubiculum. The dorsolateral AVm projects to layers I and IV of area 29 and to layers I, III, and V of the presubiculum. However, the ventromedial AVm only projects to layer I of area 29. These projections are generally organized such that the rostral-to-caudal axis of the AV corresponds to the caudal-to-rostral axis of the retrosplenial cortex and to the temporal-to-septal axis of the presubiculum. These findings suggest distinct functional roles played by each division of the AV in the learning and memory functions. © 2014 Wiley Periodicals, Inc.

  1. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis

    Directory of Open Access Journals (Sweden)

    Rei Ogawa


    Full Text Available Keloids and hypertrophic scars are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scars are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scars contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scars suggests that, rather than being skin tumors, keloids and hypertrophic scars are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scars. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scars merely reflect differences in the intensity, frequency

  2. Anatomical Variations in the Posterior Circle of Willis and Vascular Pathologies in Isolated Unilateral Thalamic Infarction. (United States)

    Goerlitz, Johannes; Wenz, Holger; Al-Zghloul, Mansour; Kerl, Hans U; Groden, Christoph; Förster, Alex


    To characterize relations between configurations of the posterior part of the Circle of Willis (CoW) and the occurrence of unilateral thalamic infarction. From a magnetic resonance imaging report database, we identified and analyzed 111 patients with acute isolated unilateral thalamic infarction on diffusion-weighted imaging (DWI). Vascular pathologies were noted on magnetic resonance angiography (MRA) and the diameter of the posterior communicating artery (PComA) and the P1 and P2 segments of the posterior cerebral artery determined. Most infarctions were observed in the territory of the inferolateral arteries (70.2%), followed by the paramedian (16.3%), tuberothalamic (8.7%), and posterior choroidal arteries (4.8%). Relevant vascular pathologies included stenosis of the basilar artery (4.5%), P1 segment stenosis (4.5%)/occlusion (.9%), and P2 segment stenosis (14.4%)/occlusion (4.5%). Paramedian thalamic infarction was associated with ipsilateral P1 segment hypoplasia/absence (P < .001); tuberothalamic infarction with ipsilateral PComA hypoplasia/absence (P = .08). Furthermore, the diameter of the relevant CoW segment was smaller in patients with ipsilateral thalamic infarction. Assessment of CoW configuration on MRA may be helpful to understand the appearance of unilateral thalamic stroke independent from stroke etiology. A smaller diameter of the relevant CoW segment might be a risk factor for ipsilateral thalamic stroke in the corresponding thalamic vascular territory. Copyright © 2015 by the American Society of Neuroimaging.

  3. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness. (United States)

    Bhattacharya, Basabdatta S; Patterson, Cameron; Galluppi, Francesco; Durrant, Simon J; Furber, Steve


    We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake transition. The scale of the model is minimized for simplicity in this proof-of-concept study; thus the total number of spiking neurons is ≈1000 and represents a "mini-column" of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG power spectra characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity-the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  4. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study towards modelling sleep and wakefulness

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen Bhattacharya


    Full Text Available We present a preliminary study of a thalamo-cortico-thalamic (TCT implementation on SpiNNaker (Spiking Neural Network architecture, a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behaviour similar to Electroencephalogram (EEG time and power-spectra signatures in sleep-wake transition. The scale of the model is minimised for simplicity in this proof-of-concept study; thus the total number of spiking neurons is approximately 1000 and represents a `mini-column' of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG time series characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity---the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  5. Effects of donepezil on behavioural manifestations of thalamic infarction: a single case observation

    Directory of Open Access Journals (Sweden)

    Rodrigo eRiveros


    Full Text Available Objective: To examine the effect of donepezil for the treatment of cognitive and behavioural disorders associated with thalamic lesions in a 45 years old male who suffered an infarct in the left thalamus. Background: Recent studies suggest that donepezil may improve executive functions impairments due to subcortical ischemic lesionsMethod: The crossover effects of donepezil were analyzed in a single case of thalamic infarction with cognitive and behavioural alterations. Results: Significant behavioural modifications related to improved performances in executive functions were observed with the treatment. Conclusions: The results suggest that donepezil may have significant effect on executive functions that can alter behavioural outcomes after thalamic infarctions

  6. Severe personality changes after unilateral left paramedian thalamic infarct. (United States)

    Fukutake, Toshio; Akada, Koichi; Ito, Shoichi; Okuda, Tomoko; Ueki, Yoshihiro


    Personality changes are not uncommon after paramedian thalamic infarction, but usually bilateral or relatively large lesions, often complicated by other neurological or neuropsychological deficits, are present. 'Pure' cases of unilateral lesions are extremely rare. We report that a right-handed, 48-year-old man, who was hypertensive and diabetic but had no prior psychiatric history, developed severe personality changes and a frontal-like syndrome after recovery from acute-onset impairment of consciousness at the age of 43. Other neurological and neuropsychological disturbances, especially verbal and visual amnesia, were unremarkable. MRI showed a very small infarct in the left paramedian area of the thalamus, mainly involving the dorsomedial nucleus. Copyright 2002 S. Karger AG, Basel

  7. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn


    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  8. The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: an fMRI study. (United States)

    Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris


    The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: a retrograde horseradish peroxidase labeling study. (United States)

    González, M J; Manso, M J; Anadón, R


    The octavolateral area of lampreys, which receives primary fibers from the octaval and lateral line nerves, is involved in the premotor organization of body movements through secondary projections to the reticular formation. Here, the typology of neurons of the three octavolateral nuclei (ventral, medial, and dorsal) that putatively project to the middle and posterior rhombencephalic reticular nuclei were studied by retrograde transport of horseradish peroxidase (HRP) applied to these reticular nuclei. Several types of neurons were labeled in the ventral nucleus, both ipsilateral and contralateral to the site of HRP application. Some of these neurons showed a rather simple morphology (octavomotor neurons, monopolar cells), but most had more- or less-branched dendrites that were associated with one, or several, fields of terminal fibers in the octavolateral area. Unlike those of the ventral nucleus, labeled neurons of the medial nucleus were homogeneous in appearance (mostly pear-shaped). The dorsal nucleus was scarcely developed in larvae, as judged from the very simple and small labeled cells. The presence of terminal or "en-passant" boutons of secondary octavolateral fibers in the reticular area and the commissural nature of these fibers were also investigated by means of application of HRP or indocarbocyanine dye to the octavolateral nuclei. In addition, neurons of other alar plate nuclei that were labeled by the HRP application to the reticular nuclei (trigeminal descending root nucleus and solitary nucleus) were also characterized. The functional significance of these results is discussed.

  10. Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing. (United States)

    Woodley, David T


    Human skin wounds heal largely by reparative wound healing rather than regenerative wound healing. Human skin wounds heal with scarring and without pilosebaceous units or other appendages. Dermal fibroblasts come from 2 distinct lineages of cells that have distinct cell markers and, more importantly, distinct functional abilities. Human skin wound healing largely involves the dermal fibroblast lineage from the reticular dermis and not the papillary dermis. If scientists could find a way to stimulate the dermal fibroblast lineages from the papillary dermis in early wound healing, perhaps human skin wounds could heal without scarring and with skin appendages. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Thalamic Stroke and Associated Behavior Disorders. Possibilities for Integral Management: Case Report

    National Research Council Canada - National Science Library

    Camargo, Loida Camargo; Sánchez, Katherine Parra


    .... Case report of a 56-year male patient with thalamic ischemia. The intervention with integral strategies involving pharmacological management and cognitive interventions was decisive for the satisfactory evolution of the patient...

  12. Prenatal thalamic waves regulate cortical area size prior to sensory processing (United States)

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina


    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  13. Characteristics of thalamic local field potentials in patients with disorders of consciousness. (United States)

    Huang, Yongzhi; He, Jianghong; Green, Alexander L; Aziz, Tipu Z; Stein, John F; Wang, Shouyan


    A functioning thalamus is essential for treatment of patients with disorders of consciousness (DOC) using deep brain stimulation (DBS). This work aims to identify the potential biomarkers related to consciousness from the thalamic deep brain local field potentials (LFPs) in DOC patients. The frequency features of central thalamic LFPs were characterized with spectral analysis. The features were further compared to those of LFPs from the ventroposterior lateral nucleus of the thalamus (VPL) in patients with pain. There are several distinct characteristics of thalamic LFPs found in patients with DOC. The most important feature is the oscillation around 10Hz which could be relevant to the existence of residual consciousness, whereas high power below 8Hz seemed to be associated with loss of consciousness. The invasive deep brain recording tool opens a unique way to explore the brain function in consciousness, awareness and alertness and clarify the potential mechanisms of thalamic stimulation in DOC.

  14. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor


    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z


    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  15. Thalamic noradrenaline in Parkinson's disease: deficits suggest role in motor and non-motor symptoms. (United States)

    Pifl, Christian; Kish, Stephen J; Hornykiewicz, Oleh


    The thalamus occupies a pivotal position within the corticobasal ganglia-cortical circuits. In Parkinson's disease (PD), the thalamus exhibits pathological neuronal discharge patterns, foremost increased bursting and oscillatory activity, which are thought to perturb the faithful transfer of basal ganglia impulse flow to the cortex. Analogous abnormal thalamic discharge patterns develop in animals with experimentally reduced thalamic noradrenaline; conversely, added to thalamic neuronal preparations, noradrenaline exhibits marked antioscillatory and antibursting activity. Our study is based on this experimentally established link between noradrenaline and the quality of thalamic neuronal discharges. We analyzed 14 thalamic nuclei from all functionally relevant territories of 9 patients with PD and 8 controls, and measured noradrenaline with high-performance liquid chromatography with electrochemical detection. In PD, noradrenaline was profoundly reduced in all nuclei of the motor (pallidonigral and cerebellar) thalamus (ventroanterior: -86%, P = .0011; ventrolateral oral: -87%, P = .0010; ventrolateral caudal: -89%, P = .0014): Also, marked noradrenaline losses, ranging from 68% to 91% of controls, were found in other thalamic territories, including associative, limbic and intralaminar regions; the primary sensory regions were only mildly affected. The marked noradrenergic deafferentiation of the thalamus discloses a strategically located noradrenergic component in the overall pathophysiology of PD, suggesting a role in the complex mechanisms involved with the genesis of the motor and non-motor symptoms. Our study thus significantly contributes to the knowledge of the extrastriatal nondopaminergic mechanisms of PD with direct relevance to treatment of this disorder. Copyright © 2012 Movement Disorder Society.

  16. Changes in Activity of the Same Thalamic Neurons to Repeated Nociception in Behaving Mice. (United States)

    Huh, Yeowool; Cho, Jeiwon


    The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.

  17. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks. (United States)

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S


    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  18. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. (United States)

    Dal Pra, Ilaria; Freddi, Giuliano; Minic, Jasminka; Chiarini, Anna; Armato, Ubaldo


    Biologically tolerated biomaterials are the focus of intense research. In this work, we examined the biocompatibility of three-dimensional (3D) nonwovens of sericin-deprived, Bombyx mori silk fibroin (SF) in beta-sheet form implanted into the subcutaneous tissue of C57BL6 mice, using sham-operated mice as controls. Both groups of mice similarly healed with no residual problem. Macroarray analysis showed that an early (day 3) transient expression of macrophage migration inhibitory factor (MIF) mRNA, but not of the mRNAs encoding for 22 additional proinflammatory cytokines, occurred solely at SF-grafted places, where no remarkable infiltration of macrophages or lymphocytes subsequently happened. Even an enduring moderate increase in total cytokeratins without epidermal hyperkeratosis and a transient (days 10-15) upsurge of vimentin occurred exclusively at SF-grafted sites, whose content of collagen type-I, after a delayed (day 15) rise, ultimately fell considerably under that proper of sham-operated places. By day 180, the interstices amid and surfaces of the SF chords, which had not been appreciably biodegraded, were crammed with a newly produced tissue histologically akin to a vascularized reticular connective tissue, while some macrophages but no lymphocytic infiltrates or fibrous capsules occurred in the adjoining tissues. Therefore, SF nonwovens may be excellent candidates for clinical applications since they both enjoy a long-lasting biocompatibility, inducing a quite mild foreign body response, but no fibrosis, and efficiently guide reticular connective tissue engineering.

  19. A simplified technique to determine intraparticle diffusivity of macro-reticular resins

    Directory of Open Access Journals (Sweden)

    Takashi Kawakita


    Full Text Available Both resins and activated carbons are commonly used as adsorbents in water and wastewater treatment. In general, intraparticle diffusion mechanisms within macro reticular resin particles (such as XAD-2000 are different from those in activated carbon particles. Currently, completely mixed batch reactor (CMBR technique can be used to determine the intraparticle diffusivity for phenolic compounds adsorbed onto activated carbon systems. However, the technology cannot determine the intraparticle diffusivity accurately if the fluid-film resistance is significant, such as synthetic macro-reticular resins. Therefore, this study develops a technique to determine the intraparticle diffusivities of XAD-2000 resin. This paper characterized the concentration decay curves of para-nitrophenol in CMBR to determine effective pore diffusivity (DP of the resin. The obtained mean and standard deviation of DP are about 1.1 × 10−5 and 3.2 × 10−6 (cm2 s−1, respectively. The technology developed in this study has the advantages of significant chemical saving and easy operation.

  20. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. (United States)

    Ueda-Arakawa, Naoko; Ooto, Sotaro; Tsujikawa, Akitaka; Yamashiro, Kenji; Oishi, Akio; Yoshimura, Nagahisa


    To identify reticular pseudodrusen (RPD) in age-related macular degeneration using multiple imaging modalities, including the blue channel image of fundus photography, infrared reflectance (IR), fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT), and to compare the sensitivities and specificities of these modalities for detecting RPD. This study included 220 eyes from 114 patients with newly diagnosed age-related macular degeneration. Patients underwent fundus photography, IR, fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and SD-OCT in both eyes. Eyes were diagnosed with RPD if they showed reticular patterns on at least two of the seven imaging modalities. Thirty-seven eyes were diagnosed with RPD. However, SD-OCT and IR had the highest sensitivity (94.6%), and at the same time, SD-OCT had a high specificity (98.4%). The blue channel of color fundus photography, confocal blue reflectance, and indocyanine green angiography had a specificity of 100% but had lower sensitivity than that of SD-OCT and IR. For detecting RPD, IR and SD-OCT had the highest sensitivity. Although SD-OCT had the highest sensitivity and specificity, RPD detection should be confirmed using more than one modality for increased accuracy.

  1. Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players. (United States)

    Schultz, Vivian; Stern, Robert A; Tripodis, Yorghos; Stamm, Julie; Wrobel, Pawel; Lepage, Christian; Weir, Isabelle; Guenette, Jeffrey P; Chua, Alicia; Alosco, Michael L; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine E; Coleman, Michael J; Lin, Alexander P; Pasternak, Ofer; Shenton, Martha E; Koerte, Inga K


    Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.

  2. Thalamocortical projections of the anterodorsal thalamic nucleus in the rabbit. (United States)

    Shibata, Hideshi; Honda, Yoshiko


    The anterior thalamic nuclei consist of the anterodorsal (AD), anteroventral, and anteromedial nuclei, each of which are highly differentiated and may contribute to different aspects of various cognitive and memory functions. In particular, the AD is unique in that it is implicated in learning at the earliest stage of discriminative avoidance conditioning in the rabbit. To better understand the functional roles played by the AD in memory and learning processes, we analyzed the organization of thalamocortical projections of the AD in the rabbit, using the anterograde tracer biotinylated dextran amine and the retrograde tracer cholera toxin subunit B. The data show that the AD provides strong projections to layers I and IV of area 30 and to layers I, III, IV, and VI of area 29 in the retrosplenial cortex, and to layers I and III-VI of the presubiculum. The projections to the retrosplenial cortex are organized such that the rostral and caudal AD, respectively, project to the caudal and rostral retrosplenial cortex. In contrast, the projections to the presubiculum are not organized topographically. Other minor projections were also observed in the parasubiculum and part of the medial entorhinal area. These results indicate that the AD provides strong projections to the retrosplenial cortex and presubiculum, suggesting that these projections constitute essential pathways to these cortical regions for transmitting mnemonic information, such as a novel conditioning stimulus during the initial stage of avoidance learning. Copyright © 2012 Wiley Periodicals, Inc.

  3. Getting signals into the brain: visual prosthetics through thalamic microstimulation (United States)

    Pezaris, John S.; Eskandar, Emad N.


    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface. PMID:19569894

  4. A case of thalamic syndrome: somatosensory influences on visual orientation (United States)

    Anastasopoulos, D; Bronstein, A


    The ability to set a straight line to the perceived gravitational vertical (subjective visual vertical, SVV) was investigated in a 21 year old woman with long standing left hemihypaesthesia due to a posterior thalamic infarct. The putative structures involved were the somatosensory and vestibular thalamus (VPL, VPM) and associative (pulvinar) thalamus. The SVV was normal when seated upright. When lying on her right side, line settings deviated about 17° to the right, which is the normal A-effect. When lying on the hypaesthetic side the mean SVV remained close to true vertical—that is, the A-effect was absent, and there was a large increase in variability of the SVV settings. The findings support the view that the body tilt-induced bias of the SVV (A-effect) is largely mediated by somatosensory afferents. The finding that the A-effect was absent only when lying on the hypaesthetic side suggests that, during body tilt, the somatosensory system participates in visuogravitational orientation.


  5. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D


    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  6. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice. (United States)

    Ohlemiller, Kevin K; Kaur, Tejbeer; Warchol, Mark E; Withnell, Robert H


    The endocochlear potential (EP) provides part of the electrochemical drive for sound-driven currents through cochlear hair cells. Intense noise exposure (110 dB SPL, 2 h) differentially affects the EP in three inbred mouse strains (C57BL/6 [B6], CBA/J [CBA], BALB/cJ [BALB]) (Ohlemiller and Gagnon, 2007, Hearing Research 224:34-50; Ohlemiller et al., 2011, JARO 12:45-58). At least for mice older than 3 mos, B6 mice are unaffected, CBA mice show temporary EP reduction, and BALB mice may show temporary or permanent EP reduction. EP reduction was well correlated with histological metrics for injury to stria vascularis and spiral ligament, and little evidence was found for holes or tears in the reticular lamina that might 'short out' the EP. Thus we suggested that the genes and processes that underlie the strain EP differences primarily impact cochlear lateral wall, not the organ of Corti. Our previous work did not test the range of noise exposure conditions over which strain differences apply. It therefore remained possible that the relation between exposure severity and acute EP reduction simply has a higher exposure threshold in B6 mice compared to CBA and BALB. We also did not test for age dependence. It is well established that young adult animals are especially vulnerable to noise-induced permanent threshold shifts (NIPTS). It is unknown, however, whether heightened vulnerability of the lateral wall contributes to this condition. The present study extends our previous work to multiple noise exposure levels and durations, and explicitly compares young adult (6-7 wks) and older mice (>4 mos). We find that the exposure level-versus-acute EP relation is dramatically strain-dependent, such that B6 mice widely diverge from both CBA and BALB. For all three strains, however, acute EP reduction is greater in young mice. Above 110 dB SPL, all mice exhibited rapid and severe EP reduction that is likely related to tearing of the reticular lamina. By contrast, EP

  7. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)


    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  8. [Thalamic dementia due to infarct of the left thalamus and genum of the right internal capsule]. (United States)

    Porta-Etessam, J; Martínez-Salio, A; Berbel, A; Benito-León, J; García-Muñoz, A; Kesler, P; Mateo, S

    Thalamic dementia is the clinical consequence of a disorder of both thalami. It is generally secondary to bilateral paramedial thalamic infarcts due to disorders of small blood vessels or cardioembolism. We report a case of dementia of acute onset involving the left thalamus and the genum of the right internal capsule. A 33 year old man, HIV positive, category B2, admitted to hospital for tuberculous meningitis presented with the acute onset of somnolence, followed by marked bradypsychism, personality changes, marked disorder of executive explicit memory without associated praxic, gnosic or language disorders. Ocular motility remained normal. There was left central facial paralysis with inverse emotive voluntary dissociation. The other cranial nerves were normal. There was left hemiparesia with extensor plantar reflex. No other alterations. Cerebral MR imaging was compatible with paramedial infarcts of the left thalamus and genum of the right internal capsule. Thalamic dementia generally occurs in bilateral paramedian thalamic disorders. There are cases of disorders of executive memory secondary to infarcts of the genum of the internal capsule due to interruption of the thalamotemporal pathways and a contralateral paramedial thalamic lesion.

  9. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing. (United States)

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian


    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates. (United States)

    Goetz, Laurent; Piallat, Brigitte; Bhattacharjee, Manik; Mathieu, Hervé; David, Olivier; Chabardès, Stéphan


    The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs. Copyright © 2016 the authors 0270-6474/16/364917-13$15.00/0.

  11. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates (United States)

    Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.


    The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298

  12. Accelerated forgetting of contextual details due to focal medio-dorsal thalamic lesion

    Directory of Open Access Journals (Sweden)

    Sicong eTu


    Full Text Available Effects of thalamic nuclei damage and related white matter tracts on memory performance are still debated. This is particularly evident for the medio-dorsal thalamus which has been less clear in predicting amnesia than anterior thalamus changes. The current study addresses this issue by assessing 7 thalamic stroke patients with consistent unilateral lesions focal to the left medio-dorsal nuclei for immediate and delayed memory performance on standard visual and verbal tests of anterograde memory, and over the long-term (> 24 hrs on an object-location associative memory task. Thalamic patients showed selective impairment to delayed recall, but intact recognition memory. Patients also showed accelerated forgetting of contextual information after a 24 hour delay, compared to controls. Importantly, the mammillothalamic tract was intact in all patients, which suggests a role for the medio-dorsal nuclei in recall and early consolidation memory processes.

  13. Frontotemporal dementia with severe thalamic involvement : a clinical and neuropathological study

    Directory of Open Access Journals (Sweden)

    Radanovic Márcia


    Full Text Available Frontotemporal dementia (FTD is the third-leading cause of cortical dementia after Alzheimer's disease and Lewy body dementia, and is characterized by a dementia where behavioral disturbances are prominent and appear early in the course of the disease. We report the case of a 58 year-old man affected by dementia with behavioral disturbances, in addition to rigid-hypokinetic and a lower motor neuron syndrome that were present at later stages of the illness. Neuroimaging studies showed frontotemporal atrophy. Neuropathological studies revealed intense thalamic neuronal loss and astrocytic gliosis, as well as moderate frontotemporal neuronal loss, astrocytosis and spongiform degeneration. Thalamic degeneration has previously been described among the wide group of neuropathological features of FTD. The aim of the present study is to show the clinical and neuropathological aspects of thalamic degeneration in FTD, along with its role in behavioral disturbances, a common finding in this condition.

  14. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. (United States)

    Dumont, Julie R; Amin, Eman; Aggleton, John P


    To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites. © 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Lucid dreams, an atypical sleep disturbance in anterior and mediodorsal thalamic strokes. (United States)

    Sagnier, S; Coulon, P; Chaufton, C; Poli, M; Debruxelles, S; Renou, P; Rouanet, F; Olindo, S; Sibon, I


    Cognitive, affective, and behavioural disturbances are commonly reported following thalamic strokes. Conversely, sleep disorders are rarely reported in this context. Herein, we report the cases of two young patients admitted for an ischemic stroke located in the territories of the left pre-mammillary and paramedian arteries. Together with aphasia, memory complaint, impaired attention and executive functions, they reported lucid dreams with catastrophic content or conflicting situations. Lucid dreams are an atypical presentation in thalamic strokes. These cases enlarge the clinical spectrum of sleep-wake disturbances potentially observed after an acute cerebrovascular event. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Cholinergic mechanisms in canine narcolepsy--I. Modulation of cataplexy via local drug administration into the pontine reticular formation. (United States)

    Reid, M S; Tafti, M; Geary, J N; Nishino, S; Siegel, J M; Dement, W C; Mignot, E


    Cataplexy in the narcoleptic canine has been shown to increase after systemic administration of cholinergic agonists. Furthermore, the number of cholinergic receptors in the pontine reticular formation of narcoleptic canines is significantly elevated. In the present study we have investigated the effects of cholinergic drugs administered directly into the pontine reticular formation on cataplexy, as defined by brief episodes of hypotonia induced by emotions, in narcoleptic canines. Carbachol and atropine were perfused through microdialysis probes implanted bilaterally in the pontine reticular formation of freely moving, narcoleptic and control Doberman pinschers. Cataplexy was quantified using the Food-Elicited Cataplexy Test, and analysed using recordings of electroencephalogram, electrooculogram and electromyogram. Cataplexy was characterized by a desynchronized electroencephalogram and a drop in electromyogram and electrooculogram activity. In narcoleptic canines, both unilateral and bilateral carbachol (10(-5) to 10(-3) M) produced a dose-dependent increase in cataplexy, which resulted in complete muscle tone suppression at the highest concentration. In control canines, neither bilateral nor unilateral carbachol (10(-5) to 10(-3) M) produced cataplexy, although bilateral carbachol, did produce muscle atonia at the highest dose (10(-3)). The increase in cataplexy after bilateral carbachol (10(-4) M) was rapidly reversed when the perfusion medium was switched to one containing atropine (10(-4) M). Bilateral atropine (10(-3) to 10(-2) M) alone did not produce any significant effects on cataplexy in narcoleptic canines; however, bilateral atropine (10(-2) M) did reduce the increase in cataplexy produced by systemic administration of physostigmine (0.05 mg/kg, i.v.). These findings demonstrate that cataplexy in narcoleptic canines can be stimulated by applying cholinergic agonists directly into the pontine reticular formation. The ability of atropine to inhibit

  17. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. (United States)

    O'Keeffe, Michael; Peskov, Maxim A; Ramsden, Stuart J; Yaghi, Omar M


    During the past decade, interest has grown tremendously in the design and synthesis of crystalline materials constructed from molecular clusters linked by extended groups of atoms. Most notable are metal-organic frameworks (MOFs), in which polyatomic inorganic metal-containing clusters are joined by polytopic linkers. (Although these materials are sometimes referred to as coordination polymers, we prefer to differentiate them, because MOFs are based on strong linkages that yield robust frameworks.) The realization that MOFs could be designed and synthesized in a rational way from molecular building blocks led to the emergence of a discipline that we call reticular chemistry. MOFs can be represented as a special kind of graph called a periodic net. Such descriptions date back to the earliest crystallographic studies but have become much more common recently because thousands of new structures and hundreds of underlying nets have been reported. In the simplest cases (e.g., the structure of diamond), the atoms in the crystal become the vertices of the net, and bonds are the links (edges) that connect them. In the case of MOFs, polyatomic groups act as the vertices and edges of the net. Because of the explosive growth in this area, a need has arisen for a universal system of nomenclature, classification, identification, and retrieval of these topological structures. We have developed a system of symbols for the identification of three periodic nets of interest, and this system is now in wide use. In this Account, we explain the underlying methodology of assigning symbols and describe the Reticular Chemistry Structure Resource (RCSR), in which about 1600 such nets are collected and illustrated in a database that can be searched by symbol, name, keywords, and attributes. The resource also contains searchable data for polyhedra and layers. The database entries come from systematic enumerations or from known chemical compounds or both. In the latter case, references to

  18. A recurrent network in the lateral amygdala: a mechanism for coincidence detection

    Directory of Open Access Journals (Sweden)


    Full Text Available Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA, both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally; the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning.

  19. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus. (United States)

    Piccinni, M-P; Lombardelli, L; Logiodice, F; Tesi, D; Kullolli, O; Biagiotti, R; Giudizi, Mg; Romagnani, S; Maggi, E; Ficarra, G


    The role of Th17 cells and associated cytokines was investigated in oral lichen planus. 14 consecutive patients with oral lichen planus were investigated. For biological studies, tissues were taken from reticular or erosive lesions and from normal oral mucosa (controls) of the same patient. mRNA expression for IL-17F, IL-17A, MCP-1, IL-13, IL-2, IL-10, IL-1β, RANTES, IL-4, IL-12B, IL-8, IFN-γ, TNF-α, IL-1α, IL-18, TGF-β1, IL-23R, IL-7, IL-15, IL-6, MIG, IP-10, LTB, VEGF, IL-5, IL-27, IL-23A, GAPDH, PPIB, Foxp3, GATA3, and RORC was measured using the QuantiGene 2.0. Results showed that Th17-type and Th0-type molecules' mRNAs, when compared with results obtained from tissue controls, were increased in biopsies of erosive lesions, whereas Th2-type molecules' mRNAs were increased in reticular lesions. When the CD4+ T-cell clones, derived from oral lichen planus tissues and tissue controls, were analyzed, a higher prevalence of Th17 (confirmed by an increased CD161 expression) and Th0 CD4+ T clones was found in erosive lesions, whereas a prevalence of Th2 clones was observed in reticular lesions. Our data suggest that Th17, Th0, and Th2 cells, respectively, may have a role in the pathogenesis of erosive and reticular oral lichen planus. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Cholinergic mechanisms in canine narcolepsy--II. Acetylcholine release in the pontine reticular formation is enhanced during cataplexy. (United States)

    Reid, M S; Siegel, J M; Dement, W C; Mignot, E


    Cataplexy in the narcoleptic canine has been shown to increase after local administration of carbachol into the pontine reticular formation. Rapid eye movement sleep has also been shown to increase after local administration of carbachol in the pontine reticular formation, and furthermore, acetylcholine release in the pontine tegmentum was found to increase during rapid eye movement sleep in rats. Therefore, in the present study we have investigated acetylcholine release in the pontine reticular formation during cataplexy in narcoleptic canines. Extracellular acetylcholine levels were measured in the pontine reticular formation of freely moving narcoleptic and control Doberman pinschers using in vivo microdialysis probes. Cataplexy was induced by the Food-Elicited Cataplexy Test and monitored using recordings of electroencephalogram, electrooculogram and electromyogram. Basal levels of acetylcholine in the microdialysis perfusates were approximately 0.5 pmol/10 min in both control and narcoleptic canines. Local perfusion with tetrodotoxin (10(-5) M) or artificial cerebrospinal fluid without Ca2+ produced a decrease, while intravenous injections of physostigmine (0.05 mg/kg) produced an increase in acetylcholine levels, indicating that the levels of acetylcholine levels measured are derived from neuronal release. During cataplexy induced by the Food-Elicited Cataplexy Test, acetylcholine levels increased by approximately 50% after four consecutive tests in narcoleptic canines, but did not change after four consecutive tests in control canines. Motor activity and feeding behavior, similar to that occurring during a Food-Elicited Cataplexy Test, had no effect on acetylcholine levels in the narcoleptic canines.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Complex neurological symptoms in bilateral thalamic stroke due to Percheron artery occlusion

    Directory of Open Access Journals (Sweden)

    Caruso P


    Full Text Available Paola Caruso, Paolo Manganotti, Rita Moretti Department of Clinical Neurology, University of Trieste, Trieste, Italy Abstract: The artery of Percheron is a rare anatomical variant where a single thalamic perforating artery arises from the proximal posterior cerebral artery (P1 segment between the basilar artery and the posterior communicating artery and supplies the rostral mesencephalon and both paramedian territories of the thalami. Almost one-third of human brains present this variant. Occlusion of the artery of Percheron mostly results in a bilateral medial thalamic infarction, which usually manifests with altered consciousness (including coma, vertical gaze paresis, and cognitive disturbance. The presentation is similar to the “top of the basilar syndrome”, and early recognition should be prompted. We describe the case of a young female with this vessel variant who experienced a bilateral thalamic stroke. Magnetic resonance angiography demonstrated bilateral thalamic infarcts and a truncated artery of Percheron. Occlusion of the vessel was presumably due to embolism from a patent foramen ovale. Thrombolysis was performed, with incomplete symptom remission, cognitive impairment, and persistence of speech disorders. Early recognition and treatment of posterior circulation strokes is mandatory, and further investigation for underlying stroke etiologies is needed. Keywords: thalamus vascularization, cognitive impairment, paramedian thalamus territory, speech disorder, vertical gaze palsy

  2. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.


    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  3. Silent diabetes mellitus, periodontitis and a new case of thalamic abscess. (United States)

    Karageorgiou, Ioannis; Chandler, Christopher; Whyte, Martin Brunel


    Brain abscess is an unusual complication of uncontrolled diabetes. A solitary thalamic abscess is an uncommon type of brain abscess. We report a case of thalamic abscess, whereupon diabetes mellitus and periodontitis were diagnosed. The diagnosis and management of thalamic abscess, and the interplay of type 2 diabetes and periodontitis are discussed. A 56-year-old, Caucasian, man with no medical or travel history, presented with 5-day symptoms of meningeal irritation. Body mass index 30.6 kg/m(2). CT demonstrated a solitary midline lesion with neoplasia as a differential diagnosis. It was biopsied and cultures grew Streptococcus milleri. He was treated by stereotactic puncture, external drainage and targeted intrathecal and systemic antibiotic therapy. HIV negative but glycated haemoglobin (HbA1c) 10.7% (93 mmol/mol). Dental examination revealed a small molar abscess. Radiological resolution of the thalamic abscess occurred within 2 months. Diabetes improved with 7 weeks of insulin, and maintained on metformin, HbA1c 6.9% (51 mmol/mol). There was no residual neurological disability. 2014 BMJ Publishing Group Ltd.

  4. Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression

    NARCIS (Netherlands)

    Schuurman, P. Richard; Bosch, D. Andries; Merkus, Maruschka P.; Speelman, Johannes D.


    Thalamic stimulation and thalamotomy for treatment of tremor due to Parkinson's disease, essential tremor, and multiple sclerosis were compared in a randomized trial. The symptomatic and functional outcome was studied after 5 years of follow-up. Sixty-eight patients were treated (45 Parkinson's

  5. Impairment of Syntax and Lexical Semantics in a Patient with Bilateral Paramedian Thalamic Infarction (United States)

    De Witte, Lieve; Wilssens, Ineke; Engelborghs, Sebastian; De Deyn, Peter P.; Marien, Peter


    Bilateral vascular thalamic lesions are rare. Although a variety of neurobehavioral manifestations have been described, the literature is less documented with regard to accompanying linguistic disturbances. This article presents an in-depth neurolinguistic analysis of the language symptoms of a patient who incurred bilateral paramedian ischemic…

  6. Peripapillary choroidal thickness in patients with early age-related macular degeneration and reticular pseudodrusen. (United States)

    Yun, Cheolmin; Oh, Jaeryung; Ahn, Soh-Eun; Hwang, Soon-Young; Kim, Seong-Woo; Huh, Kuhl


    The purpose of this study was to investigate peripapillary and macular choroidal thickness (CT) in patients with early age-related macular degeneration (AMD) with or without reticular pseudodrusen (RPD). We investigated the medical records of 89 patients (89 eyes) with early AMD. The eyes were grouped into three categories according to the extent of RPD: no RPD, localized RPD, and diffuse RPD. Peripapillary and macular CT were measured with images obtained by spectral domain optical coherence tomography. CT in the peripapillary and macular areas was compared among groups. Both RPD groups exhibited an older subject age and a greater female predominance compared to the non-RPD group (P = 0.007 and P = 0.030, respectively). Macular and peripapillary CT were different among the three groups (all, P age and sex (all, P ≤ 0.016). Temporal peripapillary and nasal macular CT at 500 μm and 1500 μm, respectively, from the fovea in eyes with diffuse RPD were significantly thinner than that in eyes with localized RPD (P = 0.008, P = 0.016 and P < 0.001, respectively). In addition to the macular area, the peripapillary CT, including the area outside the macula, was thinner in eyes with RPD than in those without RPD. Significant differences in the papillomacular choroid were observed based on RPD distribution type, which suggests that variation in CT is based on the extent of RPD.

  7. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md


    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  8. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress (United States)

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman


    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  9. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Filippo S. Giorgi


    Full Text Available Alzheimer’s Disease (AD features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs, respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC, which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.

  10. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication. (United States)

    Nakamura, Yoshiko; Yanagawa, Yuchio; Morrison, Shaun F; Nakamura, Kazuhiro


    Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide.

    Directory of Open Access Journals (Sweden)

    Stefanie Siegert

    Full Text Available Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/- mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.

  12. Effects of chronic dorsal column lesions on pelvic viscerosomatic convergent medullary reticular formation neurons. (United States)

    Hubscher, Charles H; Johnson, Richard D


    Single medullary reticular formation (MRF) neurons receive multiple somatovisceral convergent inputs originating from many different spinal and cranial nerves, including the pelvic nerve (PN), dorsal nerve of the penis (DNP), and the abdominal branches of the vagus. In a previous study, the input to MRF from the male genitalia was shown to be eliminated with chronic 30-day dorsal hemisection at the T8 spinal level. In this study, the effect of a smaller chronic lesion [dorsal column lesion (DCx)] on MRF neuronal responses was examined. Responses to bilateral electrical stimulation of the DNP remained. MRF neuronal responses to non-noxious (touch/stroke) levels of penile stimulation, however, were eliminated; only responses to noxious pinch remained. No differences were found for the number of neurons responding to noxious distention of the colon between the DCx and control groups. Although no differences were found across these groups for the percent MRF responses to vagal stimulation, the mean response latency for the DCx group was twice the sham-DCx/intact control group. Taken together, these results indicate that the MRF receives at least some of its input from the male genitalia via pathways located within the dorsal columns at the mid-thoracic spinal level.

  13. Post-Anoxic Reticular Reflex Myoclonus in a Child and Proposed Classification of Post-Anoxic Myoclonus. (United States)

    Ong, Min T; Sarrigiannis, Ptolemaios G; Baxter, Peter S


    We describe a child with post-anoxic myoclonus of the reticular reflex type and discuss the classification of post-anoxic myoclonus. A nine-year-old boy with severe hypoxic-ischemic encephalopathy due to submersion developed early epileptic spasms followed by stimulus sensitive multifocal generalized myoclonus and later dystonia. Video electromyography (EMG) polygraphy performed before treatment demonstrated that the discharges associated with the myoclonus lasted less than 50 milliseconds. Cortical myoclonus was excluded by jerk-locked averaging using arm muscles, which showed no cortical correlates. The recruitment order on EMG polygraphy was consistent with a brainstem generator for the myoclonus, characteristic of reticular reflex myoclonus. Both myoclonus and dystonia responded to clonazepam. He remains in a persistent vegetative state. Reticular reflex myoclonus can be demonstrated by detailed neurophysiological assessment in children as in adults, and it has a similar poor prognosis in children. Post-anoxic myoclonus can have several mechanisms and should not be considered synonymous with Lance-Adams myoclonus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)


    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  15. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah


    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  16. Thalamic neuron models encode stimulus information by burst-size modulation. (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A


    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  17. Keloid and Hypertrophic Scar/span>s Are the Result of Chronic Inflammation in the Reticular Dermis (United States)

    Ogawa, Rei


    Keloids and hypertrophic scar/span>s are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scar/span>s are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scar/span>s contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scar/span>s suggests that, rather than being skin tumors, keloids and hypertrophic scar/span>s are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scar/span>s. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scar/span>s merely reflect differences in

  18. Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps. (United States)

    Haas, Paulina; Esmaeelpour, Marieh; Ansari-Shahrezaei, Siamak; Drexler, Wolfgang; Binder, Susanne


    To map and analyze choroidal thickness (ChT) in AMD patients with reticular pseudodrusen (RPD) using three-dimensional (3D) 1060-nm optical coherence tomography (OCT). Fifty eyes from 25 patients with RPD were grouped according to the severity of AMD and the presence of RPD. All patients were imaged by high-speed (60,000 A-scans/s) 3D 1060-nm OCT over a 36 × 36° field of view. Choroidal thickness maps were automatically generated and compared with RPD areas visualized by fundus autofluorescence and infrared imaging. Retinal thickness maps, ChT maps, Haller's and Sattler's layer thickness were statistically analyzed between groups. The mean ± SD (micrometers) subfoveal ChT was 201 ± 88 μm, 145 ± 48 μm, and 271 ± 130 μm for dry AMD with RPD, wet AMD with RPD, and eyes with wet AMD and no RPD, respectively. Choroidal thickness maps demonstrated the most significant choroidal thinning within eyes with wet AMD and RPD. Sattler's and Haller's layer thickness differed across the Early Treatment Diabetic Retinopathy Study grid when compared between eyes with and without RPD. Within eyes with RPD, ChT maps visualized that ChT was thicker below RDP areas than non-RPD areas. The 3D 1060-nm OCT choroidal maps over a large field of view offer noninvasive visualization for demonstrating local thickening correlation with RPD within each eye and overall thinning owing to AMD severity and RPD. This choroidal thinning was most striking in Sattler's layer, suggesting a choroidopathy of this vascular layer.

  19. Reticular synthesis of HKUST-like tbo MOFs with enhanced CH4 storage

    KAUST Repository

    Spanopoulos, Ioannis


    Successful implementation of reticular chemistry using a judiciously designed rigid octatopic carboxylate organic linker allowed the construction of expanded HKUST-1-like tbo-MOF series with intrinsic strong CH4 adsorption sites. The Cu-analogue displayed a concomitant enhancement of the gravimetric and volumetric surface area with the highest reported CH4 uptake among the tbo family, comparable to the best performing MOFs for CH4 storage. The corresponding gravimetric (BET) and volumetric surface area of 3971 m2 g-1 and 2363 m2 cm-3 represent an increase of respectively 115 % and 47 % in comparison to the corresponding values for the prototypical HKUST-1 (tbo-MOF-1), and 42 % and 20 % higher than tbo-MOF-2. High pressure methane adsorption isotherms revealed a high total gravimetric and volumetric CH4 uptakes, reaching 372 cm3 (STP) g-1 and 221 cm3 (STP) cm-3 respectively at 85 bar and 298 K. The corresponding working capacities between 5-80 bar were found to be 294 cm3 (STP) g-1 and 175 cm3 (STP) cm-3 and are placed among the best performing MOFs for CH4 storage particularly at relatively low temperature (e.g. 326 cm3 (STP) g-1 and 194 cm3 (STP) cm-3 at 258 K). To better understand the structure-property relationship and gain insight on the mechanism accounting for the resultant enhanced CH4 storage capacity, molecular simulation study was performed and revealed the presence of very strong CH4 adsorption sites at the vicinity of the organic linker with similar adsorption energetics as the open metal sites. The present findings supports the potential of tbo-MOFs based on the supermolecular building layer (SBL) approach as an ideal platform to further enhance the CH4 storage capacity via expansion and functionalization of the quadrangular pillars.

  20. Intravenous or local injections of flavoxate in the rostral pontine reticular formation inhibit urinary frequency induced by activation of medial frontal lobe neurons in rats. (United States)

    Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki


    The rostral pontine reticular formation has a strong inhibitory effect on micturition by facilitating lumbosacral glycinergic neurons. We assessed the influence of the rostral pontine reticular formation on the micturition reflex after noradrenaline injection in the medial frontal lobe. We also examined the relation between the medial frontal lobe and the rostral pontine reticular formation. Continuous cystometry was performed in 28 female rats. After the interval between bladder contractions was shortened by noradrenaline injection in the medial frontal lobe we injected glutamate or flavoxate hydrochloride in the rostral pontine reticular formation or intravenously injected flavoxate or propiverine. The change in bladder activity was examined. Noradrenaline injection in the medial frontal lobe shortened the interval between bladder contractions. In contrast to the bladder contraction interval before and after noradrenaline injection in the medial frontal lobe, the interval was prolonged after noradrenaline injection when glutamate or flavoxate was injected in the rostral pontine reticular formation, or flavoxate was injected intravenously. Noradrenaline injection in the medial frontal lobe plus intravenous propiverine injection also prolonged the interval compared to that after noradrenaline injection alone. However, the interval after noradrenaline injection in the medial frontal lobe plus intravenous injection of propiverine was shorter than that before noradrenaline injection only. Medial frontal lobe neurons excited by noradrenaline may facilitate the micturition reflex via activation of inhibitory interneurons, which inhibit descending rostral pontine reticular formation neurons that innervate the lumbosacral glycinergic inhibitory neurons. Therefore, the mechanism of micturition reflex facilitation by the activation of medial frontal lobe neurons involves the rostral pontine reticular formation. Copyright © 2014 American Urological Association Education

  1. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee


    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  2. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin


    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  3. Memory Profiles after Unilateral Paramedian Thalamic Stroke Infarction: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Antonio Carota


    Full Text Available We performed extensive neuropsychological assessment of two male patients (matched for age and educational level with similar (localization and size unilateral paramedian ischemic thalamic lesions (AB on the left and SD on the right. Both patients showed severe memory impairments as well as other cognitive deficits. In comparison to SD, AB showed severe impairment of executive functions and a more severe deficit of episodic/anterograde memory, especially in the verbal modality. The findings of this single case study suggest the possibility that the profile and severity of the executive dysfunction are determinant for the memory deficits and depend on from the side of the lesion. In addition to a material-side-specific (verbal versus visual deficit hypothesis, the differential diencephalo-prefrontal contributions in mnestic-processing, in case of paramedian thalamic stroke, might also be explained in terms of their stage-specificity (encoding versus retrieval.

  4. Surgical resection of unilateral thalamic tumors in adults: approaches and outcomes. (United States)

    Cao, Lei; Li, Chuzhong; Zhang, Yazhuo; Gui, Songbai


    The thalamic tumors were less common in adults and this study aimed to determine the clinical features, surgical approaches, and outcomes of adult thalamic tumors, which have not been well-described in the literature. We reviewed the clinical presentation, surgical approach, perioperative mortality and morbidity, and outcomes of 111 operated patients (71 males, 40 females; mean age at presentation, 33.4 ± 13.2 years) with unilateral thalamic tumor. The most common clinical presentations were increased intracranial pressure (65%) and motor deficits (40%). Five surgical approaches were used depending on tumor location; the most common was the transparieto-occipital approach (47.7%). According to peri- and post-operative magnetic resonance imaging findings, the tumors were totally resected in 29 cases (26.1%), subtotally resected in 54 cases (48.6%), and partially resected in 21 cases (18.9%). Five patients died during the perioperative period (4.5%, 5/111). The most common morbidity was motor deficits (21.7%, 23/106). According to histological findings, there were 50 high-grade and 61 low-grade tumors. Median survival of patients with low- and high-grade tumors were 40 and 12 months, respectively (mean follow-up, 37.3 months). Survival was significantly longer in cases of total or subtotal resection (median, 28 months) compared to partial resection or biopsy (median, 12 months). Survival was poorer in adults than in previous reported pediatrics. Surgical treatment of adult thalamic tumors must be individualized according to tumor location. Low-grade tumors and total/subtotal resection seem to be predictors of better surgical outcomes. Nevertheless, the outcome of adult patients were still worse than pediatric patients.

  5. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Reiner, P B


    Although it has long been known that microinjection of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) induces a state that resembles rapid eye movement (REM) sleep, it is likely that other transmitters contribute to mPRF regulation of behavioral states. A key...... conclude that VIP excites mPRF neurons by activation of a sodium current. This effect is mediated at least in part by G-protein stimulation of adenylyl cyclase, cAMP, and protein kinase A. These data suggest that VIP may play a physiological role in REM induction by its actions on mPRF neurons....

  6. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. (United States)

    Gold, Gabriel; Kövari, Enikö; Herrmann, François R; Canuto, Alessandra; Hof, Patrick R; Michel, Jean-Pierre; Bouras, Constantin; Giannakopoulos, Panteleimon


    Most previous studies addressed the cognitive impact of lacunar infarcts using radiologic correlations that are known to correlate poorly with neuropathological data. Moreover, absence of systematic bilateral assessment of vascular lesions and masking effects of Alzheimer disease pathology and macrovascular lesions may explain discrepancies among previous reports. To define the relative contribution of silent lacunes to cognitive decline, we performed a detailed analysis of lacunar and microvascular pathology in both cortical and subcortical areas of 72 elderly individuals without significant neurofibrillary tangle pathology or macrovascular lesions. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included Abeta-protein deposition staging and bilateral assessment of microvascular ischemic pathology and lacunes; statistical analysis included multivariate models controlling for age, amyloid deposits, and microvascular pathology. Thalamic and basal ganglia lacunes were negatively associated with CDR scores; cortical microinfarcts, periventricular and diffuse white matter demyelination also significantly affected cognition. In a multivariate model, cortical microinfarcts and thalamic and basal ganglia lacunes explained 22% of CDR variability; amyloid deposits and microvascular pathology explained 12%, and the assessment of thalamic and basal ganglia lacunes added an extra 17%. Deep white matter lacunes were not related to cognitive status in univariate and multivariate models. In agreement with the recently proposed concept of subcortical ischemic vascular dementia, our autopsy series provides important evidence that gray matter lacunes are independent predictors of cognitive decline in elderly individuals without concomitant dementing processes such as Alzheimer disease.

  7. Left Dorsomedial Thalamic Damage Impairs Verbal Recall More Than Recognition: A Case Report. (United States)

    Ruggeri, Massimiliano


    Damage to the dorsomedial thalamus usually leads to impaired episodic memory, attention, and executive function, but the role of the dorsomedial thalamus in memory processing is still not fully understood. Clinical evidence is inconclusive about whether dorsomedial thalamic damage impairs recall or whether it impairs recognition. I report a unique patient who suffered a cardioembolic stroke in the paramedian artery territory, caused by a patent foramen ovale. He was left with a chronic ischemic lesion centered in the parvocellular and, to a lesser extent, the magnocellular portions of the left dorsomedial thalamic nucleus, and marginally involving the midline and intralaminar nuclei. A year after the stroke, the patient's neuropsychological assessment showed a selective verbal memory deficit with greater loss of recall than recognition. His memory was normal when he was given semantically encoded material. His test results showed that damage to the left dorsomedial thalamic nucleus might affect both his recall and recognition because of the involvement of the parvocellular and magnocellular portions, respectively. The results also suggest that the left dorsomedial thalamus is involved in the encoding of verbal material. This case report highlights the role that the left dorsomedial thalamus plays in processing memory specific to verbal material. The findings point to the differential contribution of the dorsomedial parvocellular nucleus to recall, and support the theory that prefrontal strategic memory is enabled by adequate encoding of information through thalamocortical connectivity with the dorsolateral prefrontal cortex.

  8. Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia. (United States)

    Welch, Killian A; Stanfield, Andrew C; McIntosh, Andrew M; Whalley, Heather C; Job, Dominic E; Moorhead, Thomas W; Owens, David G C; Lawrie, Stephen M; Johnstone, Eve C


    No longitudinal study has yet examined the association between substance use and brain volume changes in a population at high risk of schizophrenia. To examine the effects of cannabis on longitudinal thalamus and amygdala-hippocampal complex volumes within a population at high risk of schizophrenia. Magnetic resonance imaging scans were obtained from individuals at high genetic risk of schizophrenia at the point of entry to the Edinburgh High-Risk Study (EHRS) and approximately 2 years later. Differential thalamic and amygdala-hippocampal complex volume change in high-risk individuals exposed (n = 25) and not exposed (n = 32) to cannabis in the intervening period was investigated using repeated-measures analysis of variance. Cannabis exposure was associated with bilateral thalamic volume loss. This effect was significant on the left (F = 4.47, P = 0.04) and highly significant on the right (F= 7.66, P= 0.008). These results remained significant when individuals using other illicit drugs were removed from the analysis. These are the first longitudinal data to demonstrate an association between thalamic volume loss and exposure to cannabis in currently unaffected people at familial high risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.

  9. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination. (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M


    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice (United States)

    Huh, Yeowool; Bhatt, Rushi; Jung, DaeHyun; Shin, Hee-sup; Cho, Jeiwon


    Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice. PMID:22292022

  11. Disrupted Auto-Activation, Dysexecutive and Confabulating Syndrome Following Bilateral Thalamic and Right Putaminal Stroke

    Directory of Open Access Journals (Sweden)

    Lieve De Witte


    Full Text Available Objective: Clinical, neuropsychological, structural and functional neuroimaging results are reported in a patient who developed a unique combination of symptoms after a bi-thalamic and right putaminal stroke. The symptoms consisted of dysexecutive disturbances associated with confabulating behavior and auto-activation deficits. Background: Basal ganglia and thalamic lesions may result in a variety of motor, sensory, neuropsychological and behavioral syndromes. However, the combination of a dysexecutive syndrome complicated at the behavioral level with an auto-activation and confabulatory syndrome has never been reported. Methods: Besides clinical and neuroradiological investigations, an extensive set of standardized neuropsychological tests was carried out. Results: In the post-acute phase of the stroke, a dysexecutive syndrome was found in association with confabulating behavior and auto-activation deficits. MRI showed focal destruction of both thalami and the right putamen. Quantified ECD SPECT revealed bilateral hypoperfusions in the basal ganglia and thalamus but no perfusion deficits were found at the cortical level. Conclusion: The combination of disrupted auto-activation, dysexecutive and confabulating syndrome in a single patient following isolated subcortical damage renders this case exceptional. Although these findings do not reveal a functional disruption of the striato-ventral pallidal-thalamic-frontomesial limbic circuitry, they add to the understanding of the functional role of the basal ganglia in cognitive and behavioral syndromes.

  12. Bilateral thalamic deep brain stimulation for the treatment of head tremor. Report of two cases. (United States)

    Berk, Caglar; Honey, Christopher R


    Isolated head tremor is rare, but can be disabling. The authors' experience with the treatment of limb tremor due to essential tremor led them to consider using bilateral thalamic deep brain stimulation (DBS) in two patients presenting only with disabling head tremor. One patient exhibited no peripheral tremor and the other displayed only a slight upper-limb tremor. Both patients underwent placement of units that apply simultaneous bilateral thalamic DBS. Surgical targets were verified by using intraoperative macrostimulation, and the stimulators were implanted during the same surgery. Patients were videotaped preoperatively and at 2, 4, 6, and 9 months postoperatively during periods in which the stimulators were turned on and off. Videotapes were randomized and rated for resting, postural, and action tremors according to the Fahn clinical rating scale for tremor. Because this scale is not designed for head tremor, the patients were also evaluated on the basis of a functional scale that reflected their quality of life and the amount of disability caused by head tremor. Both patients experienced no tremor after their stimulators were turned on and properly adjusted at the 6th postoperative week. The patients were followed for a total of 9 months and results remained stable throughout this period. No complications were encountered. Bilateral thalamic DBS appears to be an effective and safe treatment for isolated head tremor in patients with essential tremor. The authors present a scale for the functional assessment of head tremor.

  13. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S


    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.


    Directory of Open Access Journals (Sweden)

    Mane Makarand, Mane Priyanka, Mohite Rajsinh , Bhattad Prashant, Bangar Kushal, Mahajani Anup


    Full Text Available The Artery of Percheron, a rare anatomical variant of brain vascularisation, arises from the posterior cerebral artery. Occlusion of this artery leads to bilateral paramedian thalamic infarct leads to dysfunction of central nervous system. Incidence of bilateral thalamic infarct secondary to occlusion of artery of Percheron is unknown because of its rarity. Here we report a case of 35 year old female presented with altered state of consciousness and the underlying cause was occlusion of Artery of Percheron which leads to bilateral thalamic infarct detected on MRI scanning. It showed hyperintensities on T2W1 and FLAIR, and hypointensity on T1W1, restricted to bilateral ventromedial thalami showing corresponding area of high signal intensity on diffusion weighted images and hypointensity on apparent diffusion coefficient images indicating diffusion restriction, suggestive of infarct. On further investigation magnetic resonance arteriogram (MRA of the brain demonstrated a single common artery arising from the left P1 segment which divided into two branches distally supplying bilateral thalami. Patient became alright after 2 weeks of medical line of treatment.

  15. Reduced thalamic volume in Parkinson disease with REM sleep behavior disorder: volumetric study. (United States)

    Salsone, M; Cerasa, A; Arabia, G; Morelli, M; Gambardella, A; Mumoli, L; Nisticò, R; Vescio, B; Quattrone, A


    REM sleep behavior disorder (RBD) is a common non motor feature of Parkinson's Disease (PD) affecting about half the patients with this disease. Distinct structural brain tissue abnormalities have been reported in several regions modulating REM sleep of the patients with idiopathic RBD. At the present time, there are no conventional MRI studies investigating patients with PD associated with RBD. Herein, we used voxel-based morphometry (VBM) to detect the neuroanatomical profile of PD patients with and without RBD. Optimized VBM was applied to the MRI brain images in 11 PD patients with RBD (PD-RBD), 11 PD patients without RBD (PD) and 18 age-and sex-matched controls. To corroborate VBM findings we used automated volumetric method (FreeSurfer) to quantify subcortical brain regions volumes. Patients and controls also underwent DAT-SPECT and cardiac MIBG scintigraphies. The VBM analysis showed markedly reduced gray matter volume in the right thalamus of PD-RBD patients in comparison with PD patients and controls. Automatic thalamic segmentation in PD-RBD patients showed a bilaterally reduced thalamic volume as compared with PD patients or controls. All PD patients (with and without RBD) showed a reduced tracer uptake on DAT-SPECT and cardiac MIBG scintigraphies as compared to controls. Our findings suggest that the presence of RBD symptoms in PD patients is associated with a reduced thalamic volume suggesting a pathophysiologic role of the thalamus in the complex circuit causing RBD. Copyright © 2014. Published by Elsevier Ltd.

  16. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway. (United States)

    Shyu, Bai-Chuang; Vogt, Brent A


    Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to noxious events. Moreover, these modifications of cingulate

  17. Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity

    Directory of Open Access Journals (Sweden)

    Tamás eKiss


    Full Text Available NMDA receptor (NMDAR antagonists, such as phencyclidine, ketamine or dizocilpine (MK-801 are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP, multi- (MUA and single unit activity, and evoked potential, including paired-pulse facilitation (PPF in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC in urethane anesthetized rats. Systemic administration of MK-801 (0.05~mg/kg, i.v. decreased overall MUA, with a diverse effect on single unit activity, including increased, decreased or unchanged firing, and in line with our previous findings shifted delta frequency power of the LFP and disrupted PPF (Kiss et al., Int J Neuropsychopharmacol. 2010. In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD. Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDA receptor antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDA receptor blockade.

  18. Diode-pumped passively Q-switched Nd:YVO4 laser using a reticularly ordered single-walled carbon nanotube saturable absorber (United States)

    Zhang, Xiaodong; Zhao, Shengzhi; Li, Ying; Zhang, Yan; Li, Dechun; Yang, Kejian; Li, Xiangyang; Wang, Reng


    In this letter, we demonstrate a diode-pumped passively Q-switched Nd:YVO4 laser with reticularly ordered single-walled carbon nanotube as saturable absorber. Stable Q-switched pulses with a pulse energy of 0.322 μJ, a pulse width of 78.7 ns and a pulse repetition rate of 410.3 kHz have been obtained. Compared with the passively Q-switched laser with carbon nanotubes dispersed by sodium dodecyl sulfate (SDS), the laser with reticularly ordered single-walled carbon nanotube can produce shorter pulses and higher peak power at almost the same incident pump power. The results suggest that the reticularly ordered single-walled carbon nanotube can be an attractive candidate of saturable absorber for Q-switched laser.

  19. Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality

    Directory of Open Access Journals (Sweden)

    García-Eroles Luis


    Full Text Available Abstract Background There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. Methods Forty-seven patients with thalamic haemorrhage were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT scans and/or magnetic resonance imaging (MRI of the brain. Results Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420 and 13% of intracerebral haemorrhage (n = 364. Hypertension (53.2%, vascular malformations (6.4%, haematological conditions (4.3% and anticoagulation (2.1% were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9. Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56, intraventricular involvement (OR = 24.74 and age (OR = 1.23, were independent predictors of in-hospital mortality. Conclusion One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome.

  20. Image cytometric evaluation of nuclear texture features and DNA content of the reticular form of oral lichen planus. (United States)

    Rode, Matjaz; Flezar, Margareta Strojan; Kogoj-Rode, Mirela; Us-Krasovec, Marija


    To analyze image cytometric chromatin changes reflected in nuclear texture features and DNA ploidy of oral lichen planus in relation to the normal buccal mucosa and buccal mucosa expressing malignancy-associated changes in cancer patients. Twenty-eight patients with the reticular form of oral lichen planus, with a follow-up period of 25 years, 50 healthy controls and 50 lung cancer patients were included in the study. Scrapings of buccal mucosa were suspended in transport medium. Monolayer filter preparations were Feulgen-thionin stained. Image cytometric analysis was performed by Cyto-Savant. All oral lichen planus specimens in our study were diploid. In univariate analysis, differences between the normal buccal mucosa and oral lichen planus were found in several nuclear texture features, which gave an 80% correct classification rate in multivariate analysis. In the second part of the study, the classifier that recognizes malignancy-associated changes on the buccal mucosa of patients with lung cancer correctly recognized > 80% of oral lichen planus samples as normal buccal mucosa. Our results indicate that chromatin changes in oral lichen planus exist compared to normal cells; however, the chromatin structure of the reticular form of oral lichen planus does not express malignancy-associated changes and is more similar to normal squamous cells.

  1. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk


    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  2. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles (United States)

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.


    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  3. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle

    Directory of Open Access Journals (Sweden)

    Angel eNunez


    Full Text Available The perifornical area in the posterior lateral hypothalamus (PeFLH has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins, mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC nucleus (contributing to wakefulness and the oral pontine reticular nucleus (PnO nucleus (contributing to REM sleepAnatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  4. An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. (United States)

    Bopp, Rita; Holler-Rickauer, Simone; Martin, Kevan A C; Schuhknecht, Gregor F P


    The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2 + boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2 + synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm 2 vs 0.042 μm 2 ). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1. SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas

  5. Is reticular temperature a useful indicator of heat stress in dairy cattle? (United States)

    Ammer, S; Lambertz, C; Gauly, M


    The present study investigated whether reticular temperature (RT) in dairy cattle is a useful indicator of heat stress considering the effects of milk yield and water intake (WI). In total, 28 Holstein-Friesian dairy cows raised on 3 farms in Lower Saxony, Germany, were studied from March to December 2013. During the study, RT and barn climate parameters (air temperature, relative humidity) were measured continuously and individual milk yield was recorded daily. Both the daily temperature-humidity index (THI) and the daily median RT per cow were calculated. Additionally, the individual WI (amount and frequency) of 10 cows during 100d of the study was recorded on 1 farm. Averaged over all farms, daily THI ranged between 35.4 and 78.9 with a mean (±standard deviation) of 60.2 (±8.7). Dairy cows were on average (±standard deviation) 110.9d in milk (±79.3) with a mean (±standard deviation) milk yield of 35.2kg/d (±9.1). The RT was affected by THI, milk yield, days in milk, and WI. Up to a THI threshold of 65, RT remained constant at 39.2°C. Above this threshold, RT increased to 39.3°C and further to 39.4°C when THI ≥70. The correlation between THI ≥70 and RT was 0.22, whereas the coefficient ranged between r=-0.08 to +0.06 when THI <70. With increasing milk yield, RT decreased slightly from 39.3°C (<30kg/d) to 39.2°C (≥40kg/d). For daily milk yields of ≥40kg, the median RT and daily milk yield were correlated at r=-0.18. The RT was greater when dairy cows yielded ≥30kg/d and THI ≥70 (39.5°C) compared with milk yields <30kg and THI <70 (39.3°C). The WI, which averaged (±standard deviation) 11.5 l (±5.7) per drinking bout, caused a mean decrease in RT of 3.2°C and was affected by the amount of WI (r=0.60). After WI, it took up to 2h until RT reached the initial level before drinking. In conclusion, RT increased when the THI threshold of 65 was exceeded. A further increase was noted when THI ≥70. Nevertheless, the effects of WI and milk yield

  6. Impairment in material-specific long-term memory following unilateral mediodorsal thalamic damage and presumed partial disconnection of the mammillo-thalamic tract. (United States)

    Edelstyn, Nicola M J; Mayes, Andrew R; Denby, Christine; Ellis, Simon J


    Neuropsychological findings suggest material-specific lateralization of the medial temporal lobe's role in long-term memory, with greater left-sided involvement in verbal memory, and greater right-sided involvement in visual memory. Whether material-specific lateralization of long-term memory also extends to the anteromedial thalamus remains uncertain. We report two patients with unilateral right (OG) and left (SM) mediodorsal thalamic pathology plus probable correspondingly lateralized damage of the mammillo-thalamic tract. The lesions were mapped using high-resolution structural magnetic resonance imaging and schematically reconstructed. Mean absolute volume estimates for the mammillary bodies, hippocampus, perirhinal cortex, and ventricles are also presented. Estimates of visual and verbal recall and item recognition memory were obtained using the Doors and People, the Rey Complex Figure Test, and the Logical Memory subtests of the Wechsler Memory Scales. Each patient's performance was compared to a group of healthy volunteers matched for demographic characteristics, premorbid IQ, and current levels of functioning. A striking double dissociation was evident in material-specific long-term memory, with OG showing significant impairments in visual memory but not verbal memory, and SM showing the opposite profile of preserved visual memory and significantly impaired verbal memory. These impairments affected both recall and item recognition. The reported double dissociation provides the strongest evidence yet that material-specific lateralization of long-term memory also extends to the anteromedial thalamus. The findings are also discussed in relation to proposals that distinct anatomical regions within the medial temporal lobe, anteromedial thalamus, and associated tracts make qualitatively different contributions to recall and item recognition. ©2011 The British Psychological Society.

  7. Effect of feeding fine maize particles on the reticular pH, milk yield and composition of dairy cows. (United States)

    De Nardi, R; Marchesini, G; Stefani, A-L; Barberio, A; Andrighetto, I; Segato, S


    The particle size of cereal grains has been found to modulate the rate of passage from the rumen and the digestibility of starch and neutral detergent fibre (NDF), but few studies have examined its impact on reticular pH. The study aimed to evaluate the effect of feeding finely ground maize on the risk of ruminal acidosis, milk yield and composition. Twelve Holstein-Friesian cows were assigned to one of two experimental groups and fed according to a cross-over design. Diets were isoenergetic and isonitrogenous and were characterised by the same NDF and ADF, differing only in maize particle size. In the control diet (Ct), the maize meal was ground to 1.0 mm, whereas in the experimental diet, it was finely ground (Fg) to 0.5 mm. The pH and temperature of the reticulum were continuously measured in eight cows throughout the trial using indwelling sensors. Dry matter intake was higher in cows offered Fg diet than in Ct (19.0 vs. 20.3 kg/day; p = 0.067). However, milk yield (p = 0.855) and the 3.5% fat-corrected milk (FCM) (p = 0.724) did not show any differences between the diets. Casein (2.48 vs. 2.57%; p = 0.035) and crude protein (CP) (3.18 vs. 3.31%; p = 0.021) resulted higher in Fg. Similarly, starch digestibility increased in animals offered Fg diet versus Ct (0.94 vs. 0.98; p = 0.078). Among the reticular parameters, the Fg-fed cows spent a significantly higher time below the 5.5 pH threshold (15 vs. 61 min/day; p = 0.047) and had an average daily variation in reticular pH characterised by a lower nadir pH (5.95 vs. 5.72; p < 0.001) and a higher pH range (0.79 vs. 0.94; p = 0.003). In this study, grain particle size affected the risk of the onset of ruminal acidosis. Therefore, it should be carefully considered when formulating rations. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  8. Higher order thalamic nuclei resting network connectivity in early schizophrenia and major depressive disorder. (United States)

    Penner, Jacob; Osuch, Elizabeth A; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W J; Menon, Ravi S; Rajakumar, Nagalingam; Bourne, James A; Williamson, Peter C


    The pulvinar and the mediodorsal (MDN) nuclei of the thalamus are higher order nuclei which have been implicated in directed effort and corollary discharge systems. We used seed-based resting fMRI to examine functional connectivity to bilateral pulvinar and MDN in 24 schizophrenic patients (SZ), 24 major depressive disorder patients (MDD), and 24 age-matched healthy controls. SZ had less connectivity than controls between the left pulvinar and precuneus, left ventral-lateral prefrontal cortex (vlPFC), and superior and medial-frontal regions, between the right pulvinar and right frontal pole, and greater connectivity between the right MDN and left dorsolateral prefrontal cortex (dlPFC). SZ had less connectivity than MDD between the left pulvinar and ventral anterior cingulate (vACC), left vlPFC, anterior insula, posterior cingulate cortex (PCC), and right hippocampus, between the right pulvinar and right PCC, and between the right MDN and right dorsal anterior cingulate (dACC). This is the first study to measure the functional connectivity to the higher order nuclei of the thalamus in both SZ and MDD. We observed less connectivity in SZ than MDD between pulvinar and emotional encoding regions, a directed effort region, and a region involved in representation and salience, and between MDN and a directed effort region. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sleep-potentiated epileptiform activity in early thalamic injuries: Study in a large series (60 cases). (United States)

    Losito, Emma; Battaglia, Domenica; Chieffo, Daniela; Raponi, Matteo; Ranalli, Domiziana; Contaldo, Ilaria; Giansanti, Cristina; De Clemente, Valentina; Quintiliani, Michela; Antichi, Eleonora; Verdolotti, Tommaso; de Waure, Chiara; Tartaglione, Tommaso; Mercuri, Eugenio; Guzzetta, Francesco


    The study aims at a better definition of continuous spike-waves during sleep (CSWS) with an early thalamic lesion, focusing on various grades of sleep-potentiated epileptiform activity (SPEA). Their possible relationship with different clinical features was studied to try to define prognostic factors of the epileptic disorder, especially relating to behavior/cognitive outcome, in order to improve prevention and treatment strategies. Sixty patients with early thalamic injury were followed since the first registration of SPEA with serial neurological, long term EEG monitoring and neuropsychological examinations, as well as neuroimaging and a detailed clinical history. They were classified in three different groups according to the sleep spike-waves (SW) quantification: electrical status epilepticus during sleep (ESES), more than 85% of slow sleep; overactivation between 50% and 85% and simple activation between 10 and 50%). Results were then examined also with a statistical analysis. In our series of CSWS occurring in early brain injured children with unilateral thalamic involvement there is a common neuropathologic origin but with various grades of SPEA severity. Statistical analysis showed that patients evolving toward ESES presented more commonly the involvement of the mediodorsal part of thalamus nuclei and a bilateral cortico-subcortical brain injury, epilepsy was more severe with a delayed onset; moreover, in the acute stage .ESES patients presented the worst behavior/cognitive performances. As to cognitive and behavior outcome, longer SPEA duration as well as bilateral brain injury and cognitive/behavior impairment in acute phase appear linked to a poor outcome; some particular neuropathology (ischemic stroke and haemorrhagic infarction) as well as hydrocephalus shunting are associated with behavior disorders. Discrete features seem to support different underlying mechanisms in ESES patients in comparison with less severe SPEA; they represent negative

  10. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Bao, Faxiu; Ma, Shaohui; Guo, Chenguang; Jin, Chenwang; Zhang, Ming [First Affiliated Hospital of Xi' an Jiaotong University, Department of Medical Imaging, Xi' an, Shaanxi (China); Li, Dan [First Affiliated Hospital of Xi' an Jiaotong University, Department of Respiratory and Critical Care Medicine, Xi' an, Shaanxi (China)


    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ({sup 1}H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  11. Thalamic GABA predicts fine motor performance in manganese-exposed smelter workers.

    Directory of Open Access Journals (Sweden)

    Zaiyang Long

    Full Text Available Overexposure to manganese (Mn may lead to parkinsonian symptoms including motor deficits. The main inhibitory neurotransmitter gamma-aminobutyric acid (GABA is known to play a pivotal role in the regulation and performance of movement. Therefore this study was aimed at testing the hypothesis that an alteration of GABA following Mn exposure may be associated with fine motor performance in occupationally exposed workers and may underlie the mechanism of Mn-induced motor deficits. A cohort of nine Mn-exposed male smelter workers from an Mn-iron alloy factory and 23 gender- and age-matched controls were recruited and underwent neurological exams, magnetic resonance spectroscopy (MRS measurements, and Purdue pegboard motor testing. Short-echo-time MRS was used to measure N-Acetyl-aspartate (NAA and myo-inositol (mI. GABA was detected with a MEGA-PRESS J-editing MRS sequence. The mean thalamic GABA level was significantly increased in smelter workers compared to controls (p = 0.009. Multiple linear regression analysis reveals (1 a significant association between the increase in GABA level and the duration of exposure (R(2 = 0.660, p = 0.039, and (2 significant inverse associations between GABA levels and all Purdue pegboard test scores (for summation of all scores R(2 = 0.902, p = 0.001 in the smelter workers. In addition, levels of mI were reduced significantly in the thalamus and PCC of smelter workers compared to controls (p = 0.030 and p = 0.009, respectively. In conclusion, our results show clear associations between thalamic GABA levels and fine motor performance. Thus in Mn-exposed subjects, increased thalamic GABA levels may serve as a biomarker for subtle deficits in motor control and may become valuable for early diagnosis of Mn poisoning.

  12. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M


    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...... neurons, oligodendrocytes, and astrocytes) were estimated using the optical fractionator technique. The DS brains had an average of 3.41×10(6) total neurons in the MDT nucleus in contrast to 5.97×10(6) in the controls, with no overlap (2p=0.004), affecting large (projecting) and small (local inhibitory...

  13. Thalamic hemorrhage in a 4-year-old child induced by nephro-vascular hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, E.; Savasta, S.; Torcetta, F.; Solmi, M.; Beluffi, G.; Gajno, T.M.


    A child affected by cardiomyopathy from the age of 12 months suddenly manifested right hemiparesis and dysarthria at the age of 48/12 years. Emergency brain CT showed a hemorrhage in progress in the left thalamic area. A serve from of hypertension was concomitant and resisted all pharmacological treatment. Retrograde transfemural aortography pointed out an atrophy of the right renal artery. This finding, together with the high renin and aldosterone values, indicated a nephrogenic hypertension causing both the cardiomyopathy found at 12 months of age and the endocranial hermorrhage. Right nephrectomy led to the normalization of blood pressure. (orig.).

  14. Combined thalamic and subthalamic deep brain stimulation for tremor-dominant Parkinson's disease. (United States)

    Oertel, Markus F; Schüpbach, W Michael M; Ghika, Joseph-André; Stieglitz, Lennart H; Fiechter, Michael; Kaelin-Lang, Alain; Raabe, Andreas; Pollo, Claudio


    Deep brain stimulation (DBS) in the thalamic ventral intermediate (Vim) or the subthalamic nucleus (STN) reportedly improves medication-refractory Parkinson's disease (PD) tremor. However, little is known about the potential synergic effects of combined Vim and STN DBS. We describe a 79-year-old man with medication-refractory tremor-dominant PD. Bilateral Vim DBS electrode implantation produced insufficient improvement. Therefore, the patient underwent additional unilateral left-sided STN DBS. Whereas Vim or STN stimulation alone led to partial improvement, persisting tremor resolution occurred after simultaneous stimulation. The combination of both targets may have a synergic effect and is an alternative option in suitable cases.

  15. Estimation of rumen outflow in dairy cows fed grass silage-based diets by use of reticular sampling as an alternative to sampling from the omasal canal. (United States)

    Krizsan, S J; Ahvenjärvi, S; Volden, H; Broderick, G A


    A study was conducted to compare nutrient flows determined by a reticular sampling technique with those made by sampling digesta from the omasal canal. Six lactating dairy cows fitted with ruminal cannulas were used in a design with a 3 x 2 factorial arrangement of treatments and 4 periods. Treatments were 3 grass silages differing mainly in neutral detergent fiber (NDF) concentrations: 412, 530, or 639 g/kg of dry matter, each combined with 1 of 2 levels of concentrate feed. Digesta was collected from the reticulum and the omasal canal to represent a 24-h feeding cycle. Nutrient flow was calculated using the reconstitution system based on 3 markers (Co, Yb, and indigestible NDF) and using (15)N as a microbial marker. Large and small particles and the fluid phase were recovered from digesta collected at both sampling sites. Bacterial samples from the reticulum and the omasum were separated into liquid- and particle-associated bacteria. Reticular samples were sieved through a 1-mm sieve before isolation of digesta phases and bacteria. Composition of the large particle phase differed mainly in fiber content of the digesta obtained from the 2 sampling sites. Sampling site did not affect marker concentration in any of the phases with which the markers were primarily associated. The (15)N enrichment of bacterial samples did not differ between sampling sites. The reticular and omasal canal sampling techniques gave similar estimates of marker concentrations in reconstituted digesta, estimates of ruminal flow, and ruminal digestibility values for dry matter, organic matter, starch, and N. Sampling site x diet interactions were also not significant. Concentration of NDF was 2.2% higher in reconstituted omasal digesta than in reconstituted reticular digesta. Ruminal NDF digestibility was 2.7% higher when estimated by sampling the reticulum than by sampling the omasal canal. The higher estimate of ruminal NDF digestibility with the reticular sampling technique was due to

  16. Effects of the intra-arterial injection of bradykinin into the limbs, upon the activity of mesencephalic reticular units. (United States)

    Lombard, M C; Guilbaud, G; Besson, J M


    The changes in firing rate of mesencephalic reticular units after intra-arterial injection into the limbs of a potent nociceptive agent, bradykinin, were studied in cats (unanesthetized, immobilized with flaxedil and hyperventilated). 30 per cent of the d35 studied cells were affected, 56 per cent were excited, 23 per cent inhibited and 5 per cent had mixed effects. Among the 75 excited cells, the activation of 16 of them seemed to related to the arousa- processes (group A); for 56 cells the increase seemed dire-tly dependent on the nociceptive stimulation itself (group B). The changes of firing rate were repruducible; their latencies and durations were of the same order as the latencies and duration of the nociceptive reactions and painful sensation s, which have been obtained in animals and men after bradykinin injections. The modifications induced by bradykinin administration were suppressed by Ketamin and Thiopental.

  17. Markov-dependency and spectral analyses on spike-counts in mesencephalic reticular neurons during sleep and attentive states. (United States)

    Yamamoto, M; Nakahama, H; Shima, K; Kodama, T; Mushiake, H


    Spontaneous activities of the mesencephalic reticular formation (MRF) neurons of head-restrained cats were recorded to investigate their dynamic properties during sleep and waking. The Markov-dependency and spectral analyses were performed on the time series of counts converted from the MRF spike-train. During slow-wave sleep (SWS), MRF neurons fired with low Markovian properties and had a similar spectral-density curve as white noise; during paradoxical sleep (PS), their firing pattern showed high Markovian properties owing to low-frequency fluctuations, with spectral densities inversely proportional to frequency (the l/f spectrum). During the attentive state of bird watching (BW), intermediate Markovian properties were observed. These results confirmed both the rest theory of SWS and the activation of the brain during PS from the viewpoint of dynamic information-processing. Furthermore, the activation of the brain during PS may be greater than in BW.

  18. Projections from the rostral mesencephalic reticular formation to the spinal cord - An HRP and autoradiographical tracing study in the cat (United States)

    Holstege, G.; Cowie, R. J.


    Horseradish peroxidase was injected, or implanted unilaterally, into various levels of the spinal cord of anesthetized cats, to trace the distribution of projections to the spinal cord, of neurons in Field H of Forel, including the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), and the interstitial nucleus of Cajal with adjacent reticular formation (INC-RF). Results indicate that, unlike the neurons projecting to the extraocular muscle motoneurons, the major portion of the spinally projecting neurons are not located in the riMLF or INC proper, but in adjacent areas, i.e., the ventral and lateral parts of the caudal third of the Field H of Forel and in the INC-RF. Neurons in caudal Field H of Forel, project, via the ventral part of the ventral funicululs, to the lateral part of the upper cervical ventral horn.

  19. Bypassing the rumen in dairy ewes: the reticular groove reflex vs. calcium soap of olive fatty acids. (United States)

    García, C Dobarganes; Hernández, M Pérez; Cantalapiedra, G; Salas, J M; Merino, J A


    A 3 x 3 Latin Square experiment was designed to compare 2 ways of bypassing the effects of the rumen with olive oil fatty acids in 'Manchega' dairy ewes. Treatments were a control diet, CaOFA (control diet plus 45 g of olive fatty acids as calcium soap), and OO (control plus 45 g/d of olive fatty acids as olive oil emulsified in skim milk) and bottle-fed to animals trained to maintain the reticular groove reflex). No differences were found in milk, protein, and lactose yields, but fat yield and milk fat content were greater in treatments with added fat (CaOFA and OO). Content of short- and medium-chain fatty acids in milk fat was greater for control treatment than for the other 2 groups, the yield of these fatty acids being similar for all 3 diets, except that of C12:0, which was greater for the control treatment. Content and yield of C18:0 and isomers of C18:1 others than oleic acid were greater in milk from the CaOFA diet than from the other 2 diets. Oleic acid content and yield were greater in milk after OO treatment (23.9% and 16.8 g/d, respectively), intermediate after CaOFA treatment (19.2% and 13.8 g/d, respectively), and lower after control diet (10.7% and 6.52 g/d, respectively). Linoleic acid yield and content were greater in ewes fed the OO diet than in those on the other 2 diets, both of which showed similar data. All these changes indicated that the "protected" olive fatty acids (as calcium soap) were severely affected by the rumen environment and that the use of the reticular groove reflex seems to be a more effective way of bypassing the rumen in adult lactating dairy ewes.

  20. Thalamic abnormalities in children with continuous spike-wave during slow-wave sleep: An F-18-fluorodeoxyglucose positron emission tomography perspective. (United States)

    Agarwal, Rajkumar; Kumar, Ajay; Tiwari, Vijay N; Chugani, Harry


    Thalamic injury has been implicated in the development of continuous spike-wave during slow-wave sleep (CSWS) in children with epilepsy. We studied thalamic abnormalities in children with CSWS using F-18-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging. Twenty-three patients (12 male; mean age 9 years) with CSWS and normal thalami on brain magnetic resonance imaging (MRI) underwent FDG-PET. Thalamic glucose metabolism, represented by standardized uptake value normalized to whole brain (nSUV, RT for right thalamus and LT for left thalamus), and its asymmetry--absolute asymmetry index (AAI): ¦(RT-LT)¦*100/[(RT+LT)/2]--was calculated. These values were compared with those from 10 normal healthy controls (five female; mean age 11.1 years). Thalamic glucose metabolism was abnormal in 18 patients (78.3%). Thalamic nSUV was decreased (n = 6) or increased (n = 1) bilaterally in seven children without any asymmetry. Abnormal thalamic symmetry [AAI = 3.7-31.5% (0.8-3.3% in controls)] was seen in 11 children. Of these, six children had a unilateral thalamic metabolic abnormality (increased metabolism, n = 3 and decreased metabolism, n = 3), whereas 5 of 14 children had abnormal asymmetry index with bilaterally normal (n = 4) or increased (n = 1) thalamic metabolism. No clear association of thalamic metabolic abnormalities was seen with the stage of evolution of CSWS (prodromal, acute, or residual) or with the cortical FDG abnormalities. Functional thalamic abnormalities, both unilateral and bilateral, are frequently seen in patients with CSWS. FDG-PET is a sensitive and quantifiable modality to detect these changes. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  1. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. (United States)

    Schiff, Nicholas D


    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed. © 2013 Elsevier B.V. All rights reserved.

  2. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed


    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  3. Case of herpes simplex encephalitis(HSE) with a thalamic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, K.; Koike, R.; Yuasa, T.; Miyatake, T.; Ito, J.


    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus.

  4. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. (United States)

    Rubio-Garrido, Pablo; Pérez-de-Manzo, Flor; Porrero, César; Galazo, Maria J; Clascá, Francisco


    Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.

  5. Contributions of the Paraventricular Thalamic Nucleus in the Regulation of Stress, Motivation, and Mood

    Directory of Open Access Journals (Sweden)

    David Tai Hsu


    Full Text Available The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine, corticotropin-releasing hormone, and orexins, and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis, nucleus accumbens, and infralimbic/subgenual anterior cingulate cortex. These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders. Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.

  6. Simultaneous Top-down Modulation of the Primary Somatosensory Cortex and Thalamic Nuclei during Active Tactile Discrimination (United States)

    Pais-Vieira, Miguel; Lebedev, Mikhail A.; Wiest, Michael C.; Nicolelis, Miguel A.L.


    The rat somatosensory system contains multiple thalamocortical loops (TCL) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial (VPM) and the posterior medial (POM) thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations prior to the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animal’s discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animal’s performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system. PMID:23447616

  7. Functional characterization and expression of thalamic GABAB receptors in a rodent model of Parkinson’s disease

    NARCIS (Netherlands)

    Groote, C. de; Wüllner, U.; Löschmann, P.-A.; Luiten, P.G.M.; Klockgether, T.


    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson’s disease. We investigated the functional role of thalamic GABAB receptors in a rodent model of Parkinson’s disease. First, we

  8. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T


    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we

  9. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain. (United States)

    Moda, Fabio; Suardi, Silvia; Di Fede, Giuseppe; Indaco, Antonio; Limido, Lucia; Vimercati, Chiara; Ruggerone, Margherita; Campagnani, Ilaria; Langeveld, Jan; Terruzzi, Alessandro; Brambilla, Antonio; Zerbi, Pietro; Fociani, Paolo; Bishop, Matthew T; Will, Robert G; Manson, Jean C; Giaccone, Giorgio; Tagliavini, Fabrizio


    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  10. Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET)

    NARCIS (Netherlands)

    Khan, N; Leenders, KL; Hajek, M; Maguire, P; Missimer, J; Wieser, HG


    Thalamic glucose metabolism has been studied in 24 patients suffering from temporal lobe epilepsy (TLE) using interictal F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET). A total of 17 patients had a unilateral TL seizure onset, 11 of these patients had a mesial temporal lobe

  11. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione,M.M.; Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.


    The learned helplessness paradigm has been repeatedly shown to correlate with neurobiological aspects of depression in humans. In this model, rodents are exposed inescapable foot-shock in order to reveal susceptibility to escape deficit, defined as 'learned helplessness' (LH). Few methods are available to probe the neurobiological aspects underlying the differences in susceptibility in the living animal, thus far being limited to studies examining regional neurochemical changes with microdialysis. With the widespread implementation of small animal neuroimaging methods, including positron emission tomography (PET), it is now possible to explore the living brain on a systems level to define regional changes that may correlate with vulnerability to stress. In this study, 12 wild type Sprague-Dawley rats were exposed to 40 minutes of inescapable foot-shock followed by metabolic imaging using 2-deoxy-2[{sup 18}F]fluoro-D-glucose (18-FDG) 1 hour later. The escape test was performed on these rats 48 hours later (to accommodate radiotracer decay), where they were given the opportunity to press a lever to shut off the shock. A region of interest (ROI) analysis was used to investigate potential correlations (Pearson Regression Coefficients) between regional 18-FDG uptake following inescapable shock and subsequent learned helpless behavior (time to finish the test; number of successful lever presses within 20 seconds of shock onset). ROI analysis revealed a significant positive correlation between time to finish and 18-FDG uptake, and a negative correlation between lever presses and uptake, in the medial thalamic area (p=0.033, p=0.036). This ROI included the paraventricular thalamus, mediodorsal thalamus, and the habenula. In an effort to account for possible spillover artifact, the posterior thalamic area (including ventral medial and lateral portions) was also evaluated but did not reveal significant correlations (p=0.870, p=0.897). No other significant

  12. Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available PURPOSE: Crossed cerebellar diaschisis (CCD is a state of neural depression caused by loss of connections to injured neural structures remote from the cerebellum usually evaluated by positron emission tomography. Recently it has been shown that dynamic susceptibility contrast perfusion weighted MRI (PWI may also be feasible to detect the phenomenon. In this study we aimed to assess the frequency of CCD on PWI in patients with acute thalamic infarction. METHODS: From a MRI report database we identified patients with acute isolated thalamic infarction. Contralateral cerebellar hypoperfusion was identified by inspection of time to peak (TTP maps and evaluated quantitatively on TTP, mean transit time (MTT, cerebral blood flow and volume (CBF, CBV maps. A competing cerebellar pathology or an underlying vascular pathology were excluded. RESULTS: A total of 39 patients was included. Common symptoms were hemiparesis (53.8%, hemihypaesthesia (38.5%, dysarthria (30.8%, aphasia (17.9%, and ataxia (15.4%. In 9 patients (23.1% PWI showed hypoperfusion in the contralateral cerebellar hemisphere. All of these had lesions in the territory of the tuberothalamic, paramedian, or inferolateral arteries. Dysarthria was observed more frequently in patients with CCD (6/9 vs. 6/30; OR 8.00; 95%CI 1.54-41.64, p = 0.01. In patients with CCD, the median ischemic lesion volume on DWI (0.91 cm³, IQR 0.49-1.54 cm³ was larger compared to patients with unremarkable PWI (0.51 cm³, IQR 0.32-0.74, p = 0.05. The most pronounced changes were found in CBF (0.94±0.11 and MTT (1.06±0.13 signal ratios, followed by TTP (1.05±0.02. CONCLUSIONS: Multimodal MRI demonstrates CCD in about 20% of acute isolated thalamic infarction patients. Lesion size seems to be a relevant factor in its pathophysiology.

  13. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills


    Full Text Available Introduction: Attention deficit hyperactivity disorder (ADHD captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting state functional connectivity (rs-fcMRI studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical-striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD.Methods: We correlated the rs-fcMRI of five thalamic regions of interest with spatial span working memory scores in a sample of 67 children aged 7-11 years (ADHD and typically developing children; TDC. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7-11 years from the ADHD-200 dataset. Thalamic regions of interest were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus.Results/Conclusions: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.

  14. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)


    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  15. [Persistent psychotic disorder following bilateral mesencephalo-thalamic ischaemia: case report]. (United States)

    Predescu, A; Damsa, C; Riegert, M; Bumb, A; Pull, C


    A 38-year old male patient with no history of psychiatric illness developed a progressive psychotic disorder after bilateral (predominantly left) mesencephalo-thalamic cerebral ischaemia. The reason of the emergency hospitalization was the sudden onset of a confusional state, culminating in a fluctuating comatose status. The neurological examination found mild right hemiparesia, praxic disorders and reactive left mydriasis with paresia of the downward vertical stare, leading to the hospitalisation in the neurology department for suspicion of a cerebral vascular ischaemic accident. The psychiatric symptoms started with acoustic-verbal hallucinations, poorly structured paranoid delusions, progressively developed over two weeks, followed by behavioural disorders with psychomotor agitation and heteroaggressivity. The patient was transferred to the psychiatric department, because of the heteroaggressive risk and lack of morbid consciousness, in spite of recovering from the confusional status. An intensive psychiatric management was proposed, combining a psychotherapeutic approach with 4 mg of risperidone and adjustable doses of benzodiazepine according to the psychomotor agitation. During the next days, there was a net recovery of the behavioural disorders, in spite of the persistence of the ideas of persecution. All the neurological symptoms also decreased. An anomaly of the polygon of Willis was found on a cerebral arteriography (the posterior cerebral arteries had a foetal origin, dependent on carotidal axes and not on the vertebro-basilar system). The main emboligen risk factor was the presence of a permeable foramen ovale, discovered during a transoesophageal echography. The patient underwent a surgical correction of the permeable foramen ovale. The psychiatric hospitalization for three months was continued by ambulatory follow-up. The initial positive symptoms (delusions, acoustic-verbal hallucinations) progressively diminished while negative symptoms became

  16. Bilateral thalamic stimulation induces insomnia in patients treated for intractable tremor. (United States)

    Bridoux, Agathe; Drouot, Xavier; Sangare, Aude; Al-Ani, Tarik; Brignol, Arnaud; Charles-Nelson, Anais; Brugières, Pierre; Gouello, Gaëtane; Hosomi, Koichi; Lepetit, Hélène; Palfi, Stéphane


    To explore the influence of acute bilateral ventral intermediate thalamic nucleus (VIM) stimulation on sleep. Three consecutive full-night polysomnography recordings were made in the laboratory. After the habituation night, a random order for night ON-stim and OFF-stim was applied for the second and third nights. Sleep disorders unit of a university hospital. Eleven patients with bilateral stimulation of the ventral intermediate nucleus of the thalamus (VIM) for drug-resistant tremor. Sleep measures on polysomnography. Total sleep time was reduced during night ON-stim compared to OFF- stim, as well as rapid eye movement sleep percentage while the percentage of N2 increased. Wakefulness after sleep onset time was increased. Our results show that bilateral stimulation of the VIM nuclei reduces sleep and could be associated with insomnia. © 2015 Associated Professional Sleep Societies, LLC.

  17. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)


    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  18. Lateralization of observational fear learning at the cortical but not thalamic level in mice. (United States)

    Kim, Sangwoo; Mátyás, Ferenc; Lee, Sukchan; Acsády, László; Shin, Hee-Sup


    Major cognitive and emotional faculties are dominantly lateralized in the human cerebral cortex. The mechanism of this lateralization has remained elusive owing to the inaccessibility of human brains to many experimental manipulations. In this study we demonstrate the hemispheric lateralization of observational fear learning in mice. Using unilateral inactivation as well as electrical stimulation of the anterior cingulate cortex (ACC), we show that observational fear learning is controlled by the right but not the left ACC. In contrast to the cortex, inactivation of either left or right thalamic nuclei, both of which are in reciprocal connection to ACC, induced similar impairment of this behavior. The data suggest that lateralization of negative emotions is an evolutionarily conserved trait and mainly involves cortical operations. Lateralization of the observational fear learning behavior in a rodent model will allow detailed analysis of cortical asymmetry in cognitive functions.

  19. [Thalamic Stroke and Associated Behavior Disorders. Possibilities for Integral Management: Case Report]. (United States)

    Camargo, Loida Camargo; Sánchez, Katherine Parra


    Since ancient Greece, cerebrovascular accidents have been described with no variation. Even today, they are still a catastrophic event in the lives of patients with a high risk of disabling sequelae. Case report of a 56-year male patient with thalamic ischemia. The intervention with integral strategies involving pharmacological management and cognitive interventions was decisive for the satisfactory evolution of the patient. The management of patients with cerebrovascular accidents cannot be limited to the emergency room. Pharmacological advances in programs and cognitive intervention methods provide intervention tools from the very beginning of the stroke thus reducing the impact of long-term sequelae, and consequently enabling a better reintegration of the patient to his family. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  20. 3-D tracing of biocytin-labelled pallido-thalamic axons in the monkey. (United States)

    Arecchi-Bouchhioua, P; Yelnik, J; François, C; Percheron, G; Tandé, D


    This study presents three-dimensional tracings of axons and axonal endings of associative pallido-thalamic axons in the monkey (Macaca mulatta, M. irus). Injections of the anterograde tracer biocytin were made in the dorsal, associative region of the medial pallidum. Numerous axonal endings were observed throughout the pallidal territory of the thalamus. Four individual axons were reconstructed from serial sections and traced in three dimensions. The initial branch of each axon subdivided successively, each new branch ending in a different part of the pallidal territory. Each of the latter branches ended in a characteristic, extremely dense terminal arborization, that we called a bunch. Associative medial pallidal information may therefore be distributed throughout the pallidal territory by means of numerous branches and bunches.

  1. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)


    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  2. Abnormal medial thalamic metabolism in patients with idiopathic restless legs syndrome. (United States)

    Rizzo, Giovanni; Tonon, Caterina; Testa, Claudia; Manners, David; Vetrugno, Roberto; Pizza, Fabio; Marconi, Sara; Malucelli, Emil; Provini, Federica; Plazzi, Giuseppe; Montagna, Pasquale; Lodi, Raffaele


    Pathophysiology of restless legs syndrome is poorly understood. A role of the thalamus, specifically of its medial portion which is a part of the limbic system, was suggested by functional magnetic resonance imaging and positron emission tomography studies. The aim of this study was to evaluate medial thalamus metabolism and structural integrity in patients with idiopathic restless legs syndrome using a multimodal magnetic resonance approach, including proton magnetic resonance spectroscopy, diffusion tensor imaging, voxel-based morphometry and volumetric and shape analysis. Twenty-three patients and 19 healthy controls were studied in a 1.5 T system. Single voxel proton magnetic resonance spectra were acquired in the medial region of the thalamus. In diffusion tensor examination, mean diffusivity and fractional anisotropy were determined at the level of medial thalamus using regions of interest delineated to outline the same parenchyma studied by spectroscopy. Voxel-based morphometry was performed focusing the analysis on the thalamus. Thalamic volumes were obtained using FMRIB's Integrated Registration and Segmentation Tool software, and shape analysis was performed using the FMRIB Software Library tools. Proton magnetic resonance spectroscopy study disclosed a significantly reduced N-acetylaspartate:creatine ratio and N-acetylaspartate concentrations in the medial thalamus of patients with restless legs syndrome compared with healthy controls (P history of restless legs syndrome (β = -0.49; P = 0.018). On the contrary, diffusion tensor imaging, voxel-based morphometry and volumetric and shape analysis of the thalami did not show differences between the two groups. Proton magnetic resonance spectroscopic findings in patients with restless legs syndrome indicate an involvement of medial thalamic nuclei of a functional nature; however, the other structural techniques of the same region did not show any changes. These findings support the hypothesis

  3. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation (United States)

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu


    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency

  4. Modulation of sensitivity to alcohol by cortical and thalamic brain regions. (United States)

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Besheer, Joyce


    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. CT classification of small thalamic hemorrhages. Topographic localization and clinical manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo (Hamamatsu Medical Center Hospital, Shizuoka (Japan))


    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type.

  6. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Mario Torso

    Full Text Available Behavioural disorders and psychological symptoms of Dementia (BPSD are commonly observed in Alzheimer's disease (AD, and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM, we investigated the impact of white matter lesions (WMLs on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI.Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up and 26 healthy controls underwent magnetic resonance imaging (MRI examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD.Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs and the severity of apathy. Regional grey matter atrophy did not account for any BPSD.This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  7. Calcium-binding proteins in the laterodorsal thalamic nucleus during development of the guinea pig. (United States)

    Zakowski, Witold; Bogus-Nowakowska, Krystyna; Wasilewska, Barbara; Hermanowicz, Beata; Robak, Anna


    The laterodorsal thalamic nucleus (LD) is often treated as a part of the anterior thalamic nuclei (ATN) because of its location and similar connectivity. Our previous studies have shown that distribution of three calcium-binding proteins, i.e. calbindin D28k (CB), calretinin (CR) and parvalbumin (PV), changes within the ATN during development of the guinea pig. The aim of this study is to examine the immunoreactivity pattern of these proteins in the LD in the guinea pig ontogeny. Brains from animals ranging from 40th embryonic day to 80th postnatal day were used in the study. Two methods were applied: a single-labelling immunoenzymatic method and double-labelling immunofluorescence. No changes of the distribution pattern of the substances were observed throughout the examined developmental stages. CB and CR were the most abundantly expressed proteins in perikarya of the LD. Numerous CB- and CR-immunoreactive cell bodies were found throughout the whole extent of the nucleus. In most of these cell bodies both proteins colocalized vastly. The highest immunoreactivity of the perikarya containing CB and CR was observed in the mediodorsal part of the LD and in its rostral portion. In regard to PV, single cell bodies were observed mostly in the dorsal part of the nucleus. PV did not colocalize with the other proteins. In summary, all the studied calcium-binding proteins were already present in the LD at prenatal developmental stages and the pattern of distribution remained virtually constant until adulthood. Thus, the LD differs considerably from the ATN in an aspect of neurochemical cell differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease. (United States)

    Torso, Mario; Serra, Laura; Giulietti, Giovanni; Spanò, Barbara; Tuzzi, Elisa; Koch, Giacomo; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco


    Behavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer's disease (AD), and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI). Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD. Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD. This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  9. [The thalamic syndrome of Déjérine-Roussy. Prolegomenon]. (United States)

    De Smet, Y


    Predicted by Dejerine and Long in 1898 and formally described by Dejerine and Roussy in 1906, the "thalamic syndrome" corrected the wrong hypothesis of a capsular "sensory cross roads" suggested by Charcot after 1873 and supported in France during 25 years. Both established the "persistent frank organic hemianesthesia" (sensory-sensitive for Charcot, pure sensitive for Dejerine), namely that a sensory deficit, still severe after regression of the early hemiplegia, could be due to focal brain damage. At that time such a clinical concept was hardly acceptable because it opposed the classic greek philosophical idea that sensation and movement should not be separated. Moreover, intelligence was at that time looked as a four-stage process including sensation, imagination, intellect and memory. The very first step began with the "sensus communis", an anteroom-like where all the sensations simultaneously perceived were coordinated to ensure mind unity. This "sensus communis" was given many subcortical seats during the following centuries, such as the trigone (Herophilus), the ventricles (Founders of the Church, Soemmering), the pineal body (Descartes), the striate bodies (Willis) and, finally, the thalamus (Todd and Carpenter's "English theory"). The description by Meynert in 1871 of a transcapsular direct "sensory bundle" and the cases reported by Türck in 1859 of a sensory-sensitive hemianesthesia after a posterior capsular lesion (in fact, thalamo-capsulostriate) led Charcot to develop his theory after 1873. Owing to the new staining methods of Weigert and Marchi introduced around 1885, Dejerine showed in 1895 the route of the medial lemniscus and his arrival in the thalamus, which led him to postulate in 1898 a "thalamic syndrome" and later to demonstrate it.

  10. Citrate synthase, sarcoplasmic reticular calcium ATPase, and choline acetyltransferase activities of specific pelvic floor muscles of the rabbit. (United States)

    Spettel, Sara; De, Elise; Elias, Tamer; Schuler, Catherine; Leggett, Robert E; Levin, Robert M


    There is a clear relationship between the pelvic floor muscles and urinary systems, which relates to urgency, frequency, incontinence, pelvic pain, and bowel complaints. The specific mechanisms which relate these two systems are not clear. Improved understanding of the relation between the pelvic floor muscles and bladder function is clinically relevant in establishing effective treatments to such problems as incontinence, secondary to birth. The following tissues were collected from normal adult female rabbits: pubococcygeus (Pc) and ischiocavernosus/bulbospongiosus (Ic/Bs) pelvic floor muscles. Bladder body muscle and mucosa, bladder base muscle and mucosa, and leg skeletal muscle were also collected. The following enzymatic assays were performed on each tissue: citrate synthase (CS), sarcoplasmic-endoplasmic reticular ATPase (SERCA), and choline acetyltransferase (ChAT). CS and SERCA activities were significantly higher in the Pc compared with the Ic/Bs pelvic floor muscles, whereas the ChAT activity of the Ic/Bs was higher than that of the Pc muscle. Based on our results, the Pc muscle is expected to have a significantly greater capacity to contract and a higher metabolic activity than those of the Ic/Bs muscles. We believe that an understanding of the biochemical activities of these three biomarker enzymes in normal pelvic floor muscles is essential in evaluating the effects of specific experimental dysfunctions created in pelvic floor muscle activity.

  11. Mechanisms on the morphology variation of hematite crystals by Al substitution: The modification of Fe and O reticular densities. (United States)

    Li, Wei; Liang, Xiaoliang; An, Pengfei; Feng, Xionghan; Tan, Wenfeng; Qiu, Guohong; Yin, Hui; Liu, Fan


    Al substitution in hematite is ubiquitous in soils. With the increase of Al amount, the hematite morphology changes from rhombohedral crystals to disk-shaped ones, but the underlying mechanism is poorly understood. Herein, a series of Al-substituted hematite were synthesized and characterized by synchrotron X-ray diffraction (SXRD), field emission scanning electron microscopy (FESEM), high resolution electron transmission microscopy (HRTEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy, to investigate the effects of Al3+ substitution on the hematite structure and morphology. EXAFS and Rietveld structural refinement analyses find an increase in face-sharing (along c axis) Fe-Me (Me = Al, Fe) distances, edge-sharing (in a-b plane) Fe-Me (Me = Al, Fe) distances, and O-O average distances. Moreover, the face-sharing Fe-Me distances and O-O distances along c axis increase more significantly. This indicates a more apparent decrease in the reticular densities of Fe and O along the direction of c axis, which facilitates faster crystal growth along c axis and results in the evolution of morphology of Al-substituted hematite to disk-shaped crystals. The above results provide new insights into the morphology changes and environmental geochemistry behaviors of Al-contained hematite in soils, and are benefit for the control of crystal morphologies during its application as environmentally-friendly materials.

  12. Zipper-like series of desmosomes supported by subplasmalemmal actin belts in thymic epithelial reticular cells in the rat. (United States)

    Rusu, M C; Pop, F; Mănoiu, V M; Lupuşoru, M O; Didilescu, A C


    Remodeling of epithelial tissues requires coordinated cell migration. Most of the mechanisms regulating desmosome assembly and stability in migrating epithelial cells are still unknown. The actin cytoskeleton is a significant component of desmosome assembly and maturation. The association of the actin cytoskeleton with adherens junctions requires additional ultrastructural investigations. A transmission electron microscopic study was performed on five samples of rat thymus. Interepithelial series of desmosomes up to 6.5 μm length were found as were composite series of junctions (tight, adherens, and desmosomes). As a particular feature, subplasmalemmal belts of microfilaments, apparently of actin, ran adjacent to the inner dense plaques of desmosomes, passing beneath and at a distance to the tight junctions. They were not found beneath the adherens junctions. The series of desmosomes were termed zipper-like desmosomes (ZLDs), and were either complete, or imperfect. Terminal imperfect or incomplete desmosomes were found at the ends of the zipper-like series. Alpha-smooth muscle actin immune labeling on six other samples of rat thymus was strongly suggestive of the existence of subplasmalemmal actin belts in the epithelial reticular system. Further studies are needed to establish the exact role of the ZLDs during processes of epithelial remodeling. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Neuronal gagging activity patterns may be generated by neurons in the reticular area dorsomedial to the retrofacial nucleus in dogs. (United States)

    Fukuda, H; Koga, T


    Expulsion is induced when hypercapnea and hypoxia develop during retching, or when the oropharyngeal mucosa is irritated (the gag reflex). The central pattern generator (CPG) for expulsion has been suggested to coexist with the CPG for retching in the reticular area dorsomedial to the retrofacial nucleus, which may correspond to the Botzinger complex (BOT). However, its participation in gagging induced by oropharyngeal irritation is unclear. To elucidate such participation, the firing patterns of BOT neurons were observed during gagging induced by stimulation of superior laryngeal afferents in decerebrate, paralyzed dogs. Only 23% of inspiratory and 34% of expiratory BOT neurons increased their firing in response to stimulation of the superior laryngeal nerve. In contrast, 75% of nonrespiratory BOT neurons showed enhanced firing with this stimulation. During gagging, each nonrespiratory, inspiratory, and expiratory BOT neuron fired with the same pattern that they exhibited during expulsion caused by changes in blood gases. These firing patterns could be classified into five types and are thought to be appropriate for generating neuronal gagging activity. These results suggest that the CPG for expulsion in the BOT produces gagging when it is activated by oropharyngolaryngeal afferents.

  14. Carbachol injection into the pontine reticular formation depresses laryngeal muscle activities and airway reflexes in decerebrate cats. (United States)

    Adachi, Masaaki; Nonaka, Satoshi; Katada, Akihiro; Arakawa, Takuya; Ota, Ryo; Harada, Hirofumi; Takakusaki, Kaoru; Harabuchi, Yasuaki


    To understand the role of cholinoceptive, medial pontine reticular formation (mPRF) neurons in the control of upper airway, pharyngolaryngeal reflexes, we measured activities of intrinsic laryngeal muscles (posterior cricoarytenoid, PCA; thyroarytenoid, TA), diaphragm (DIA), genioglossus (GG) and a neck muscle (trapezius) in unanesthetized, decerebrated, spontaneously breathing cats with and without mPRF carbachol injections. The ethimoidal nerve was electrically stimulated to evoke sneezing, and the superior laryngeal nerve to evoke the laryngeal reflex, swallowing, and coughing. Carbachol reduced the amplitudes of the spontaneous electromyographic activities in the neck, TA, PCA, GG, and DIA to 7%, 30%, 54%, 45% and 71% of control, respectively, reduced the respiratory rate to 53% without changes in expiratory CO(2) concentration; the magnitude of the laryngeal reflex in the TA muscle to 56%; increased its latency by 13%; and reduced the probability of stimulus-induced sneezing, swallowing, and coughing to less than 40%. These changes lasted more than 1h. These data demonstrate that important upper airway reflexes are suppressed by increasing cholinergic neurotransmission in the mPRF. Because acetylcholine release in the mPRF changes in accordance with sleep-wake cycles, the present findings are relevant to the control of upper airway reflexes during various vigilance states. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  15. A double-blind, randomized study comparing pure chromated glycerin with chromated glycerin with 1% lidocaine and epinephrine for sclerotherapy of telangiectasias and reticular veins. (United States)

    Kern, Philippe; Ramelet, Albert-Adrien; Wutschert, Robert; Mazzolai, Lucia


    Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment. To determine pain level and relative efficacy of pure or one-third lidocaine-epinephrine 1% mixed chromated glycerin in a prospective randomized double-blind trial. Patients presenting with telangiectasias and reticular leg veins on the lateral aspect of the thigh (C(1A) or (S) E(P) A(S) P(N1) ) were randomized to receive pure CG or CG mixed with one-third lidocaine-epinephrine 1% (CGX) treatment. Lower limb photographs were taken before and after treatment and analyzed by blinded expert reviewers for efficacy assessment (visual vein disappearance). Patients' pain and satisfaction were assessed using visual analogue scales. Data from 102 of 110 randomized patients could be evaluated. Patient pain scores were significantly higher when pure CG was used than with CGX (p<.001). Patient satisfaction with treatment outcome was similar in the two groups. Objective visual assessment of vessel disappearance revealed no significant difference between the two agents (p=.07). Addition of lidocaine-epinephrine 1% to CG, in a ratio of one-third, significantly reduces sclerotherapy pain without affecting efficacy when treating telangiectasias and reticular leg veins. © 2011 by the American Society for Dermatologic Surgery, Inc.

  16. Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker. (United States)

    Mulle, C; Madariaga, A; Deschênes, M


    Reticularis thalami neurons (RE neurons) were identified morphologically, and their electrophysiological properties were studied in cat under barbiturate anesthesia. Intracellular HRP injections showed that RE neurons possessed very long dendrites bearing numerous filopodia-like appendages and that their axons were directed toward main thalamic nuclei. As a rule, small axonal branches were also emitted within the RE nucleus itself. At rest, the membrane potential of RE neurons displayed 2 types of oscillations: a slow 0.1-0.2 Hz oscillation and fast 7-12 Hz oscillations occurring on the positive phase of the former. Episodes of spindle (7-12 Hz) waves lasted for 2-3 sec and were characterized by rhythmic depolarizations and burst discharges. Intracellular injections of QX314 and current pulse analyses revealed the presence in RE cells of 2 distinct inward currents: a persistent current that promoted tonic firing and a low-threshold current deinactivated by hyperpolarization that generated burst discharges. The low-threshold current deinactivated with large somatic hyperpolarizations (up to 30 mV) and produced depolarizing responses that lasted for about 70 msec. In addition, low-threshold responses appeared rhythmically at intervals of about 150 msec after recovery of the membrane potential from hyperpolarization. Because of their duration, voltage dependence, and persistence after intracellular injections of QX314, it is suggested that these responses resulted from activation of a low-threshold Ca2+ current at the dendritic level. In QX314-injected cells, selective components of spontaneous oscillations were abolished, among them the positive phase of the slow oscillation and late depolarizing humps that followed burst discharges within spindle sequences. However, the rhythmic occurrence of spindle episodes at 0.1-0.2 Hz was never affected by DC currents or by QX314 or Cl- injections, suggesting that oscillations within a particular RE neuron partly reflected the

  17. Social network analysis to cluster sociobibliometric information

    Directory of Open Access Journals (Sweden)

    Jorge Ricardo Vivas

    Full Text Available This paper examines the benefits of using Social Network Analysis in the field of sociobibliometric exploration. There are considered practical and conceptual limits and reaches. The proposal is illustrated through a study about a journals network of behavior modification by Peiró and Carpintero (1981. In this context it is shown the utility of using reticular properties of Density, Centrality, Betweenness, Power and Clusterig as indicators that allow obtaining novel and complementary information to the one extracted by the classic methods of bibliometric exploration.

  18. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın


    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  19. Thalamic superoxide and peroxide handling capacity (SPHC): An experimental study with aluminum, ethanol and tocopherol in rats. (United States)

    Nayak, Prasunpriya; Sharma, S B; Chowdary, N V S


    Superoxide and peroxide handling capacity (SPHC) is an important determinant of oxidative stress. Neurotoxic impacts of aluminum are associated with oxidant imbalance. Here, we studied the influence of aluminum on oxidative stress parameters, antioxidative enzymes and SPHC of thalamic area on pro-oxidant (ethanol) and antioxidant (α-tocopherol) exposure. Two sets of male Wistar rats were divided into 8 groups (6 each) and exposed to aluminum (10 mg/Kg body wt.), ethanol (0.6 g/Kg body wt.) and α-tocopherol (5 IU/day) for 4 wk, each having respective control group. Levels of reduced glutathione (GSH), lipid peroxidation (TBARS) along with activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) of thalamic area were estimated for each group. Glutathione-independent superoxide peroxide handling capacity (GI-SPHC) and glutathione-dependent superoxide peroxide handling capacity (GD-SPHC) were calculated from the GPx, CAT and SOD values. Concomitant exposure to aluminum and ethanol demonstrated significant increase in SOD activity and significant decrease in GPx activity compared to the control group, while lone aluminum-exposed rats showed raised GR activity, without alterations in GPx and SOD activities. However, significant reduction of both GI- and GD- SPHC were found in ethanol-exposed groups. α-Tocopherol supplementation could resist most of the alterations. In addition, current antioxidant exposure reduced the inherent GD-SPHC, and thus, made thalamic area more vulnerable to oxidant threat. The present study corroborates the thalamic susceptibility to aluminum-augmented oxidant imbalance and suggests cautious use of antioxidant supplementation against neurodegenerative disorders.

  20. Murine fibroblastic reticular cells from lymph node interact with CD4+ T cells through CD40-CD40L (United States)

    Nakayama, Yumi; Brinkman, C. Colin; Bromberg, Jonathan S.


    Background Costimulatory blockade with anti-CD40L mAb plus donor-specific splenocyte transfusion (DST) induces alloantigen-specific tolerance. We previously showed that lymphotoxin signaling in the fibroblastic reticular cell (FRC) stromal subset was required for proper lymph node structure and function during tolerization in murine cardiac transplantation. Here we focused on FRC functions and hypothesized that donor-specific splenocyte transfusion and anti-CD40L mAb modulated FRC interactions with CD4+ T cells in mice. Methods Mice were immunized or tolerized by DST or DST plus anti-CD40L mAb. FRC were flow-sorted at different time points for characterization and in vitro proliferation and activation assays. Results FRC responded rapidly to DST by transcribing inflammatory cytokine and chemokine mRNAs such as CXCL2, CXCL9, CXCL10, and CCL21. Conversely, anti-CD40L mAb inhibited FRC inflammatory responses. CD40 was expressed on FRC and agonistic anti-CD40 mAb activated FRC, which supported CD4+ T cell proliferation, while unstimulated FRC did not. Anti-CD3 mAb activated CD4+ T cells induced inflammatory cytokine and chemokine expression by FRC, which was inhibited by anti-CD40L mAb. Thus, FRC phenotype was altered by interaction with CD4+ T cells through CD40-CD40L, and activated FRC interacted directly with CD4+ T cells to support T cell activation and proliferation in vitro. Conclusions Taken together, these results demonstrated that CD40 on FRC facilitated bidirectional communication between FRC and CD4+ T cells via CD40-CD40L, thereby altering FRC gene expression of immune regulatory molecules. Since blockade of CD40-CD40L interactions results in tolerance in mice, identification of FRC-T cell interactions provides a new research target for tolerance induction. PMID:25856408

  1. Pure Hemi-Chorea Resulting from an Acute Phase of Contralateral Thalamic Lacunar Infarction: A Case Report

    Directory of Open Access Journals (Sweden)

    Teruyuki Takahashi


    Full Text Available Background: Thalamic lesions give rise to a variety of clinical syndromes such as pure sensory stroke, ataxic hemiparesis, and rarely involuntary movements including chorea. Generally and classically, lacunar infarction in the subthalamic nucleus has been regarded as the lesion mainly responsible for hemi-chorea and hemi-ballismus, on the basis of previous anatomical studies. Case Presentation: This report describes the case of an 81-year-old man who developed sudden-onset pure hemi-chorea in the right limbs resulting from an acute phase of left thalamic lacunar infarction detected on a diffusion-weighted image (DWI in an MRI study. The patient had no other neurological symptoms such as ataxic hemiparesis and sensory disturbance. A single-photon emission computed tomography (SPECT study using the 99mTc-ECD Patlak plot method demonstrated significant perfusional asymmetry between the right and left thalami (p = 0.0035, consistent with the left thalamic lesion on DWI. Conclusion: It is speculated that this perfusional asymmetry, in particular the hypoperfusion in the left thalamus, detected by SPECT might play the most important role in the contralateral pure hemi-chorea as a rare neurological manifestation in this case.

  2. Development of involuntary movements after ventriculoperitoneal shunting for normal pressure hydrocephalus in a patient with chronic-phase thalamic haemorrhage. (United States)

    Shindo, Keiichiro; Kondo, Takeo; Sugiyama, Ken; Nishijima, Kazunori; Furusawa, Yoshihito; Mori, Takayuki; Izumi, Shin-Ichi


    Delayed-onset involuntary movements have been described after thalamic stroke. We treated a patient with involuntary movements that increased after ventriculoperitoneal shunting (VPS) for normal pressure hydrocephalus (NPH) following thalamic haemorrage. One and one-half years after right thalamic and intraventricular haemorrhage, NPH suggested clinical evaluation and neuroimaging studies in a 56-year-old man. Hemidystonia and pseudochoreoathetosis were evident in the left arm, leg and trunk. Proprioceptive impairment and mild cerebellar dysfunction affected the left upper and lower extremity. Yet the patient could walk unassisted and carry out activities of daily living (ADL) rated as 90 points according to the Barthel Index (BI). Lumbar puncture lessened both gait disturbance and cognitive impairment. After VPS, cognition and urinary continence improved, but involuntary movements worsened, precluding unaided ambulation and decreasing the BI score to 65 points. Computed tomography after VPS showed resolution of NPH, while single-photon emission computed tomography showed increased cerebral blood flow after VPS. Increased cerebral blood flow after VPS is suspected to have promoted development of abnormal neuronal circuitry.

  3. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder.

    Directory of Open Access Journals (Sweden)

    Mei Liao

    Full Text Available BACKGROUND: Generalized anxiety disorder (GAD is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. METHODS: Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM was used to investigate gray matter alterations. RESULTS: Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. CONCLUSIONS: These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD.

  4. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep (United States)

    Anderson, Matthew P.; Mochizuki, Takatoshi; Xie, Jinghui; Fischler, Walter; Manger, Jules P.; Talley, Edmund M.; Scammell, Thomas E.; Tonegawa, Susumu


    It has long been suspected that sensory signal transmission is inhibited in the mammalian brain during sleep. We hypothesized that Cav3.1 T-type Ca2+ channel currents inhibit thalamic sensory transmission to promote sleep. We found that T-type Ca2+ channel activation caused prolonged inhibition (>9 s) of action-potential firing in thalamic projection neurons of WT but not Cav3.1 knockout mice. Inhibition occurred with synaptic transmission blocked and required an increase of intracellular Ca2+. Furthermore, focal deletion of the gene encoding Cav3.1 from the rostral–midline thalamus by using Cre/loxP recombination led to frequent and prolonged arousal, which fragmented and reduced sleep. Interestingly, sleep was not disturbed when Cav3.1 was deleted from cortical pyramidal neurons. These findings support the hypothesis that thalamic T-type Ca2+ channels are required to block transmission of arousal signals through the thalamus and to stabilize sleep. PMID:15677322

  5. Crying spells triggered by thumb-index rubbing after thalamic stroke: a case report. (United States)

    Bassani, R; Rosazza, C; Ghirardin, L; Caldiera, V; Banco, E; Casati, C; Tesio, L


    Pathologic crying, devoid of any emotional counterpart, is known to occur as a consequence of various brain stem, cortical hemispheric and cerebellar lesions or, quite exceptionally, of "dacrystic" epilepsy. The case reported here suggests that thalamic lesions may also cause crying spells, under the special circumstances described below. After a mild left thalamic stroke a caucasian 77 years old man presented with crying spells with no emotional counterpart, triggered by thumb-index rubbing of his right hand. Only a modest sensation loss on right infra-orbital and nose-labial areas and the first three right fingers could be detected at clinical examination. The circumstances and processes leading to the crying spells were investigated, together with their neural substrate. Brain computerized tomography (CT), magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) were conducted. Neurophysiologic studies included Video-Electroencephalography, Electromyography, motor and sensory Evoked potentials. Active thumb-index rubbing, passive fingertips stimulation and interaction of sensory-motor stimulation with cognitive/speech activities were tested under different paradigms. A treatment with pregabalin (75 mg twice a day) was attempted. CT and MRI showed a small ischemic infarct in the left ventral postero-lateral thalamus, while fMRI led to the expected findings, i.e. a bilateral activation of the hand motor representation during the crying-triggering right-hand finger rubbing activity. Sensory potentials evoked from stimulation of the right upper limb were the only abnormal neurophysiologic test. Crying spells could be invariably evoked by both real and imagined active finger rubbing, in either the left of right hemi-space. Rubbing by an examiner was ineffective. Immersion in water (18 °C) but not oiling of the fingertips prevented the symptom. Administration and discontinuation of pregabalin 75 mg daily could be associated with

  6. Right Forceps Minor and Anterior Thalamic Radiation Predict Executive Function Skills in Young Bilingual Adults

    Directory of Open Access Journals (Sweden)

    Ping C. Mamiya


    Full Text Available Executive function (EF skills enhance learning across domains, and are particularly linked to the acquisition of a second language. Previous studies have shown that bilingual individuals show enhanced EF skills in cognitive tasks where they attended a targeted dimension of a stimulus while inhibiting other competing cues. Brain imaging revealed that bilingual young adults’ performances in the Stroop color-naming task were related to the volume of anterior cingulate cortex (ACC and inferior frontal lobe. Subjects who had greater white-matter in the frontal cortex showed enhanced performances in the same task, suggesting that brain fiber pathways connecting ACC to the frontal region may be related to the Stroop color-naming task. No studies to date have examined the tissue properties of brain fiber pathways connecting these brain regions and their association with subjects’ EF performances. Importantly, there are no data establishing whether bilingual subjects exhibit different reaction times when words are presented in their first versus second language. To study these questions, we used behavioral and unbiased whole-brain analyses, recruiting 21 Chinese students. Using the Stroop color-naming task, we measured subjects’ reaction times (RTs in which color names were displayed using fonts that matched the named color (congruent task or mismatched the color (incongruent task. Students performed the task twice, first in English, the subjects’ second language, then in Chinese, the subjects’ primary language. Results from whole-brain analysis showed that students’ RTs in both the English and Chinese tasks were significantly correlated with the mode of anisotropy (MO in a brain cluster containing the forceps minor and anterior thalamic radiation in the right hemisphere. We also found that fractional anisotropy (FA significantly predicted students’ RTs, with higher FA predicting shorter RT. Taken together, our findings demonstrate that

  7. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity. (United States)

    Lee, Myungsin; Yoon, Jiyeon; Song, Hobeom; Lee, Bumwhee; Lam, Duc Tri; Yoon, Jaeseung; Baek, Kwanghee; Clevers, Hans; Jeong, Yongsu


    The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear. In this study, we discovered a previously unrecognized role for Tcf7l2, a transcription factor known as the canonical Wnt nuclear effector and diabetes risk-conferring gene, in establishing neuronal identity and circuits of the caudal forebrain. Using genetic and chemical axon tracers, we showed that efferent axons of the thalamus, known as the thalamocortical axons (TCAs), failed to elongate normally and strayed from their normal course to inappropriate locations in the absence of Tcf7l2. Further experiments with thalamic explants revealed that the pathfinding defects of Tcf7l2-deficient TCAs were associated at least in part with downregulation of guidance receptors Robo1 and Robo2 expression. Moreover, the fasciculus retroflexus, the main habenular output tract, was missing in embryos lacking Tcf7l2. These axonal defects may result from dysregulation of Nrp2 guidance receptor. Strikingly, loss of Tcf7l2 caused a post-mitotic identity switch between thalamic and habenular neurons. Despite normal acquisition of progenitor identity in prosomere 2, Tcf7l2-deficient thalamic neurons adopted a molecular profile of a neighboring forebrain derivative, the habenula. Conversely, habenular neurons failed to maintain their normal post-mitotic neuronal identity and acquired a subset of thalamic neuronal features in the

  8. Gait balance disorder by thalamic infarction with the disorder of interstitial nucleus of cajal. (United States)

    Kurosu, A; Hayashi, Y; Wada, K; Nagaoka, M


    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients.

  9. Aphasia following left thalamic hemorrhage. A study by Western Aphasia Battery and single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro


    A report is given of 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months) in which language disorders were examined by Western Aphasia Battery (WAB) and cerebral blood flow was measured by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in the left temporooccipital region and low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, emission CT showed slight low flow area at the temporo-occipital region similar to the case with transcortical sensory aphasia. In another case with anomic aphasia there was a wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. In all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus.

  10. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor. (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars


    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  11. Evaluation of Quantitative Measurement Techniques for Head Tremor With Thalamic Deep Brain Stimulation. (United States)

    Chockalingam, Arun; Boggs, Hans; Prusik, Julia; Ramirez-Zamora, Adolfo; Feustel, Paul; Belasen, Abigail; Youn, Youngwon; Fama, Chris; Haller, Jessica; Pilitsis, Julie


    Ventralis intermedius thalamic deep brain stimulation (VIM DBS) has shown to be safe and effective for medically refractory essential tremor (ET). We evaluate the use of quantitative tremor measurement methods for head tremor in ET using a "smart" hat and a smartphone application. We enrolled 13 ET patients who previously underwent VIM DBS. Head and arm tremor was measured ON and OFF stimulation using the clinical gold standard Fahn-Tolosa-Marin Tremor Rating Scale (TRS). Results were then compared to two quantitative measurement techniques: Lift Pulse (smartphone application) and modified Nizet (adapted laser point measurement from Nizet et al.). Spearman's rank correlation was used to compare tremor severity and improvement on stimulation using TRS and quantitative methods to measure tremor. Lift Pulse tremor severity measurement significantly correlated with TRS for head (ρ = 0.53, p measurement significantly correlated with TRS for head (ρ = 0.83, p measurement significantly correlated with TRS for arm tremor (ρ = 0.56, p measurement significantly correlated with TRS for head tremor (ρ = 0.53, p measure head and arm tremor severity. We also show the utility of a "smart" hat to measure head tremor. Modified Nizet technique is more effective for measuring head tremor, while Lift Pulse is an effective measure of tremor severity, especially arm tremor improvement. © 2017 International Neuromodulation Society.

  12. Gait Balance Disorder by Thalamic Infarction with the Disorder of Interstitial Nucleus of Cajal (United States)

    Kurosu, A.; Hayashi, Y.; Wada, K.; Nagaoka, M.


    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients. PMID:21769260

  13. Bilateral thalamic infarction that is secondary thrombosis to the deep venous structures: report of two cases

    Directory of Open Access Journals (Sweden)

    Serdar Oruc


    Full Text Available Deep cerebral venous thrombosis cases are the %6 of the cerebral venous thrombosis (CVT cases. The recognition of these patients is difficult since this disease is rarely observed and its clinical presentation is nonspecific and variable. In its etiology, the most frequently observed reasons are hypercoagulopathy, oral contraceptive use, pregnancy, puerperium, dehydration, and head trauma. Less frequently observed reasons are vasculitis, inflammatory bowel disease, malignancies, anemia, and tumor invasion through venous sinuses. In this report, were presented two cases who were admitted to the hospital with headache complaint and cognitive changes.According to the advanced magnetic resonance imaging, acute infarction was detected in bilateral thalamus. We observed CVT with adversely affected deep cerebral venous system structures. CVT development was associated with the use of oral contraceptives in the first case and it was associated with anemia in the second case. Both patients were discharged from the hospital upon healing with anticoagulant therapy. In this study, it has been emphasized by representing these two patients that CVT should be thought in the etiology of bilateral thalamic ischemia. Furthermore, it is also crucial to known that these patients can be fully improved clinically and radiologically in case appropriate medical treatment is applied.

  14. Comorbid Asperger and Tourette syndromes with localized mesencephalic, infrathalamic, thalamic, and striatal damage. (United States)

    Berthier, Marcelo L; Kulisevsky, Jaime; Asenjo, Beatriz; Aparicio, Jesús; Lara, Diego


    We describe the coexistence of Asperger and Tourette syndromes (AS and TS) caused by discrete hypoxic-ischaemic necrosis of the midbrain, infrathalamic and thalamic nuclei, and striatum in an adolescent male with positive family history for tics and obsessive-compulsive disorder. Behavioural ratings, cognitive tests, and volumetric measurements of the basal ganglia were performed in the patient and five other individuals with AS-TS unassociated with MRI lesions. Cognitive deficits in attentional, executive, and visual-spatial domains were found both in the patient and control AS-TS group, though deficits were more severe in the former. MRI showed reduction of the left basal ganglia volume compared with the right in the patient, whereas the control group showed reduction of right basal ganglia volume compared with the left. It is suggested that individuals with a genetic predisposition to TS may develop AS and TS after involvement of midbrain and related components of basal ganglia-thalamocortical circuits normally implicated in the integration of emotional, cognitive, and motor functions.

  15. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment. (United States)

    Loukavenko, Elena A; Wolff, Mathieu; Poirier, Guillaume L; Dalrymple-Alford, John C


    Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia.

  16. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons

    Directory of Open Access Journals (Sweden)

    Sébastien eBéhuret


    Full Text Available A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.

  17. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)


    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  18. A comparison of the immunofluorescent localization of collagen types I, III, and V with the distribution of reticular fibers on the same liver sections of the snow monkey (Macaca fuscata). (United States)

    Adachi, E; Hayashi, T; Hashimoto, P H


    Localizations of collagen types I, III, and V in monkey liver, as determined by the indirect immunofluorescence method, were photographically superimposed on the fibers revealed by silver-staining in the same tissue sections. Immunofluorescence for type I collagen was found to correspond with the brown collagen fibers and with some of the coarse reticular fibers, while that for type III collagen was found to correspond with most, but not all, reticular fibers of the liver as well as with the brown collagen fibers. The distribution of type V collagen coincides not only with the collagen fibers in the stroma of portal triads and around the central veins, but also with the coarse and fine reticular fibers in the liver lobules. By immuno-electron microscopy, reaction products with anti-type III and V collagens antibodies were demonstrated on cross-striated collagen fibrils, about 45 nm in diameter, in the space of Disse. From these observations, it is concluded that: (1) the fine reticular fibers are mainly composed of type III and type V collagens, and (2) the collagen fibers and coarse reticular fibers in the periphery of liver lobules are composed of type I, type III and type V collagens.

  19. ¿Cómo ve la gente a la sociedad?: la estructura reticular de la opinión pública sobre conflictos sociales.


    van Meter, Karl M.


    Rusia y Costa Rica refuerza esta sorprendente conclusión. Otro resultado que estas encuestas producen es que las cuestiones “troncales”, y las otras 50 a 70 cuestiones sobre conflicto social que constituyen el cuestionario cada año no tienen una estructura arbitraria que cambia de una encuesta a la otra. Las cuestiones “troncales” definen cada año una estructura reticular que se repite cada año con muy pocas modificaciones y que mediante sus vínculos (y oposiciones) define una estructura gene...

  20. Comparison between Widefield En Face Swept-Source OCT and Conventional Multimodal Imaging for the Detection of Reticular Pseudodrusen. (United States)

    Schaal, Karen B; Legarreta, Andrew D; Feuer, William J; Gregori, Giovanni; Cheng, Qianqian; Legarreta, John E; Durbin, Mary K; Stetson, Paul F; Kubach, Sophie; Rosenfeld, Philip J


    The ability to detect reticular pseudodrusen (RPD)/subretinal drusenoid deposits (SDDs) using 12×12-mm widefield en face swept-source optical coherence tomography (SS-OCT) imaging was compared with conventional multimodal imaging (color, fundus autofluorescence (FAF), and infrared reflectance [IR] imaging) in eyes with nonexudative age-related macular degeneration (AMD). Cross-sectional study. Patients with nonexudative AMD were prospectively enrolled in an SS-OCT imaging study at the Bascom Palmer Eye Institute. On the same day, all participants underwent color, FAF, and IR fundus imaging, as well as imaging with a prototype Zeiss 100 kHz SS-OCT instrument (Carl Zeiss Meditec Inc, Dublin, CA). Two masked graders assessed the presence, absence, or uncertainty of RPD/SDDs on conventional multimodal images and separately on 4 different SS-OCT en face images derived from the same volumetric dataset. The results from grading the conventional images and the SS-OCT en face images were compared. Agreement in the detection of RPD/SDDs using different imaging modalities. A total of 307 eyes (209 patients) were graded for the presence or absence of RPD/SDDs. The agreement between SS-OCT and multimodal imaging was 83%. The difference in RPD/SDD detection with either image modality was not statistically significant (P = 0.21). The sensitivity of SS-OCT in RPD/SDD detection was 83%, and when using conventional imaging, the sensitivity was 75%. When using SS-OCT imaging alone, 10% of RPD/SDD cases would be missed, and when using conventional imaging alone, 14% of RPD/SDD cases would be missed. The presence of RPD/SDD was confirmed retrospectively in 48 of 52 cases once the overall grading was unmasked and the graders reevaluated the conventional multimodal images and the widefield SS-OCT en face images. All 4 imaging modalities used together provided the best strategy for the detection of RPD/SDDs. However, when using widefield en face SS-OCT slab imaging alone, the detection

  1. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal A.


    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials amenable to a rational design with targeted properties for given applications. Several design approaches have been deployed to construct targeted functional MOFs, where desired structural and geometrical attributes are incorporated in preselected building units prior to the assembly process. This dissertation illustrates the merit of the molecular building block approach (MBB) for the rational construction and discovery of stable and highly porous MOFs, and their exploration as potential gas storage medium for sustainable and clean energy applications. Specifically, emphasis was placed on gaining insights into the structure-property relationships that impact the methane (CH4) storage in MOFs and its subsequent delivery. The foreseen gained understanding is essential for the design of new adsorbent materials or adjusting existing MOF platforms to encompass the desired features that subsequently afford meeting the challenging targets for methane storage in mobile and stationary applications.In this context, we report the successful use of the MBB approach for the design and deliberate construction of a series of novel isoreticular, highly porous and stable, aluminum based MOFs with the square-octahedral (soc) underlying net topology. From this platform, Al-soc-MOF-1, with more than 6000 m2/g apparent Langmuir specific surface area, exhibits outstanding gravimetric CH4 uptake (total and working capacities). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the U.S. Department of Energy (DOE) challenging gravimetric and volumetric targets for the CH4 working capacity for on-board CH4 storage. Furthermore, Al-soc-MOF-1 exhibits the highest total gravimetric and volumetric uptake for carbon

  2. Quantitative Methods for Evaluating the Efficacy of Thalamic Deep Brain Stimulation in Patients with Essential Tremor (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars


    Background Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. Methods We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. Results The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Discussion Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life. PMID:24255800

  3. Comparison of Midbrain and Thalamic Space-Specific Neurons in Barn Owls (United States)

    Pérez, María Lucía; Peña, José Luis


    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl’s tectal representation of auditory space is different from those found in the owl’s forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels. PMID:16424454

  4. Active action potential propagation but not initiation in thalamic interneuron dendrites (United States)

    Casale, Amanda E.; McCormick, David A.


    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  5. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. (United States)

    Lehtimäki, K; Möttönen, T; Järventausta, K; Katisko, J; Tähtinen, T; Haapasalo, J; Niskakangas, T; Kiekara, T; Öhman, J; Peltola, J


    Deep brain stimulation of the anterior nucleus of the thalamus (ANT) is an emerging therapy for refractory focal epilepsy. However, the most optimal target for stimulation has not been unambiguously described. In the present study, we investigated the correlation between the stimulation site and outcome in order to define the optimal target for deep brain stimulation in refractory epilepsy. The locations of 62 contacts used in 30 treatment attempts in 15 prospectively followed patients during a 5 year period were assessed. Treatment attempts were classified into responding and non-responding trials using seizure reduction and side effect profile as criteria. The locations of active contacts were calculated with respect to mid-commissural point and visible borders of ANT in 3T MRI (ANT-normalized coordinate system) aiming to minimize the confounding effect of individual variation in the location and size of the ANT. Contacts in successful treatment trials were located significantly more anterior and superior both in AC-PC and ANT-normalized coordinate systems. Favourable outcome was observed at 3T MRI based location of ANT but not at location predicted by Schaltenbrandt atlas sagittal data. Contacts used in successful trials were at anterior aspect of the ANT complex evidenced by the ANT-normalized coordinate system. The anti-epileptic effect of anterior thalamic DBS may be dependent on stimulation site especially in the anterior to posterior axis. Extensive anatomical variation confounds severely the targeting of ANT. Therefore, direct visualization of the desired target for stimulation is essential for favourable outcome in refractory epilepsy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex (United States)

    Funahashi, Shintaro


    Working memory is a dynamic neural system that includes processes for temporarily maintaining and processing information. Working memory plays a significant role in a variety of cognitive functions, such as thinking, reasoning, decision-making, and language comprehension. Although the prefrontal cortex (PFC) is known to play an important role in working memory, several lines of evidence indicate that the thalamic mediodorsal nucleus (MD) also participates in this process. While monkeys perform spatial working memory tasks, MD neurons exhibit directionally selective delay-period activity, which is considered to be a neural correlate for the temporary maintenance of information in PFC neurons. Studies have also shown that, while most MD neurons maintain prospective motor information, some maintain retrospective sensory information. Thus, the MD plays a greater role in prospective motor aspects of working memory processes than the PFC, which participates more in retrospective aspects. For the performance of spatial working memory tasks, the information provided by a sensory cue needs to be transformed into motor information to give an appropriate response. A population vector analysis using neural activities revealed that, although the transformation of sensory-to-motor information occurred during the delay period in both the PFC and the MD, PFC activities maintained sensory information until the late phase of the delay period, while MD activities initially represented sensory information but then started to represent motor information in the earlier phase of the delay period. These results indicate that long-range neural interactions supported by reciprocal connections between the MD and the PFC could play an important role in the transformation of maintained information in working memory processes. PMID:23914160

  7. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy. (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L


    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  8. Decreased striatal and enhanced thalamic dopaminergic responsivity in detoxified cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Stony Brook, NY (United States)] [and others


    It has been hypothesized that cocaine addiction could result from decreased brain dopamine (DA) function. However, little is known about changes in (DA) neurotransmission in human cocaine addiction. We used PET and [C-11]raclopride, a DA D2 receptor ligand sensitive to competition with endogenous DA, to measure relative changes in extracellular DA induced by methylphenidate (MP) in 20 cocaine abusers (3-6 weeks after cocaine discontinuation) and 23 controls. MP did not affect the transport of [C-11]raclopride from blood to brain (K1); however it induced a significant reduction in DA D2 receptor availability (Bmax/Kd) in striatum. The magnitude of ND-induced changes in striatal [C-11]raclopride binding were significantly larger in controls (21 + 13% change from baseline) than in cocaine abusers (9 {+-} 13 %) (ANOVA p < 0.005). In cocaine abusers, but not in controls, MP also decreased Bmax/Kd values in thalamus (29 {+-} 35 %) (ANOVA p < 0.005). There were no differences in plasma MP concentration between the groups. In striatum MP-induced changes in Bmax/Kd were significantly correlated with MP-induced changes in self reports of restlessness (r = 0.49, df 42, p < 0.002). In thalamus MP-induced changes in Bmax/Kd were significantly correlated with ND-induced changes in self reports of cocaine craving (r = 0.57, df 42, p < 0.0001). These results are compatible with a decrease in striatal DA brain function in cocaine abusers. They also suggest a participation of thalamic DA pathways in cocaine addiction.

  9. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. (United States)

    Ruiz-Reig, Nuria; Andrés, Belén; Huilgol, Dhananjay; Grove, Elizabeth A; Tissir, Fadel; Tole, Shubha; Theil, Thomas; Herrera, Eloisa; Fairén, Alfonso


    A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  10. Relaciones, redes y discurso: revisión y propuestas en torno al análisis reticular de datos textuales.

    Directory of Open Access Journals (Sweden)

    Lozares Colina, Carlos


    Full Text Available El artículo hace un repaso de las diferentes propuestas que dentro del ámbito de la sociología (o cercanos toman elementos de o se han inspirado en el Análisis de Redes Sociales para realizar el análisis de textos y/o discursos.A pesar de que la concepción relacionista tiene ya una cierta tradición en el análisis del discurso, no ha sido mas que a partir de la década de los ochenta que se han desarrollado propuestas que, con mayor o menor intensidad, aplican la idea y el instrumental de redes sociales al análisis de textos. No obstante, muchas propuestas no superan los problemas que llevan asociados los análisis de carácter atributivo y/o categorial. Sólo algunos procedimientos llegan a utilizar la aproximación reticular como forma de preservar la articulación, y con ello, la estructura semántica y sintáctica del texto. Al panorama de las escasas propuestas existentes que siguen esta orientación, el artículo incorpora los procedimientos (que denominados Análisis Reticular del Discurso que los autores vienen desarrollado sobre dicha perspectiva y que insisten además particularmente en el trabajo de interpretación y con-textualización del discurso.

  11. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A


    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct.

    Directory of Open Access Journals (Sweden)

    Laura Serra

    Full Text Available A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F. had a pervasive deficit in episodic memory, but only one of them (R.F. suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P. implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC. Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal

  13. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct. (United States)

    Serra, Laura; Cercignani, Mara; Carlesimo, Giovanni A; Fadda, Lucia; Tini, Nadia; Giulietti, Giovanni; Caltagirone, Carlo; Bozzali, Marco


    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on

  14. Unilateral asterixis, thalamic astasia and vertical one and half syndrome in a unilateral posterior thalamo-subthalamic paramedian infarct: An interesting case report

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan


    Full Text Available A 42-year-old young lady presented with acute onset of dizziness, drooping of left eye with binocular diplopia and inability to walk unassisted. She had past history of uncontrolled diabetes mellitus and hypertension. On examination, she had left fascicular type of third nerve palsy, vertical one and half syndrome (VOHS, left internuclear ophthalmoplegia and skew deviation with ipsilesional hypertropia. She also had thalamic astasia and right unilateral asterixis. Her MRI revealed T2 and Flair hyper intense signal changes with restricted diffusion in the left thalamus, subthalamus and left midbrain. MR Angiography was normal. Thalamic-subthalamic paramedian territory infarct is relatively uncommon. It can present with oculomotor abnormalities including vertical one and half syndrome, skew deviation, thalamic astasia and asterixis. This case is reported for the rarity of the presenting clinical findings in unilateral thalamo-mesencephalic infarcts.

  15. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. (United States)

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian


    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery

  16. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. (United States)

    Fu, Bao; Yu, Tian; Yuan, Jie; Gong, Xingrui; Zhang, Mazhong


    At present, the mechanisms by which general anesthetics causing loss of consciousness remain unclear. The central medial thalamic nucleus (CMT) is a rarely studied component of the midline thalamic complex, which is deemed to be a part of the nonspecific arousal system. Although the CMT participates in modulating arousal and receives excitatory noradrenergic projections from locus coeruleus, it remains unknown whether the noradrenergic pathway in the CMT takes part in modulating the arousal system. Therefore, we hypothesized that noradrenergic transmission in the CMT is involved in modulating induction and emergence of propofol anesthesia. First, we infused norepinephrine (NE) into the CMT to observe the role of CMT noradrenergic pathway in modulating the anesthetic state induced by propofol. The results showed that microinjection of NE into the CMT accelerated emergence from propofol anesthesia, but had no impact on the induction of or sensitivity to propofol anesthesia in rats. In addition, infusion of NE into the CMT caused electroencephalography changes in the prefrontal cortex and the anterior cingulate cortex. Finally, we used a whole-cell patch clamp to examine the effects of NE on neuronal excitability and GABAergic transmission in the CMT. In the CMT slices, propofol suppressed neuronal excitability and enhanced GABAergic transmission, while application of NE partly reversed these effects. These findings support the hypothesis that the CMT noradrenergic pathway plays an important role in modulating the emergence from general anesthesia. © 2017 International Society for Neurochemistry.

  17. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions — pilot study

    Directory of Open Access Journals (Sweden)

    Wilkos E


    Full Text Available Ewelina Wilkos,2 Timothy JB Brown,3 Ksenia Slawinska,1 Katarzyna A Kucharska2,3 1Department of Neurology, 2Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland; 3Department of Medical Education, Hull York Medical School, Hull, UK Background: The essential role of the thalamus in neurocognitive processes has been well documented. In contrast, relatively little is known about its involvement in social cognitive processes such as recognition of emotion, mentalizing, or empathy. The aim of the study: This study was designed to compare the performance of eight patients (five males, three females, mean age ± SD: 63.7±7.9 years at early stage of unilateral thalamic lesions and eleven healthy controls (six males, five females, 49.6±12.2 years in neurocognitive tests (CogState Battery: Groton Maze Learning Test, GML; Groton Maze Learning Test-Delayed Recall, GML-DR; Detection Task, DT; Identification Task, IT; One Card Learning Task, OCLT; One Back Task, OBT; Two Back Task, TBT; Set-Shifting Task, S-ST and other well-known tests (Benton Visual Retention Test, BVRT; California Verbal Learning Test, CVLT; The Rey-Osterrieth Complex Figure Test, ROCF; Trail Making Test, TMT part A and B; Color – Word Stroop Task, CWST; Verbal Fluency Test, VFT, and social cognitive tasks (The Penn Emotion Recognition Test, ER40; Penn Emotion Discrimination Task, EmoDiff40; The Penn Emotional Acuity Test, PEAT40; Reading the Mind in the Eyes Test, revised version II; Toronto Alexithymia Scale, TAS-20. Methods: Thalamic-damaged subjects were included if they experienced a single-episode ischemic stroke localized in right or left thalamus. The patients were examined at 3 weeks after the stroke onset. All were right handed. In addition, the following clinical scales were used: the Mini-Mental State Examination (MMSE, Spielberger State-Trait Anxiety Inventory (STAI, Beck Depression Inventory (BDI II. An inclusion

  18. Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: Complex brain network interactions in adolescence. (United States)

    Jagtap, Pranav; Diwadkar, Vaibhav A


    Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals [dynamic causal modeling (DCM)] to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian model selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: while positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. Hum Brain Mapp 37:2557-2570, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease at different gestational weeks using three dimensional ultra sonography and its clinical value. (United States)

    Li-Fei, Zhu; Hong-Xiong, Liu; Ying, H E


    Our study aimed to investigate the measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease (CHD) at different gestational weeks using three dimensional (3-D) ultrasonography and its clinical value. Then, 238 pregnant women who received obstetric ultrasonography in ultrasound department of Internal Medicine of our hospital were enrolled between March 2013 to April 2014. In this study, 85 fetuses were diagnosed to develop CHD by prenatal fetal echocardiography, and the other 153 fetuses were normal. Frontal lobe volume, thalamic volume and cerebral blood flow was determined by color Doppler ultrasonic diagnostic apparatus (type: GE Voluson E8). The level of MCA-PI and CPR in CHD fetus group performed significantly lower than that in normal fetus group (Pfrontal lobe volume between the two groups (Pfrontal lobe volume than that in normal fetus group (Pfrontal lobe volume and thalamic volume; if gestational age frontal lobe volume and thalamic volume in fetuses with CHD performed significantly lower than that in normal fetuses.

  20. Deep brain stimulation of the mediodorsal thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the frontal cortex. (United States)

    Ewing, Samuel G; Porr, Bernd; Pratt, Judith A


    This study explores the regions activated by deep brain stimulation of the mediodorsal thalamic nucleus through examination of immediate early genes as markers of neuronal activation. Stimulation was delivered unilaterally with constant current 100 μs duration pulses at a frequency of 130 Hz delivered at an amplitude of 200 μA for 3h. Brains were removed, sectioned and radio-labelled for the IEGs zif-268 and c-fos. In anaesthetised rats, deep brain stimulation of mediodorsal thalamic nucleus produced robust increases in the expression of zif-268 but not c-fos localised to regions that are reciprocally connected with the mediodorsal thalamic nucleus, including the prelimbic and orbitofrontal cortices, and the premotor cortex indicating an increase in synaptic activity in these regions. These findings map those brain regions that are persistently, rather than transiently, activated by high frequency electrical stimulation of the mediodorsal thalamic nucleus by a putatively antidromic mechanism which may be relevant to neuropsychiatric disorders such as schizophrenia in which thalamocortical systems are disrupted and in which DBS protocols are being considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The Medial Dorsal Thalamic Nucleus and the Medial Prefrontal Cortex of the Rat Function Together to Support Associative Recognition and Recency but Not Item Recognition (United States)

    Cross, Laura; Brown, Malcolm W.; Aggleton, John P.; Warburton, E. Clea


    In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In…

  2. Thalamic Multisensory integration: Creating a neural network map of involved brain areas in music perception, processing and execution

    NARCIS (Netherlands)

    Jaschke, A.C.; Scherder, E.J.A.


    Music activates a wide array of neural areas involved in different functions besides the perception, processing and execution of music itself. Understanding musical processes in the brain has had multiple implications in the neuro- and health sciences. Engaging the brain with a multisensory stimulus

  3. Abnormal Ocular Movement With Executive Dysfunction and Personality Change in Subject With Thalamic Infarction: A Case Report. (United States)

    Kim, Ee Jin; Kim, Myeong Ok; Kim, Chang Hwan; Joa, Kyung Lim; Jung, Han Young


    The thalamus, located between the cerebrum and midbrain, is a nuclear complex connected to the cerebral cortex that influences motor skills, cognition, and mood. The thalamus is composed of 50-60 nuclei and can be divided into four areas according to vascular supply. In addition, it can be divided into five areas according to function. Many studies have reported on a thalamic infarction causing motor or sensory changes, but few have reported on behavioral and executive aspects of the ophthalmoplegia of the thalamus. This study reports a rare case of a paramedian thalamus infarction affecting the dorsomedial area of the thalamus, manifesting as oculomotor nerve palsy, an abnormal behavioral change, and executive dysfunction. This special case is presented with a review of the anatomical basis and function of the thalamus.

  4. Anatomical organization of the limb premotor network in the turtle (Chrysemys picta) revealed by in vitro transport of biocytin and neurobiotin. (United States)

    Sarrafizadeh, R; Houk, J C


    The in vitro turtle brainstem-cerebellum preparation has been a valuable tool in the study of central motor programs. In the present study, we investigate the anatomical organization of the turtle rubrocerebellar limb premotor network and its sensory connections in vitro by combining the rapid anterograde and retrograde transport of neurobiotin and biocytin with the extended viability of the isolated turtle brainstem-cerebellum. These compounds retrogradely labeled soma, dendrites, and axons, and orthogradely labeled axons and, to a lesser extent, terminals. The chelonian red nucleus receives a dense input from the contralateral lateral cerebellar nucleus and projects heavily to the contralateral spinal cord. Rubral axons sparsely innervate the lateral cerebellar nucleus and project heavily to the lateral reticular nucleus. Lateral reticular axons heavily innervate the lateral cerebellar nucleus before terminating in the pars lateralis of the cerebellar cortex as mossy fibers. These prominent, recurrent loops among the lateral cerebellar nucleus, red nucleus, and lateral reticular nucleus constitute the turtle rubrocerebellar limb premotor network. Sensory inputs to the red nucleus originate in the contralateral dorsal column nuclei, the principal trigeminal nucleus, and the spinothalamic system. These sites project bilaterally to the lateral reticular nucleus. The lateral cerebellar nucleus receives a contralateral input from the dorsal column nuclei. The red nucleus projects sparsely to the dorsal column nuclei. The red nucleus also receives an ipsilateral descending projection from the suprapeduncular nucleus, located in the diencephalon, and an ascending input from the rostral rhombencephalic reticular formation. An ipsilateral descending pathway originating in the red nucleus is likely to be the rubro-olivary tract.

  5. Impaired macromolecular protein pools in fronto-striato-thalamic circuits in type 2 diabetes revealed by magnetization transfer imaging. (United States)

    Yang, Shaolin; Ajilore, Olusola; Wu, Minjie; Lamar, Melissa; Kumar, Anand


    Previous research has shown that type 2 diabetes mellitus (T2DM) is associated with white matter microstructural changes, cognitive impairment, and decreased resting-state functional connectivity and spontaneous brain activity. This study used magnetization transfer imaging to examine, for the first time, the integrity of macromolecular protein pools in fronto-striato-thalamic circuits and its clinical and cognitive correlates in patients with T2DM. T2DM patients without mood disorders (n = 20, aged 65.05 ± 11.95 years) and healthy control subjects (HCs; n = 26, aged 62.92 ± 12.71 years) were recruited. Nodes of fronto-striato-thalamic circuits-head of the caudate nucleus (hCaud), putamen, globus pallidus, thalamus-and four cortical regions-rostral and dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and lateral orbitofrontal cortex-were examined. Compared with HCs, patients with T2DM had significantly lower magnetization transfer ratio (MTR) in bilateral anterior cingulate and hCaud. Reduced MTRs in the above regions showed correlations with T2DM-related clinical measures, including hemoglobin A1c level and vascular risk factors, and neuropsychological task performance in the domains of learning and memory, executive function, and attention and information processing. The impaired biophysical integrity of brain macromolecular protein pools and their local microenvironments in T2DM patients may provide insights into the neurological pathophysiology underlying diabetes-associated clinical and cognitive deficits. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. (United States)

    Jiménez, Fiacro; Nicolini, Humberto; Lozano, Andres M; Piedimonte, Fabián; Salín, Rafael; Velasco, Francisco


    Stimulation of the inferior thalamic peduncle (ITP) is emerging as a promising new therapeutic target in certain psychiatric disorders. The circuitry that includes the nonspecific thalamic system (NSTS), which projects via the ITP to the orbitofrontal cortex (OFC), is involved in the physiopathology of major depression disorder (MDD) and obsessive compulsive disorder (OCD). The safety and efficacy of chronic ITP stimulation in cases of MDD and OCD refractory to medical treatment is presented. Six patients with OCD and one with MDD were implanted with tetrapolar deep brain stimulation electrodes in the ITP (x = 3.5 mm lateral to the ventricular wall, y = 5 mm behind the anterior commissure, and z = at the intercommissural plane, i.e., anterior commissure-posterior commissure [AC-PC] level). The effect of chronic stimulation at 130 Hz, 450 μs, and 5.0 V on OCD was evaluated before and 3, 6, and 12 months after initiation of electrical stimulation through the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, and Global Assessment of Function scale. Chronic ITP electrical stimulation in OCD patients decreased the mean Yale-Brown Obsessive Compulsive Scale score to around 51% for the group at the 12-month follow-up, and increased the mean Global Assessment of Function scale score to 68% for a significant improvement (P = 0.026). Three of 6 patients returned to work. The Hamilton Depression Rating Scale score of the only patient with MDD treated to date went from 42 to 6. This condition of the patient, who had been incapacitated for 5 years prior to surgery, has not relapsed for 9 years. Three OCD patients with drug addiction continued to consume drugs in spite of their improvement in OCD. Deep brain stimulation in the ITP is safe and may be effective in the treatment of OCD. A multicenter evaluation of the safety and efficacy of ITP in OCD is currently in process. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  8. Effects of intravenous metamizole on ongoing and evoked activity of dura-sensitive thalamic neurons in rats. (United States)

    Sokolov, Alexey Y; Lyubashina, Olga A; Sivachenko, Ivan B; Panteleev, Sergey S


    Migraine and tension-type headache (TTH) are the most common forms of primary headaches. A general key mechanism underlying development of both the diseases is the trigeminal system activation associated with the ascending nociceptive transmission via the trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus is a key thalamic structure, receiving afferent inflow from the craniofacial region; it holds the third-order neurons responsible for conveying sensory information from the extra- and intracranial nociceptors to the cortex. The VPM is currently seen as a therapeutic target for various antimigraine medications, which is shown to reduce the VPM neuronal excitability. A non-opioid analgesic metamizole is widely used in some countries for acute treatment of migraine or TTH. However, the precise mechanisms underlying anticephalgic action of metamizole remain unclear. The objective of our study performed in the rat model of trigemino-durovascular nociception was to evaluate the effects of intravenously administered metamizole on ongoing and evoked firing of the dura-sensitive VPM neurons. The experiments were carried out on rats under urethane-chloralose anesthesia. Cumulative administration of metamizole (thrice-repeated intravenous infusion of 150 mg/kg performed 30 min apart) in 56% of cases produced a suppression of both the ongoing activity of the thalamic VPM neurons and their responses to dural electrical stimulation. Although the inhibitory effect was prevailing, a number of VPM neurons were indifferent to the administration of metamizole. These data suggest that one of the main components of neural mechanism underlying anticephalgic action of metamizole is suppression of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala. (United States)

    Katz, Ira K; Lamprecht, Raphael


    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  10. Technical note: A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation. (United States)

    Falk, M; Münger, A; Dohme-Meier, F


    Subacute ruminal acidosis is one of the most important digestive disorders in high-yielding dairy cows fed highly fermentable diets. Monitoring of forestomach pH has been suggested as a potentially valuable tool for diagnosing subacute ruminal acidosis. The objective of the present study was to compare continuously recorded measurements of an indwelling telemetric pH sensor inserted orally in the reticulum with those obtained from a measurement system placed in the ventral sac of the rumen through a cannula. The experiment was conducted with 6 ruminally cannulated Holstein cows kept in a freestall barn. Equal numbers of cows were assigned to 2 treatment groups based on their previous lactation milk yield. Cows in treatment CON- were offered a diet consisting of only fresh herbage cut once daily, and cows in treatment CON+ got fresh herbage plus a concentrate supplement according to the individual milk yield of each cow to meet their predicted nutrient requirements. The experiment lasted from 2 wk before the predicted calving date until wk 8 of lactation. During the whole experiment, a pH value was recorded every 10 min in the reticulum using a wireless telemetry bolus including a pH sensor (eBolus, eCow Ltd., Exeter, Devon, UK), which had been applied orally using a balling gun. Simultaneously, in wk 2, before the estimated calving date and in wk 2, 4, 6, and 8 of lactation, the ruminal pH was measured every 30 s for 48 h with the LRCpH measurement system (Dascor Inc., Escondido, CA) placed in the ventral sac of the rumen through the cannula. The readings of the LRCpH measurement system were summarized as an average over 10 min for statistical analysis. The recorded pH values were on average 0.24 pH units higher in the reticulum than in the rumen. The reticular pH also showed less fluctuation (overall SD 0.19 pH units) than pH profiles recorded in the rumen (overall SD 0.51 pH units). Regardless of measurement system, pH was not influenced by treatment, but varied

  11. Selective pharmacological manipulation of cortical-thalamic co-cultures in a dual-compartment device

    NARCIS (Netherlands)

    Kanagasabapathi, T.T.; Franco, M.; Barone, R.A.; Martinoia, S.; Wadman, W.J.; Decré, M.M.J.


    In this study, we demonstrate capabilities to selectively manipulate dissociated co-cultures of neurons plated in dual-compartment devices. Synaptic receptor antagonists and tetrodotoxin solutions were used to selectively control and study the network-wide burst propagation and cell firing in

  12. Análisis del fenónemo de las personas sin hogar en los medios de comunicación escrita mayoritarios. Una aproximación desde el análisis reticular del discurso

    Directory of Open Access Journals (Sweden)

    Estíbaliz García Juan


    Full Text Available La presente investigación se propone examinar algunos medios de prensa escrita de masas, en busca de el/los marco/s culturales utilizados para orientar, percibir, racionalizar y comprender el fenómeno del sinhogarismo; organizando y analizando el contenido de esto/s marco/s (conceptos, estereotipos, problemáticas asociadas, etc, y las relaciones entre ellos en forma reticular.

  13. μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior. (United States)

    Kinzeler, Nicole R; Travers, Susan P


    The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.

  14. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. (United States)

    Alezi, Dalal; Spanopoulos, Ioannis; Tsangarakis, Constantinos; Shkurenko, Aleksander; Adil, Karim; Belmabkhout, Youssef; O Keeffe, Michael; Eddaoudi, Mohamed; Trikalitis, Pantelis N


    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or "cubic graphite" structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal-organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm 3 g -1 , respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g -1 and 210.4 cm 3 (STP) cm -3 at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH 4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm -3 at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  15. 15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Mao-Te Chuang


    Full Text Available 5,16-dihydrotanshinone I (DHTS is extracted from Salvia miltiorrhiza Bunge (tanshen root and was found to be the most effective compound of tanshen extracts against breast cancer cells in our previous studies. However, whether DHTS can induce apoptosis through an endoplasmic reticular (ER stress pathway was examined herein. In this study, we found that DHTS significantly inhibited the proliferation of human prostate DU145 carcinoma cells and induced apoptosis. DHTS was able to induce ER stress as evidenced by the upregulation of glucose regulation protein 78 (GRP78/Bip and CAAT/enhancer binding protein homologous protein/growth arrest- and DNA damage-inducible gene 153 (CHOP/GADD153, as well as increases in phosphorylated eukaryotic initiation factor 2α (eIF2α, c-jun N-terminal kinase (JNK, and X-box-binding protein 1 (XBP1 mRNA splicing forms. DHTS treatment also caused significant accumulation of polyubiquitinated proteins and hypoxia-inducible factor (HIF-1α, indicating that DHTS might be a proteasome inhibitor that is known to induce ER stress or enhance apoptosis caused by the classic ER stress-dependent mechanism. Moreover, DHTS-induced apoptosis was reversed by salubrinal, an ER stress inhibitor. Results suggest that DHTS can induce apoptosis of prostate carcinoma cells via induction of ER stress and/or inhibition of proteasome activity, and may have therapeutic potential for prostate cancer patients.

  16. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF

    KAUST Repository

    Alezi, Dalal


    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or “cubic graphite” structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal–organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm3 g–1, respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g–1 and 210.4 cm3 (STP) cm–3 at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm–3 at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  17. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis

    Directory of Open Access Journals (Sweden)

    Vincenzo De Cicco


    Full Text Available It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS which includes the noradrenergic locus coeruleus (LC neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1 affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2 are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.

  18. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. (United States)

    Goutagny, R; Luppi, P-H; Salvert, D; Lapray, D; Gervasoni, D; Fort, P


    It is well known that noradrenergic locus coeruleus neurons decrease their activity during slow wave sleep and are quiescent during paradoxical sleep. It was recently proposed that their inactivation during paradoxical sleep is due to a tonic GABAergic inhibition arising from neurons located into the dorsal paragigantocellular reticular nucleus (DPGi). However, the discharge profile of DPGi neurons across the sleep-waking cycle as well as their connections with brain areas involved in paradoxical sleep regulation remain to be described. Here we show, for the first time in the unanesthetized rat that the DPGi contained a subtype of neurons with a tonic and sustained firing activation specifically during paradoxical sleep (PS-on neurons). Noteworthy, their firing rate increase anticipated for few seconds the beginning of the paradoxical sleep bout. By using anterograde tract-tracing, we further showed that the DPGi, in addition to locus coeruleus, directly projected to other areas containing wake-promoting neurons such as the serotonergic neurons of the dorsal raphe nucleus and hypocretinergic neurons of the posterior hypothalamus. Finally, the DPGi sent efferents to the ventrolateral part of the periaqueductal gray matter known to contain paradoxical sleep-suppressing neurons. Taken together, our original results suggest that the PS-on neurons of the DPGi may have their major role in simultaneous inhibitory control over the wake-promoting neurons and the permissive ventrolateral part of the periaqueductal gray matter as a means of influencing vigilance states and especially PS generation.


    Nghiem-Buffet, Sylvia; Giocanti-Auregan, Audrey; Jung, Camille; Dubois, Lise; Dourmad, Pauline; Galbadon, Lea; Fajnkuchen, Franck; Quentel, Gabriel; Cohen, Salomon Y


    To investigate reticular pseudodrusen (RPD) as a potential baseline factor predictive of a poor 1-year response to intravitreal ranibizumab in eyes with neovascular age-related macular degeneration. Retrospective, monocentric case series including 98 consecutive naive neovascular age-related macular degeneration patients. Presence of RPD was assessed by two graders based on color, blue-light, fundus autofluorescence pictures, and spectral-domain optical coherence tomography. A correlation between the presence of RPD and the visual change was investigated. Other baseline characteristics studied in a monovariate and multivariate analysis were the following: age, gender, affected side, loading dose, type of neovascularization, presence of retinal pigment epithelial detachment >250 μm, subretinal or intraretinal fluid, blood over >50% of the lesion, and subfoveal choroidal thickness. The presence of RPD was not associated with a visual change (P = 0.96), but with a thin subfoveal choroidal thickness at baseline (P macular degeneration. Studies with a longer follow-up may be needed to assess the impact of RPD on the visual prognosis of eyes with neovascular age-related macular degeneration.

  20. Reticular Basement Membrane Vessels Are Increased in COPD Bronchial Mucosa by Both Factor VIII and Collagen IV Immunostaining and Are Hyperpermeable

    Directory of Open Access Journals (Sweden)

    Amir Soltani


    Full Text Available Background and Objective. Using Collagen IV staining, we have previously reported that the reticular basement membrane (Rbm is hypervascular and the lamina propria (LP is hypovascular in COPD airways. This study compared Collagen IV staining with vessels marked with anti-Factor VIII and examined vessel permeability in bronchial biopsies from COPD and normal subjects using albumin staining. Results. Anti-Collagen IV antibody detected more vessels in the Rbm (P=0.002 and larger vessels in both Rbm (P<0.001 and LP (P=0.003 compared to Factor VIII. COPD airways had more vessels (with greater permeability in the Rbm (P=0.01 and fewer vessels (with normal permeability in the LP compared to controls with both Collagen IV and Factor VIII antibodies (P=0.04 and P=0.01. Conclusion. Rbm vessels were increased in number and were hyperpermeable in COPD airways. Anti-Collagen IV and anti-Factor VIII antibodies did not uniformly detect the same vessel populations; the first is likely to reflect larger and older vessels with the latter reflecting smaller, younger vessels.

  1. Reticular Basement Membrane Vessels Are Increased in COPD Bronchial Mucosa by Both Factor VIII and Collagen IV Immunostaining and Are Hyperpermeable (United States)

    Soltani, Amir; Wood-Baker, Richard; Sohal, Sukhwinder S.; Muller, H. Konrad; Reid, David; Walters, E. Haydn


    Background and Objective. Using Collagen IV staining, we have previously reported that the reticular basement membrane (Rbm) is hypervascular and the lamina propria (LP) is hypovascular in COPD airways. This study compared Collagen IV staining with vessels marked with anti-Factor VIII and examined vessel permeability in bronchial biopsies from COPD and normal subjects using albumin staining. Results. Anti-Collagen IV antibody detected more vessels in the Rbm (P = 0.002) and larger vessels in both Rbm (P < 0.001) and LP (P = 0.003) compared to Factor VIII. COPD airways had more vessels (with greater permeability) in the Rbm (P = 0.01) and fewer vessels (with normal permeability) in the LP compared to controls with both Collagen IV and Factor VIII antibodies (P = 0.04 and P = 0.01). Conclusion. Rbm vessels were increased in number and were hyperpermeable in COPD airways. Anti-Collagen IV and anti-Factor VIII antibodies did not uniformly detect the same vessel populations; the first is likely to reflect larger and older vessels with the latter reflecting smaller, younger vessels. PMID:22500190

  2. Impaired prefronto-thalamic functional connectivity as a key feature of treatment-resistant depression: a combined MEG, PET and rTMS study.

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Li

    Full Text Available Prefrontal left-right functional imbalance and disrupted prefronto-thalamic circuitry are plausible mechanisms for treatment-resistant depression (TRD. Add-on repetitive transcranial magnetic stimulation (rTMS, effective in treating antidepressant-refractory TRD, was administered to verify the core mechanisms underlying the refractoriness to antidepressants. Thirty TRD patients received a 2-week course of 10-Hz rTMS to the left dorsolateral prefrontal cortex (DLPFC. Depression scores were evaluated at baseline (W0, and the ends of weeks 1, 2, and 14 (W14. Responders were defined as those who showed an objective improvement in depression scores ≥50% after rTMS. Left-right frontal alpha asymmetry (FAA was measured by magnetoencephalography at each time point as a proxy for left-right functional imbalance. Prefronto-thalamic connections at W0 and W14 were assessed by studying couplings between prefrontal alpha waves and thalamic glucose metabolism (PWTMC, reflecting intact thalamo-prefrontal connectivity. A group of healthy control subjects received magnetoencephalography at W0 (N = 50 to study whether FAA could have a diagnostic value for TRD, or received both magnetoencephalography and positron-emission-tomography at W0 (N = 10 to confirm the existence of PWTMC in the depression-free state. We found that FAA changes cannot differentiate between TRD and healthy subjects or between responders and non-responders. No PWTMC were found in the TRD group at W0, whereas restitution of the PWTMC was demonstrated only in the sustained responders at W14 and euthymic healthy controls. In conclusion, we affirmed impaired prefronto-thalamic functional connections, but not frontal functional imbalance, as a core deficit in TRD.

  3. Carotid chemoreceptors tune breathing via multipath routing: Reticular chain and loop operations supported by parallel spike train correlations. (United States)

    Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly Erin; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G


    We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius-medial medulla (p-NTS-MM), the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphé nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly-blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for post-inspiratory neuron inhibition of rostral VRC I-Driver (preBötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive peri-columnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL pF neurons with functional links to wide-spread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. Copyright © 2017, Journal of Neurophysiology.

  4. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki


    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  5. Altered local cerebral glucose utilization induced by electrical stimulations of the thalamic sensory and parafascicular nuclei in rats. (United States)

    Aiko, Y; Shima, F; Hosokawa, S; Kato, M; Kitamura, K


    Alterations in local cerebral glucose utilization (LCGU) induced by electrical stimulation of the sensory relay nucleus (VPL) or parafascicular nucleus (Pf) of the thalamus in conscious rats were measured by the [14C]2-deoxyglucose method, the objective being to assess the mechanism of analgesia induced by electrical stimulations of these structures. Stimulation of the VPL induced an ipsilateral increase in LCGU in the sensory thalamic nucleus itself, the sensory cortex and substantia nigra. Stimulation of the Pf induced bilateral increases in LCGU in the Pf and central medial nucleus of the thalamus, sensory cortex, ventral areas of the striatum and substantia nigra, and ipsilateral increase in LCGU in the periaqueductal gray, parabrachial pontine nucleus and deep layers of the superior colliculus. No significant change in LCGU was detected in the raphe dorsalis, raphe magnus and spinal dorsal horn, in both groups. Our observations coincide with clinical findings that unilateral electrical stimulation of the Pf leads to amelioration of intractable pain bilaterally, while that of the VPL induces an analgesia restricted to the contralateral side.

  6. Crossed Aphasia and Visuo-Spatial Neglect Following a Right Thalamic Stroke: A Case Study and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Lieve De Witte


    Full Text Available Crossed aphasia in dextrals (CAD following pure subcortical lesions is rare. This study describes a right-handed patient with an ischemic lesion in the right thalamus. In the post-acute phase of the stroke, a unique combination of ‘crossed thalamic aphasia’ was found with left visuo-spatial neglect and constructional apraxia. On the basis of the criteria used in Mariën et al. [67], this case-report is the first reliable representative of vascular CAD following an isolated lesion in the right thalamus. Furthermore, this paper presents a detailed analysis of linguistic and cognitive impairments of ‘possible’ and 'reliable' subcortical CAD-cases published since 1975. Out of 25 patients with a pure subcortical lesion, nine cases were considered as ‘possibly reliable or reliable’. A review of these cases reveals that: (1 demographic data are consistent with the general findings for the entire group of vascular CAD, (2 the neurolinguistic findings do not support the data in the general CAD-population with regard to (a the high prevalence of transcortical aphasia and (b the tendency towards a copresence of an oral versus written language dissociation and a ‘mirror-image’ lesion-aphasia profile, (3 subcortical CAD is not a transient phenomenon, (4 the lesion-aphasia correlations are not congruent with the high incidence of anomalous cases in the general CAD-population, (5 neuropsychological impairments may accompany subcortical CAD.

  7. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki [Shiga Medical Center, Moriyama (Japan); Fukuyama, Hidenao


    We performed MRI and measured cerebral blood flow (CBF) using {sup 123}I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author).

  8. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available Biotinylated dextran amine (BDA has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a using 3,000 or 10,000 MW BDA; (b injecting different volumes of BDA; (c co-injecting BDA with NMDA; and (d employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  9. Network of endocardial vessels. (United States)

    Lee, Byung-Cheon; Kim, Hong Bae; Sung, Baeckkyoung; Kim, Ki Woo; Sohn, Jamin; Son, Boram; Chang, Byung-Joon; Soh, Kwang-Sup


    Although there have been reports on threadlike structures inside the heart, they have received little attention. We aimed to develop a method for observing such structures and to reveal their ultrastructures. An in situ staining method, which uses a series of procedures of 0.2-0.4% trypan blue spraying and washing, was applied to observe threadlike structures on the surfaces of endocardia. The threadlike structures were isolated and observed by using confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Networks of endocardial vessels (20 μm in thickness) with expansions (40-100 μm in diameter) were visualized; they were movable on the endocardium of the bovine atrium and ventricle. CLSM showed that (1) rod-shaped nuclei were aligned along the longitudinal direction of the endocardial vessel and (2) there were many cells inside the expansion. TEM on the endocardial vessel revealed that (1) there existed multiple lumens (1-7 μm in diameter) and (2) the extracellular matrices mostly consisted of collagen fibers, which were aligned along the longitudinal direction of the endocardial vessel or were locally organized in reticular structures. We investigated the endocardial circulatory system in bovine cardiac chambers and its ultrastructures, such as nucleic distributions, microlumens, and collagenous extracellular matrices. Copyright © 2011 S. Karger AG, Basel.

  10. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. (United States)

    Hambrecht-Wiedbusch, Viviane S; Gauthier, Elizabeth A; Baghdoyan, Helen A; Lydic, Ralph


    Benzodiazepine (BDZ) and non-benzodiazepine (NBDZ) hypnotics enhance GABAergic transmission and are widely used for the treatment of insomnia. In the pontine reticular formation (PRF), GABA inhibits rapid eye movement (REM) sleep and acetylcholine (ACh) release. No previous studies have characterized the effects of BDZ and NBDZ hypnotics on ACh release in the PRF. This study tested 2 hypotheses: (1) that microdialysis delivery of zolpidem, eszopiclone, and diazepam to rat PRF alters ACh release in PRF and electroencephalographic (EEG) delta power and (2) that intravenous (i.v.) administration of eszopiclone to non-anesthetized rat alters ACh release in the PRF, sleep, and EEG delta power. A within- and between-groups experimental design. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 57). In vivo microdialysis of the PRF in rats anesthetized with isoflurane was used to derive the concentration-response effects of zolpidem, eszopiclone, and diazepam on ACh release. Chronically instrumented rats were used to quantify the effects of eszopiclone (3 mg/kg, i.v.) on ACh release in the PRF, sleep-wake states, and cortical EEG power. ACh release was significantly increased by microdialysis delivery to the PRF of zolpidem and eszopiclone but not diazepam. EEG delta power was increased by zolpidem and diazepam but not by eszopiclone administered to the PRF. Eszopiclone (i.v.) decreased ACh release in the PRF of both anesthetized and non-anesthetized rats. Eszopiclone (i.v.) prevented REM sleep and increased EEG delta power. The concentration-response data provide the first functional evidence that multiple GABA(A) receptor subtypes are present in rat PRF. Intravenously administered eszopiclone prevented REM sleep, decreased ACh release in the PRF, and increased EEG delta power. The effects of eszopiclone are consistent with evidence that ACh release in the PRF is lower during NREM sleep than during REM sleep, and with data showing that cholinergic

  11. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study.

    Directory of Open Access Journals (Sweden)

    Olivier Clément

    Full Text Available GABAergic neurons specifically active during paradoxical sleep (PS localized in the dorsal paragigantocellular reticular nucleus (DPGi are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.

  12. Transmisión de cargas entre forjados y puntales en un edificio de forjado reticular de casetón perdido utilizando clareado

    Directory of Open Access Journals (Sweden)

    Gasch, I.


    Full Text Available This paper presents the results of tests carried out during the construction of a building of flats with cast-in-place girderless hollow floor slab in Sabadell, Spain, using the shoring, clearing and striking (SCS process. Loads on shores were recorded during the different construction stages of floor slabs 1 to 6. The two first floor slabs had geometry different than the rest. The experimental results were used to analyse load transmission between slabs and shores during the construction of the building with a SCS process. The experimental results were compared with those obtained applying simplified methods that consider the real stiffness of the shoring, obtaining that the method with a better fit was the New Simplified Procedure.En el presente artículo se presentan los resultados de la instrumentación llevada a cabo durante la construcción de un edificio de viviendas resuelto con forjados reticulares de casetón perdido situado en Sabadell (España, en el que se ha empleado un proceso de cimbrado, clareado, descimbrado (CCD. Se han registrado las cargas debidas a las operaciones constructivas de CCD en puntales de los seis primeros forjados. Dichos registros han permitido analizar la transmisión de cargas entre forjados y puntales durante la construcción de este edificio, teniendo un proceso de CCD. El análisis de las medidas experimentales ha permitido concluir que la transmisión de cargas entre forjados y puntales difiere según las condiciones de contorno del vano estudiado. Asimismo, se han comparado las medidas experimentales con diversos métodos simplificados que permiten simular la operación del clareado, obteniendo que el método que mejor se ajusta es el Nuevo Procedimiento Simplificado.

  13. Head and eye movements in rats with pontine reticular lesions in comparison with primates: a scientific memoir and a fresh look at some old and 'new' data. (United States)

    Sirkin, David W


    The author recounts the process of discovery in Philip Teitelbaum's laboratory, which began with the observation of vestibular head stabilization in a rat with brainstem lesions, of the essential roles of the pontine reticular formation (PRF) in the rat in ipsiversive head as well as eye movements. The PRF in the rat appears to be in the pathways for most direction-changing movements of the eyes and head, leaving vestibular and optokinetic stabilizing movements intact and uninterrupted. The author postulates that a response to the sliding of feet or paws, or a "substrate-kinetic reflex," works together with vestibular and optokinetic reactions to stabilize an animal's directions of gaze and locomotion on the ground. Previously unpublished data are presented from later observations and recordings of rats with kainic acid lesions in the PRF, which support the conclusion that neurons in the PRF are essential for head as well as eye movements in the rat. In contrast, Volker Henn observed no obvious loss of head movements in monkeys that had a loss of fast eye movements from kainic acid lesions of the PRF. The author and others observed that quick phases of head nystagmus develop some time after quick phases of ocular nystagmus in normal human infants; in other words, after the PRF is functioning for eye movements. The author concludes that in primates, the pathway for head movements through the PRF has been replaced by a newer pathway, leaving certain PRF regions to be devoted to mediating only eye movements. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Vessel-Associated Transforming Growth Factor-Beta1 (TGF-β1) Is Increased in the Bronchial Reticular Basement Membrane in COPD and Normal Smokers (United States)

    Reid, David; Weston, Steve; Wood-Baker, Richard; Walters, E. Haydn


    Background Transforming growth factor-beta1 (TGF-β1) is a multipotential cytokine with angiogenic activity. There are only limited data about its role in airway remodeling in COPD. We have previously shown that the reticular basement membrane (Rbm) is hypervascular in the airways of current smokers either with or without chronic obstructive pulmonary disease (COPD). This study evaluated TGF-β1 immunostaining in the Rbm and its relationship to vascularity in smokers with or without COPD. Methodology/Principal Findings Bronchial biopsies from 15 smokers with normal lung function, 19 current and 14 ex-smokers with COPD were immunostained for TGF-β1 antibody and compared to 17 healthy controls. The percentage area of tissue and also number and area of vessels staining positively for TGF-β1 were measured and compared between groups. Some bronchial biopsies from current smoking COPD subjects were also stained for phosphorylated (active) Smad2/3. Epithelial TGF- β1 staining was not different between COPD current smokers and normal controls. TGF-β1 stained vessels in the Rbm were increased in smokers with normal lung function, current smoking COPD and ex-smokers with COPD compared to controls [median (range) for number of vessels/mm Rbm 2.5 (0.0–12.7), 3.4 (0.0–8.1) and 1.0 (0.0–6.3) vs. 0.0 (0.0–7.0), p<0.05]. Percentage of vessels stained was also increased in these clinical groups. Preliminary data suggest that in current smoking COPD subjects endothelial cells and cells in the Rbm stain positively for phosphorylated Smad2/3 suggesting TGF-β1 is functionally active in this situation. Conclusions/Significance Vessel-associated TGF-β1 activity is increased in the bronchial Rbm in smokers and especially those with COPD. PMID:22768115

  15. Distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) and in asthma: they are not the same disease (United States)

    Soltani, Amir; Muller, Hans Konrad; Sohal, Sukhwinder S; Reid, David W; Weston, Steve; Wood-Baker, Richard; Walters, Eugene Haydn


    Aims This study compared reticular basement membrane (Rbm) and vascular remodelling within the bronchial mucosa of subjects with chronic obstructive pulmonary disease (COPD) with those from patients with asthma, to test the ‘Dutch hypothesis’ of whether these are essentially the same or different pathological conditions. Methods and results Bronchoscopic biopsies were stained with anti-collagen IV antibody; 18 current smoking COPD, 10 symptomatic asthmatics and 13 healthy non-smoking controls were studied. The Rbm in COPD was fragmented, non-homogeneous, variable in thickness and hypervascular, whereas in asthma the Rbm was compact and homogeneous with no evidence of increased vascularity compared to controls. Length of Rbm splitting presented as percentage of Rbm length was used to measure fragmentation; it was greater in COPD than in controls and asthmatics [median (range) 20.7% (0.4–68.5) versus 5.3% (0.0–21.7) versus 1.5% (0.0–15.1), P < 0.001]. The number of Rbm vessels/mm Rbm [median (range) 10.1 (1.6–23.0) versus 4.5 (0.0–26.4) versus 4.4 (0.4–8.1), P < 0.01] and area of Rbm vessels, μm2/mm Rbm [median (range) 953 (115–2456) versus 462 (0–3263) versus 426 (32–2216), P < 0.05] was also increased in COPD compared to normal subjects and asthmatics. Conclusions The characteristics of Rbm remodelling are quite different in asthma and COPD. PMID:22320998

  16. Vessel-associated transforming growth factor-beta1 (TGF-β1 is increased in the bronchial reticular basement membrane in COPD and normal smokers.

    Directory of Open Access Journals (Sweden)

    Amir Soltani

    Full Text Available BACKGROUND: Transforming growth factor-beta1 (TGF-β1 is a multipotential cytokine with angiogenic activity. There are only limited data about its role in airway remodeling in COPD. We have previously shown that the reticular basement membrane (Rbm is hypervascular in the airways of current smokers either with or without chronic obstructive pulmonary disease (COPD. This study evaluated TGF-β1 immunostaining in the Rbm and its relationship to vascularity in smokers with or without COPD. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial biopsies from 15 smokers with normal lung function, 19 current and 14 ex-smokers with COPD were immunostained for TGF-β1 antibody and compared to 17 healthy controls. The percentage area of tissue and also number and area of vessels staining positively for TGF-β1 were measured and compared between groups. Some bronchial biopsies from current smoking COPD subjects were also stained for phosphorylated (active Smad2/3. Epithelial TGF- β1 staining was not different between COPD current smokers and normal controls. TGF-β1 stained vessels in the Rbm were increased in smokers with normal lung function, current smoking COPD and ex-smokers with COPD compared to controls [median (range for number of vessels/mm Rbm 2.5 (0.0-12.7, 3.4 (0.0-8.1 and 1.0 (0.0-6.3 vs. 0.0 (0.0-7.0, p<0.05]. Percentage of vessels stained was also increased in these clinical groups. Preliminary data suggest that in current smoking COPD subjects endothelial cells and cells in the Rbm stain positively for phosphorylated Smad2/3 suggesting TGF-β1 is functionally active in this situation. CONCLUSIONS/SIGNIFICANCE: Vessel-associated TGF-β1 activity is increased in the bronchial Rbm in smokers and especially those with COPD.

  17. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. (United States)

    Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D


    Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI:  CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS:  We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012

  18. Thalamic volume deficit contributes to procedural and explicit memory impairment in HIV infection with primary alcoholism comorbidity. (United States)

    Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V


    Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.

  19. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation. (United States)

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen


    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  20. Divergent Structural Responses to Pharmacological Interventions in Orbitofronto-Striato-Thalamic and Premotor Circuits in Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Qiming Lv


    Full Text Available Prior efforts to dissect etiological and pharmacological modulations in brain morphology in obsessive-compulsive disorder (OCD are often undermined by methodological and sampling constraints, yielding conflicting conclusions and no reliable neuromarkers. Here we evaluated alteration of regional gray matter volume including effect size (Cohen's d value in 95 drug-naïve patients (age range: 18–55 compared to 95 healthy subjects (age: 18–63, then examined pharmacological effects in 65 medicated (age: 18–57 and 73 medication-free patients (age: 18–61. Robustness of statistical outcomes and effect sizes was rigorously tested with Monte Carlo cross-validation. Relative to controls, both drug-naïve and medication-free patients exhibited comparable volumetric increases mainly in the left thalamus (d = 0.90, 0.82, respectively, left ventral striatum (d = 0.88, 0.67, bilateral medial orbitofrontal cortex (d = 0.86, 0.71; 0.90, 0.73, and left inferior temporal gyrus (d = 0.83, 0.66, and decreased volumes in left premotor/presupplementary motor areas (d = −0.83, −0.71. Interestingly, abnormalities in the thalamus and medial orbitofrontal cortex were present in medicated patients whereas entirely absent in premotor and ventral striatum. It suggests that pharmacotherapy elicited divergent responses in orbitofronto-striato-thalamic and premotor circuits, which warrants the design of longitudinal studies investigating the potential of these neuromarkers in stratified treatments of OCD.

  1. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses

    Directory of Open Access Journals (Sweden)

    Fivos ePanetsos


    Full Text Available Most work on visual prostheses has centred on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus of the thalamus (LGN, the intermediate relay station of visual information from the retina to the visual cortex (V1. The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {Si} were presented to one eye of an experimental animal and both, the thalamic {RThi} and cortical responses {RV1i} to such stimuli were recorded. Electrical patterns {RThi*} resembling {RThi} were then injected into the visual thalamus to obtain cortical responses {RV1i*} similar to {RV1i}. Visually- and electrically-generated V1 responses were compared.Results: During the course of this work we: (i characterised the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate and the distribution of interspike intervals; (ii experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc. and determined the ranges of these parameters generating the desired cortical activity; (iii identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli.Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.

  2. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory

    Directory of Open Access Journals (Sweden)

    Amy L Griffin


    Full Text Available Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC. Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.

  3. Decreased thalamic glutamate level in unmedicated adult obsessive-compulsive disorder patients detected by proton magnetic resonance spectroscopy. (United States)

    Zhu, Yajing; Fan, Qing; Han, Xu; Zhang, Haiyin; Chen, Jue; Wang, Zhen; Zhang, Zongfeng; Tan, Ling; Xiao, Zeping; Tong, Shanbao; Maletic-Savatic, Mirjana; Li, Yao


    Previous neuroimaging studies implied that the dysfunction of cortico-striato-thalamo-cortical (CSTC) circuit served as the neural basis for the pathophysiology of obsessive-compulsive disorder (OCD). The imbalances in neuronal metabolite and neurotransmitter within CSTC circuit have been shown as the leading reasons of the OCD onset. The aim of this study is to investigate the metabolic alterations, especially the glutamatergic signal dysfunction within CSTC circuit, and the relationships between neural metabolites and the symptom severity of OCD patients. Single voxel magnetic resonance spectroscopy (MRS) was conducted in medial prefrontal cortex (mPFC) and bilateral thalamus areas for thirteen unmedicated adult OCD patients with age-, gender-, and education-matched healthy controls. Quantification and multivariate analysis were performed to identify vital metabolic biomarkers for patients and healthy controls group differentiation. Moreover, we performed Spearman׳s rank correlation analysis for OCD patients to examine the relationship between the metabolite concentration level and OCD symptomatology. Patients with OCD showed significantly decreased glutamate level in mPFC (p=0.021) and right thalamus (p=0.039), and significantly increased choline compounds in left thalamus (p=0.044).The glutamate in right thalamus was shown as the most important metabolite for group separation from multivariate analysis (Q(2)=0.134) and was significantly correlated with the patients׳ compulsion scores (Spearman r=-0.674, p=0.016). Limited sample size, the use of creatine and phosphocreatine (Cr) ratios rather than absolute concentrations and unresolved glutamine (Gln) are limitations of the present study. Our study results consolidated the hypothesis about glutamatergic signaling dysfunction in OCD. To our knowledge, it is the first finding about a reduced thalamic glutamate level in adult unmedicated OCD patients. The dysregulation of glutamate serves as a potential target

  4. Cytoreductive Surgery Followed by Hyperthermic Intraperitoneal Chemotherapy for Recurrent Ovarian Cancer with Incidental Bochdalek Hernia and Postoperative Bilateral Thalamic Infarct: A Case Report

    Directory of Open Access Journals (Sweden)

    Ilker Kahramanoglu


    Full Text Available Congenital Bochdalek hernia is a defect of the diaphragm and very rare in adults. Only around 100 cases have been reported in the literature. Herein, we present a case with a recurrent ovarian cancer who underwent secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. An oval defect with dimensions of 3 × 4 cm was seen in the left posterolateral site of the diaphragm during surgical exploration. In addition, a 6 × 3 cm iatrogenic right-sided diaphragmatic defect was found and repaired. In the early postoperative period, a bilateral thalamic infarction occurred.

  5. Cytoreductive Surgery Followed by Hyperthermic Intraperitoneal Chemotherapy for Recurrent Ovarian Cancer with Incidental Bochdalek Hernia and Postoperative Bilateral Thalamic Infarct: A Case Report. (United States)

    Kahramanoglu, Ilker; Turan, Hasan; Yamak Altinpulluk, Ece; Mammadov, Zahid; Bese, Tugan; Arvas, Macit; Demirkiran, Fuat


    Congenital Bochdalek hernia is a defect of the diaphragm and very rare in adults. Only around 100 cases have been reported in the literature. Herein, we present a case with a recurrent ovarian cancer who underwent secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. An oval defect with dimensions of 3 × 4 cm was seen in the left posterolateral site of the diaphragm during surgical exploration. In addition, a 6 × 3 cm iatrogenic right-sided diaphragmatic defect was found and repaired. In the early postoperative period, a bilateral thalamic infarction occurred.

  6. Use of dicarboxylic acids and polyphenols to attenuate reticular pH drop and acute phase response in dairy heifers fed a high grain diet. (United States)

    De Nardi, Roberta; Marchesini, Giorgio; Plaizier, Jan C; Li, Shucong; Khafipour, Ehsan; Ricci, Rebecca; Andrighetto, Igino; Segato, Severino


    The aim of this study was to determine the ability of two feed additives, a fumarate-malate (FM) and a polyphenol-essential oil mixture (PM), in attenuating the drop of ruminal pH and the metabolic and immune response resulting from an excessively high grain diet. Six heifers were used in a 3 × 3 Latin square experiment and fed a low starch (LS) diet for 14 d, followed by a high starch (HS) diet for 8 d (NDF 33.6%, starch 30.0% DM). In the last 5 days of each period, barley meal was added to decrease rumen pH. During HS feeding all animals were randomly assigned to one of the following three dietary treatments: no supplement/control (CT), a daily dose of 60 g/d of FM, or 100 g/d of PM. Reticular pH was continuously recorded using wireless boluses. On d 21 of each period, rumen fluid was collected by rumenocentesis (1400 h), together with blood (0800 h) and fecal samples (0800, 1400, and 2100 h). The correlation coefficient of pH values obtained using the boluses and rumenocentesis was 0.83. Compared with CT and PM, the FM treatment led to a lower DMI. Nadir pH was lowest during CT (5.40, 5.69, and 5.62 for CT, FM and PM, respectively), confirming the effectiveness of both supplements in reducing the pH drop caused by high grain feeding. This result was confirmed by the highest average time spent daily below 5.6 pH (199, 16 and 18 min/d) and by the highest acetate to propionate ratio of the CT fed heifers. The PM decreased the concentrations of neutrophils (2.9, 3.2, and 2.8 10(9)/L) and acute phase proteins: SAA (37.1, 28.6 and 20.1 μg/mL), LBP (4.1, 3.8, and 2.9 μg/mL), and Hp (675, 695 and 601 μg/mL). Free lipopolysaccharides (LPS) were detected in blood and feces, but their concentrations were not affected by treatments, as the remaining blood variables. Data suggest that both additives could be useful in attenuating the effects of excessive grain feeding on rumen pH, but the PM supplement was more effective than FM in reducing the inflammatory response

  7. Consciousness, cognition and brain networks: New perspectives. (United States)

    Aldana, E M; Valverde, J L; Fábregas, N


    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Disrupted Thalamus White Matter Anatomy and Posterior Default Mode Network Effective Connectivity in Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Thomas Alderson


    Full Text Available Alzheimer’s disease (AD and its prodromal state amnestic mild cognitive impairment (aMCI are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs relative to aMCI patients. Twenty-six HC and 20 older adults with aMCI underwent structural, functional and diffusion MRI scanning using the high angular resolution diffusion-weighted acquisition protocol. The DMN of each subject was identified using independent component analysis (ICA and resting state effective connectivity was calculated between thalamus and DMN nodes. White matter integrity changes between thalamus and DMN were investigated with constrained spherical deconvolution (CSD tractography. Significant structural deficits in thalamic white matter projection fibers to posterior DMN components posterior cingulate cortex (PCC and lateral inferior parietal lobe (IPL were identified together with significantly reduced effective connectivity from left thalamus to left IPL. Crucially, impaired thalamo-cortical white matter circuitry correlated with memory performance. Disrupted thalamo-cortical structure was accompanied by significant reductions in IPL and PCC cortico-cortical effective connectivity. No structural deficits were found between DMN nodes. Abnormal posterior DMN activity may be driven by changes in thalamic white matter connectivity; a view supported by the close anatomical and functional association of thalamic nuclei effected by AD pathology and

  9. Reversible and irreversible knockout of the ventroposterolateral thalamic nucleus measured by intracerebral SEP recordings in the rat brain--an aid to neuronavigation in small nuclei. (United States)

    Blunk, James A; Burke, Michael; Maarouf, Mohammad; Bührle, Christian P


    Centrally active drugs are often hard to administer because of the blood brain barrier, and frequently high systemic doses are required to reach sufficient brain parenchyma concentrations, since these drugs are, additionally, diluted in the total blood volume. Moreover, topical administration via the systemic route is not possible. We here propose a technique for the local, quantitative deposition of active substances at defined intracerebral targets, e.g. the thalamic nuclei. We used a long micropipette and stereotactically advanced it to the desired coordinates under electrophysiological control. The pipette acted as both an electrode for intracerebral recordings and as a transportation means for the drug. The amplitude of intracerebral evoked potentials relayed by the thalamic nucleus to the sensorimotor cortex indicated the distance between the pipette tip and the neurons of the targeted nucleus. Data were obtained from anesthetized rats, where the micropipette was advanced towards the nucleus ventralis posterolateralis (VPL) during contralateral electrical forepaw stimulation and intracerebral recording of somatosensory evoked potentials. Within the VPL we either injected lidocaine or kainic acid, both resulting in an attenuation of the intracerebral as well as the cortical evoked potentials. This proposed tool may be useful for functional investigations of deep brain structures.

  10. Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience. (United States)

    Kim, Seong Hoon; Lim, Sung Chul; Kim, Jiyeon; Son, Byung-Chul; Lee, Kyung Jin; Shon, Young-Min


    Anterior thalamic deep brain stimulation (ATN DBS) is an emerging, effective treatment for patients with drug-resistant epilepsy, but long-term results on its efficacy and safety are lacking. To evaluate the long-term efficacy and safety of ATN DBS treatment, as well as predictors of its success, in patients with drug-refractory epilepsy (DRE). We retrospectively studied clinical outcomes in 29 consecutive refractory epilepsy patients treated by a single DBS team (two neurosurgeons, four neurologists) over an 11-year period, for whom follow-up was performed for up to 137 months (mean, 74.9 months). The average participant was 30.7 (±10.4) years old and had epilepsy for 19.3 (±9.0) years. The mean preoperative frequency of disabling partial or generalized tonic-clonic seizures was 27.5 (±8.6, SE) seizures a month. The median percent seizure reduction was 71.3% at 1year, 73.9% at 2 years, and ranged from 61.8% to 80.0% over post-implant years 3 through 11 in the long-term study (overall 70% median reduction). In the 11-year study period, 13.8% (4/29) of subjects were seizure-free for at least 12 months during this time. There was only one symptomatic intracranial hemorrhage that happened during follow-up (3.4%). Infection requiring removal and later re-implantation of hardware occurred in only 1 of 30 patients (3.3%), who was subsequently excluded from our follow-up assessment. Hardware malfunction including lead disconnection occurred in 2 of 29 cases (6.9%). Revision of lead position to redeem poor clinical response was performed in 3 of 58 implanted leads (5.2%). ATN DBS can be an effective therapy in a variety of patients with DRE. Importantly, we provide evidence that significant therapeutic efficacy can be sustained for up to 11 years. Neurological complications were rather rare, but long-term hardware-related complications should be followed arrectis auribus. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Detection of secondary thalamic degeneration after cortical infarction using cis-4-18F-fluoro-D-proline. (United States)

    Langen, Karl-Josef; Salber, Dagmar; Hamacher, Kurt; Stoffels, Gabriele; Reifenberger, Guido; Pauleit, Dirk; Coenen, Heinz H; Zilles, Karl


    The amino acid cis-4-(18)F-fluoro-D-proline (D-cis-(18)F-FPro) exhibits preferential uptake in the brain compared with its L-isomer, but the clinical potential of the tracer is as yet unknown. In this study we explored the cerebral uptake of D-cis-(18)F-FPro in rats with focal cortical infarctions. Focal cortical infarctions were induced in different areas of the cortex of 20 Fisher CDF rats by photothrombosis (PT). At variable time points after PT (1 d to 4 wk), the rats were injected intravenously with D-cis-(18)F-FPro. For comparison, 12 rats were injected simultaneously with (3)H-deoxyglucose ((3)H-DG), 3 rats were injected with (3)H-methyl-L-methionine ((3)H-MET), and 2 rats were injected with (3)H-PK11195. Within 2 h after injection of the tracers, coronal cryosections of the brains were produced and evaluated by dual-tracer autoradiography. Lesion-to-brain ratios (L/B ratios) were calculated by dividing the maximal uptake in areas with increased tracer uptake by the mean uptake in normal brain tissue. Histologic slices were stained by toluidine blue and by immunostainings for glial fibrillary acidic protein (GFAP), CD68 for macrophages, and CD11b for microglia. Prominent uptake of D-cis-(18)F-FPro was found in ipsilateral thalamic nuclei (TN) and partially in the corpus striatum starting at 3 d after infarction with increasing L/B ratios up to 4 wk (mean L/B ratio +/- SD, 6.7 +/- 3.5). The involved TN varied with the site of the cortical lesion corresponding to their thalamocortical projections connecting them with their specific target region in the cerebral cortex. The TN were positive for CD11b and GFAP from day 7 onward, whereas uptake of (3)H-DG, (3)H-MET, and (3)H-PK11195 and immunostaining for CD68 were similar to that of normal brain. Furthermore, increased uptake of D-cis-(18)F-FPro was found in the area of the cortical infarctions (mean L/B ratio +/- SD, 12.1 +/- 8.1). From day 5 onward, the pattern of uptake was congruent with that of

  12. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders. (United States)

    Faingold, Carl L; Blumenfeld, Hal


    Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons. © The Author(s) 2015.

  13. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    Directory of Open Access Journals (Sweden)

    J.A. Gilkes


    Full Text Available Sanfilippo syndrome type B (MPS IIIB is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery.

  14. Delimitação dos núcleos talâmicos pela eletrofisiologia estereotáxica Delimitation of the thalamic nuclei by stereotaxic electrophysiology

    Directory of Open Access Journals (Sweden)

    Nilton Luís Latuf


    Full Text Available Os limites da área destruída durante a cirurgia estereotáxica são descritos levando em consideração as complicações decorrentes de lesões determinadas erroneamente. São comentados os métodos empregados com a finalidade de controlar a delimitação do alvo, sendo descrita a técnica usada em 23 talamotomias com derivação da atividade elétrica celular dos núcleos talâmicos atravessados e a pesquisa de potenciais evocados, graças à somatotopia da representação táctil no núcleo ventral posterior. Com este método reduz-se de mais ou menos 1 mm o erro radiológico, prescisando-se o alvo terapêutico talâmico nos três planos de espaço.The limits of the area to be destroyed during the stereotaxic surgery for the treatment of tremors are described taking into account the complications due to lesions erroneously performed. The method applied is commented in order to control the accuracy of the target delimitation, describing the technique employed in 23 thalamotomies, recording the electrical activity of the thalamic nuclei acrossed and researching evoked potentials thanks to the somatotopic tactil representation in the ventral posterior nuclei. The method permits to reduce radiologic errors giving more accuracy for the delimitation of thalamic target in the three planes of space.

  15. Comparative thallus anatomy of two Parmotrema (Parmeliaceae, lichenized Ascomycetes with reticulate maculae Anatomia comparada do talo de duas espécies de Parmotrema (Parmeliaceae, Ascomycota liquenizados com máculas reticulares

    Directory of Open Access Journals (Sweden)

    Suzana Bissacot Barbosa


    Full Text Available Using conventional techniques for structural studies under conventional microscopy, polarizing light microscopy and scanning electron microscopy this work describes and compares the thallus anatomy of two Parmotrema species with reticulate maculae, previously included in the genus Rimelia: Parmotrema cetratum (Ach. Hale and P. clavuliferum (Räsänen Streimann. The data showed that the species are anatomically similar, including the presence of epicortex, the upper cortex anatomy and the characteristics of rhizines and ciliae. In the medulla of the two species there are star-shaped clusters of hyphae associated with the presence of salazinic acid. This study showed that the anatomical characteristics are constant for the Parmotrema group studied.Através de técnicas convencionais para estudos histológicos em microscopia de luz com auxílio de luz polarizada e microscopia eletrônica de varredura, é descrita e comparada a anatomia do talo de duas espécies de Parmotrema com máculas reticulares, antigamente gênero Rimelia: Parmotrema cetratum (Ach. Hale e P. clavuliferum (Räsänen Streimann. Os dados obtidos neste estudo mostram que as espécies são anatomicamente semelhantes, incluindo-se a presença de epicórtex, a anatomia do córtex superior e as características das rizinas e dos cílios. Na medula das duas espécies é possível observar a ocorrência de aglomerados de hifas em forma estrelada associados à presença de ácido salazínico medular. Este estudo indica que as características anatômicas são constantes para o grupo estudado de Parmotrema com máculas reticulares.

  16. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research. (United States)

    Brakowski, Janis; Spinelli, Simona; Dörig, Nadja; Bosch, Oliver Gero; Manoliu, Andrei; Holtforth, Martin Grosse; Seifritz, Erich


    The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across

  17. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana


    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from

  18. A network of networks. (United States)

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian


    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  19. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain. (United States)

    Spiegler, Andreas; Hansen, Enrique C A; Bernard, Christophe; McIntosh, Anthony R; Jirsa, Viktor K


    When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation.

  20. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning. (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of

  1. Stromal Cell Networks Regulate Lymphocyte Entry, Migration, and Territoriality in Lymph Nodes (United States)

    Bajénoff, Marc; Egen, Jackson; Koo, Lily Y.; Laugier, Jean Pierre; Brau, Frédéric; Glaichenhaus, Nicolas; Germain, Ronald N.


    Summary Following entry into lymph nodes (LNs), B cells migrate to follicles, whereas T cells remain in the paracortex, with each lymphocyte type showing apparently random migration within these distinct areas. Other than chemokines, the factors contributing to this spatial segregation and to the observed patterns of lymphocyte movement are poorly characterized. By combining confocal, electron, and intravital microscopy, we show here that the fibroblastic reticular cell (FRC) network regulates naïve T cell access to the paracortex and also supports and defines the limits of T cell movement within this domain, whereas a distinct follicular dendritic cell (FDC) network similarly serves as the substratum for movement of follicular B cells. These results highlight the central role of stromal microanatomy in orchestrating cell migration within the LN. PMID:17112751

  2. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease. (United States)

    Coenen, Volker Arnd; Rijntjes, Michel; Prokop, Thomas; Piroth, Tobias; Amtage, Florian; Urbach, Horst; Reinacher, Peter Christoph


    Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Both patients showed immediate and sustained improvement of their tremor, bilaterally. The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( ; NCT02288468) is the focus of our ongoing research.

  3. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    Energy Technology Data Exchange (ETDEWEB)

    Asensio, S.; Goldstein, R.; Asensio, S.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F..; Volkow, N.D.; Goldstein, R.Z.


    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  4. Is state-dependent alternation of slow dynamics in central single neurons during sleep present in the rat ventroposterior thalamic nucleus? (United States)

    Takahashi, Kazumi; Koyama, Yoshimasa; Kayama, Yukihiko; Nakamura, Kazuhiro; Yamamoto, Mitsuaki


    Based upon our previous results in cats, we hypothesized that neurons in the central processor systems of the brain generally exhibit state-dependent dynamics alternation of slow fluctuations in spontaneous activity during sleep. To test the validity of this hypothesis across species, we recorded single neuronal activity during sleep from the ventroposterior (VP) thalamic nucleus in unanesthetized, head-restrained rats. Spectral analysis was performed on successive spike-counts of neuronal activity recorded during three stages of the sleep-wakefulness cycle: wakefulness (W, n=6), slow-wave sleep (SWS, n=20), and paradoxical sleep (PS, n=32). We found that firing of VP neurons displayed white-noise-like dynamics over the range of 0.04-1.0 Hz during SWS and 1/f-noise-like dynamics over the same range during PS. We also demonstrated for the first time that the slow dynamics of neuronal activity during quiet wakefulness (but not drowsiness) are white-noise-like. These results suggest that our hypothesis is true across species. During W and SWS, the brain may be considered as under global inhibition. Conversely, PS may represent a state of global disinhibition in the brain, where neuronal activity exhibits 1/f-noise-like dynamics. Fluctuations observed in living organisms may be involved in essential processes in generation and function of sleep states.

  5. REM sleep deprivation induces changes of down regulatory antagonist modulator (DREAM) expression in the ventrobasal thalamic nuclei of sprague-dawley rats. (United States)

    Siran, Rosfaiizah; Ahmad, Asma Hayati; Abdul Aziz, Che Badariah; Ismail, Zalina


    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.

  6. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later (United States)

    Asensio, Samuel; Romero, Maria J.; Romero, Francisco J.; Wong, Christopher; Alia-Klein, Nelly; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Volkow, Nora D.; Goldstein, Rita Z.


    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to non-drug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [11C]raclopride and positron emission tomography and response to monetary reward was measured (an average of 3 years later) with functional magnetic resonance imaging in seven cocaine addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a non-drug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine addicted individuals. PMID:20034014

  7. Disparity between dorsal and ventral networks in patients with obsessive-compulsive disorder: Evidence revealed by graph theoretical analysis based on cortical thickness from MRI

    Directory of Open Access Journals (Sweden)

    Seung-Goo eKim


    Full Text Available As one of the most widely accepted neuroanatomical models on OCD, it has been hypothesized that imbalance between an excitatory direct (ventral pathway and an inhibitory indirect (dorsal pathway in cortico-striato-thalamic circuit underlies the emergence of OCD. Here we examine the structural network in drug-free patients with OCD in terms of graph theoretical measures for the first time. We used a measure called efficiency which quantifies how a node transfers information efficiently. To construct brain networks, cortical thickness was automatically estimated using T1-weighted magnetic resonance imaging. We found that the network of the OCD patients was as efficient as that of healthy controls so that the both networks were in the small-world regime. More importantly, however, disparity between the dorsal and the ventral networks in the OCD patients was found, suggesting a positive evidence to the imbalance theory on the underlying pathophysiology of OCD.

  8. The central oscillatory network of orthostatic tremor. (United States)

    Muthuraman, Muthuraman; Hellriegel, Helge; Paschen, Steffen; Hofschulte, Frank; Reese, Rene; Volkmann, Jens; Witt, K; Deuschl, G; Raethjen, Jan


    Orthostatic tremor (OT) is a movement disorder of the legs and trunk that is present in the standing position but typically absent when sitting. The pathological central network involved in orthostatic tremor is still unknown. In this study we analyzed 15 patients with simultaneous high-resolution electroencephalography and electromyography recording to assess corticomuscular coherence. In 1 patient we were able to simultaneously record the local field potential in the ventrolateral thalamus and electroencephalography. Dynamic imaging of coherent source analysis was used to find the sources in the brain that are coherent with the peripheral tremor signal. When standing, the network for the tremor frequency consisted of unilateral activation in the primary motor leg area, supplementary motor area, primary sensory cortex, two prefrontal/premotor sources, thalamus, and cerebellum for the whole 30-second segment recorded. The source coherence dynamics for the primary leg area and the thalamic source signals with the tibialis anterior muscle showed that they were highly coherent for the whole 30 seconds for the contralateral side but markedly decreased after 15 seconds for the ipsilateral side. The source signal and the recorded thalamus signal followed the same time frequency dynamics of coherence in 1 patient. The corticomuscular interaction in OT follows a consistent pattern with an initially bilateral pattern and then a segregated unilateral pattern after 15 seconds. This may add to the feeling of unsteadiness. It also makes the thalamus unlikely as the main source of orthostatic tremor. © 2013 International Parkinson and Movement Disorder Society.

  9. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. (United States)

    Santana, Noemí; Troyano-Rodriguez, Eva; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc


    Noncompetitive N-methyl-D-aspartate receptor antagonists are widely used as pharmacological models of schizophrenia. Their neurobiological actions are still poorly understood, although the prefrontal cortex (PFC) appears as a key target area. We examined the effect of phencyclidine (PCP) on neuronal activity of the mediodorsal (MD) and centromedial (CM) thalamic nuclei, reciprocally connected with the PFC, using extracellular recordings (n = 50 neurons from 35 Wistar rats) and c-fos expression. Phencyclidine (.25 mg/kg intravenous [IV]) markedly disorganized the activity of MD/CM neurons, increasing (424%) and decreasing (41%) the activity of 57% and 20% of the recorded neurons, respectively (23% remained unaffected). Phencyclidine reduced delta oscillations (.15-4 Hz) as assessed by recording local field potentials. The subsequent clozapine administration (1 mg/kg IV) reversed PCP effects on neuronal discharge and delta oscillations. Double in situ hybridization experiments revealed that PCP (10 mg/kg intraperitoneal [IP]) markedly increased c-fos expression in glutamatergic neurons of several cortical areas (prefrontal, somatosensory, retrosplenial, entorhinal) and in thalamic nuclei, including MD/CM. Phencyclidine also increased c-fos expression in the amygdala; yet, it had a small effect in the hippocampus. Phencyclidine did not increase c-fos expression in gamma-aminobutyric acidergic cells except in hippocampus, amygdala, somatosensory, and retrosplenial cortices. Clozapine (5 mg/kg IP) had no effect by itself but significantly prevented PCP-induced c-fos expression. Phencyclidine likely exerts its psychotomimetic action by increasing excitatory neurotransmission in thalamo-cortico-thalamic networks involving, among others, PFC, retrosplenial, and somatosensory cortices. The antipsychotic action of clozapine includes, among other actions, an attenuation of the neuronal hyperactivity in thalamocortical networks. Copyright © 2011 Society of Biological

  10. Disrupted resting-state brain network properties in obesity: decreased global and putaminal cortico-striatal network efficiency. (United States)

    Baek, K; Morris, L S; Kundu, P; Voon, V


    The efficient organization and communication of brain networks underlie cognitive processing and their disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with a data-driven graph theory approach to assess brain network characteristics in obesity and BED. Multi-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain functional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global and regional network properties in the binarized connectivity matrices with an edge density of 5%-25%. We also verified our findings using a separate parcellation, the Harvard-Oxford atlas parcellated into 470 regions. Obese subjects exhibited significantly reduced global and local network efficiency as well as decreased modularity compared with healthy controls, showing disruption in small-world and modular network structures. In regional metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese subjects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with putaminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences observed with conventional denoising or single-echo analysis. Using this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network properties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the role of network properties in

  11. Declarative Networking

    CERN Document Server

    Loo, Boon Thau


    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  12. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  13. Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. (United States)

    Morgenstern, Nicolás A; Bourg, Jacques; Petreanu, Leopoldo


    Neurons in the thalamorecipient layers of sensory cortices integrate thalamic and recurrent cortical input. Cortical neurons form fine-scale, functionally cotuned networks, but whether interconnected cortical neurons within a column process common thalamocortical inputs is unknown. We tested how local and thalamocortical connectivity relate to each other by analyzing cofluctuations of evoked responses in cortical neurons after photostimulation of thalamocortical axons. We found that connected pairs of pyramidal neurons in layer (L) 4 of mouse visual cortex share more inputs from the dorsal lateral geniculate nucleus than nonconnected pairs. Vertically aligned connected pairs of L4 and L2/3 neurons were also preferentially contacted by the same thalamocortical axons. Our results provide a circuit mechanism for the observed amplification of sensory responses by L4 circuits. They also show that sensory information is concurrently processed in L4 and L2/3 by columnar networks of interconnected neurons contacted by the same thalamocortical axons.

  14. Distonia virtual por infarto talâmico posterolateral ventral: relato de caso Virtual dystonia due to a posteroventrolateral thalamic infarct: case report

    Directory of Open Access Journals (Sweden)

    Ricardo De Oliveira-Souza


    dystonia not outwardly expressed through the motor system. There was severe proprioceptive loss in the same toes that harbored the cramp. MRI showed the appropriate lesion in the posteroventrolateral thalamus (VPL and wallerian degeneration of thalamo-cortical projections. SPECT showed hypoperfusion of the overlying ipsilateral parietal cortex as well as of the basal nuclei bilaterally, besides the expected image of thalamic exclusion. We hypothesize that the infarct disconnected the somatic sensory cortex (S-I from critical proprioceptive input with relative sparing of superficial sensibility. Lifting the foot deprived S-I of tonic inputs conveyed by undamaged contact-pressure pathways, a functional effect promptly reversed by placing the foot back against the ground. The case illustrates how a capricious deafferentation of S-I by a discrete VPL thalamic infarct might facilitate the emergence of autochthonous activity in the primary somesthetic cortex and give rise to a purely mental abnormal involuntary movement akin to the unimodal hallucinoses of which the syndrome of Bonnet is the best-known example. Virtual abnormal involuntary movements may be concealed more often than appreciated by complaints such as pains or cramps in patients with nervous system lesions.

  15. Long-Term Effects of Anterior Thalamic Nucleus Deep Brain Stimulation on Spatial Learning in the Pilocarpine Model of Temporal Lobe Epilepsy. (United States)

    Ferreira, Elenn Soares; Vieira, Laís Gabrielle; Moraes, Daniela Macedo; Amorim, Beatriz O; Malheiros, Jackeline Moraes; Hamani, Clement; Covolan, Luciene


    Cognitive impairment is a significant comorbidity of temporal lobe epilepsy that is associated with extensive hippocampal cell loss. Deep brain stimulation (DBS) of the anterior thalamic nucleus (ANT) has been used for the treatment of refractory partial seizures. In the pilocarpine model of epilepsy, ANT DBS applied during status epilepticus (SE) reduces hippocampal inflammation and apoptosis. When given to chronic epileptic animals it reduces hippocampal excitability and seizure frequency. Here, we tested whether ANT DBS delivered during SE and the silent phase of the pilocarpine model would reduce cognitive impairment when animals became chronically epileptic. SE was induced by a systemic pilocarpine injection (320 mg/kg). Immediately after SE onset, rats were assigned to receive DBS during the first six hours of SE (n = 8; DBSa group) or during SE + the silent period (i.e., 6 h/day until the animals developed the first spontaneous recurrent seizure; n = 10; DBSs group). Four months following SE, animals underwent water maze testing and histological evaluation. Nonstimulated chronic epileptic animals (n = 13; PCTL group) and age-matched naïve rats (n = 11, CTL group) were used as controls. Results were analyzed by repeated-measures analyses of variance (RM_ANOVA) and one-way ANOVAs, followed by Newman-Keuls post hoc tests. Although all groups learned the spatial task, epileptic animals with or without DBS spent significantly less time in the platform quadrant, denoting a spatial memory deficit (p < 0.02). Despite these negative behavioral results, we found that animals given DBS had a significantly higher number of cells in the CA1 region and dentate gyrus. Mossy fiber sprouting was similar among all epileptic groups. Despite lesser hippocampal neuronal loss, ANT DBS delivered either during SE or during SE and the silent phase of the pilocarpine model did not mitigate memory deficits in chronic epileptic rats. © 2017 International

  16. L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons. (United States)

    Kolaj, Miloslav; Zhang, Li; Renaud, Leo P


    In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca(2+)) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca(2+)]o, suggesting a critical role for both intracellular Ca(2+) release and Ca(2+) influx. TRH-induced inward current was unchanged by T-type Ca(2+) channel blockade, but was decreased by blockade of high-voltage-activated Ca(2+) channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca(2+) influx via L-type Ca(2+) channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca(2+)-induced Ca(2+) release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca(2+) influx via opening of L-type Ca(2+) channels, a sensitivity of a TRPC-like component to intracellular Ca(2+) release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component. Copyright © 2016 the American Physiological Society.

  17. The yearly rate of Relative Thalamic Atrophy (yrRTA: a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Manuel eMenéndez-González


    Full Text Available Despite a strong correlation to outcome, the measurement of gray matter (GM atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS. This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meaning of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy (TA with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the yearly rate of Relative Thalamic Atrophy (yrRTA. In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  18. Distinct temporal spike and local field potential activities in the thalamic parafascicular nucleus of parkinsonian rats during rest and limb movement. (United States)

    Wang, Min; Qu, Qingyang; He, Tingting; Li, Min; Song, Zhimin; Chen, Feiyu; Zhang, Xiao; Xie, Jinlu; Geng, Xiwen; Yang, Maoquan; Wang, Xiusong; Lei, Chengdong; Hou, Yabing


    Several studies have suggested that the thalamic centromedian-parafascicular (CM/PF or the PF in rodents) is implicated in the pathophysiology of Parkinson's disease (PD). However, inconsistent changes in the neuronal firing rate and pattern have been reported in parkinsonian animals. To investigate the impact of a dopaminergic cell lesion on PF extracellular discharge in behaving rats, the PF neural activities in the spike and local field potential (LFP) were recorded in unilaterally 6-hydroxydopamine- (6-OHDA) lesioned and neurologically intact control rats during rest and limb movement. During rest, the two PF neuronal subtypes was less spontaneously active, with no difference in the spike firing rates between the control and lesioned rats; only the lesioned rats reshaped their spike firing pattern. Furthermore, the simultaneously recorded LFP in the lesioned rats exhibited a significant increase in power at 12-35 and 35-70Hz and a decrease in power at 0.7-12Hz. During the execution of a voluntary movement, two subtypes of PF neurons were identified by a rapid increase in the discharge activity in both the control and lesioned rats. However, dopamine lesioning was associated with a decrease in neuronal spiking fire rate and reshaping in the firing pattern in the PF. The simultaneously recorded LFP activity exhibited a significant increase in power at 12-35Hz and a decrease in power at 0.7-12Hz compared with the control rats. These findings indicate that 6-OHDA induces modifications in PF spike and LFP activities in rats during rest and movement and suggest that PF dysfunction may be an important contributor to the pathophysiology of parkinsonian motor impairment. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Role of the thalamic submedius nucleus histamine H1 and H 2 and opioid receptors in modulation of formalin-induced orofacial pain in rats. (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Taati, Mina; Dabaghi, Milad


    Histamine and opioid systems are involved in supraspinal modulation of pain. In this study, we investigated the effects of separate and combined microinjections of agonists and antagonists of histamine H1 and H2 and opioid receptors into the thalamic submedius (Sm) nucleus on the formalin-induced orofacial pain. Two guide cannulas were implanted into the right and left sides of the Sm in ketamine- and xylazine-anesthetized rats. Orofacial formalin pain was induced by subcutaneous injection of a diluted formalin solution (50 μl, 1.5%) into the vibrissa pad. Face rubbing durations were recorded at 3-min blocks for 45 min. Formalin produced a biphasic pain response (first phase: 0-3 min and second phase: 15-33 min). Separate and combined microinjections of histamine H1 and H2 receptor agonists, 2-pyridylethylamine (2-PEA) and dimaprit, respectively, and opioid receptor agonist, morphine, attenuated the second phase of pain. The analgesic effects induced by 2-PEA, dimaprit, and morphine were blocked by prior microinjections of fexofenadine (a histamine H1 receptor antagonist), famotidine (a histamine H2 receptor antagonist), and naloxone (an opioid receptor antagonist), respectively. Naloxone also prevented 2-PEA- and dimaprit-induced antinociception, and the analgesic effect induced by morphine was inhibited by fexofenadine and famotidine. These results showed the involvement of histamine H1 and H2 and opioid receptors in the Sm modulation of orofacial pain. Opioid receptor might be involved in analgesia induced by activation of histamine H1 and H2 receptors and vice versa.

  20. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki


    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE4(μ3-O)2(COO)8Clusters. (United States)

    Angeli, Giasemi K; Sartsidou, Christina; Vlachaki, Styliani; Spanopoulos, Ioannis; Tsangarakis, Constantinos; Kourtellaris, Andreas; Klontzas, Emmanuel; Froudakis, George E; Tasiopoulos, Anastasios; Trikalitis, Pantelis N


    In recent years, the design and discovery of new metal-organic framework (MOF) platforms with distinct structural features and tunable chemical composition has remarkably enhanced by applying reticular chemistry rules and the molecular building block (MBB) approach. We targeted the synthesis of new rare earth (RE)-MOF platforms based on a rectangular-shaped 4-c linker, acting as a rigid organic MBB. Accordingly, we designed and synthesized the organic ligand 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dimethyl-benzene (H 4 L), in which the two methyl groups attached to the central phenyl ring lock the four peripheral carboxyphenyl groups to an orthogonal/vertical position. We report here a new family of RE-MOFs featuring the novel inorganic building unit, RE 4 (μ 3 -O) 2 (RE: Y 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , and Yb 3+ ), with planar D 2h symmetry. The rigid 4-c linker, H 4 L, directs the in situ assembly of the unique 8-c RE 4 (μ 3 -O) 2 (COO) 8 cluster, resulting in the formation of the first (4, 8)-c RE-MOFs with csq topology, RE-csq-MOF-1. The structures of the yttrium (Y-csq-MOF-1) and holmium (Ho-csq-MOF-1) analogues were determined by single-crystal X-ray diffraction analysis. Y-csq-MOF-1 was successfully activated and tested for Xe/Kr separation. The results show that Y-csq-MOF-1 has high isosteric heat of adsorption for Xe (33.8 kJ mol -1 ), with high Xe/Kr selectivity (IAST 12.1, Henry 12.9) and good Xe uptake (1.94 mmol g -1 at 298 K and 1 bar), placing this MOF among the top-performing adsorbents for Xe/Kr separation.

  2. Estudio de la Estructura Reticular de la Barriada de Las Palmeras, Córdoba, para la Planificación Participada de Propuestas de Convivencias Pacíficas

    Directory of Open Access Journals (Sweden)

    Esteban A. Ramos Muslera


    Full Text Available El estudio participado de redes (institucionales y de base en la barriada de Las Palmeras (Córdoba, en el que se da cuenta del dinámico entramado relacional-reticular existente, constituye una herramienta básica para la Planificación Participada de Propuestas de Convivencias Pacíficas y Estrategias para el Desarrollo Local Integral de la comunidad. Además de arrojar luz sobre las diferentes redes presentes, sus relaciones, la fuerza de éstas, su jerarquía, los actores puente y el impacto de éstos en la situación convivencial imperante en la barriada, la perspectiva participativa desde la que se ha desarrollado la investigación ha facilitado la implicación de la ciudadanía en todo el proceso de reflexión, favoreciendo la asunción de las responsabilidades sociales necesarias por parte de los vecinos para la implementación de las propuestas generadoras de Convivencias Pacíficas, a través de la creación de unas estructuras de participación, reflexión y consenso, capaces de abordar autónomamente las situaciones de confrontación resultantes del conflicto.La estrategia de intervención partía de la construcción-reflexión comunitaria sobre las redes y relaciones, abordando las problemáticas sociales comunitarias e iniciando la búsqueda, desarrollo e implementación de las propuestas consensuadas capaces de generar más y mejores convivencias pacíficas.

  3. The network researchers' network

    DEFF Research Database (Denmark)

    Henneberg, Stephan C.; Jiang, Zhizhong; Naudé, Peter


    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987). In thi......The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  4. Discharges in ventromedial frontal cortex during absence spells. (United States)

    Tucker, Don M; Brown, Micah; Luu, Phan; Holmes, Mark D


    Neural mechanisms of conscious attention require thalamic control of widespread cortical networks. Absence spells involve a momentary loss of voluntary control of attention, during which the person is inactive and unresponsive. The spike-wave seizure discharges of these spells rapidly engage both cerebral hemispheres in the classic sign of a "generalized" seizure. Animal evidence suggests that spike-wave seizures are caused by a disruption of thalamic circuitry, with extensive spread to cortex through thalamocortical propagation. We applied advanced methods of electrical source analysis to dense array (256-channel) electroencephalographic recordings of spike-wave discharges of absence spells. Neither the onset nor the spread of these seizures is generalized. Rather, the slow waves of the discharges are restricted to frontotemporal networks, and the spikes represent a highly localized and stereotyped progression of electrophysiological activity in ventromedial frontal networks. Given the current knowledge of the neurophysiology of absence seizures, this specificity of the frontal cortical discharges suggests the hypothesis that absence spells are associated with pathology in a circuit comprising ventromedial frontal cortex, rostral thalamic reticular nucleus, and limbic nuclei of the thalamus. Disrupted in absence, this circuit appears to regulate important aspects of the voluntary control of conscious attention.

  5. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy. (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok


    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  6. Network cosmology. (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián


    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  7. Network Cosmology (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián


    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  8. Corpus Linguistics, Network Analysis and Co-occurrence Matrices Corpus Linguistics, Network Analysis and Co-occurrence Matrices

    Directory of Open Access Journals (Sweden)

    Keith Stuart


    Full Text Available This article describes research undertaken in order to design a methodology for the reticular representation of knowledge of a specific discourse community. To achieve this goal, a representative corpus of the scientific production of the members of this discourse community (Universidad Politécnica de Valencia, UPV was created. The article presents the practical analysis (frequency, keyword, collocation and cluster analysis that was carried out in the initial phases of the study aimed at establishing the theoretical and practical background and framework for our matrix and network analysis of the scientific discourse of the UPV. In the methodology section, the processes that have allowed us to extract from the corpus the linguistic elements needed to develop co-occurrence matrices, as well as the computer tools used in the research, are described. From these co-occurrence matrices, semantic networks of subject and discipline knowledge were generated. Finally, based on the results obtained, we suggest that it may be viable to extract and to represent the intellectual capital of an academic institution using corpus linguistics methods in combination with the formulations of network theory.En este artículo describimos la investigación que se ha desarrollado en el diseño de una metodología para la representación reticular del conocimiento que se genera en el seno de una institución a partir de un corpus representativo de la producción científica de los integrantes de dicha comunidad discursiva, la Universidad Politécnica de Valencia.. Para ello, presentamos las acciones que se realizaron en las fases iniciales del estudio encaminadas a establecer el marco teórico y práctico en el que se inscribe nuestro análisis. En la sección de metodología se describen las herramientas informáticas utilizadas, así como los procesos que nos permitieron disponer de aquellos elementos presentes en el corpus, que nos llevarían al desarrollo de

  9. Telecommunication networks

    CERN Document Server

    Iannone, Eugenio


    Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction co

  10. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. (United States)

    Sewing, A Charlotte P; Lagerweij, Tonny; van Vuurden, Dannis G; Meel, Michaël H; Veringa, Susanna J E; Carcaboso, Angel M; Gaillard, Pieter J; Peter Vandertop, W; Wesseling, Pieter; Noske, David; Kaspers, Gertjan J L; Hulleman, Esther


    OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic

  11. Interconnected networks

    CERN Document Server


    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  12. Age-related changes in modular organization of human brain functional networks. (United States)

    Meunier, David; Achard, Sophie; Morcom, Alexa; Bullmore, Ed


    Graph theory allows us to quantify any complex system, e.g., in social sciences, biology or technology, that can be abstractly described as a set of nodes and links. Here we derived human brain functional networks from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical regions for two groups of healthy (young and older) participants. We investigated the modular structure of these networks and tested the hypothesis that normal brain aging might be associated with changes in modularity of sparse networks. Newman's modularity metric was maximised and topological roles were assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity. Both young and older brain networks demonstrated significantly non-random modularity. The young brain network was decomposed into 3 major modules: central and posterior modules, which comprised mainly nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised mainly nodes with extensive inter-modular connections. The mean network in the older group also included posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in posterior and central modules was increased.

  13. Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus. (United States)

    Claus, Lena; Philippot, Camille; Griemsmann, Stephanie; Timmermann, Aline; Jabs, Ronald; Henneberger, Christian; Kettenmann, Helmut; Steinhäuser, Christian


    The ventral posterior nucleus of the thalamus plays an important role in somatosensory information processing. It contains elongated cellular domains called barreloids, which are the structural basis for the somatotopic organization of vibrissae representation. So far, the organization of glial networks in these barreloid structures and its modulation by neuronal activity has not been studied. We have developed a method to visualize thalamic barreloid fields in acute slices. Combining electrophysiology, immunohistochemistry, and electroporation in transgenic mice with cell type-specific fluorescence labeling, we provide the first structure-function analyses of barreloidal glial gap junction networks. We observed coupled networks, which comprised both astrocytes and oligodendrocytes. The spread of tracers or a fluorescent glucose derivative through these networks was dependent on neuronal activity and limited by the barreloid borders, which were formed by uncoupled or weakly coupled oligodendrocytes. Neuronal somata were distributed homogeneously across barreloid fields with their processes running in parallel to the barreloid borders. Many astrocytes and oligodendrocytes were not part of the panglial networks. Thus, oligodendrocytes are the cellular elements limiting the communicating panglial network to a single barreloid, which might be important to ensure proper metabolic support to active neurons located within a particular vibrissae signaling pathway. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  14. Network maintenance

    CERN Multimedia

    IT Department


    A site wide network maintenance has been scheduled for Saturday 28 February. Most of the network devices of the General Purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites along this day. This upgrade will not affect: the Computer centre itself, building 613, the Technical Network and the LHC experiments dedicated networks at the pits. Should you need more details on this intervention, please contact Netops by phone 74927 or email IT/CS Group

  15. Network maintenance

    CERN Multimedia

    GS Department


    A site-wide network maintenance operation has been scheduled for Saturday 28 February. Most of the network devices of the general purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites throughout the day. This upgrade will not affect the Computer Centre itself, Building 613, the Technical Network and the LHC experiments, dedicated networks at the pits. For further details of this intervention, please contact Netops by phone 74927 or e-mail IT/CS Group

  16. Network Ambivalence

    Directory of Open Access Journals (Sweden)

    Patrick Jagoda


    Full Text Available The language of networks now describes everything from the Internet to the economy to terrorist organizations. In distinction to a common view of networks as a universal, originary, or necessary form that promises to explain everything from neural structures to online traffic, this essay emphasizes the contingency of the network imaginary. Network form, in its role as our current cultural dominant, makes scarcely imaginable the possibility of an alternative or an outside uninflected by networks. If so many things and relationships are figured as networks, however, then what is not a network? If a network points towards particular logics and qualities of relation in our historical present, what others might we envision in the future? In  many ways, these questions are unanswerable from within the contemporary moment. Instead of seeking an avant-garde approach (to move beyond networks or opting out of networks (in some cases, to recover elements of pre-networked existence, this essay proposes a third orientation: one of ambivalence that operates as a mode of extreme presence. I propose the concept of "network aesthetics," which can be tracked across artistic media and cultural forms, as a model, style, and pedagogy for approaching interconnection in the twenty-first century. The following essay is excerpted from Network Ambivalence (Forthcoming from University of Chicago Press. 

  17. Network neuroscience. (United States)

    Bassett, Danielle S; Sporns, Olaf


    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

  18. Organizational Networks

    DEFF Research Database (Denmark)

    Grande, Bård; Sørensen, Ole Henning


    The paper focuses on the concept of organizational networks. Four different uses of the concept of organizational network are identified and critically discussed. Special focus is placed on how information and communication technologies as communication mediators and cognitive pictures influence...

  19. Network workshop

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry


    This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...... network methodology in one’s research might supersede the perceived benefits of doing so. As a response to that problem, we argue that workshops can act as a road towards meaningful engagement with networks and highlight that network methodology promises new ways of interpreting data to answer questions...

  20. Vascular Thalamic Amnesia: A Reappraisal (United States)

    Carlesimo, Giovanni Augusto; Lombardi, Maria Giovanna; Caltagirone, Carlo


    In humans lacunar infarcts in the mesial and anterior regions of the thalami are frequently associated with amnesic syndromes. In this review paper, we scrutinized 41 papers published between 1983 and 2009 that provided data on a total of 83 patients with the critical ischemic lesions (i.e. 17 patients with right-sided lesions, 25 with left-sided…

  1. Social Networks


    Martí, Joan; Zenou, Yves


    We survey the literature on social networks by putting together the economics, sociological and physics/applied mathematics approaches, showing their similarities and differences. We expose, in particular, the two main ways of modeling network formation. While the physics/applied mathematics approach is capable of reproducing most observed networks, it does not explain why they emerge. On the contrary, the economics approach is very precise in explaining why networks emerge but does a poor jo...

  2. Network Coding

    Indian Academy of Sciences (India)

    Network coding is a technique to increase the amount of information °ow in a network by mak- ing the key observation that information °ow is fundamentally different from commodity °ow. Whereas, under traditional methods of opera- tion of data networks, intermediate nodes are restricted to simply forwarding their incoming.

  3. [Spino-thalamic cordotomy in cancerous pain. Results of a series of 124 patients operated on by the direct posterior approach]. (United States)

    Mansuy, L; Sindou, M; Fischer, G; Brunon, J


    The authors -- about a series of 124 cancerous patients treated during the 12 last years with open spino-thalamic cordotomy for intractable pain -- have tried to evaluate effectiveness of the operation with regard to its levels in relation to the site of pain. Patients suffering median or bilateral perineo-pelvic pain, isolated or associated with algias in one or both legs (group I: 50%) underwent a bilateral C8-C6 cordotomy in one stage. Patients with the same perineo-pelvic cancers but suffering only unilateral pain (group II : 31,8%) and patients with painful cancers in the leg (group III : 3,2%), were operated on with a C7 controlateral cordotomy. Patients suffering widespread unilateral pain in the chest, isolated or associated with algias in the arm, for instance from lung or breast cancers (group IV : 15%) underwent a controlateral C2 cordotomy. There was 3,2% mortality and one paraplegia. A useful early effect(i.e. complete or partial relief) was obtained : in 85% cases (60% and 25%) for the 1st group, in only 51% (36% and 15%) for the 2nd, and in 87% (56% and 31%) for the 4th. Relief was complete in each of the 4 cases of the 3rd group. In the 2nd group 39% of patients were completely relieved of their initial unilateral pain, but complained of an early post-operative pain on the other side. This secondary pain was supposed existing prior to the operation, but masked because of its lesser intensity. The useful results at the time of death, after a 6 month mean survival (from 1 month to 4 years), were 63,75% in the 1st group, 33% in the 2nd, 100% in the 3rd and 72% in the 4th. The high rate of poor results with unilateral cervical cordotomy in the perineo-pelvic cancers with apparently unilateral pain, led us since then to systematically perform for them a bilateral cordotomy. Thus, our general management for pain of malignant origin is now as follows: C8-C6 bilateral cordotomy for all the perineo-pelvic cancers whatever uni- or bilateral the site of pain

  4. Hiperecogenicidade dos vasos talâmicos no recém-nascido prematuro Hyperechogenicity of thalamic vessels in preterm newborn infants

    Directory of Open Access Journals (Sweden)

    Natália Paczko


    Full Text Available Objetivo: o presente estudo procura avaliar as possíveis patologias que se manifestam associadas à hiperecogenicidade dos vasos talâmicos na ultra-sonografia cerebral, e observar a freqüência com que ocorrem. Métodos: a amostra foi constituída de 206 recém-nascidos prematuros, nascidos no Hospital de Clínicas de Porto Alegre, no período de julho de 1998 a maio de 1999. Todos realizaram a ultra-sonografia cerebral na primeira semana de vida. Foram incluídos no estudo aqueles prematuros que necessitaram de internação hospitalar, e que tiveram o termo de consentimento informado assinado por um dos responsáveis. Foram excluídos aqueles cuja ultra-sonografia cerebral evidenciava sangramento cerebral e/ou malformações congênitas associadas, e os que evoluíram para óbito antes da realização do exame. Resultados: a ultra-sonografia cerebral levou à identificação de 65 recém-nascidos prematuros com hiperecogenicidade dos vasos talâmicos e de 141 recém-nascidos prematuros sem. Conclusão: a forma de apresentação do tipo pélvica ao nascimento, a maior idade gestacional, o maior peso do recém-nascido ao nascimento e a classificação grande para a idade gestacional foram fatores de risco para a ocorrência de hiperecogenicidade dos vasos talâmicos, enquanto a presença de hipertensão materna durante o período de gestação tendeu a ser fator de proteção. Os recém-nascidos que apresentaram crises convulsivas durante o período de internação hospitalar tiveram risco 3,2 vezes maior de ter hiperecogenicidade dos vasos talâmicos, quando comparados aos que não apresentaram crises convulsivas.Objective: the aim of this study is to evaluate possible pathologies associated with hyperechogenicity of thalamic vessels (HETV, which are found on brain ultrasounds (BUS, as well as to observe the frequency of their occurrence. Methods: the sample was composed of 206 preterm newborn infants at Hospital de Clíncas de Porto Alegre

  5. Technical Network

    CERN Multimedia


    In order to optimise the management of the Technical Network (TN), to facilitate understanding of the purpose of devices connected to the TN and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive e-mails from IT/CS asking them to add the corresponding information in the network database at "network-cern-ch". Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  6. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo


    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  7. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith


    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  8. Vulnerability of network of networks (United States)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.


    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  9. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1Aand 5-HT2Areceptors. (United States)

    Riga, Maurizio S; Lladó-Pelfort, Laia; Artigas, Francesc; Celada, Pau


    5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT 1A /5-HT 2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT 1A and 5-HT 2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT 2A -R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT 1A -R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT 1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. Copyright © 2017. Published by Elsevier Ltd.

  10. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Hansen, Jonas; Roetter, Daniel Enrique Lucani; Krigslund, Jeppe


    . The inherent flexibility of both SDN and NC provides fertile ground to envision more efficient, robust, and secure networking designs, which may also incorporate content caching and storage, all of which are key challenges of the upcoming 5G networks. This article not only proposes the fundamentals......Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm...

  11. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Roetter, Daniel Enrique Lucani


    Software Defined Networking (SDN) and Network Coding (NC) are two key concepts in networking that have garnered a large attention in recent years. On the one hand, SDN's potential to virtualize services in the Internet allows a large flexibility not only for routing data, but also to manage....... This paper advocates for the use of SDN to bring about future Internet and 5G network services by incorporating network coding (NC) functionalities. The inherent flexibility of both SDN and NC provides a fertile ground to envision more efficient, robust, and secure networking designs, that may also...... incorporate content caching and storage, all of which are key challenges of the future Internet and the upcoming 5G networks. This paper proposes some of the keys behind this intersection and supports it with use cases as well as a an implementation that integrated the Kodo library (NC) into OpenFlow (SDN...

  12. Telecommunication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Balachandran, Kartheepan; Hald, Sara Ligaard


    In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control......, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look...... at the deployment of the physical layout of the communication network and the related costs. This is an important aspect as one option to use existing networks is to deploy dedicated networks. Following this, we look at some generic models that describe reliability for accessing dynamic information. This part...

  13. Networked Identities

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Larsen, Malene Charlotte


    In this article we take up a critique of the concept of Communities of Practice (CoP) voiced by several authors, who suggest that networks may provide a better metaphor to understand social forms of organisation and learning. Through a discussion of the notion of networked learning and the critique...... of CoPs we shall argue that the metaphor or theory of networked learning is itself confronted with some central tensions and challenges that need to be addressed. We then explore these theoretical and analytic challenges to the network metaphor, through an analysis of a Danish social networking site. We...... argue that understanding meaning-making and ‘networked identities’ may be relevant analytic entry points in navigating the challenges....

  14. Wireless Networks


    Samaka, Mohammed; Khan, Khaled M.D.


    Wireless communication is the fastest-growing field in the telecommunication industry. Wireless networks have grown significantly as an important segment of the communications industry. They have become popular networks with the potential to provide high-speed, high-quality information exchange between two or more portable devices without any wire or conductors. Wireless networks can simply be characterized as the technology that provides seamless access to information, anywhere, anyplace, an...

  15. Enterpreneurial network


    Thoma, Antonela; Nguyen, Lien; Kupsyte, Valdone


    Network has become more and more indispensable in the entrepreneurial world. Especially in startup businesses, network is crucial for new entrepreneurs. This project looks at how entrepreneurs in different sectors use network to become successful. We chose to work with three entrepreneurs from three companies that have been operational for a few years and conducted face to face interviews with them. Through the data from the interviews, we analyzed firstly what type of entrepreneurs they are,...

  16. Network security

    CERN Document Server

    Perez, André


    This book introduces the security mechanisms deployed in Ethernet, Wireless-Fidelity (Wi-Fi), Internet Protocol (IP) and MultiProtocol Label Switching (MPLS) networks. These mechanisms are grouped throughout the book according to the following four functions: data protection, access control, network isolation, and data monitoring. Data protection is supplied by data confidentiality and integrity control services. Access control is provided by a third-party authentication service. Network isolation is supplied by the Virtual Private Network (VPN) service. Data monitoring consists of applying

  17. Networking Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    HIDA). Many of these alumni have and will in the future exchange ideas and keep contact not only to Japan, but also to fellow alumni around the globe and, thereby, practice south-south exchanges, which are made possible and traceable by their established alumni network and the World Network of Friends...... (WNF). Through the alumni network, Japan continues to infuse ideas to participants and alumni, who interpret and disseminate these ideas through alumni society networks and activities, but their discussions nationally and regionally also get reported back to Japan and affect future policies...

  18. Technical Network

    CERN Multimedia


    In order to optimize the management of the Technical Network (TN), to ease the understanding and purpose of devices connected to the TN, and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive email notifications from IT/CS asking them to add the corresponding information in the network database. Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  19. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks. (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A


    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  20. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu


    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  1. Heterodox networks

    DEFF Research Database (Denmark)

    Lala, Purnima; Kumar, Ambuj


    It is imperative for the service providers to bring innovation in the network design to meet the exponential growth of mobile subscribers for multi-technology future wireless networks. As a matter of research, studies on providing services to moving subscriber groups aka ‘Place Time Capacity (PTC...

  2. Sensor networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Thurston, J.; Kininmonth, S.; Havinga, Paul J.M.


    This article describes the details of a sensor network that is currently being deployed at the Great Barrier Reef in Australia. The sensor network allows scientists to retrieve sensor data that has a high spatial and temporal resolution. We give an overview of the energy-efficient data aggregation

  3. Network Protocols

    NARCIS (Netherlands)

    Tanenbaum, A.S.


    Dunng the last ten years, many computer networks have been designed, implemented, and put into service in the United States, Canada, Europe, Japan, and elsewhere. From the experience obtamed with these networks, certain key design principles have begun to emerge, principles that can be used to

  4. Probabilistic Networks

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Lauritzen, Steffen Lilholt


    This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs.......This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs....

  5. Organizational Networks

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning; Grande, Bård


    The paper focuses on the concept of organizational networks. Four different uses of the concept are identified and critically discussed.......The paper focuses on the concept of organizational networks. Four different uses of the concept are identified and critically discussed....

  6. Affective Networks


    Jodi Dean


    This article sets out the idea of affective networks as a constitutive feature of communicative capitalism. It explores the circulation of intensities in contemporary information and communication networks, arguing that this circulation should be theorized in terms of the psychoanalytic notion of the drive. The article includes critical engagements with theorists such as Guy Debord, Jacques Lacan, Tiziana Terranova, and Slavoj Zizek.

  7. Network chemistry, network toxicology, network informatics, and network behavioristics: A scientific outline


    WenJun Zhang


    In present study, I proposed some new sciences: network chemistry, network toxicology, network informatics, and network behavioristics. The aims, scope and scientific foundation of these sciences are outlined.

  8. Network Affordances

    DEFF Research Database (Denmark)

    Samson, Audrey; Soon, Winnie


    This paper examines the notion of network affordance within the context of network art. Building on Gibson's theory (Gibson, 1979) we understand affordance as the perceived and actual parameters of a thing. We expand on Gaver's affordance of predictability (Gaver, 1996) to include ecological...... and computational parameters of unpredictability. We illustrate the notion of unpredictability by considering four specific works that were included in a network art exhibiton, SPEED SHOW [2.0] Hong Kong. The paper discusses how the artworks are contingent upon the parameteric relations (Parisi, 2013......), of the network. We introduce network affordance as a dynamic framework that could articulate the experienced tension arising from the (visible) symbolic representation of computational processes and its hidden occurrences. We base our proposal on the experience of both organising the SPEED SHOW and participating...

  9. Social networks

    CERN Document Server

    Etaner-Uyar, A Sima


    The present volume provides a comprehensive resource for practitioners and researchers alike-both those new to the field as well as those who already have some experience. The work covers Social Network Analysis theory and methods with a focus on current applications and case studies applied in various domains such as mobile networks, security, machine learning and health. With the increasing popularity of Web 2.0, social media has become a widely used communication platform. Parallel to this development, Social Network Analysis gained in importance as a research field, while opening up many

  10. Network Warrior

    CERN Document Server

    Donahue, Gary


    Pick up where certification exams leave off. With this practical, in-depth guide to the entire network infrastructure, you'll learn how to deal with real Cisco networks, rather than the hypothetical situations presented on exams like the CCNA. Network Warrior takes you step by step through the world of routers, switches, firewalls, and other technologies based on the author's extensive field experience. You'll find new content for MPLS, IPv6, VoIP, and wireless in this completely revised second edition, along with examples of Cisco Nexus 5000 and 7000 switches throughout. Topics include: An

  11. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Arnaud Messé

    Full Text Available Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the DSM-IV criteria at 6 months post-injury compared with 38 mild traumatic brain injury patients with no post-concussion syndrome and 34 healthy controls. All patients underwent magnetic resonance imaging examinations at the subacute (1-3 weeks and late (6 months phases after injury. Group-wise differences in functional brain networks were analyzed using graph theory measures. Patterns of long-range functional networks alterations were found in all mild traumatic brain injury patients. Mild traumatic brain injury patients with post-concussion syndrome had greater alterations than patients without post-concussion syndrome. In patients with post-concussion syndrome, changes specifically affected temporal and thalamic regions predominantly at the subacute stage and frontal regions at the late phase. Our results suggest that the post-concussion syndrome is associated with specific abnormalities in functional brain network that may contribute to explain deficits typically observed in PCS patients.

  12. Managing Networks

    DEFF Research Database (Denmark)

    Jørgensen, Heidi; Vintergaard, Christian

    Logically it seems that companies pursuing different business strategies wouldalso manage their relationships with other firms accordingly. Nevertheless, due tothe lack of research in the field of network strategies, this link still remainsinadequately examined. Based on the well-known framework...... isprovided, that the relation between a company's strategy, structure and processesin fact have a considerable influence on its pattern of network behaviour. Threecase studies from the Danish biotech industry exemplify and illustrate how acompany's strategy is directly correlated with how it manages its...... of organisationalbehaviour developed by Miles and Snow (1978), this paper argues that thepatterns of network behaviour practiced by firms greatly depend on the businesstypology of the company. That is, a company's business typology will to a certaindegree dictate the network identity of the company. In this paper evidence...

  13. Heterodox networks

    DEFF Research Database (Denmark)

    Lala, Purnima; Kumar, Ambuj


    architecture of ‘Hovering Ad-hoc Network (HANET)’ for the latter will be deployed to assist and manage the overloaded primary base stations enhancing the on-demand coverage and capacity of the entire system. Proposed modes can either operate independently or as a cascaded architecture to form a Heterodox......It is imperative for the service providers to bring innovation in the network design to meet the exponential growth of mobile subscribers for multi-technology future wireless networks. As a matter of research, studies on providing services to moving subscriber groups aka ‘Place Time Capacity (PTC......)’ have not been considered much in the literature. In this article we present Heterodox networks as an innovative and alternate approach to handle the PTC congestion. We describe two different approaches to combat the PTC congestion where the traditional terrestrial infrastructure fails to provide...

  14. Exchange Network (United States)

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  15. Sentinel Network (United States)

    The Sentinel Network is an integrated, electronic, national medical product safety initiative that compiles information about the safe and effective use of medical products accessible to patients and healthcare practitioners.

  16. computer networks

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed


    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  17. Affective Networks

    Directory of Open Access Journals (Sweden)

    Jodi Dean


    Full Text Available This article sets out the idea of affective networks as a constitutive feature of communicative capitalism. It explores the circulation of intensities in contemporary information and communication networks, arguing that this circulation should be theorized in terms of the psychoanalytic notion of the drive. The article includes critical engagements with theorists such as Guy Debord, Jacques Lacan, Tiziana Terranova, and Slavoj Zizek.

  18. Friendship Networks


    Jan K. Brueckner


    Building upon a long tradition in sociology, economists have recently turned their attention to the analysis of social networks. The present paper adds to this emerging literature by proposing a different approach to social-network formation. As in the model of Jackson and Wolinsky (1996), formation of a link between two individuals requires two-sided investments in the present framework. But in contrast to their approach, where the required investments are exogenously specified and link form...

  19. Developer Network

    Energy Technology Data Exchange (ETDEWEB)


    NREL's Developer Network,, provides data that users can access to provide data to their own analyses, mobile and web applications. Developers can retrieve the data through a Web services API (application programming interface). The Developer Network handles overhead of serving up web services such as key management, authentication, analytics, reporting, documentation standards, and throttling in a common architecture, while allowing web services and APIs to be maintained and managed independently.

  20. Network Power Fault Detection


    Siviero, Claudio


    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  1. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta


    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  2. Sentient networks

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, G.


    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A better idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.

  3. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT


    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  4. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI.

    Directory of Open Access Journals (Sweden)

    Suping Cai

    Full Text Available We used resting-state functional magnetic resonance imaging (fMRI to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI patients, 30 early stages of amnestic mild cognitive impairment (EMCI patients and 30 well-matched healthy controls (HC were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI. We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG, left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG extending into middle occipital gyrus (MOG. We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting

  5. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI. (United States)

    Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M; Ren, Junchan; Ren, Aifeng


    We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is

  6. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic


    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  7. Network interruptions

    CERN Document Server


    On Sunday 12 June 2005, a site-wide security software upgrade will be performed on all CERN network equipment. This maintenance operation will cause at least 2 short network interruptions of 2 minutes on each equipment item. There are hundreds of such items across the CERN site (Meyrin, Prévessin and all SPS and LHC pits), and it will thus take the whole day to treat them all. All network users and services will be affected. Central batch computing services will be interrupted during this period, expected to last from 8 a.m. until late evening. Job submission will still be possible but no jobs will actually be run. It is hoped to complete the computer centre upgrades in the morning so that stable access can be restored to lxplus, afs and nice services as soon as possible; this cannot be guaranteed, however. The opportunity will be used to interrupt and perform upgrades on the CERN Document Servers.

  8. Network Survivability

    DEFF Research Database (Denmark)

    Marzo, José L.; Stidsen, Thomas Riis; Ruepp, Sarah Renée


    – are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 – a four-year program of multidisciplinary research on this subject. In this book...... they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students......, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics....

  9. Nuclear networking. (United States)

    Xie, Wei; Burke, Brian


    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  10. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices. (United States)

    Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu


    Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows

  11. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer


    the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...... network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...

  12. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero

    Directory of Open Access Journals (Sweden)

    Moriah E. Thomason


    Full Text Available Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  13. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena


    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  14. Nepal Networking

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    that their personal networks engage not only their families, but also their home communities and by extension Nepal. The two women constitute weak links between their country and other countries and as such they function as bridges or channels for transmission of practices, ideas, knowledge, and artefacts. However...

  15. Network Society

    DEFF Research Database (Denmark)

    Clausen, Lars; Tække, Jesper


    the five strands of theory on the network society. Each theoretical position has its specific implications for acting toward strategic goals. In its entirety, the five perspectives give a thorough understanding of the conditions for successful strategic communication in the 21st century....

  16. Network Coding

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  17. Network Society

    DEFF Research Database (Denmark)

    Clausen, Lars; Tække, Jesper


    the five strands of theory on the network society. Each theoretical position has its specific implications for acting toward strategic goals. In its entirety, the five perspectives give a thorough understanding of the conditions for successful strategic communication in the 21st century....

  18. distribution network

    African Journals Online (AJOL)


    This paper examined the acidic properties of distribution transformer oil insulation in service at Jericho distribution network Ibadan, Nigeria. Five oil samples each from six distribution transformers (DT1, DT2, DT3, DT4 and DT5) making a total of thirty samples were taken from different installed distribution transformers all ...

  19. Social Networks and Network Structures (United States)


    Research in Command & Control • Latent Semantic Analysis – Team communication – Emergent team dynamics – Shared situation awareness • Dynamic Network...requirements – Information technology requirements 28 LSA Essentials of Latent Semantic Analysis 29 Communication Analysis • Goal: Automatically monitor and

  20. Introduction to neural networks

    CERN Document Server

    James, Frederick E


    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  1. Network gravity (United States)

    Lombard, John


    We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a term playing the role of a positive definite cosmological constant as a regulator for nondegenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in developing the program.

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome


    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. Network Frontier Workshop 2013 (United States)


    networks, biological networks, cognitive and semantic networks and social networks. This field has received a major boost caused by the availability of huge...networks, which require new ways of thinking about the world. Part of the new cognition is provided by the fractional calculus description of temporal...structures in a wide range of examples—including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network

  4. Linear network theory

    CERN Document Server

    Sander, K F


    Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies

  5. Surface Networks


    Kostrikov, Ilya; Bruna, Joan; Panozzo, Daniele; Zorin, Denis


    We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometr...

  6. Loss Networks


    Kelly, F. P.


    This paper describes work on the stochastic modelling of loss networks. Such systems have long been of interest to telephone engineers and are becoming increasingly important as models of computer and information systems. Throughout the century problems from this field have provided an impetus to the development of probability theory, pure and applied. This paper provides an introduction to the area and a review of recent work.

  7. Modeling the citation network by network cosmology. (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing


    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  8. Modeling the citation network by network cosmology.

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    Full Text Available Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  9. Open innovation in networks

    DEFF Research Database (Denmark)

    Hu, Yimei

    Open innovation in networks has been a popular topic for long, this paper rethinks the concepts of innovation network and network organization, and clarifies the differences between them based on the network perspective. Network perspective means that: network is the context of firms; market...... and hierarchy can be analyzed from a network approach. Within a network perspective, there are different levels of network, and a firm may not always has the power to “manage” innovation networks due to different levels of power. Based on the strength of a firm’s power, its role may varies from manager...

  10. ENLIGHT Network

    CERN Multimedia

    Ballantine, A; Dixon-Altaber, H; Dosanjh, M; Kuchina, L


    State-of-the-art techniques borrowed from particle accelerators and detectors are a key element in hadrontherapy and several European projects are actively fostering the collaboration amongst the various disciplines and countries. ENLIGHT was established in 2002 to coordinate these European efforts in hadron therapy. The ENLIGHT network is formed by the European hadrontherapy Community, with more than 300 participants from twenty European countries. A major achievement of ENLIGHT has been the blending of traditionally separate communities so that clinicians, physicists, biologists and engineers with experience and interest in particle therapy are working together.

  11. Brain network characterization of high-risk preterm-born school-age children

    Directory of Open Access Journals (Sweden)

    Elda Fischi-Gomez


    Full Text Available Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR. While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP does not result in a worse outcome. In such cases, the alteration

  12. Brain network characterization of high-risk preterm-born school-age children. (United States)

    Fischi-Gomez, Elda; Muñoz-Moreno, Emma; Vasung, Lana; Griffa, Alessandra; Borradori-Tolsa, Cristina; Monnier, Maryline; Lazeyras, François; Thiran, Jean-Philippe; Hüppi, Petra S


    Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP) and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR). While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP) does not result in a worse outcome. In such cases, the alteration in network

  13. Local Social Networks


    Sapuppo, Antonio; Sørensen, Lene Tolstrup


    Online social networks have become essential for many users in their daily communication. Through a combination of the online social networks with opportunistic networks, a new concept arises: Local Social Networks. The target of local social networks is to promote social networking benefits in physical environment in order to leverage personal affinities in the users' surroundings. The purpose of this paper is to present and discuss the concept of local social networks as a new social commun...

  14. Connectivity of communication networks

    CERN Document Server

    Mao, Guoqiang


    This book introduces a number of recent developments on connectivity of communication networks, ranging from connectivity of large static networks and connectivity of highly dynamic networks to connectivity of small to medium sized networks. This book also introduces some applications of connectivity studies in network optimization, in network localization, and in estimating distances between nodes. The book starts with an overview of the fundamental concepts, models, tools, and methodologies used for connectivity studies. The rest of the chapters are divided into four parts: connectivity of large static networks, connectivity of highly dynamic networks, connectivity of small to medium sized networks, and applications of connectivity studies.

  15. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José


    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal aval