WorldWideScience

Sample records for thalamic deep brain

  1. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    Science.gov (United States)

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Connectivity derived thalamic segmentation in deep brain stimulation for tremor

    Directory of Open Access Journals (Sweden)

    Harith Akram

    Full Text Available The ventral intermediate nucleus (VIM of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS in the treatment of tremor in Parkinson's disease (PD and essential tremor (ET. It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT. The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female with ET underwent high angular resolution diffusion imaging (HARDI (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500 preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1, supplementary motor area (SMA, primary sensory area (S1 and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral

  3. Long-term outcome of thalamic deep brain stimulation in two patients with Tourette syndrome.

    Science.gov (United States)

    Ackermans, Linda; Duits, Annelien; Temel, Yasin; Winogrodzka, Ania; Peeters, Frenk; Beuls, Emile A M; Visser-Vandewalle, Veerle

    2010-10-01

    Thalamic deep brain stimulation for intractable Tourette Syndrome was introduced in 1999 by Vandewalle et al. In this follow-up study, the authors report on the long-term (6 and 10 years) outcome in terms of tic reduction, cognition, mood and side effects of medial thalamic deep brain stimulation in two previously described Tourette patients. The authors compared the outcome of two patients at 6 and 10 years after surgery with their preoperative status and after 8 months and 5 years of treatment, respectively. Standardised video recordings were scored by three independent investigators. Both patients underwent (neuro)psychological assessment at all time points of follow-up. Tic improvement observed at 5 years in patient 1 (90.1%) was maintained at 10 years (92.6%). In patient 2, the tic improvement at 8 months (82%) was slightly decreased at 6 years (78%). During follow-up, case 1 revealed no changes in cognition, but case 2 showed a decrease in verbal fluency and learning which was in line with his subjective reports. Case 2 showed a slight decrease in depression, but overall psychopathology was still high at 6 years after surgery with an increase in anger and aggression together with difficulties in social adaptation. Besides temporary hardware-related complications, no distressing adverse effects were observed. Bilateral thalamic stimulation may provide sustained tic benefit after at least 6 years, but to maximise overall outcome, attention is needed for postoperative psychosocial adaptation, already prior to surgery.

  4. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn

    2017-07-01

    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  5. Connectivity derived thalamic segmentation in deep brain stimulation for tremor.

    Science.gov (United States)

    Akram, Harith; Dayal, Viswas; Mahlknecht, Philipp; Georgiev, Dejan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Jahanshahi, Marjan; Ashburner, John; Behrens, Tim; Hariz, Marwan; Zrinzo, Ludvic

    2018-01-01

    The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL

  6. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    Science.gov (United States)

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed. © 2013 Elsevier B.V. All rights reserved.

  7. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling

    Science.gov (United States)

    Meijer, H. G. E.; Krupa, M.; Cagnan, H.; Lourens, M. A. J.; Heida, T.; Martens, H. C. F.; Bour, L. J.; van Gils, S. A.

    2011-10-01

    We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinson's disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within and between basal ganglia nuclei is very often accompanied by synchronization at Parkinsonian rest tremor frequencies (3-10 Hz). These oscillations have a profound influence on thalamic projections and impair the thalamic relaying of cortical input by generating rebound action potentials. Our model describes convergent inhibitory input received from basal ganglia by the thalamocortical cells based on characteristics of normal activity, and/or low-frequency oscillations (activity associated with Parkinson's disease). In addition to simulated input, we also used microelectrode recordings as inputs for the model. In the resting state, and without additional sensorimotor input, pathological rebound activity is generated for even mild Parkinsonian input. We have found a specific stimulation window of amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and which also suppresses rebound activity for mild and even more prominent Parkinsonian input. When low-frequency pathological rebound activity disables the thalamocortical cell's ability to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to our stimulation window can restore the thalamocortical cell's relay functionality.

  8. Clinical, neuropsychological, and pre-stimulus dorsomedial thalamic nucleus electrophysiological data in deep brain stimulation patients

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2016-09-01

    Full Text Available The data presented here comprise clinical, neuropsychological, and intrathalamic electrophysiological data from 7 patients with pharmacoresistant focal epilepsy and are related to the article “Pre-stimulus thalamic theta power predicts human memory formation” C.M. Sweeney-Reed, T. Zaehle, J. Voges, F.C. Schmitt, L. Buentjen, K. Kopitzki, et al. (2016 [1]. The patients participated in a memory paradigm after receiving electrodes implanted in the DMTN due to the surgical approach taken in electrode insertion for deep brain stimulation of the anterior thalamic nucleus. Epilepsy duration and pre-operative neuropsychological tests provide an indication of the profile of patients receiving intrathalamic electrode implantation and the memory capabilities in such a patient group. The electrophysiological data were recorded from the right DMTN preceding stimulus presentation during intentional memory encoding. The patients viewed a series of photographic scenes, which they judged as indoors or outdoors. The 900 ms epochs prior to stimulus presentation were labeled as preceding successful or unsuccessful subsequent memory formation according to a subsequent memory test for the items. The difference between theta power preceding successful versus unsuccessful subsequent memory formation is shown against time for each patient individually. Keywords: Memory encoding, Dorsomedial thalamic nucleus, Pre-stimulus theta

  9. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Intraoperative neurophysiological responses in epileptic patients submitted to hippocampal and thalamic deep brain stimulation.

    Science.gov (United States)

    Cukiert, Arthur; Cukiert, Cristine Mella; Argentoni-Baldochi, Meire; Baise, Carla; Forster, Cássio Roberto; Mello, Valeria Antakli; Burattini, José Augusto; Lima, Alessandra Moura

    2011-12-01

    Deep brain stimulation (DBS) has been used in an increasing frequency for treatment of refractory epilepsy. Acute deep brain macrostimulation intraoperative findings were sparsely published in the literature. We report on our intraoperative macrostimulation findings during thalamic and hippocampal DBS implantation. Eighteen patients were studied. All patients underwent routine pre-operative evaluation that included clinical history, neurological examination, interictal and ictal EEG, high resolution 1.5T MRI and neuropsychological testing. Six patients with temporal lobe epilepsy were submitted to hippocampal DBS (Hip-DBS); 6 patients with focal epilepsy were submitted to anterior thalamic nucleus DBS (AN-DBS) and 6 patients with generalized epilepsy were submitted to centro-median thalamic nucleus DBS (CM-DBS). Age ranged from 9 to 40 years (11 males). All patients were submitted to bilateral quadripolar DBS electrode implantation in a single procedure, under general anesthesia, and intraoperative scalp EEG monitoring. Final electrode's position was checked postoperatively using volumetric CT scanning. Bipolar stimulation using the more proximal and distal electrodes was performed. Final standard stimulation parameters were 6Hz, 4V, 300μs (low frequency range: LF) or 130Hz, 4V, 300μs (high frequency range: HF). Bilateral recruiting response (RR) was obtained after unilateral stimulation in all patients submitted to AN and CM-DBS using LF stimulation. RR was widespread but prevailed over the fronto-temporal region bilaterally, and over the stimulated hemisphere. HF stimulation led to background slowing and a DC shift. The mean voltage for the appearance of RR was 4V (CM) and 3V (AN). CM and AN-DBS did not alter inter-ictal spiking frequency or morphology. RR obtained after LF Hip-DBS was restricted to the stimulated temporal lobe and no contralateral activation was noted. HF stimulation yielded no visually recognizable EEG modification. Mean intensity for initial

  11. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın

    2017-05-01

    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  12. Thalamic deep brain stimulation for neuropathic pain after amputation or brachial plexus avulsion.

    Science.gov (United States)

    Pereira, Erlick A C; Boccard, Sandra G; Linhares, Paulo; Chamadoira, Clara; Rosas, Maria José; Abreu, Pedro; Rebelo, Virgínia; Vaz, Rui; Aziz, Tipu Z

    2013-09-01

    Fifteen hundred patients have received deep brain stimulation (DBS) to treat neuropathic pain refractory to pharmacotherapy over the last half-century, but few during the last decade. Deep brain stimulation for neuropathic pain has shown variable outcomes and gained consensus approval in Europe but not the US. This study prospectively evaluated the efficacy at 1 year of DBS for phantom limb pain after amputation, and deafferentation pain after brachial plexus avulsion (BPA), in a single-center case series. Patient-reported outcome measures were collated before and after surgery, using a visual analog scale (VAS) score, 36-Item Short-Form Health Survey (SF-36), Brief Pain Inventory (BPI), and University of Washington Neuropathic Pain Score (UWNPS). Twelve patients were treated over 29 months, receiving contralateral, ventroposterolateral sensory thalamic DBS. Five patients were amputees and 7 had BPAs, all from traumas. A postoperative trial of externalized DBS failed in 1 patient with BPA. Eleven patients proceeded to implantation and gained improvement in pain scores at 12 months. No surgical complications or stimulation side effects were noted. In the amputation group, after 12 months the mean VAS score improved by 90.0% ± 10.0% (p = 0.001), SF-36 by 57.5% ± 97.9% (p = 0.127), UWNPS by 80.4% ± 12.7% (p stimulation demonstrated efficacy at 1 year for chronic neuropathic pain after traumatic amputation and BPA. Clinical trials that retain patients in long-term follow-up are desirable to confirm findings from prospectively assessed case series.

  13. Thalamo–cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis

    Directory of Open Access Journals (Sweden)

    Kim SH

    2017-10-01

    Full Text Available Seong Hoon Kim,1 Sung Chul Lim,1 Dong Won Yang,1 Jeong Hee Cho,1 Byung-Chul Son,2 Jiyeon Kim,3 Seung Bong Hong,4 Young-Min Shon4 1Department of Neurology, 2Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 3Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, 4Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Objective: Deep brain stimulation (DBS of the centromedian thalamic nucleus (CM can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS.Methods: To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG and diffusion tensor imaging (DTI to 10 medically intractable patients – three generalized epilepsy (GE and seven multifocal epilepsy (MFE patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz. Structural connections between the CM and the cortical activation spots were assessed using DTI.Results: We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months. EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively

  14. Thalamic Deep Brain Stimulation for Essential Tremor Also Reduces Voice Tremor.

    Science.gov (United States)

    Kundu, Bornali; Schrock, Lauren; Davis, Tyler; House, Paul A

    2017-12-12

    Voice tremor is a common feature of essential tremor (ET) that is difficult to treat medically and significantly affects quality of life. Deep brain stimulation (DBS) of the ventral intermediate nucleus (Vim) of the thalamus is effective in improving contralateral distal limb tremor and has been shown in limited studies to affect voice tremor. Our objective was to retrospectively evaluate whether Vim-DBS used to treat patients with essential motor tremor also effectively treated underlying concurrent voice tremor and assess whether particular lead locations were favorable for treating vocal tremor. In this retrospective cohort study, patients had unilateral or bilateral lead placement and were monitored for up to 12 months. We used the Fahn-Tolosa-Marin (FTM) subscore to assess vocal tremor. Changes in vocal tremor before and after stimulation and over several sessions were assessed. Of the 77 patients who met the inclusion criteria and were treated for essential tremor, 20 (26%) patients had vocal tremor prior to stimulation. Active Vim-DBS decreased the amplitude of voice tremor by 80% (p centroid of stimulation showed that Vim thalamic stimulation that is more anterior on average yielded better voice tremor control, significantly so on the left side (p < 0.05). Additionally, there was improvement in head, tongue, and face tremor scores (p < 0.05). Unilateral and bilateral Vim-DBS targeted to treat the motor component of essential tremor also dramatically decreased the amplitude of voice tremor in this group of patients, suggesting a potential benefit of this treatment for affected patients. © 2017 International Neuromodulation Society.

  15. The effects of Thalamic Deep Brain Stimulation on speech dynamics in patients with Essential Tremor: An articulographic study.

    Directory of Open Access Journals (Sweden)

    Doris Mücke

    Full Text Available Acoustic studies have revealed that patients with Essential Tremor treated with thalamic Deep Brain Stimulation (DBS may suffer from speech deterioration in terms of imprecise oral articulation and reduced voicing control. Based on the acoustic signal one cannot infer, however, whether this deterioration is due to a general slowing down of the speech motor system (e.g., a target undershoot of a desired articulatory goal resulting from being too slow or disturbed coordination (e.g., a target undershoot caused by problems with the relative phasing of articulatory movements. To elucidate this issue further, we here investigated both acoustics and articulatory patterns of the labial and lingual system using Electromagnetic Articulography (EMA in twelve Essential Tremor patients treated with thalamic DBS and twelve age- and sex-matched controls. By comparing patients with activated (DBS-ON and inactivated stimulation (DBS-OFF with control speakers, we show that critical changes in speech dynamics occur on two levels: With inactivated stimulation (DBS-OFF, patients showed coordination problems of the labial and lingual system in terms of articulatory imprecision and slowness. These effects of articulatory discoordination worsened under activated stimulation, accompanied by an additional overall slowing down of the speech motor system. This leads to a poor performance of syllables on the acoustic surface, reflecting an aggravation either of pre-existing cerebellar deficits and/or the affection of the upper motor fibers of the internal capsule.

  16. Spasmodic dysphonia may respond to bilateral thalamic deep brain ...

    African Journals Online (AJOL)

    Background Spasmodic dysphonia is a primary focal dystonia manifested by loss of control of the vocal muscles during speech secondary to laryngeal muscle spasms. The pathophysiology is not well understood. Deep brain stimulation surgery (DBS) for other focal dystonias has been well reported. Methods We report the ...

  17. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  18. Thalamic deep brain stimulation for the treatment of tremor due to multiple sclerosis: a prospective study of tremor and quality of life.

    Science.gov (United States)

    Berk, Caglar; Carr, Jason; Sinden, Marci; Martzke, Jeff; Honey, Christopher R

    2002-10-01

    In several studies a significant reduction in tremor after thalamic deep brain stimulation (DBS) has been reported among patients with multiple sclerosis (MS). It has not been determined if this results in an improved quality of life. In this study the authors prospectively evaluated the effects of thalamic DBS on tremor and quality of life. Videotapes of the patients' tremor were made preoperatively and 2 and 12 months postoperatively, and tremor was scored by a neurologist blinded to the treatment. Patients were tested pre- and postoperatively to measure any changes in their reported ability to perform selected activities of daily living and in their health-related quality of life. Patients were asked to complete a questionnaire about their satisfaction with the surgery. Postoperative changes were examined using paired t-tests. There were significant reductions in postural, action, and overall tremor at 2 and 12 months postoperatively. The patients' reported ability to feed themselves was significantly improved 2 months after surgery (p = 0.01). There were short-term trends toward improvement in reported dressing ability, personal hygiene, and writing. There were no significant changes in the SF-36 subscales or total score. In this cohort of patients with MS who suffered from tremor, thalamic DBS significantly improved their tremor and ability to feed themselves. Patient satisfaction with the procedure, however, was variable. Preoperative patient education about what functions might (and might not) be improved is crucial to avoid unrealistic expectations. Our results indicate that younger patients with MS tremor who had a shorter disease duration and no superimposed ataxia benefited most from this surgery.

  19. Getting signals into the brain: visual prosthetics through thalamic microstimulation.

    Science.gov (United States)

    Pezaris, John S; Eskandar, Emad N

    2009-07-01

    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.

  20. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome : Report of three cases

    NARCIS (Netherlands)

    Bour, L. J.; Ackermans, L.; Foncke, E. M. J.; Cath, D.; van der Linden, C.; Vandewalle, V. Visser; Tijssen, M. A.

    Objective: Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. Methods: Event related potentials and

  1. The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: interrogating cerebellar and pallidal neural circuits.

    Science.gov (United States)

    Poologaindran, Anujan; Ivanishvili, Zurab; Morrison, Murray D; Rammage, Linda A; Sandhu, Mini K; Polyhronopoulos, Nancy E; Honey, Christopher R

    2018-02-01

    Spasmodic dysphonia (SD) is a neurological disorder of the voice where a patient's ability to speak is compromised due to involuntary contractions of the intrinsic laryngeal muscles. Since the 1980s, SD has been treated with botulinum toxin A (BTX) injections into the throat. This therapy is limited by the delayed-onset of benefits, wearing-off effects, and repeated injections required every 3 months. In a patient with essential tremor (ET) and coincident SD, the authors set out to quantify the effects of thalamic deep brain stimulation (DBS) on vocal function while investigating the underlying motor thalamic circuitry. A 79-year-old right-handed woman with ET and coincident adductor SD was referred to our neurosurgical team. While primarily treating her limb tremor, the authors studied the effects of unilateral, thalamic DBS on vocal function using the Unified Spasmodic Dysphonia Rating Scale (USDRS) and voice-related quality of life (VRQOL). Since dystonia is increasingly being considered a multinodal network disorder, an anterior trajectory into the left thalamus was deliberately chosen such that the proximal contacts of the electrode were in the ventral oralis anterior (Voa) nucleus (pallidal outflow) and the distal contacts were in the ventral intermediate (Vim) nucleus (cerebellar outflow). In addition to assessing on/off unilateral thalamic Vim stimulation on voice, the authors experimentally assessed low-voltage unilateral Vim, Voa, or multitarget stimulation in a prospective, randomized, doubled-blinded manner. The evaluators were experienced at rating SD and were familiar with the vocal tremor of ET. A Wilcoxon signed-rank test was used to study the pre- and posttreatment effect of DBS on voice. Unilateral left thalamic Vim stimulation (DBS on) significantly improved SD vocal dysfunction compared with no stimulation (DBS off), as measured by the USDRS (p dysphonia. A Phase 1 pilot trial (DEBUSSY; clinical trial no. NCT02558634, clinicaltrials.gov) is

  2. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Krupa, M.; Cagnan, H.; Lourens, Marcel Antonius Johannes; Heida, Tjitske; Martens, H.C.F.; Bour, L.J.; van Gils, Stephanus A.

    2011-01-01

    We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinson's disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within

  3. Model-based iterative learning control of Parkinsonian state in thalamic relay neuron

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile

    2014-09-01

    Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.

  4. Deep Brain Stimulation for the Treatment of Tremor and Ataxia Associated with Abetalipoproteinemia

    Directory of Open Access Journals (Sweden)

    Antonios Mammis

    2012-07-01

    Full Text Available Background: Abetalipoproteinemia is a rare disorder of fat absorption, characterized by vitamin deficiency, acanthocytosis, and neurologic symptoms including ataxia and tremor.Case Report: A 41-year-old male with abetalipoproteinemia is presented. He underwent staged bilateral thalamic deep brain stimulation (DBS for the treatment of his tremors. After DBS, the patient achieved significant improvements in his tremors, ataxia, and quality of life.Discussion: Thalamic DBS proved to be both safe and efficacious in the management of ataxia and tremors in a patient with abetalipoproteinemia. This is the first report of DBS in abetalipoproteinemia in the literature. 

  5. Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism.

    Science.gov (United States)

    Tronnier, V M; Domingo, A; Moll, C K; Rasche, D; Mohr, C; Rosales, R; Capetian, P; Jamora, R D; Lee, L V; Münchau, A; Diesta, C C; Tadic, V; Klein, C; Brüggemann, N; Moser, A

    2015-08-01

    Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative microdialysis and measurement of gamma aminobutyric acid and glutamate was performed in the GPi in three patients and globus pallidus externus (GPe) in two patients at baseline for 25/30 min and during 25/30 min of high-frequency GPi stimulation. While the gamma-aminobutyric acid concentration increased in the GPi during high frequency stimulation (231 ± 102% in comparison to baseline values), a decrease was observed in the GPe (22 ± 10%). Extracellular glutamate levels largely remained unchanged. Pallidal microdialysis is a promising intraoperative monitoring tool to better understand pathophysiological implications in movement disorders and therapeutic mechanisms of high frequency stimulation. The increased inhibitory tone of GPi neurons and the subsequent thalamic inhibition could be one of the key mechanisms of GPi deep brain stimulation in dystonia. Such a mechanism may explain how competing (dystonic) movements can be suppressed in GPi/thalamic circuits in favour of desired motor programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Five-months-postoperative neuropsychological outcome from a pilot prospective randomized clinical trial of thalamic deep brain stimulation for Tourette syndrome.

    Science.gov (United States)

    Schoenberg, Mike R; Maddux, Brian N; Riley, David E; Whitney, Christina M; Ogrocki, Paula K; Gould, Deborah; Maciunas, Robert J

    2015-02-01

    Tourette syndrome (TS) is a neuropsychiatric disorder presenting with motor and/or sonic tics associated with frontostriatal dysfunction. This study provided pilot data of the neuropsychological safety of bilateral thalamic deep brain stimulation (DBS) to treat medication-refractory TS in adults. This study used a repeated-measures design with pretest and 3-month follow-up from start of continuous bilateral DBS. Five male patients underwent DBS surgery for medically refractory TS. Repeated-measures ANOVA was used to evaluate for any change in neuropsychological test scores, employing a false discovery rate. Outcome measures included 14 neuropsychological tests assessing psychomotor speed, attention, memory, language, visuoconstructional, and executive functions, as well as subjective mood ratings of depression and anxiety. Average age was 28.2 years (SD = 7.5) with 12-17 years of education. Participants were disabled by tics, with a tic frequency of 50-80 per minute before surgery. At baseline, subjects' cognitive function was generally average, although mild deficits in sequencing and verbal fluency were present, as were clinically mild obsessive-compulsive symptoms. At 3 months of continuous DBS (5 months after implantation), 3 of 5 participants had clinical reductions in motor and sonic tics. Cognitive scores generally remained stable, but declines of moderate to large effect size (Cohen's d > 0.6) in verbal fluency, visual immediate memory, and reaction time were observed. Fewer symptoms of depression and anxiety, as well as fewer obsessions and compulsions, were reported after 3 months of continuous high-frequency DBS. Bilateral centromedian-parafascicular thalamic DBS for medically refractory TS shows promise for treatment of medically refractory TS without marked neuropsychological morbidity. Symptoms of depression and anxiety improved. © 2014 International Neuromodulation Society.

  7. Deep Brain Stimulation of the Dentato-Rubro-Thalamic Tract: Outcomes of Direct Targeting for Tremor.

    Science.gov (United States)

    Fenoy, Albert J; Schiess, Mya C

    2017-07-01

    Targeting the dentato-rubro-thalamic tract (DRTt) has been suggested to be efficacious in deep brain stimulation (DBS) for tremor suppression, both in case reports and post-hoc analyses. This prospective observational study sought to analyze outcomes after directly targeting the DRTt in tremor patients. 20 consecutively enrolled intention tremor patients obtained pre-operative MRI with diffusion tensor (dTi) sequences. Mean baseline tremor amplitude based on The Essential Tremor Rating Assessment Scale was recorded. The DRTt was drawn for each individual on StealthViz software (Medtronic) using the dentate nucleus as the seed region and the ipsilateral pre-central gyrus as the end region and then directly targeted during surgery. Intraoperative testing confirmed successful tremor control. Post-operative analysis of electrode position relative to the DRTt was performed, as was post-operative assessment of tremor improvement. The mean age of patients was 66.8 years; mean duration of tremor was 16 years. Mean voltage for the L electrode = 3.4 V; R = 2.6 V. Mean distance from the center of the active electrode contact to the DRTt was 0.9 mm on the L, and 0.8 mm on the R. Improvement in arm tremor amplitude from baseline after DBS was significant (P tremor suppression. Accounting for hardware, software, and model limitations, depiction of the DRTt allows for placement of electrode contacts directly within the fiber tract for modulation despite any anatomical variation, which reproducibly resulted in good tremor control. © 2017 International Neuromodulation Society.

  8. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    OpenAIRE

    Shneyder, Natalya; Lyons, Mark K.; Driver-dunckley, Erika; Evidente, Virgilio Gerald H.

    2012-01-01

    Background: Both hypothyroidism and Hashimoto's thyroiditis (HT) can rarely be associated with cerebellar ataxia. Severe essential tremor (ET) as well as bilateral thalamic deep brain stimulation (DBS) may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers c...

  9. Pre-stimulus thalamic theta power predicts human memory formation.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation.

    Science.gov (United States)

    Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M

    2017-06-01

    This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities.

    Science.gov (United States)

    Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D

    2012-07-01

    Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI:  CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS:  We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012

  12. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    Science.gov (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  13. The Effect of Thalamic Stimulation on Memory and Language Processing in Parkinsonian Patients

    Directory of Open Access Journals (Sweden)

    Zahrasadat Ghoreishi

    2006-01-01

    Full Text Available Objective: Thalamic Deep Brain Stimulation (DBS is reported to be successful in Parkinson patients with motor symptoms resistant to medication as a treatment procedure. Despite evidence of cortico-subcortico-cortical circuit involvement in motor control, the role of this neural circuitry on higher cognitive functions such as language is still controversial. In particular, research evidence pertaining to the impact of ventrolateral thalamic stimulation on linguistic processing is scarce. This paper investigates the effect of right and left thalamus-DBS on memory and language processing in Parkinson patients. Materials & Methods: In this paper as a case series research we measured memory and language processing in six Parkinson patients (2 left, 2right, 2 bilateral underwent implantation of deep brain stimulating electrode in ventrolateral thalamic nucleus. The data were collected in two “on” and “off” positions, with at least 40 days time interval in between. The patients were assessed using Wechsler memory test, verbal fluency and some sub-tests of Farsi version of Bilingual Aphasia Test (BAT. Results: The findings of this research are suggesting an improvement on grammar comprehension and a decline in sentence production and verbal fluency in “on” position versus “off” position, in both groups. The Wechsler memory scores in left thalamus group improved but declined in right thalamus group. Conclusion: The results indicate that thalamic DBS did not cause any deficit on grammar comprehension and even improved the level of comprehension. On the contrary a decrease in verbal fluency and sentence production, as two high level linguistic processing tasks, was observed. The results confirmed contemporary theories of thalamic participation on language processing and did not confirm a laterality effect on language skills. Although observed difference after thalamic DBS between right and left group on memory score can confirm laterality

  14. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    Science.gov (United States)

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Natalya V. Shneyder

    2012-04-01

    Full Text Available Background: Both hypothyroidism and Hashimoto's thyroiditis (HT can rarely be associated with cerebellar ataxia. Severe essential tremor (ET as well as bilateral thalamic deep brain stimulation (DBS may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers confirming the diagnosis of HT. Discussion: Our case demonstrates multiple possible causes of cerebellar ataxia in a patient, including hypothyroidism, HT, chronic ET, and bilateral thalamic DBS. Counseling of patients may be appropriate when multiple risk factors for cerebellar ataxia coexist in one individual.

  16. Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up

    NARCIS (Netherlands)

    Hariz, M. I.; Krack, P.; Alesch, F.; Augustinsson, L.-E.; Bosch, A.; Ekberg, R.; Johansson, F.; Johnels, B.; Meyerson, B. A.; N'Guyen, J.-P.; Pinter, M.; Pollak, P.; von Raison, F.; Rehncrona, S.; Speelman, J. D.; Sydow, O.; Benabid, A.-L.

    2008-01-01

    To evaluate the results of ventral intermediate (Vim) thalamic deep brain stimulation (DBS) in patients with tremor predominant Parkinson's disease (PD) at 6 years post surgery. This was a prolonged follow-up study of 38 patients from eight centres who participated in a multicentre study, the 1 year

  17. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  18. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  19. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar

    2016-10-01

    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  20. Deep brain stimulation for Tourette’s syndrome: the case for targeting the thalamic centromedian-parafascicular complex.

    Directory of Open Access Journals (Sweden)

    Paola Testini

    2016-11-01

    Full Text Available Tourette syndrome is a neurologic condition characterized by both motor and phonic tics and is typically associated with psychiatric comorbidities, including obsessive-compulsive disorder/behavior and attention deficit hyperactivity disorder and can be psychologically and socially debilitating. It is considered a disorder of the cortico-striato-thalamo-cortical circuitry, as suggested by pathophysiology studies and therapeutic options. Among these, deep brain stimulation of the centromedian-parafascicular nuclear complex (CM-Pf of the thalamus is emerging as a valuable treatment modality for patients affected by severe, treatment resistant TS. Here we review the most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology of Tourette syndrome, discuss potential mechanisms of action that may mediate the effects of CM-Pf deep brain stimulation in Tourette syndrome, and summarize its clinical efficacy.

  1. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  2. Deep-brain electrical microstimulation is an effective tool to explore functional characteristics of somatosensory neurons in the rat brain.

    Directory of Open Access Journals (Sweden)

    Han-Jia Jiang

    Full Text Available In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks.

  3. Deep Brain Stimulation for Essential Tremor: Aligning Thalamic and Posterior Subthalamic Targets in 1 Surgical Trajectory

    NARCIS (Netherlands)

    Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn

    2017-01-01

    Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either

  4. Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry.

    Science.gov (United States)

    Martinez-Ramirez, Daniel; Jimenez-Shahed, Joohi; Leckman, James Frederick; Porta, Mauro; Servello, Domenico; Meng, Fan-Gang; Kuhn, Jens; Huys, Daniel; Baldermann, Juan Carlos; Foltynie, Thomas; Hariz, Marwan I; Joyce, Eileen M; Zrinzo, Ludvic; Kefalopoulou, Zinovia; Silburn, Peter; Coyne, Terry; Mogilner, Alon Y; Pourfar, Michael H; Khandhar, Suketu M; Auyeung, Man; Ostrem, Jill Louise; Visser-Vandewalle, Veerle; Welter, Marie-Laure; Mallet, Luc; Karachi, Carine; Houeto, Jean Luc; Klassen, Bryan Timothy; Ackermans, Linda; Kaido, Takanobu; Temel, Yasin; Gross, Robert E; Walker, Harrison C; Lozano, Andres M; Walter, Benjamin L; Mari, Zoltan; Anderson, William S; Changizi, Barbara Kelly; Moro, Elena; Zauber, Sarah Elizabeth; Schrock, Lauren E; Zhang, Jian-Guo; Hu, Wei; Rizer, Kyle; Monari, Erin H; Foote, Kelly D; Malaty, Irene A; Deeb, Wissam; Gunduz, Aysegul; Okun, Michael S

    2018-03-01

    Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome. To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome. The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide. Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]). Scores on the Yale Global Tic Severity Scale and adverse events. The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.

  5. A critical reflection on the technological development of deep brain stimulation (DBS

    Directory of Open Access Journals (Sweden)

    Christian eIneichen

    2014-09-01

    Full Text Available Since the translational research findings of Benabid and colleagues, which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of Deep Brain Stimulation. Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG's has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels.

  6. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    Science.gov (United States)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  7. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  8. Moving forward: advances in the treatment of movement disorders with deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Terry K Schiefer

    2011-11-01

    Full Text Available The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD, tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced Parkinson’s disease can be treated with thalamic, globus pallidus internus (GPi, or subthalamic nucleus (STN DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.

  9. Deep brain stimulation for phantom limb pain.

    Science.gov (United States)

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  10. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  11. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  12. Contralateral Supracerebellar-Infratentorial Approach for Resection of Thalamic Cavernous Malformations.

    Science.gov (United States)

    Mascitelli, Justin; Burkhardt, Jan-Karl; Gandhi, Sirin; Lawton, Michael T

    2018-02-26

    Surgical resection of cavernous malformations (CM) in the posterior thalamus, pineal region, and midbrain tectum is technically challenging owing to the presence of adjacent eloquent cortex and critical neurovascular structures. Various supracerebellar infratentorial (SCIT) approaches have been used in the surgical armamentarium targeting lesions in this region, including the median, paramedian, and extreme lateral variants. Surgical view of a posterior thalamic CM from the traditional ipsilateral vantage point may be obscured by occipital lobe and tentorium. To describe a novel surgical approach via a contralateral SCIT (cSCIT) trajectory for resecting posterior thalamic CMs. From 1997 to 2017, 75 patients underwent the SCIT approach for cerebrovascular/oncologic pathology by the senior author. Of these, 30 patients underwent the SCIT approach for CM resection, and 3 patients underwent the cSCIT approach. Historical patient data, radiographic features, surgical technique, and postoperative neurological outcomes were evaluated in each patient. All 3 patients presented with symptomatic CMs within the right posterior thalamus with radiographic evidence of hemorrhage. All surgeries were performed in the sitting position. There were no intraoperative complications. Neuroimaging demonstrated complete CM resection in all cases. There were no new or worsening neurological deficits or evidence of rebleeding/recurrence noted postoperatively. This study establishes the surgical feasibility of a contralateral SCIT approach in resection of symptomatic thalamic CMs It demonstrates the application for this procedure in extending the surgical trajectory superiorly and laterally and maximizing safe resectability of these deep CMs with gravity-assisted brain retraction.

  13. Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in Veterans with suicide behaviors

    Directory of Open Access Journals (Sweden)

    Melissa eLopez-Larson

    2013-08-01

    Full Text Available Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR in a group of Veterans with and without a history of suicidal behavior (SB to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI and no SB (TBI-SB, 19 Veterans with mild TBI and a history of SB (TB+SB and 15 healthy controls (HC underwent MRI scanning including a structural and diffusion tensor imaging scan. Suicidal behaviors were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS. Differences in thalamic volumes and ATR fractional anisotropy (FA were examined between 1 TBI+SB versus HC and 2 TBI+SB versus combined HC and TBI-SB and 2 between TBI+SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI+SB compared to the HC, TBI-SB and the combined group. Veterans with TBI+SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI+SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI+SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide.

  14. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes.

    Science.gov (United States)

    Tawfik, Vivianne L; Chang, Su-Youne; Hitti, Frederick L; Roberts, David W; Leiter, James C; Jovanovic, Svetlana; Lee, Kendall H

    2010-08-01

    Several neurological disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's disease and epilepsy remain largely unknown. To investigate the role of specific neurotransmitters in deep brain stimulation and determine the role of non-neuronal cells in its mechanism of action. We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in high-frequency stimulation-mediated abolishment of spindle oscillations. In this series of experiments, we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na channel blocker tetrodotoxin, but was eliminated with the vesicular H-ATPase inhibitor bafilomycin and the calcium chelator 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of 2-bis (2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester inhibited glutamate release in this setting. Vesicular astrocytic neurotransmitter release may be an important mechanism by which deep brain stimulation is able to achieve clinical benefits.

  15. Deafferentation in thalamic and pontine areas in severe traumatic brain injury.

    Science.gov (United States)

    Laouchedi, M; Galanaud, D; Delmaire, C; Fernandez-Vidal, S; Messé, A; Mesmoudi, S; Oulebsir Boumghar, F; Pélégrini-Issac, M; Puybasset, L; Benali, H; Perlbarg, V

    2015-07-01

    Severe traumatic brain injury (TBI) is characterized mainly by diffuse axonal injuries (DAI). The cortico-subcortical disconnections induced by such fiber disruption play a central role in consciousness recovery. We hypothesized that these cortico-subcortical deafferentations inferred from diffusion MRI data could differentiate between TBI patients with favorable or unfavorable (death, vegetative state, or minimally conscious state) outcome one year after injury. Cortico-subcortical fiber density maps were derived by using probabilistic tractography from diffusion tensor imaging data acquired in 24 severe TBI patients and 9 healthy controls. These maps were compared between patients and controls as well as between patients with favorable (FO) and unfavorable (UFO) 1-year outcome to identify the thalamo-cortical and ponto-thalamo-cortical pathways involved in the maintenance of consciousness. Thalamo-cortical and ponto-thalamo-cortical fiber density was significantly lower in TBI patients than in healthy controls. Comparing FO and UFO TBI patients showed thalamo-cortical deafferentation associated with unfavorable outcome for projections from ventral posterior and intermediate thalamic nuclei to the associative frontal, sensorimotor and associative temporal cortices. Specific ponto-thalamic deafferentation in projections from the upper dorsal pons (including the reticular formation) was also associated with unfavorable outcome. Fiber density of cortico-subcortical pathways as measured from diffusion MRI tractography is a relevant candidate biomarker for early prediction of one-year favorable outcome in severe TBI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  17. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Zhang, Jian; Chen, Yu-Chen; Feng, Xu; Yang, Ming; Liu, Bin; Qian, Cheng; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  18. Isolated thalamic tuberculoma presenting as ataxic hemiparesis

    Science.gov (United States)

    Sahu, Ritesh; Patil, Tushar B; Kori, Prakash; Shukla, Rakesh

    2013-01-01

    Lacunar syndrome is a neurodeficit secondary to a deep cerebral lesion, usually because of microatheroma of small arteries. Ataxic hemiparesis (AH) is a lacunar syndrome with unilateral pyramidal weakness and ipsilateral ataxia. Thalamic tuberculoma, as a cause of AH, has not been previously described in the literature. We describe an elderly man who presented with left hemiparesis and ipsilateral ataxia. Clinical examination revealed upper motor neuron left facial paresis and left-sided hemiparesis. The patient had incoordination in left upper and lower limbs. Mantoux test was positive and erythrocyte sedimentation rate was elevated. MRI of brain showed a conglomerated hypointense lesion in the right thalamus with a peripheral hyperintensity on T1-weighted imaging and a hyperintense lesion in T2-weighted imaging with significant perilesional oedema, suggesting a tuberculoma. The patient was treated with antitubercular therapy and was symptomatically better at the 9 months follow-up. PMID:23580686

  19. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  20. Prognosis of thalamic hemorrhage evaluated by computed tomography

    International Nuclear Information System (INIS)

    Takahashi, Shinichiro; Sonobe, Makoto; Sugita, Kyoichi; Kuwayama, Naoya

    1984-01-01

    The present authors have analyzed the correlation between the clinical features and the CT findings in 66 cases of thalamic hemorrhage. Hitachi CT-H and CT-HF apparatuses (256 x 256 matrix) were used at an angle parallel to the OM line. Of the 48 patients with hematoma less than 20 ml, only four died; however, of the 18 patients with hematoma larger than 20 ml, five died. An analysis has been made of the correlation between the occurrence of brain edema in the acute stage and high density in the subthalamic area. The hematoma extending to the subthalamic area was diagnosed by means of high density at the level of 35 mm above the OM line. Of the 13 cases with hematoma in the subthalamic area, acute brain edema occurred in 9 cases. On the other hand, of the 53 cases without hematoma at the subthalamic area, brain edema occurred in only one case. It was concluded that high density in the subthalamic area is a significant index for the occurrence of acute brain edema in a thalamic hemorrhage. (author)

  1. Tc-99m ECD brain SPECT in patients with traumatic brain injury: evaluating distribution of hypoperfusion and assessment of cognitive and behavioral impairment in relation to thalamic hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Lim, Seok Tae; Sohn, Myung Hee [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2000-12-01

    We evaluated the distribution of hypoperfusion in patients with traumatic brain injury (TBI) and the relationship of thalamic hypoperfusion to severity of cognitive and behavioral sequelae. Tc-99m ECD SPECT and MRI were performed in 103 patients (M/F=81/22, mean age 34.7{+-} 15.4 yrs) from 0.5 to 55 months (mean 10.3 months) after TBI. The patients were divided into three groups showing no abnormalities (G1), focal (G2) and diffuse injury (G3) on MRI. Psychometric tests assessed 11 cognitive or behavioral items. In all patients, we evaluated the distribution of hypoperfused areas in SPECT, and in 57/103 patients, neuropsychological (NP) abnormalities in patients with thalamic hypoperfusion were compared with those of patients without thalamic hypoperfusion. The perfusion dificits were most frequently located in the frontal lobe (G1, 42.3%: G2 34.5%: G3 33.3%), temporal lobe (24{approx}26%) thalami (21{approx}22.4%), parietal and occipital lobe ({<=}10%). Numbers of NP abnormalities in the cases of cortical hypoperfusion with or without concomitant thalamic hypoperfusion were following: the former 4.7{+-}1.5 and the latter 3.2{+-}1.4 in G1, 5.0{+-}1.1 and 4.8{+-}1.2 in G2, 6.8{+-}1.8 and 6.3{+-}1.1 in G3, respectively. This difference according to thalamic hypoperfusion was significant in G1 (p=0.002), but was not significant in G2 or G3. SPECT in patients with TBI had demonstrated hypoperfusion mostly involving the frontal, temporal and thalami. In normal group on MRI, frontal hypoperfusion was more prominent than that of any other group, Furthermore in this group, SPECT could predict severity of NP outcome by concomitant thalamic hypoperfusion with cerebral cortical abnormalities.

  2. Tc-99m ECD brain SPECT in patients with traumatic brain injury: evaluating distribution of hypoperfusion and assessment of cognitive and behavioral impairment in relation to thalamic hypoperfusion

    International Nuclear Information System (INIS)

    Park, Soon Ah; Lim, Seok Tae; Sohn, Myung Hee

    2000-01-01

    We evaluated the distribution of hypoperfusion in patients with traumatic brain injury (TBI) and the relationship of thalamic hypoperfusion to severity of cognitive and behavioral sequelae. Tc-99m ECD SPECT and MRI were performed in 103 patients (M/F=81/22, mean age 34.7± 15.4 yrs) from 0.5 to 55 months (mean 10.3 months) after TBI. The patients were divided into three groups showing no abnormalities (G1), focal (G2) and diffuse injury (G3) on MRI. Psychometric tests assessed 11 cognitive or behavioral items. In all patients, we evaluated the distribution of hypoperfused areas in SPECT, and in 57/103 patients, neuropsychological (NP) abnormalities in patients with thalamic hypoperfusion were compared with those of patients without thalamic hypoperfusion. The perfusion dificits were most frequently located in the frontal lobe (G1, 42.3%: G2 34.5%: G3 33.3%), temporal lobe (24∼26%) thalami (21∼22.4%), parietal and occipital lobe (≤10%). Numbers of NP abnormalities in the cases of cortical hypoperfusion with or without concomitant thalamic hypoperfusion were following: the former 4.7±1.5 and the latter 3.2±1.4 in G1, 5.0±1.1 and 4.8±1.2 in G2, 6.8±1.8 and 6.3±1.1 in G3, respectively. This difference according to thalamic hypoperfusion was significant in G1 (p=0.002), but was not significant in G2 or G3. SPECT in patients with TBI had demonstrated hypoperfusion mostly involving the frontal, temporal and thalami. In normal group on MRI, frontal hypoperfusion was more prominent than that of any other group, Furthermore in this group, SPECT could predict severity of NP outcome by concomitant thalamic hypoperfusion with cerebral cortical abnormalities

  3. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne

    2015-01-01

    UNLABELLED: The thalamus contains third-order relay neurons of the trigeminal system, and animal models as well as preliminary imaging studies in small cohorts of migraine patients have suggested a role of the thalamus in headache pathophysiology. However, larger studies using advanced imaging te...... is a disorder of the CNS in which not only is brain function abnormal, but also brain structure is undergoing significant remodeling....... a fully automated multiatlas approach. Deformation-based shape analysis was performed to localize surface abnormalities. Differences between patients with migraine and healthy subjects were assessed using an ANCOVA model. After correction for multiple comparisons, performed using the false discovery rate.......9) was observed in patients. This large-scale study indicates structural thalamic abnormalities in patients with migraine. The thalamic nuclei with abnormal volumes are densely connected to the limbic system. The data hence lend support to the view that higher-order integration systems are altered in migraine...

  4. Thalamic diffusion differences related to cognitive function in white matter lesions.

    Science.gov (United States)

    Fernández-Andújar, Marina; Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Arenillas, Juan Francisco; Toran, Pere; Alzamora, Maite; Clemente, Imma; Dávalos, Antoni; Mataró, Maria

    2014-05-01

    Cerebral white matter lesions (WMLs) are related to cognitive deficits, probably due to a disruption of frontal-subcortical circuits. We explored thalamic diffusion differences related to white matter lesions (WMLs) and their association with cognitive function in middle-aged individuals. Ninety-six participants from the Barcelona-AsIA Neuropsychology Study were included. Participants were classified into groups based on low grade and high grade of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs). Tract-Based Spatial Statistics was used to study thalamic diffusion differences between groups. Mean fractional anisotropy (FA) values in significant areas were calculated for each subject and correlated with cognitive performance. Participants with high-grade PVHs and DWMHs showed lower FA thalamic values compared to those with low-grade PVHs and DWMHs, respectively. Decreased FA thalamic values in high-grade DWMHs, but not high-grade PVH, were related to lower levels of performance in psychomotor speed, verbal fluency, and visuospatial skills. Thalamic diffusion differences are related to lower cognitive function only in participants with high-grade DWMHs. These results support the hypothesis that fronto-subcortical disruption is associated with cognitive function only in DWMHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A foldable electrode array for 3D recording of deep-seated abnormal brain cavities

    Science.gov (United States)

    Kil, Dries; De Vloo, Philippe; Fierens, Guy; Ceyssens, Frederik; Hunyadi, Borbála; Bertrand, Alexander; Nuttin, Bart; Puers, Robert

    2018-06-01

    Objective. This study describes the design and microfabrication of a foldable thin-film neural implant and investigates its suitability for electrical recording of deep-lying brain cavity walls. Approach. A new type of foldable neural electrode array is presented, which can be inserted through a cannula. The microfabricated electrode is specifically designed for electrical recording of the cavity wall of thalamic lesions resulting from stroke. The proof-of-concept is demonstrated by measurements in rat brain cavities. On implantation, the electrode array unfolds in the brain cavity, contacting the cavity walls and allowing recording at multiple anatomical locations. A three-layer microfabrication process based on UV-lithography and Reactive Ion Etching is described. Electrochemical characterization of the electrode is performed in addition to an in vivo experiment in which the implantation procedure and the unfolding of the electrode are tested and visualized. Main results. Electrochemical characterization validated the suitability of the electrode for in vivo use. CT imaging confirmed the unfolding of the electrode in the brain cavity and analysis of recorded local field potentials showed the ability to record neural signals of biological origin. Significance. The conducted research confirms that it is possible to record neural activity from the inside wall of brain cavities at various anatomical locations after a single implantation procedure. This opens up possibilities towards research of abnormal brain cavities and the clinical conditions associated with them, such as central post-stroke pain.

  6. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.

    Science.gov (United States)

    Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard

    2016-06-01

    Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0

  7. A Case of Midbrain and Thalamic Infarction Involving Artery of Percheron

    Directory of Open Access Journals (Sweden)

    Muhammad Almamun

    2015-03-01

    Full Text Available Blood supply to the thalamus and brainstem have frequent anatomic variations. One of these is where all the perforators to the above areas arise from a single branch of the posterior cerebral artery commonly known as the artery of Percheron. Infarction involving this artery leading to bilateral thalamic and midbrain lesions is not uncommon, but can cause diagnostic difficulties due to the varying clinical presentations possible and the wide differentials. Early brain imaging and diagnosis is important for initiating appropriate treatment. In this case report, we discuss a patient who presented with an artery of Percheron related stroke affecting the mid brain and paramedian thalamic areas. We also discuss the differentials of presentations with similar symptoms.

  8. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.

    Science.gov (United States)

    Agarwal, Rahul; Sarma, Sridevi V

    2010-01-01

    Deep brain stimulation (DBS) injects a high frequency current that effectively disables the diseased basal ganglia (BG) circuit in Parkinson's disease (PD) patients, leading to a reversal of motor symptoms. Though therapeutic, high frequency stimulation consumes significant power forcing frequent surgical battery replacements and causing widespread influence into other brain areas which may lead to adverse side effects. In this paper, we conducted a rigorous study to assess whether low frequency signals can restore behavior in PD patients by restoring neural activity in the BG to the normal state. We used a biophysical-based model of BG nuclei and motor thalamus whose parameters can be set to simulate the normal state and the PD state with and without DBS. We administered pulse train DBS waveforms to the subthalamic nucleus (STN) with frequencies ranging from 1-150Hz. For each DBS frequency, we computed statistics on the simulated neural activity to assess whether it is restored to the normal state. In particular, we searched for DBS waveforms that suppress pathological bursting, oscillations, correlations and synchronization prevalent in the PD state and that enable thalamic cells to relay cortical inputs reliably. We found that none of the tested waveforms restores neural activity to the normal state. However, our simulations led us to construct a novel DBS strategy involving low frequency multi-input phaseshifted DBS to be administered into the STN. This strategy successfully suppressed all pathological symptoms in the BG in addition to enabling thalamic cells to relay cortical inputs reliably.

  9. Thalamic control of sensory selection in divided attention.

    Science.gov (United States)

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  10. Thalamic morphology in schizophrenia and schizoaffective disorder.

    Science.gov (United States)

    Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G

    2011-03-01

    Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Deep Brain Stimulation of the H Fields of Forel Alleviates Tics in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Clemens Neudorfer

    2017-06-01

    Full Text Available The current rationale for target selection in Tourette syndrome revolves around the notion of cortico-basal ganglia circuit involvement in the pathophysiology of the disease. However, despite extensive research, the ideal target for deep brain stimulation (DBS is still under debate, with many structures being neglected and underexplored. Based on clinical observations and taking into account the prevailing hypotheses of network processing in Tourette syndrome, we chose the fields of Forel, namely field H1, as a target for DBS. The fields of Forel constitute the main link between the striatopallidal system and the thalamocortical network, relaying pallidothalamic projections from core anatomical structures to the thalamic ventral nuclear group. In a retrospective study we investigated two patients suffering from chronic, medically intractable Tourette syndrome who underwent bilateral lead implantation in field H1 of Forel. Clinical scales revealed significant alleviation of tics and comorbid symptoms, namely depression and anxiety, in the postoperative course in both patients.

  12. Communication skills and thalamic lesion: Strategies of rehabilitation.

    Science.gov (United States)

    Amaddii, Luisa; Centorrino, Santi; Cambi, Jacopo; Passali, Desiderio

    2014-01-01

    To describe the speech rehabilitation history of patients with thalamic lesions. Thalamic lesions can affect speech and language according to diverse thalamic nuclei involved. Because of the strategic functional position of the thalamus within the cognitive networks, its lesion can also interfere with other cognitive processes, such as attention, memory and executive functions. Alterations of these cognitive domains contribute significantly to language deficits, leading to communicative inefficacy. This fact must be considered in the rehabilitation efforts. Whereas evaluation of cognitive functions and communicative efficiency is different from that of aphasic disorder, treatment should also be different. The treatment must be focused on specific cognitive deficits with belief in the regaining of communicative ability, as well as it occurs in therapy of pragmatic disorder in traumatic brain injury: attention process training, mnemotechnics and prospective memory training. According to our experience: (a) there is a close correlation between cognitive processes and communication skills; (b) alterations of attention, memory and executive functions cause a loss of efficiency in the language use; and (c) appropriate cognitive treatment improves pragmatic competence and therefore the linguistic disorder. For planning a speech-therapy it is important to consider the relationship between cognitive functions and communication. The cognitive/behavioral treatment confirms its therapeutic efficiency for thalamic lesions. Copyright © 2014 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  13. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.

    Science.gov (United States)

    Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J

    2010-06-01

    Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.

  14. Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: Experience based on a series of 156 patients.

    Science.gov (United States)

    Zerroug, A; Gabrillargues, J; Coll, G; Vassal, F; Jean, B; Chabert, E; Claise, B; Khalil, T; Sakka, L; Feschet, F; Durif, F; Boyer, L; Coste, J; Lemaire, J-J

    2016-08-01

    Deep brain mapping has been proposed for direct targeting in stereotactic functional surgery, aiming to personalize electrode implantation according to individual MRI anatomy without atlas or statistical template. We report our clinical experience of direct targeting in a series of 156 patients operated on using a dedicated Inversion Recovery Turbo Spin Echo sequence at 1.5-tesla, called White Matter Attenuated Inversion Recovery (WAIR). After manual contouring of all pertinent structures and 3D planning of trajectories, 312 DBS electrodes were implanted. Detailed anatomy of close neighbouring structures, whether gray nuclei or white matter regions, was identified during each planning procedure. We gathered the experience of these 312 deep brain mappings and elaborated consistent procedures of anatomical MRI mapping for pallidal, subthalamic and ventral thalamic regions. We studied the number of times the central track anatomically optimized was selected for implantation of definitive electrodes. WAIR sequence provided high-quality images of most common functional targets, successfully used for pure direct stereotactic targeting: the central track corresponding to the optimized primary anatomical trajectory was chosen for implantation of definitive electrodes in 90.38%. WAIR sequence is anatomically reliable, enabling precise deep brain mapping and direct stereotactic targeting under routine clinical conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    Science.gov (United States)

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  16. Language disturbances from mesencephalo-thalamic infarcts. Identification of thalamic nuclei by CT-reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarino, L G; Nicolai, A; Valassi, F [Ospedale Civile di Gorizia (Italy). Div. di Neurologia; Biasizzo, E [Ospedale di Udine (Italy). Servizio di Neuroradiologia

    1991-08-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.).

  17. Deep Brain Stimulation for Parkinson's Disease

    Science.gov (United States)

    ... about the BRAIN initiative, see www.nih.gov/science/brain . Show More Show Less Search Disorders SEARCH SEARCH Definition Treatment Prognosis Clinical Trials Organizations Publications Definition Deep ...

  18. Complex neurological symptoms in bilateral thalamic stroke due to Percheron artery occlusion.

    Science.gov (United States)

    Caruso, Paola; Manganotti, Paolo; Moretti, Rita

    2017-01-01

    The artery of Percheron is a rare anatomical variant where a single thalamic perforating artery arises from the proximal posterior cerebral artery (P1 segment) between the basilar artery and the posterior communicating artery and supplies the rostral mesencephalon and both paramedian territories of the thalami. Almost one-third of human brains present this variant. Occlusion of the artery of Percheron mostly results in a bilateral medial thalamic infarction, which usually manifests with altered consciousness (including coma), vertical gaze paresis, and cognitive disturbance. The presentation is similar to the "top of the basilar syndrome", and early recognition should be prompted. We describe the case of a young female with this vessel variant who experienced a bilateral thalamic stroke. Magnetic resonance angiography demonstrated bilateral thalamic infarcts and a truncated artery of Percheron. Occlusion of the vessel was presumably due to embolism from a patent foramen ovale. Thrombolysis was performed, with incomplete symptom remission, cognitive impairment, and persistence of speech disorders. Early recognition and treatment of posterior circulation strokes is mandatory, and further investigation for underlying stroke etiologies is needed.

  19. Disruption in proprioception from long-term thalamic deep brain stimulation: A pilot study

    Directory of Open Access Journals (Sweden)

    Jennifer A Semrau

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia. Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense and motor function using a robotic exoskeleton. In the first group (Surgery, we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim, we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3-10 years displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5-2 years. LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim

  20. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  1. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    Science.gov (United States)

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology.

    Science.gov (United States)

    Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis; Wood, Emily T; Whetstone, Anna; Seigo, Michaela A; Jones, Craig K; Pham, Dzung; van Zijl, Peter; Reich, Daniel S; Calabresi, Peter A

    2015-08-01

    Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing-remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. © The Author(s), 2015.

  3. Deep brain stimulation in tourette syndrome: a description of 3 patients with excellent outcome.

    Science.gov (United States)

    Savica, Rodolfo; Stead, Matt; Mack, Kenneth J; Lee, Kendall H; Klassen, Bryan T

    2012-01-01

    Tourette syndrome (TS) is a complex neuropsychiatric disorder often starting in childhood and characterized by the presence of multiple motor and vocal tics and psychiatric comorbidities. Patients with TS usually respond to medical treatment, and the condition often improves during adolescence; however, surgery has been considered a possible approach for the subset of patients with ongoing medically refractory disease. Ablative procedures have been associated with unsatisfactory results and major adverse effects, prompting trials of deep brain stimulation (DBS) as an alternative therapy. It remains unclear which of the various nuclear targets is most effective in TS. We describe 3 patients with TS who underwent DBS targeting the bilateral thalamic centromedian/parafascicular complex (CM/Pf) with an excellent clinical outcome. At 1-year follow-up, the mean reduction in the total Yale Global Tic Severity Scale score in the 3 patients was 70% (range, 60%-80%).Our study further supports the role of the CM/Pf DBS target in medically intractable TS. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  5. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dhenain, M. [URA CEA CNRS 2210, I2BM, SHFJ, 4 Place du General Leclerc, 91401 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [U759 INSERM, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [Institut Curie, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Guegan, M.; Delatour, B. [Instituto de Microelectronica de Madrid-CSIC, 8, Isaac Newton, 28760 Tres Cantos, Madrid (Spain)

    2009-07-01

    Amyloid deposits are one of the hallmarks of Alzheimer's disease. Recent studies, in transgenic mice modeling Alzheimer's disease showed that, using in vivo, contrast agent-free, MRI, thalamic amyloid plaques are more easily detected than other plaques of the brain. Our study evaluated the characteristics of these thalamic plaques in a large population of APP/PS1, PS1 and C57BL/6 mice. Thalamic spots were detected in all mice but with different frequency and magnitude. Hence, the prevalence and size of the lesions were higher in APP/PS1 mice. However, even in APP/PS1 mice, thalamic spots did not occur in all the old animals. In APP/PS1 mice, spots detection was related to high iron and calcium load within amyloid plaques and thus reflects the ability of such plaque to capture large amounts of minerals. Interestingly, calcium and iron was also detected in extra-thalamic plaques but with a lower intensity. Hypointense lesions in the thalamus were not associated with the iron load in the tissue surrounding the plaques, nor with micro-hemorrhages, inflammation, or a neuro-degenerative context. (authors)

  6. A Microfabricated Transduction Coil for Inductive Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Jie (Jayne WU

    2006-07-01

    Full Text Available "Inductively Coupled Deep Brain Stimulator" describes a chip/system design to inductively couple arbitrary waveforms to electrodes embedded in the brain for deep brain stimulation or other neurostimulation. This approach moves the conventionally implanted signal generator outside the body and provides flexibility in adjusting waveforms to investigate optimum stimulation waveforms. An "inlaid electroplating" process with through-wafer plating is used to reduce microcoil resistance and integrate microstructures and electronics. Utilizing inductive link resonance specific to microcoils, waveforms are selectively transmitted to microcoils, which further produces biphasic waveforms that are suitable for deep brain stimulation.

  7. Hypertensive thalamic hemorrhage

    International Nuclear Information System (INIS)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime

    1988-01-01

    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis. (author)

  8. Uncovering the mechanism(s) of deep brain stimulation

    International Nuclear Information System (INIS)

    Li Gang; Yu Chao; Lin Ling; Lu, Stephen C-Y

    2005-01-01

    Deep brain stimulators, often called 'pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS

  9. Decline in verbal fluency after subthalamic nucleus deep brain stimulation in Parkinson's disease: a microlesion effect of the electrode trajectory?

    Science.gov (United States)

    Le Goff, Floriane; Derrey, Stéphane; Lefaucheur, Romain; Borden, Alaina; Fetter, Damien; Jan, Maryvonne; Wallon, David; Maltête, David

    2015-01-01

    Decline in verbal fluency (VF) is frequently reported after chronic deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson disease (PD). We investigated whether the trajectory of the implanted electrode correlate with the VF decline 6 months after surgery. We retrospectively analysed 59 PD patients (mean age, 61.9 ± 7; mean disease duration, 13 ± 4.6) who underwent bilateral STN-DBS. The percentage of VF decline 6 months after STN-DBS in the on-drug/on-stimulation condition was determined in respect of the preoperative on-drug condition. The patients were categorised into two groups (decline and stable) for each VF. Cortical entry angles, intersection with deep grey nuclei (caudate, thalamic or pallidum), and anatomical extent of the STN affected by the electrode pathway, were compared between groups. A significant decline of both semantic and phonemic VF was found after surgery, respectively 14.9% ± 22.1 (P < 0.05) and 14.2% ± 30.3 (P < 0.05). Patients who declined in semantic VF (n = 44) had a left trajectory with a more anterior cortical entry point (56 ± 53 versus 60 ± 55 degree, P = 0.01) passing less frequently trough the thalamus (P = 0.03). Microlesion of left brain regions may contribute to subtle cognitive impairment following STN-DBS in PD.

  10. Developmental synchrony of thalamocortical circuits in the neonatal brain.

    Science.gov (United States)

    Poh, Joann S; Li, Yue; Ratnarajah, Nagulan; Fortier, Marielle V; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2015-08-01

    The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)

    1999-07-01

    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  12. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Baldermann, Juan Carlos; Schüller, Thomas; Huys, Daniel; Becker, Ingrid; Timmermann, Lars; Jessen, Frank; Visser-Vandewalle, Veerle; Kuhn, Jens

    2016-01-01

    A significant proportion of patients with Tourette syndrome (TS) continue to experience symptoms across adulthood that in severe cases fail to respond to standard therapies. For these cases, deep brain stimulation (DBS) is emerging as a promising treatment option. We conducted a systematic literature review to evaluate the efficacy of DBS for GTS. Individual data of case reports and series were pooled; the Yale Global Tic Severity Scale (YGTSS) was chosen as primary outcome parameter. In total, 57 studies were eligible, including 156 cases. Overall, DBS resulted in a significant improvement of 52.68% (IQR = 40.74, p < 0.001) in the YGTSS. Analysis of controlled studies significantly favored stimulation versus off stimulation with a standardized mean difference of 0.96 (95% CI: 0.36-1.56). Disentangling different target points revealed significant YGTSS reductions after stimulation of the thalamus, the posteroventrolateral part and the anteromedial part of the globus pallidus internus, the anterior limb of the internal capsule and nucleus accumbens with no significant difference between these targets. A significant negative correlation of preoperative tic scores with the outcome of thalamic stimulation was found. Despite small patient numbers, we conclude that DBS for GTS is a valid option for medically intractable patients. Different brain targets resulted in comparable improvement rates, indicating a modulation of a common network. Future studies might focus on a better characterization of the clinical effects of distinct regions, rather than searching for a unique target. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Resection of deep-seated brain glioma by microsurgery assisted with neuronavigation

    International Nuclear Information System (INIS)

    Feng Ming; Zhou Youxin; Sun Chunming; Zhang Shiming

    2009-01-01

    Objective: To investigate the clinical value of neuronavigator assisted microsurgery for deep-seated brain glioma. Methods: The electromagnetic neuronavigation system had been applied for microsurgery of deep-seated brain glioma in fifteen cases. Results: Ten from 15 patients were totally removed, 2 were subtotally removed and 3 were partial removed.All patients had no new neurological deficit. Conclusion: The neuronavigator assisted microsurgery for deep-seated brain glioma is of characters including accurate location, minimal invasiveness, and can enhance the rate of total resection and decrease the operative complications in the patients with deep-seated brain glioma. (authors)

  14. Dissociable Contributions of Thalamic Nuclei to Recognition Memory: Novel Evidence from a Case of Medial Dorsal Thalamic Damage

    Science.gov (United States)

    Newsome, Rachel N.; Trelle, Alexandra N.; Fidalgo, Celia; Hong, Bryan; Smith, Victoria M.; Jacob, Alexander; Ryan, Jennifer D.; Rosenbaum, R. Shayna; Cowell, Rosemary A.; Barense, Morgan D.

    2018-01-01

    The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments…

  15. Language disturbances from mesencephalo-thalamic infarcts

    International Nuclear Information System (INIS)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F.; Biasizzo, E.

    1991-01-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.)

  16. Unilateral Thalamic Infarct Presenting as a Convulsive Seizure.

    Science.gov (United States)

    Kumar, Rajesh; Brohi, Hazim; Mughul, Afshan

    2017-09-01

    Lesions of the thalamus and those extending into midbrain can cause various types of movement disorders such as dystonia, asterixis and ballism-chorea. Seizures are rare manifestation of thalamic disorder. Occurrence of seizures in bilateral thalamic infarct has been reported; but seizures in unilateral thalamic infarct have been reported very rarely. Literature review showed only single case of perinatal unilateral thalamic infarct presenting with seizures. We are reporting a unique case of convulsive seizure at the onset of unilateral thalamic infarct in an adult male, which has never been reported to the best of our knowledge.

  17. Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson's disease.

    Science.gov (United States)

    Volonté, M A; Garibotto, V; Spagnolo, F; Panzacchi, A; Picozzi, P; Franzin, A; Giovannini, E; Leocani, L; Cursi, M; Comi, G; Perani, D

    2012-07-01

    Despite its large clinical application, our understanding about the mechanisms of action of deep brain stimulation of the subthalamic nucleus is still limited. Aim of the present study was to explore cortical and subcortical metabolic modulations measured by Positron Emission Tomography associated with improved motor manifestations after deep brain stimulation in Parkinson disease, comparing the ON and OFF conditions. Investigations were performed in the stimulator off- and on-conditions in 14 parkinsonian patients and results were compared with a group of matched healthy controls. The results were also used to correlate metabolic changes with the clinical effectiveness of the procedure. The comparisons using Statistical parametric mapping revealed a brain metabolic pattern typical of advanced Parkinson disease. The direct comparison in ON vs OFF condition showed mainly an increased metabolism in subthalamic regions, corresponding to the deep brain stimulation site. A positive correlation exists between neurostimulation clinical effectiveness and metabolic differences in ON and OFF state, including the primary sensorimotor, premotor and parietal cortices, anterior cingulate cortex. Deep brain stimulation seems to operate modulating the neuronal network rather than merely exciting or inhibiting basal ganglia nuclei. Correlations with Parkinson Disease cardinal features suggest that the improvement of specific motor signs associated with deep brain stimulation might be explained by the functional modulation, not only in the target region, but also in surrounding and remote connecting areas, resulting in clinically beneficial effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Thalamic Massa Intermedia Duplication in a Dysmorphic 14 month-old Toddler.

    Science.gov (United States)

    Whitehead, Matthew T

    2015-06-01

    The massa intermedia is an inconstant parenchymal band connecting the medial thalami. It may be thickened in various disease processes such as Chiari II malformation or absent in other disease states. However, the massa intermedia may also be absent in up to 30% of normal human brains. To the best of my knowledge, detailed imaging findings of massa intermedia duplication have only been described in a single case report. An additional case of thalamic massa intermedia duplication discovered on a routine brain MR performed for dysmorphic facial features is reported herein.

  19. Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop

    DEFF Research Database (Denmark)

    Pakkenberg, B.; Scheel-Kruger, J.; Kristiansen, L.V.

    2009-01-01

    studies in postmortem brain from patients with schizophrenia have reported divergent and often opposing findings in the total number of neurons and volume of the mediodorsal (MD) thalamic nucleus, and to a lesser degree in its reciprocally associated areas of the prefrontal cortex. Similarly, quantitative...

  20. A trial of scheduled deep brain stimulation for Tourette syndrome: moving away from continuous deep brain stimulation paradigms.

    Science.gov (United States)

    Okun, Michael S; Foote, Kelly D; Wu, Samuel S; Ward, Herbert E; Bowers, Dawn; Rodriguez, Ramon L; Malaty, Irene A; Goodman, Wayne K; Gilbert, Donald M; Walker, Harrison C; Mink, Jonathan W; Merritt, Stacy; Morishita, Takashi; Sanchez, Justin C

    2013-01-01

    To collect the information necessary to design the methods and outcome variables for a larger trial of scheduled deep brain stimulation (DBS) for Tourette syndrome. We performed a small National Institutes of Health-sponsored clinical trials planning study of the safety and preliminary efficacy of implanted DBS in the bilateral centromedian thalamic region. The study used a cranially contained constant-current device and a scheduled, rather than the classic continuous, DBS paradigm. Baseline vs 6-month outcomes were collected and analyzed. In addition, we compared acute scheduled vs acute continuous vs off DBS. A university movement disorders center. Five patients with implanted DBS. A 50% improvement in the Yale Global Tic Severity Scale (YGTSS) total score. RESULTS Participating subjects had a mean age of 34.4 (range, 28-39) years and a mean disease duration of 28.8 years. No significant adverse events or hardware-related issues occurred. Baseline vs 6-month data revealed that reductions in the YGTSS total score did not achieve the prestudy criterion of a 50% improvement in the YGTSS total score on scheduled stimulation settings. However, statistically significant improvements were observed in the YGTSS total score (mean [SD] change, -17.8 [9.4]; P=.01), impairment score (-11.3 [5.0]; P=.007), and motor score (-2.8 [2.2]; P=.045); the Modified Rush Tic Rating Scale Score total score (-5.8 [2.9]; P=.01); and the phonic tic severity score (-2.2 [2.6]; P=.04). Continuous, off, and scheduled stimulation conditions were assessed blindly in an acute experiment at 6 months after implantation. The scores in all 3 conditions showed a trend for improvement. Trends for improvement also occurred with continuous and scheduled conditions performing better than the off condition. Tic suppression was commonly seen at ventral (deep) contacts, and programming settings resulting in tic suppression were commonly associated with a subjective feeling of calmness. This study provides

  1. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  2. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  3. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L

    2016-01-01

    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  4. EDITORIAL: Deep brain stimulation, deontology and duty: the moral obligation of non-abandonment at the neural interface Deep brain stimulation, deontology and duty: the moral obligation of non-abandonment at the neural interface

    Science.gov (United States)

    Fins, Joseph J.; MD; FACP

    2009-10-01

    nuisance but nothing worse. As I recall the conversation, he was not receiving much more than a low-dose beta-blocker by way of medical management. Although I am an internist, and neither a neurologist nor neurosurgeon, it struck me as a bit premature to shuttle my friend off for an implant. It just should not be so easy. I asked myself: where had that penumbra of sacrilege gone? At some level, has this gotten too easy, too routine? Although this is but an anecdote, it is a disturbing one. My friend's referral was outside coverage norms established by the Centers for Medicare & Medicaid Services (CMS). Their 2003 national coverage determination for thalamic ventralis intemedius nucleus (VIM) deep brain stimulation (DBS) in essential tremor requires `marked disabling tremor of at least level 3 or 4 on the Fahn-Tolosa-Marin tremor rating scale (or equivalent scale) in the extremity intended for treatment, causing significant limitation in daily activities despite optimal medical therapy' [10, 11]. As best as I could tell, my friend met neither criteria for symptom severity nor adequate medical treatment. Even more striking was the casualness with which he told me about his neurologist's referral. One would think that he was being sent for the simplest of procedures, without any risks or long-term sequelae, notwithstanding specific complications associated with thalamic DBS for essential tremor [12]. It is a tribute to the nascent field of neuromodulation that, in the twenty years since Professor Alim Benabid's pioneering work heralded these new treatment modalities [13], stimulator placement has been analogized to the insertion of a heart pacemaker. But is the insertion of a cerebral pacemaker as routine as its cardiac counterpart? At this juncture I would venture to say it is not. While the acute surgical risks are slim, the longitudinal challenge for competent on-going care is high. Simply put, the community-based infrastructure to follow and support the growing number of

  5. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report

    Directory of Open Access Journals (Sweden)

    Stavrinou Lampis C

    2011-06-01

    Full Text Available Abstract Background The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. Case presentation We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. Conclusion The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  6. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report.

    Science.gov (United States)

    Themistocleous, Marios S; Boviatsis, Efstathios J; Stavrinou, Lampis C; Stathis, Pantelis; Sakas, Damianos E

    2011-06-29

    The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  7. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    Science.gov (United States)

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  8. Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Figee, M.

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical technique that involves the implantation of electrodes in the brain. DBS enables electrical modulation of abnormal brain activity for treatment of neuropsychiatric disorders such as obsessive-compulsive disorder (OCD). Mrs. D. has been suffering from

  9. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  10. Deep Brain Stimulation for Essential Tremor: Aligning Thalamic and Posterior Subthalamic Targets in 1 Surgical Trajectory.

    Science.gov (United States)

    Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn

    2017-12-21

    Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either target in a single patient. To evaluate aligning VIM and PSA in 1 surgical trajectory for DBS in ET. Technical aspects of trajectories, intraoperative stimulation findings, final electrode placement, target used for chronic stimulation, and adverse and beneficial effects were evaluated. In 17 patients representing 33 trajectories, we successfully aligned VIM and PSA targets in 26 trajectories. Trajectory distance between targets averaged 7.2 (range 6-10) mm. In all but 4 aligned trajectories, optimal intraoperative tremor suppression was obtained in the PSA. During follow-up, active electrode contacts were located in PSA in the majority of cases. Overall, successful tremor control was achieved in 69% of patients. Stimulation-induced dysarthria or gait ataxia occurred in, respectively, 56% and 44% of patients. Neither difference in tremor suppression or side effects was noted between aligned and nonaligned leads nor between the different locations of chronic stimulation. Alignment of VIM and PSA for DBS in ET is feasible and enables intraoperative exploration of both targets in 1 trajectory. This facilitates positioning of electrode contacts in both areas, where multiple effective points of stimulation can be found. In the majority of aligned leads, optimal intraoperative and chronic stimulation were located in the PSA. Copyright © 2017 by the Congress of Neurological Surgeons

  11. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Qi, Rongfeng; Zhang, Long Jiang; Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Zheng, Gang; Lu, Guang Ming

    2013-01-01

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  12. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhanglongjiang@yahoo.com.cn [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)

    2013-05-15

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  13. Deep brain stimulation as a functional scalpel.

    Science.gov (United States)

    Broggi, G; Franzini, A; Tringali, G; Ferroli, P; Marras, C; Romito, L; Maccagnano, E

    2006-01-01

    Since 1995, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan (INNCB,) 401 deep brain electrodes were implanted to treat several drug-resistant neurological syndromes (Fig. 1). More than 200 patients are still available for follow-up and therapeutical considerations. In this paper our experience is reviewed and pioneered fields are highlighted. The reported series of patients extends the use of deep brain stimulation beyond the field of Parkinson's disease to new fields such as cluster headache, disruptive behaviour, SUNCt, epilepsy and tardive dystonia. The low complication rate, the reversibility of the procedure and the available image guided surgery tools will further increase the therapeutic applications of DBS. New therapeutical applications are expected for this functional scalpel.

  14. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias.

    Science.gov (United States)

    Waugh, Jeff L; Kuster, John K; Levenstein, Jacob M; Makris, Nikos; Multhaupt-Buell, Trisha J; Sudarsky, Lewis R; Breiter, Hans C; Sharma, Nutan; Blood, Anne J

    2016-01-01

    Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.

  15. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias.

    Directory of Open Access Journals (Sweden)

    Jeff L Waugh

    Full Text Available Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia.We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7. We used (1 automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2 blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume; and (3 voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus.Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region.Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.

  16. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias

    Science.gov (United States)

    Waugh, Jeff L.; Kuster, John K.; Levenstein, Jacob M.; Makris, Nikos; Multhaupt-Buell, Trisha J.; Sudarsky, Lewis R.; Breiter, Hans C.; Sharma, Nutan; Blood, Anne J.

    2016-01-01

    Background Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. Methods We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. Results Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. Conclusions Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches. PMID:27171035

  17. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy

    Directory of Open Access Journals (Sweden)

    Andrew P. Bagshaw

    Full Text Available The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE, and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN, the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE. Keywords: Functional connectivity, Generalised epilepsy, Sleep, Thalamic reticular nucleus thalamus

  18. Closed loop deep brain stimulation: an evolving technology.

    Science.gov (United States)

    Hosain, Md Kamal; Kouzani, Abbas; Tye, Susannah

    2014-12-01

    Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

  19. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series.

    Directory of Open Access Journals (Sweden)

    Mohammad Maarouf

    Full Text Available The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD has instigated the search for the most suitable target for deep brain stimulation (DBS. However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD and the ventral anterior (VA nucleus of the thalamus, which has thus far received little attention in the treatment of OCD.In this retrospective trial, four patients (three female, one male aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation.Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable.MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC, however, might prove a promising target in the treatment of mood related and anxiety disorders.

  20. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series.

    Science.gov (United States)

    Maarouf, Mohammad; Neudorfer, Clemens; El Majdoub, Faycal; Lenartz, Doris; Kuhn, Jens; Sturm, Volker

    2016-01-01

    The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD) has instigated the search for the most suitable target for deep brain stimulation (DBS). However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treatment of OCD. In this retrospective trial, four patients (three female, one male) aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation. Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable. MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target in the treatment of mood related and anxiety disorders.

  1. Brain, mind and internet a deep history and future

    CERN Document Server

    Staley, D

    2014-01-01

    This essay places the emerging brain-Internet interface within a broad historical context: that the Internet represents merely the next stage in a very long history of human cognition whereby the brain couples with symbolic technologies. Understanding this 'deep history' provides a way to imagine the future of brain-Internet cognition.

  2. Neurological manifestations and PET studies of the thalamic vascular lesions

    International Nuclear Information System (INIS)

    Matsuda, Shinji; Kawamura, Mitsuru; Hirayama, Keizo

    1995-01-01

    We divided 38 patients with cerebrovascular disease of the thalamus into 5 groups according to the site of the thalamic lesions as confirmed by X-ray CT and/or MRI. In 16 patients, we examined the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) by positron emission tomography (PET). In the anteromedial thalamic lesion group, patients displayed disturbances of spontaneity, memory, reading and writing. CBF and CMRO 2 were decreased in the frontal, parietal and temporal lobes on the side of the lesion. In the dorsolateral thalamic lesion group, ataxic hemiparesis was a characteristic symptom. CBF and CMRO 2 were decreased in frontoparietal lobes on the side of the lesion. In the group with lesions confined to the nucleus ventralis posterioris thalami, the main symptoms were sensory disturbance, with cheiro-oral sensory syndrome being particularly evident. CBF and CMRO 2 were decreased in the parietal lobe on the side of the lesion. In the group with posterolateral thalamic lesions without pulvinar involvement, patients exhibited thalamic syndrome without thalamic pain. CBF and CMRO 2 were decreased in the frontoparietal and temporal lobes on the side of the lesion. In contrast, in the group with posterolateral thalamic lesions with pulvinar involvement, all patients showed thalamic pain. The decrease in CBF and CMRO 2 extended to the inferomedial region of the temporal lobe in addition to the area of decreased CBF and CMRO 2 observed in the group with posterolateral thalamic lesions without pulvinar involvement. Based on these results, we speculate that the neurological manifestations of thalamic vascular disease are associated with a decrease in cortical CBF and CMRO 2 secondary to the thalamic lesions. (author)

  3. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  4. Neurological manifestations and PET studies of the thalamic vascular lesions

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shinji; Kawamura, Mitsuru; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine

    1995-02-01

    We divided 38 patients with cerebrovascular disease of the thalamus into 5 groups according to the site of the thalamic lesions as confirmed by X-ray CT and/or MRI. In 16 patients, we examined the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET). In the anteromedial thalamic lesion group, patients displayed disturbances of spontaneity, memory, reading and writing. CBF and CMRO{sub 2} were decreased in the frontal, parietal and temporal lobes on the side of the lesion. In the dorsolateral thalamic lesion group, ataxic hemiparesis was a characteristic symptom. CBF and CMRO{sub 2} were decreased in frontoparietal lobes on the side of the lesion. In the group with lesions confined to the nucleus ventralis posterioris thalami, the main symptoms were sensory disturbance, with cheiro-oral sensory syndrome being particularly evident. CBF and CMRO{sub 2} were decreased in the parietal lobe on the side of the lesion. In the group with posterolateral thalamic lesions without pulvinar involvement, patients exhibited thalamic syndrome without thalamic pain. CBF and CMRO{sub 2} were decreased in the frontoparietal and temporal lobes on the side of the lesion. In contrast, in the group with posterolateral thalamic lesions with pulvinar involvement, all patients showed thalamic pain. The decrease in CBF and CMRO{sub 2} extended to the inferomedial region of the temporal lobe in addition to the area of decreased CBF and CMRO{sub 2} observed in the group with posterolateral thalamic lesions without pulvinar involvement. Based on these results, we speculate that the neurological manifestations of thalamic vascular disease are associated with a decrease in cortical CBF and CMRO{sub 2} secondary to the thalamic lesions. (author).

  5. Generation of thalamic neurons from mouse embryonic stem cells.

    Science.gov (United States)

    Shiraishi, Atsushi; Muguruma, Keiko; Sasai, Yoshiki

    2017-04-01

    The thalamus is a diencephalic structure that plays crucial roles in relaying and modulating sensory and motor information to the neocortex. The thalamus develops in the dorsal part of the neural tube at the level of the caudal forebrain. However, the molecular mechanisms that are essential for thalamic differentiation are still unknown. Here, we have succeeded in generating thalamic neurons from mouse embryonic stem cells (mESCs) by modifying the default method that induces the most-anterior neural type in self-organizing culture. A low concentration of the caudalizing factor insulin and a MAPK/ERK kinase inhibitor enhanced the expression of the caudal forebrain markers Otx2 and Pax6. BMP7 promoted an increase in thalamic precursors such as Tcf7l2 + /Gbx2 + and Tcf7l2 + /Olig3 + cells. mESC thalamic precursors began to express the glutamate transporter vGlut2 and the axon-specific marker VGF, similar to mature projection neurons. The mESC thalamic neurons extended their axons to cortical layers in both organotypic culture and subcortical transplantation. Thus, we have identified the minimum elements sufficient for in vitro generation of thalamic neurons. These findings expand our knowledge of thalamic development. © 2017. Published by The Company of Biologists Ltd.

  6. Thalamic involvement in the regulation of alpha EEG activity in psychiatric patients

    International Nuclear Information System (INIS)

    Shirazi, S.P.; Pakula, J.; Young, I.J.; Crayton, J.W.; Konopka, L.M.; Rybak, M.

    2002-01-01

    Aim: The thalamus is considered to be an important sub-cortical system involved in modulation of cortical activities. A relationship between thalamic activity and surface EEG was recently reported. In this study we evaluated a group of patients with psychiatric disorders who presented with asymmetric perfusion of the thalamus based on brain SPECT HMPAO studies. We predicted that asymmetrical activity of the thalamus would have asymmetrically distributed surface qEEG activity patterns. Materials and Methods: Twenty-three male psychiatric patients (age 54±14) with a primary diagnosis of depression and co-morbid substance abuse (83%) were studied with qEEG and HMPAO brain SPECT. The HMPAO ligand was administered while the EEG activity was being recorded. The SPECT analysis was conducted by means of ROI and SPM. ROI regions were determined based on the Talairach atlas coordinate system. ROI locations were verified by the automated utility, Talairach Demon. QEEG data was analyzed by a standardized protocol involving the NxLink database. Correlations between SPECT findings and qEEG absolute power were calculated. Results: Patients were divided into two groups based on thalamic perfusion patterns. Group 1 (Gr 1) had decreased perfusion to the right thalamus whereas Group 2 (Gr 2) had decreased perfusion to the left thalamus. SPM comparison of the patient groups to normal control subjects indicated significant findings. Comparison of Gr 1 to controls showed increased activity in the left temporal lobe and vermis. Decreased activity was observed in the left and right medial frontal lobes (right Brodmann 9;left Brodmann 6) as well as the left (Brodmann 30) and right (Brodmann 24) cingulate. Gr 2 comparison showed increased activity in the right middle frontal gyrus (Brodmann 10) and left inferior parietal lobe. Decreased activity was found in the left inferior frontal lobe (Brodmann 47). A positive correlation between alpha power and thalamic perfusion was identified in Gr

  7. Particle swarm optimization for programming deep brain stimulation arrays.

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D

    2017-02-01

    Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies

  8. Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-01-01

    Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations

  9. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    Science.gov (United States)

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with

  10. Uncommon Applications of Deep Brain Stimulation in Hyperkinetic Movement Disorders

    Directory of Open Access Journals (Sweden)

    Kara M. Smith

    2015-02-01

    Full Text Available Background: In addition to the established indications of tremor and dystonia, deep brain stimulation (DBS has been utilized less commonly for several hyperkinetic movement disorders, including medication-refractory myoclonus, ballism, chorea, and Gilles de la Tourette (GTS and tardive syndromes. Given the lack of adequate controlled trials, it is difficult to translate published reports into clinical use. We summarize the literature, draw conclusions regarding efficacy when possible, and highlight concerns and areas for future study.Methods: A Pubmed search was performed for English-language articles between January 1980 and June 2014. Studies were selected if they focused primarily on DBS to treat the conditions of focus. Results: We identified 49 cases of DBS for myoclonus-dystonia, 21 for Huntington's disease, 15 for choreacanthocytosis, 129 for GTS, and 73 for tardive syndromes. Bilateral globus pallidus interna (GPi DBS was the most frequently utilized procedure for all conditions except GTS, in which medial thalamic DBS was more common. While the majority of cases demonstrate some improvement, there are also reports of no improvement or even worsening of symptoms in each condition. The few studies including functional or quality of life outcomes suggest benefit. A limited number of studies included blinded on/off testing. There have been two double-blind controlled trials performed in GTS and a single prospective double-blind, uncontrolled trial in tardive syndromes. Patient characteristics, surgical target, stimulation parameters, and duration of follow-up varied among studies.Discussion: Despite these extensive limitations, the literature overall supports the efficacy of DBS in these conditions, in particular GTS and tardive syndromes. For other conditions, the preliminary evidence from small studies is promising and encourages further study.

  11. Thalamic Functional Connectivity in Mild Traumatic Brain Injury: Longitudinal Associations With Patient-Reported Outcomes and Neuropsychological Tests.

    Science.gov (United States)

    Banks, Sarah D; Coronado, Rogelio A; Clemons, Lori R; Abraham, Christine M; Pruthi, Sumit; Conrad, Benjamin N; Morgan, Victoria L; Guillamondegui, Oscar D; Archer, Kristin R

    2016-08-01

    (1) To examine differences in patient-reported outcomes, neuropsychological tests, and thalamic functional connectivity (FC) between patients with mild traumatic brain injury (mTBI) and individuals without mTBI and (2) to determine longitudinal associations between changes in these measures. Prospective observational case-control study. Academic medical center. A sample (N=24) of 13 patients with mTBI (mean age, 39.3±14.0y; 4 women [31%]) and 11 age- and sex-matched controls without mTBI (mean age, 37.6±13.3y; 4 women [36%]). Not applicable. Resting state FC (3T magnetic resonance imaging scanner) was examined between the thalamus and the default mode network, dorsal attention network, and frontoparietal control network. Patient-reported outcomes included pain (Brief Pain Inventory), depressive symptoms (Patient Health Questionnaire-9), posttraumatic stress disorder ([PTSD] Checklist - Civilian Version), and postconcussive symptoms (Rivermead Post-Concussion Symptoms Questionnaire). Neuropsychological tests included the Delis-Kaplan Executive Function System Tower test, Trails B, and Hotel Task. Assessments occurred at 6 weeks and 4 months after hospitalization in patients with mTBI and at a single visit for controls. Student t tests found increased pain, depressive symptoms, PTSD symptoms, and postconcussive symptoms; decreased performance on Trails B; increased FC between the thalamus and the default mode network; and decreased FC between the thalamus and the dorsal attention network and between the thalamus and the frontoparietal control network in patients with mTBI as compared with controls. The Spearman correlation coefficient indicated that increased FC between the thalamus and the dorsal attention network from baseline to 4 months was associated with decreased pain and postconcussive symptoms (corrected P<.05). Findings suggest that alterations in thalamic FC occur after mTBI, and improvements in pain and postconcussive symptoms are correlated with

  12. Human Thalamic-Prefrontal Peduncle Connectivity Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Chuanqi Sun

    2018-04-01

    Full Text Available The thalamic-prefrontal peduncle (TPP is a large bundle connecting the thalamus and prefrontal cortex. The definitive structure and function of the TPP are still controversial. To investigate the connectivity and segmentation patterns of the TPP, we employed diffusion spectrum imaging with generalized q-sampling reconstruction to perform both subject-specific and template-based analyses. Our results confirmed the trajectory and spatial relationship of the TPP in the human brain and identified the connection areas in the prefrontal cortex. The TPP-connecting areas identified based on Brodmann areas (BAs were BAs 8–11 and 45–47. Based on the automated anatomical atlas, these areas were the medial superior frontal gyrus, superior frontal gyrus, middle frontal gyrus, pars triangularis, pars orbitalis, anterior orbital gyrus, and lateral orbital gyrus. In addition, we identified the TPP connection areas in the thalamus, including the anterior and medial nuclei, and the lateral dorsal/lateral posterior nuclei. TPP fibers connected the thalamus with the ipsilateral prefrontal BAs 11, 47, 10, 46, 45, 9, and 8 seriatim from medial to lateral, layer by layer. Our results provide further details of the thalamic-prefrontal peduncle structure, and may aid future studies and a better understanding of the functional roles of the TPP in the human brain.

  13. The treatment of Parkinson's disease with deep brain stimulation: current issues.

    Science.gov (United States)

    Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2015-07-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  14. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    Science.gov (United States)

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  15. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact...

  16. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    Science.gov (United States)

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  17. Pathogenesis and prognosis of bilateral thalamic infarction

    International Nuclear Information System (INIS)

    Nakase, Taizen; Ogura, Naoko; Maeda, Tetsuya; Yamazaki, Takashi; Kameda, Tomoaki; Sato, Yuichi; Nagata, Ken

    2008-01-01

    Only a few reports have discussed the detailed clinical symptoms and pathogenesis of bilateral thalamic infarction. The thalamus is composed of different functional nuclei and supplied by vessels containing several variations from the main arteries, leading to difficulty in the precise evaluation of bilateral thalamic infarction. In the present study, we assessed the prognosis of bilateral thalamic infarction based on the distribution of stroke lesions. From among the consecutive ischemic stroke patients admitted to hospital between April 2001 and March 2005, cases of acute bilateral thalamic infarction were selected for this study (n=9; 65.1±13.6 y.o.). The stroke lesions and vascular abnormalities were investigated by magnetic resonance imaging and magnetic resonance angiography on admission. Outcome was evaluated from the modified Rankin scale (mRS) at discharge. Good outcome patients (mRS 0-2; n=5) showed memory disturbance, cognitive impairment and hypersomnia. On the other hand, quadriplegia, oculomotor disturbance and bulbar palsy were observed in the poor outcome patients (mRS≥4; n=4). The critical features of a poor outcome were the age at onset (72.0±15.3 vs. 58.2±11.9 y.o.), inclusion of brainstem lesions and total occlusion of the basilar artery. In conclusion, older age at onset and/or basilar artery occlusion may be critical factors for predicting a poor outcome in bilateral thalamic infarction cases. (author)

  18. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. CT classification of small thalamic hemorrhages

    International Nuclear Information System (INIS)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo

    1984-01-01

    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type. (J.P.N.)

  20. Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.

    Science.gov (United States)

    Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars

    2017-07-01

    Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.

  1. Thalamic changes with mesial temporal sclerosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, N.P.; Jarosz, J.M.; Cox, T.C.S. [Department of Neuroradiology, King' s College Hospital, London (United Kingdom); Elwes, R.C.D. [Department of Neurology, King' s College Hospital, London (United Kingdom); Polkey, C.E. [Department of Neurosurgery, King' s College and Maudsley Hospitals, London (United Kingdom)

    2000-05-01

    We reviewed the preoperative images of 28 patients with pathologically proven mesial temporal sclerosis, to assess thalamic asymmetry and signal change. A further 25 nonsurgical patients with temporal lobe epilepsy and unequivocal, unilateral changes of mesial temporal sclerosis, and 20 controls, were also reviewed. None of the control group had unequivocal asymmetry of the thalamus. There was an ipsilateral asymmetrically small thalamus in five (18 %) of the surgical group and in three (12 %) of the nonsurgical patients. In four cases there was thalamic signal change. In three patients with thalamic volume loss there was ipsilateral hemiatrophy. All patients with an asymmetrically small thalamus had an asymmetrically small fornix and all but one a small ipsilateral mamillary body. (orig.)

  2. EKG-based detection of deep brain stimulation in fMRI studies.

    Science.gov (United States)

    Fiveland, Eric; Madhavan, Radhika; Prusik, Julia; Linton, Renee; Dimarzio, Marisa; Ashe, Jeffrey; Pilitsis, Julie; Hancu, Ileana

    2018-04-01

    To assess the impact of synchronization errors between the assumed functional MRI paradigm timing and the deep brain stimulation (DBS) on/off cycling using a custom electrocardiogram-based triggering system METHODS: A detector for measuring and predicting the on/off state of cycling deep brain stimulation was developed and tested in six patients in office visits. Three-electrode electrocardiogram measurements, amplified by a commercial bio-amplifier, were used as input for a custom electronics box (e-box). The e-box transformed the deep brain stimulation waveforms into transistor-transistor logic pulses, recorded their timing, and propagated it in time. The e-box was used to trigger task-based deep brain stimulation functional MRI scans in 5 additional subjects; the impact of timing accuracy on t-test values was investigated in a simulation study using the functional MRI data. Following locking to each patient's individual waveform, the e-box was shown to predict stimulation onset with an average absolute error of 112 ± 148 ms, 30 min after disconnecting from the patients. The subsecond accuracy of the e-box in predicting timing onset is more than adequate for our slow varying, 30-/30-s on/off stimulation paradigm. Conversely, the experimental deep brain stimulation onset prediction accuracy in the absence of the e-box, which could be off by as much as 4 to 6 s, could significantly decrease activation strength. Using this detector, stimulation can be accurately synchronized to functional MRI acquisitions, without adding any additional hardware in the MRI environment. Magn Reson Med 79:2432-2439, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  4. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

    Science.gov (United States)

    Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei

    2018-03-13

    Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Remote effect in patients with thalamic stroke. A study using positron emission tomography

    International Nuclear Information System (INIS)

    Komaba, Yuichi; Kitamura, Shin; Terashi, Akiro

    1998-01-01

    The purpose of this study was to investigate the functional relation between the thalamus and other cortical regions in patients with thalamic stroke from the view of cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ) using positron emission tomography (PET). Twenty patients with thalamic stroke (right lesion=8, left lesion=12) and 7 normal controls were studied. Five patients were diagnosed as having thalamic infarction, and 15 (patients were diagnosed) as having thalamic hemorrhage by X-CT and/or MRI scan. Regional cerebral blood flow and cerebral metabolic rate of oxygen were measured by PET using C 15 O 2 and 15 O 2 steady state inhalation technique. In the left thalamic stroke group, CMRO 2 was significantly decreased in the left cingulate, superior frontal, superior temporal, middle temporal, medial occipital, and thalamic regions, compared with the normal control group. In the right thalamic stroke group, CMRO 2 was decreased in the left cingulate, medial occipital, right hippocampal, thalamic, and the bilateral cerebellar regions, compared with the normal control group. In the left thalamic stroke group, CBF was decreased significantly in the left cingulate, middle temporal, hippocampal, thalamic, and right cerebellar regions, compared with the normal control group. In the right thalamic stroke group, CBF was significantly decreased in the right hippocampal, thalamic and left cerebellar regions compared with the normal control group. These results indicate that CBF and CMRO 2 decrease in some distant regions from thalamic lesions, perhaps due to a disconnection of neuronal fiber. Especially in the left thalamic stroke group, CMRO 2 was decreased in the ipsilateral temporal regions. This result suggests that there are more intimate functional fiber connections between the thalamus and temporal cortex in the left hemisphere than in the right hemisphere. (author)

  6. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    Science.gov (United States)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  7. The treatment of Parkinson′s disease with deep brain stimulation: current issues

    Directory of Open Access Journals (Sweden)

    Alexia-Sabine Moldovan

    2015-01-01

    Full Text Available Deep brain stimulation has become a well-established symptomatic treatment for Parkinson′s disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients′ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  8. Pathways of translation: deep brain stimulation.

    Science.gov (United States)

    Gionfriddo, Michael R; Greenberg, Alexandra J; Wahegaonkar, Abhijeet L; Lee, Kendall H

    2013-12-01

    Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high-frequency electrical current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 19th century and was fostered by technological advances of the 20th. In this paper, we review that journey and discuss how the quest to expand its applications and improve outcomes is taking DBS from the bedside back to the bench. © 2013 Wiley Periodicals, Inc.

  9. MRI of paramedian thalamic stroke with sleep disturbance

    International Nuclear Information System (INIS)

    Loevblad, K.O.; Bassetti, C.; Mathis, J.; Schroth, G.

    1997-01-01

    The paramedian thalamus is believed to play an important role in the regulation of sleep, and disturbances of sleep regulation are known to occur in paramedian thalamic stroke (PTS). We examined 12 consecutive patients with PTS and sleep disturbance by MRI. Two distinct groups of patients could be defined: six presenting with severe hypersomnia (group 1) and six with slight sleepiness (group 2). On MRI, all patients had ischaemic lesions involving the paramedian thalamic nuclei, the centre of the lesions being the dorsomedial and centromedial thalamic nuclei. In group 1 the lesions were bilateral, butterfly-shaped infarcts involving the paramedian nuclei (three cases), or unilateral with an extension into the subthalamic nuclei. In group 2 the lesions were unilateral and limited to the paramedian nuclei, mainly the dorsomedial nucleus. Bilateral lesions can be attributed to a common origin in some cases for both paramedian thalamic arteries and the mesencephalic arteries. (orig.). With 5 figs

  10. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  11. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas

    NARCIS (Netherlands)

    van Dijk, A.; Klanker, M.; van Oorschot, N.; Post, R.; Hamelink, R.; Feenstra, M. G. P.; Denys, D.

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of

  12. Lack of benefit of accumbens/capsular deep brain stimulation in a patient with both tics and obsessive-compulsive disorder.

    Science.gov (United States)

    Burdick, Adam; Foote, Kelly D; Goodman, Wayne; Ward, Herbert E; Ricciuti, Nicola; Murphy, Tanya; Haq, Ihtsham; Okun, Michael S

    2010-08-01

    LAY SUMMARY: This case report illustrates lack of clinical efficacy of deep brain stimulation (DBS) for control of tics in a case of mild Tourette syndrome (TS) with severe comorbid obsessive-compulsive disorder (OCD). The brain target for stimulation was the anterior limb internal capsule (ALIC). To investigate the effect of anterior limb of internal capsule/nucleus accumbens (ALIC-NA) DBS on mild motor and vocal tics in a Tourette syndrome (TS) patient with severe OCD. The optimum target to address symptoms of TS with DBS remains unknown. Earlier lesional therapy utilized thalamic targets and also the ALIC for select cases which had been diagnosed with other psychiatric disorders. Evidence regarding the efficacy of DBS for the symptoms of TS may aid in better defining a brain target's suitability for use. We report efficacy data on ALIC-NA DBS in a patient with severe OCD and mild TS. A 33-year-old man underwent bilateral ALIC-NA DBS. One month following implantation, a post-operative CT scan was obtained to verify lead locations. Yale Global Tic Severity Scales (YGTSS) and modified Rush Videotape Rating scales (MRVRS) were obtained throughout the first 6 months, as well as careful clinical examinations by a specialized neurology and psychiatry team. The patient has been followed for 30 months. YGTSS scores worsened by 17% during the first 6 months. MRVRS scores also worsened over 30 total months of follow-up. There was a lack of clinically significant tic reduction although subjectively the patient felt tics improved mildly. DBS in the ALIC-NA failed to effectively address mild vocal and motor tics in a patient with TS and severe comorbid OCD.

  13. Effects of deep brain stimulation of the cerebellothalamic pathways on the sense of smell.

    Science.gov (United States)

    Kronenbuerger, M; Zobel, S; Ilgner, J; Finkelmeyer, A; Reinacher, P; Coenen, V A; Wilms, H; Kloss, M; Kiening, K; Daniels, C; Falk, D; Schulz, J B; Deuschl, G; Hummel, T

    2010-03-01

    The cerebellum and the motor thalamus, connected by cerebellothalamic pathways, are traditionally considered part of the motor-control system. Yet, functional imaging studies and clinical studies including patients with cerebellar disease suggest an involvement of the cerebellum in olfaction. Additionally, there are anecdotal clinical reports of olfactory disturbances elicited by electrical stimulation of the motor thalamus and its neighbouring subthalamic region. Deep brain stimulation (DBS) targeting the cerebellothalamic pathways is an effective treatment for essential tremor (ET), which also offers the possibility to explore the involvement of cerebellothalamic pathways in the sense of smell. This may be important for patient care given the increased use of DBS for the treatment of tremor disorders. Therefore, 21 none-medicated patients with ET treated with DBS (13 bilateral, 8 unilateral) were examined with "Sniffin' Sticks," an established and reliable method for olfactory testing. Patients were studied either with DBS switched on and then off or in reversed order. DBS impaired odor threshold and, to a lesser extent, odor discrimination. These effects were sub-clinical as none of the patients reported changes in olfactory function. The findings, however, demonstrate that olfaction can be modulated in a circumscribed area of the posterior (sub-) thalamic region. We propose that the impairment of the odor threshold with DBS is related to effects on an olfacto-motor loop, while disturbed odor discrimination may be related to effects of DBS on short-term memory. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations.

    Science.gov (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S

    2017-12-01

    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT 2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  15. Prognosis of thalamic hemorrhage with special reference to the level of consciousness and CT findings on admission

    International Nuclear Information System (INIS)

    Yamamoto, Toshimasa; Tanahashi, Norio; Nara, Masaharu; Takenaka, Nobuo

    1991-01-01

    The prognosis of thalamic hemorrhage was studied on the basis of neurological gradings on admission, mode of extension and hematoma size on brain CT. The subjects were 126 patients with thalamic hemorrhage who were admitted to Ashikaga Red Cross Hospital during the past ten years. Among the subjects, 120 patients (ages 64±10 yr; mean ±SD) were treated with conservative therapy, and 6 patients (ages 59±10 yr) with surgical therapy (ventricular drainage). Brain CT scans were done within 48 hours after onset in all patients. Neurological gradings, brain CT classification and prognosis were investigated according to the criteria of the Japanese Conference on Surgery for Cerebral Stroke. The results of conservative therapy were as follows: (1) In the grade I group on the neurological gradings, 29 of the 39 patients (74%) recovered to full work or an independent life, and none of them died. In the grade IV and V groups, mortality rate was 86%. (2) The prognosis was more unfavorable in type III than in types I and II on the CT classification. Twenty-six of the 36 patients (73%) with type I-a recovered to full work or an independent life. Twenty-five of the 34 patients (74%) with the type III-b died. (3) Only 4 of the 75 patients (5%) with less than 10 ml of hematoma volume died. In contrast, all 14 patients with more than 25 ml of hematoma volume died. (4) The mortality rate among patients with ventricular rupture (47%) was significantly higher than that among patients without ventricular rupture (2%) (p<0.001). (5) The mortality rate of patients with acute hydrocephalus (83%) was significantly higher than that of patients without acute hydrocephalus (20%) (p<0.001). From the above results, it is suggested that neurological grading, brain CT classification, hematoma volume, ventricular rupture and acute hydrocephalus are important prognostic factors for thalamic hemorrhage. (author)

  16. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain.

    Science.gov (United States)

    Moda, Fabio; Suardi, Silvia; Di Fede, Giuseppe; Indaco, Antonio; Limido, Lucia; Vimercati, Chiara; Ruggerone, Margherita; Campagnani, Ilaria; Langeveld, Jan; Terruzzi, Alessandro; Brambilla, Antonio; Zerbi, Pietro; Fociani, Paolo; Bishop, Matthew T; Will, Robert G; Manson, Jean C; Giaccone, Giorgio; Tagliavini, Fabrizio

    2012-09-01

    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  17. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy.

    Science.gov (United States)

    Johans, Stephen J; Swong, Kevin N; Hofler, Ryan C; Anderson, Douglas E

    2017-09-01

    Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.

  18. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  19. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial.

    Science.gov (United States)

    Oliveria, Seth F; Rodriguez, Ramon L; Bowers, Dawn; Kantor, Daniel; Hilliard, Justin D; Monari, Erin H; Scott, Bonnie M; Okun, Michael S; Foote, Kelly D

    2017-09-01

    Efficacy in previous studies of surgical treatments of refractory multiple sclerosis tremor using lesioning or deep brain stimulation (DBS) has been variable. The aim of this study was to investigate the safety and efficacy of dual-lead thalamic DBS (one targeting the ventralis intermedius-ventralis oralis posterior nucleus border [the VIM lead] and one targeting the ventralis oralis anterior-ventralis oralis posterior border [the VO lead]) for the treatment of multiple sclerosis tremor. We did a single centre, single-blind, prospective, randomised pilot trial at the University of Florida Center for Movement Disorders and Neurorestoration clinic (Gainesville, FL, USA). We recruited adult patients with a clinical diagnosis of multiple sclerosis tremor refractory to previous medical therapy. Before surgery to implant both leads, we randomly assigned patients (1:1) to receive 3 months of optimised single-lead DBS-either VIM or VO. We did the randomisation with a computer-generated sequence, using three blocks of four patients, and independent members of the Center did the assignment. Patients and all clinicians other than the DBS programming nurse were masked to the choice of lead. Patients underwent surgery 1 month after their baseline visit for implantation of the dual lead DBS system. A pulse generator and two extension cables were implanted in a second surgery 3-4 weeks later. Patients then received an initial 3-month period of continuous stimulation of either the VIM or VO lead followed by blinded safety assessment of their tremor with the Tolosa-Fahn-Marin Tremor Rating Scale (TRS) during optimised VIM or VO lead stimulation at the end of the 3 months. After this visit, both leads were activated in all patients for an additional 3 months, and optimally programmed during serial visits as dictated by a prespecified programming algorithm. At the 6-month follow-up visit, TRS score was measured, and mood and psychological batteries were administered under four

  20. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    Science.gov (United States)

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Deep brain stimulation for severe treatment-resistant obsessive-compulsive disorder: An open-label case series.

    Science.gov (United States)

    Farrand, Sarah; Evans, Andrew H; Mangelsdorf, Simone; Loi, Samantha M; Mocellin, Ramon; Borham, Adam; Bevilacqua, JoAnne; Blair-West, Scott; Walterfang, Mark A; Bittar, Richard G; Velakoulis, Dennis

    2017-09-01

    Deep brain stimulation can be of benefit in carefully selected patients with severe intractable obsessive-compulsive disorder. The aim of this paper is to describe the outcomes of the first seven deep brain stimulation procedures for obsessive-compulsive disorder undertaken at the Neuropsychiatry Unit, Royal Melbourne Hospital. The primary objective was to assess the response to deep brain stimulation treatment utilising the Yale-Brown Obsessive Compulsive Scale as a measure of symptom severity. Secondary objectives include assessment of depression and anxiety, as well as socio-occupational functioning. Patients with severe obsessive-compulsive disorder were referred by their treating psychiatrist for assessment of their suitability for deep brain stimulation. Following successful application to the Psychosurgery Review Board, patients proceeded to have deep brain stimulation electrodes implanted in either bilateral nucleus accumbens or bed nucleus of stria terminalis. Clinical assessment and symptom rating scales were undertaken pre- and post-operatively at 6- to 8-week intervals. Rating scales used included the Yale-Brown Obsessive Compulsive Scale, Obsessive Compulsive Inventory, Depression Anxiety Stress Scale and Social and Occupational Functioning Assessment Scale. Seven patients referred from four states across Australia underwent deep brain stimulation surgery and were followed for a mean of 31 months (range, 8-54 months). The sample included four females and three males, with a mean age of 46 years (range, 37-59 years) and mean duration of obsessive-compulsive disorder of 25 years (range, 15-38 years) at the time of surgery. The time from first assessment to surgery was on average 18 months. All patients showed improvement on symptom severity rating scales. Three patients showed a full response, defined as greater than 35% improvement in Yale-Brown Obsessive Compulsive Scale score, with the remaining showing responses between 7% and 20%. Deep

  2. File list: His.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  3. File list: ALL.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  4. File list: ALL.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  5. File list: His.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  6. File list: ALL.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  7. File list: ALL.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  8. File list: His.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  9. File list: His.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  10. Visual Orientation and Directional Selectivity through Thalamic Synchrony

    Science.gov (United States)

    Stanley, Garrett B.; Jin, Jianzhong; Wang, Yushi; Desbordes, Gaëlle; Wang, Qi; Black, Michael J.; Alonso, Jose-Manuel

    2012-01-01

    Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10 – 20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene. PMID:22745507

  11. Increased thalamic perfusion as a characteristic finding with brain SPECT in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Mut, F.; Beretta, M.; Nunez, M.; Zamora, R.

    2002-01-01

    Aim: Obsessive-compulsive disorder (OCD) is a relatively frequent psychiatric condition affecting most commonly young patients. Correct diagnosis and follow-up is essential in order to apply effective therapy. However, some common characteristics have been reported with brain SPECT for OCD and depression, with several brain structures belonging to the limbic system involved in both conditions: frontal cortex, cingulate gyrus, caudate nucleus, thalamus and hippocampus, among others. The aim of this study was to investigate quantitative findings of brain SPECT in OCD compared to other psychiatric conditions such as depression and dementia. Material and Methods: We studied 33 patients, 22 women, ages 39.3±10.9 years. Fifteen patients had clinical diagnosis of OCD (8 women, 21∫8 ys.), 13 of bipolar or unipolar depression (11 women, 28±15 ys.) and 5 of senile dementia (3 women, 69±10 ys). All were injected in the basal state with a standard dose of 925 MBq (25 mCi) of 99mTc-ECD. Brain SPECT was performed with a dual-head camera equipped with a high-resolution collimator using 360 0 rotation, 120 angular steps and 15 sec/step in a 64x64 matrix with 1.5 x magnification. Reconstruction of transaxial tomograms was performed using filtered backprojection with a Metz filter. Attenuation correction was applied according to Chang's method. In order to calculate uptake ratios, regions of interest (ROIs) were placed on the right and left frontal cortex (RFron, LFron), anterior or posterior cingulate gyrus (Cing) according to the site of highest uptake recorded, both caudate nucleus (RCau, LCau), thalamus (Thal) and cerebellum (cer). Results: The findings are presented. Conclusion: Cingulate gyrus hyperactivity has been reported in patients with OCD and confirmed in our series, however not significantly different from that observed in depressed patients. The only distinct finding was higher thalamic activity in OCD patients compared to the other groups, suggesting that this

  12. Effect of sevoflurane on neuronal activity during deep brain stimulation surgery for epilepsy: A case report

    OpenAIRE

    Michaël J. Bos, MD; Linda Ackermans, MD, PhD; Frédéric L.W.V.J. Schaper, MD; Rob P.W. Rouhl, MD, PhD; Vivianne H.J.M. van Kranen-Mastenbroek, MD, PhD; Wolfgang F. Buhre, MD, PhD; Marcus L.F. Janssen, MD, PhD

    2018-01-01

    Deep brain stimulation of the anterior nucleus of the thalamus is an effective treatment for patients with refractory epilepsy who do not respond sufficiently to medical therapy. Optimal therapeutic effects of deep brain stimulation probably depend on accurate positioning of the stimulating electrodes. Microelectrode recordings show bursty firing neurons in the anterior nucleus of the thalamus region, which confirms the anatomical target determined by the surgeon. Deep brain stimulation elect...

  13. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  14. An automated approach towards detecting complex behaviours in deep brain oscillations.

    Science.gov (United States)

    Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi

    2014-03-15

    Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  16. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    Science.gov (United States)

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia. Copyright © 2011 Movement Disorder Society.

  17. Reconstructing perceived faces from brain activations with deep adversarial neural decoding

    NARCIS (Netherlands)

    Güçlütürk, Y.; Güçlü, U.; Seeliger, K.; Bosch, S.E.; Lier, R.J. van; Gerven, M.A.J. van; Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R.

    2017-01-01

    Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation

  18. Twiddler's syndrome in a patient with a deep brain stimulation device for generalized dystonia

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Schweder, Patrick M; Joint, Carole

    2011-01-01

    Deep brain stimulation (DBS) is the technique of neurostimulation of deep brain structures for the treatment of conditions such as essential tremor, dystonia, Parkinson's disease and chronic pain syndromes. The procedure uses implanted deep brain stimulation electrodes connected to extension leads...... and an implantable pulse generator (IPG). Hardware failure related to the DBS procedure is not infrequent, and includes electrode migration and disconnection. We describe a patient who received bilateral globus pallidus internus DBS for dystonia with initially good clinical response, but the device eventually failed....... Radiographs showed multiple twisting of the extension leads with disconnection from the brain electrodes and a diagnosis of Twiddler's syndrome was made. Twiddler's syndrome was first described in patients with cardiac pacemakers. Patients with mental disability, elderly and obese patients are at increased...

  19. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  20. Right thalamic infarction after closed head injury

    International Nuclear Information System (INIS)

    Nagaya, Takashi; Doi, Terushige; Katsumata, Tsuguo; Kuwayama, Naoto

    1986-01-01

    We reported a case of right thalamic infarction after a closed head injury. A 12-year-old boy was hit by an autotruck. He was semi-comatose, with left temporal scalp swelling and excoriation in the left lower limb. Three days after the accident, he exhibited left hemiparesis. CT scans on the day of the accident showed no abnormality, but on the following day, right thalamic infarction appeared. Right carotid angiography showed only an irregular vascular shadow in the cisternal segment of the right internal carotid artery. Vascular obstruction after closed head injury is rare, especially in the intracranial vessels, and several pathogeneses may be postulated. The right thalamic infarction in this case was supposed to be due to the damage of the perforators from the right posterior communicating artery and the right posterior cerebral artery, which were struck as a contre-coup by the force from the left side. (author)

  1. Association of Thalamic Dysconnectivity and Conversion to Psychosis in Youth and Young Adults at Elevated Clinical Risk

    Science.gov (United States)

    Anticevic, Alan; Haut, Kristen; Murray, John D.; Repovs, Grega; Yang, Genevieve J.; Diehl, Caroline; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Tsuang, Ming T.; van Erp, Theo G. M.; Walker, Elaine F; Hamann, Stephan; Woods, Scott W; Qiu, Maolin; Cannon, Tyrone D.

    2016-01-01

    IMPORTANCE Severe neuropsychiatric conditions, such as schizophrenia, affect distributed neural computations. One candidate system profoundly altered in chronic schizophrenia involves the thalamocortical networks. It is widely acknowledged that schizophrenia is a neurodevelopmental disorder that likely affects the brain before onset of clinical symptoms. However, no investigation has tested whether thalamocortical connectivity is altered in individuals at risk for psychosis or whether this pattern is more severe in individuals who later develop full-blown illness. OBJECTIVES To determine whether baseline thalamocortical connectivity differs between individuals at clinical high risk for psychosis and healthy controls, whether this pattern is more severe in those who later convert to full-blown illness, and whether magnitude of thalamocortical dysconnectivity is associated with baseline prodromal symptom severity. DESIGN, SETTING, AND PARTICIPANTS In this multicenter, 2-year follow-up, case-control study, we examined 397 participants aged 12–35 years of age (243 individuals at clinical high risk of psychosis, of whom 21 converted to full-blown illness, and 154 healthy controls). The baseline scan dates were January 15, 2010, to April 30, 2012. MAIN OUTCOMES AND MEASURES Whole-brain thalamic functional connectivity maps were generated using individuals’ anatomically defined thalamic seeds, measured using resting-state functional connectivity magnetic resonance imaging. RESULTS Using baseline magnetic resonance images, we identified thalamocortical dysconnectivity in the 243 individuals at clinical high risk for psychosis, which was particularly pronounced in the 21 participants who converted to full-blown illness. The pattern involved widespread hypoconnectivity between the thalamus and prefrontal and cerebellar areas, which was more prominent in those who converted to full-blown illness (t173 = 3.77, P < .001, Hedge g = 0.88). Conversely, there was marked

  2. Hypertensive thalamic hematoma treated by CT stereotactic evacuation (with two cases reports)

    International Nuclear Information System (INIS)

    Wang Hongsheng; Zhu Fengqing

    2002-01-01

    Objective: To investigate new surgical method to treat hypertensive thalamic hematoma. Methods: Two medial-degree coma patients with hypertensive thalamic hematoma were treated by CT stereotactic evacuation. Results: One week after operation the two patients regained consciousness. The function of paraplegic appendage restored partly, and one patient could take care of himself. Conclusion: CT stereotactic evacuation to treat hypertensive thalamic hematoma has the advantages of small trauma, little complication and good clinical results. The authors suggest that it be selected firstly in treating hypertensive thalamic hematoma

  3. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  4. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease.

    Science.gov (United States)

    Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim

    2003-03-01

    High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.

  5. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    Science.gov (United States)

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  6. Changes of deep gray matter magnetic susceptibility over 2years in multiple sclerosis and healthy control brain

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    Full Text Available In multiple sclerosis, pathological changes of both tissue iron and myelin occur, yet these factors have not been characterized in a longitudinal fashion using the novel iron- and myelin-sensitive quantitative susceptibility mapping (QSM MRI technique. We investigated disease-relevant tissue changes associated with myelin loss and iron accumulation in multiple sclerosis deep gray matter (DGM over two years. One-hundred twenty (120 multiple sclerosis patients and 40 age- and sex-matched healthy controls were included in this prospective study. Written informed consent and local IRB approval were obtained from all participants. Clinical testing and QSM were performed both at baseline and at follow-up. Brain magnetic susceptibility was measured in major DGM structures. Temporal (baseline vs. follow-up and cross-sectional (multiple sclerosis vs. controls differences were studied using mixed factorial ANOVA analysis and appropriate t-tests. At either time-point, multiple sclerosis patients had significantly higher susceptibility in the caudate and globus pallidus and lower susceptibility in the thalamus. Over two years, susceptibility increased significantly in the caudate of both controls and multiple sclerosis patients. Inverse thalamic findings among MS patients suggest a multi-phase pathology explained by simultaneous myelin loss and/or iron accumulation followed by iron depletion and/or calcium deposition at later stages. Keywords: Quantitative susceptibility mapping, QSM, Iron, Multiple sclerosis, Longitudinal study

  7. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  8. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  9. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  10. Concussion classification via deep learning using whole-brain white matter fiber strains

    Science.gov (United States)

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury. PMID:29795640

  11. Concussion classification via deep learning using whole-brain white matter fiber strains.

    Science.gov (United States)

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang; Ji, Songbai

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828-0.862 vs. 0.690-0.776, and .632+ error of 0.148-0.176 vs. 0.207-0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury.

  12. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  13. Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice.

    Science.gov (United States)

    Hoerder-Suabedissen, Anna; Hayashi, Shuichi; Upton, Louise; Nolan, Zachary; Casas-Torremocha, Diana; Grant, Eleanor; Viswanathan, Sarada; Kanold, Patrick O; Clasca, Francisco; Kim, Yongsoo; Molnár, Zoltán

    2018-05-01

    The thalamus receives input from 3 distinct cortical layers, but input from only 2 of these has been well characterized. We therefore investigated whether the third input, derived from layer 6b, is more similar to the projections from layer 6a or layer 5. We studied the projections of a restricted population of deep layer 6 cells ("layer 6b cells") taking advantage of the transgenic mouse Tg(Drd1a-cre)FK164Gsat/Mmucd (Drd1a-Cre), that selectively expresses Cre-recombinase in a subpopulation of layer 6b neurons across the entire cortical mantle. At P8, 18% of layer 6b neurons are labeled with Drd1a-Cre::tdTomato in somatosensory cortex (SS), and some co-express known layer 6b markers. Using Cre-dependent viral tracing, we identified topographical projections to higher order thalamic nuclei. VGluT1+ synapses formed by labeled layer 6b projections were found in posterior thalamic nucleus (Po) but not in the (pre)thalamic reticular nucleus (TRN). The lack of TRN collaterals was confirmed with single-cell tracing from SS. Transmission electron microscopy comparison of terminal varicosities from layer 5 and layer 6b axons in Po showed that L6b varicosities are markedly smaller and simpler than the majority from L5. Our results suggest that L6b projections to the thalamus are distinct from both L5 and L6a projections.

  14. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-01-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  15. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  16. Anaesthetic management of a patient with deep brain stimulation implant for radical nephrectomy

    Directory of Open Access Journals (Sweden)

    Monica Khetarpal

    2014-01-01

    Full Text Available A 63-year-old man with severe Parkinson′s disease (PD who had been implanted with deep brain stimulators into both sides underwent radical nephrectomy under general anaesthesia with standard monitoring. Deep brain stimulation (DBS is an alternative and effective treatment option for severe and refractory PD and other illnesses such as essential tremor and intractable epilepsy. Anaesthesia in the patients with implanted neurostimulator requires special consideration because of the interaction between neurostimulator and the diathermy. The diathermy can damage the brain tissue at the site of electrode. There are no standard guidelines for the anaesthetic management of a patient with DBS electrode in situ posted for surgery.

  17. The Activity of Thalamic Nucleus Reuniens Is Critical for Memory Retrieval, but Not Essential for the Early Phase of "Off-Line" Consolidation

    Science.gov (United States)

    Mei, Hao; Logothetis, Nikos K.; Eschenko, Oxana

    2018-01-01

    Spatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and…

  18. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    Science.gov (United States)

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  19. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  20. Deep brain stimulation for dystonia: patient selection and outcomes

    NARCIS (Netherlands)

    Speelman, J. D.; Contarino, M. F.; Schuurman, P. R.; Tijssen, M. A. J.; de Bie, R. M. A.

    2010-01-01

    In a literature survey, 341 patients with primary and 109 with secondary dystonias treated with deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) were identified. In general, the outcomes for primary dystonias were more favourable compared to the secondary forms. For

  1. Deep brain stimulation for dystonia : Patient selection and outcomes

    NARCIS (Netherlands)

    Speelman, J. D.; Contarino, M. F.; Schuurman, P. R.; Tijssen, M. A. J.; de Bie, R. M. A.

    In a literature survey, 341 patients with primary and 109 with secondary dystonias treated with deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) were identified. In general, the outcomes for primary dystonias were more favourable compared to the secondary forms. For

  2. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    OpenAIRE

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tr...

  4. [Microsurgery assisted by intraoperative magnetic resonance imaging and neuronavigation for small lesions in deep brain].

    Science.gov (United States)

    Song, Zhi-jun; Chen, Xiao-lei; Xu, Bai-nan; Sun, Zheng-hui; Sun, Guo-chen; Zhao, Yan; Wang, Fei; Wang, Yu-bo; Zhou, Ding-biao

    2012-01-03

    To explore the practicability of resecting small lesions in deep brain by intraoperative magnetic resonance imaging (iMRI) and neuronavigator-assisted microsurgery and its clinical efficacies. A total of 42 cases with small lesions in deep brain underwent intraoperative MRI and neuronavigator-assisted microsurgery. The drifting of neuronavigation was corrected by images acquired from intraoperative MR rescanning. All lesions were successfully identified and 40 cases totally removed without mortality. Only 3 cases developed new neurological deficits post-operatively while 2 of them returned to normal neurological functions after a follow-up duration of 3 months to 2 years. The application of intraoperative MRI can effectively correct the drifting of neuronavigation and enhance the accuracy of microsurgical neuronavigation for small lesions in deep brain.

  5. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    Science.gov (United States)

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  6. Outcome After Pituitary Radiosurgery for Thalamic Pain Syndrome

    International Nuclear Information System (INIS)

    Hayashi, Motohiro; Chernov, Mikhail F.; Taira, Takaomi; Ochiai, Taku; Nakaya, Kotaro; Tamura, Noriko; Goto, Shinichi; Yomo, Shoji; Kouyama, Nobuo; Katayama, Yoko; Kawakami, Yoriko; Izawa, Masahiro; Muragaki, Yoshihiro

    2007-01-01

    Purpose: To evaluate outcomes after pituitary radiosurgery in patients with post-stroke thalamic pain syndrome. Methods and Materials: From 2002 to 2006, 24 patients with thalamic pain syndrome underwent pituitary radiosurgery at Tokyo Women's Medical University and were followed at least 12 months thereafter. The radiosurgical target was defined as the pituitary gland and its connection with the pituitary stalk. The maximum dose varied from 140 to 180 Gy. Mean follow-up after treatment was 35 months (range, 12-48 months). Results: Initial pain reduction, usually within 48 h after radiosurgery, was marked in 17 patients (71%). However, in the majority of cases the pain recurred within 6 months after treatment, and at the time of the last follow-up examination durable pain control was marked in only 5 patients (21%). Ten patients (42%) had treatment-associated side effects. Anterior pituitary abnormalities were marked in 8 cases and required hormonal replacement therapy in 3; transient diabetes insipidus was observed in 2 cases, transient hyponatremia in 1, and clinical deterioration due to increase of the numbness severity despite significant reduction of pain was seen once. Conclusions: Pituitary radiosurgery for thalamic pain results in a high rate of initial efficacy and is accompanied by acceptable morbidity. It can be used as a primary minimally invasive management option for patients with post-stroke thalamic pain resistant to medical therapy. However, in the majority of cases pain recurrence occurs within 1 year after treatment

  7. Deep brain stimulation for Tourette syndrome.

    Science.gov (United States)

    Kim, Won; Pouratian, Nader

    2014-01-01

    Gilles de la Tourette syndrome is a movement disorder characterized by repetitive stereotyped motor and phonic movements with varying degrees of psychiatric comorbidity. Deep brain stimulation (DBS) has emerged as a novel therapeutic intervention for patients with refractory Tourette syndrome. Since 1999, more than 100 patients have undergone DBS at various targets within the corticostriatothalamocortical network thought to be implicated in the underlying pathophysiology of Tourette syndrome. Future multicenter clinical trials and the use of a centralized online database to compare the results are necessary to determine the efficacy of DBS for Tourette syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor

    NARCIS (Netherlands)

    Limousin, P.; Speelman, J. D.; Gielen, F.; Janssens, M.

    1999-01-01

    Thalamic stimulation has been proposed to treat disabling tremor. The aims of this multicentre study were to evaluate the efficacy and the morbidity of thalamic stimulation in a large number of patients with parkinsonian or essential tremor. One hundred and eleven patients were included in the study

  9. Case of herpes simplex encephalitis(HSE) with a thalamic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, K; Koike, R; Yuasa, T; Miyatake, T; Ito, J

    1987-02-01

    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus.

  10. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  11. Shielded battery syndrome: a new hardware complication of deep brain stimulation.

    Science.gov (United States)

    Chelvarajah, Ramesh; Lumsden, Daniel; Kaminska, Margaret; Samuel, Michael; Hulse, Natasha; Selway, Richard P; Lin, Jean-Pierre; Ashkan, Keyoumars

    2012-01-01

    Deep brain stimulation hardware is constantly advancing. The last few years have seen the introduction of rechargeable cell technology into the implanted pulse generator design, allowing for longer battery life and fewer replacement operations. The Medtronic® system requires an additional pocket adaptor when revising a non-rechargeable battery such as their Kinetra® to their rechargeable Activa® RC. This additional hardware item can, if it migrates superficially, become an impediment to the recharging of the battery and negate the intended technological advance. To report the emergence of the 'shielded battery syndrome', which has not been previously described. We reviewed our deep brain stimulation database to identify cases of recharging difficulties reported by patients with Activa RC implanted pulse generators. Two cases of shielded battery syndrome were identified. The first required surgery to reposition the adaptor to the deep aspect of the subcutaneous pocket. In the second case, it was possible to perform external manual manipulation to restore the adaptor to its original position deep to the battery. We describe strategies to minimise the occurrence of the shielded battery syndrome and advise vigilance in all patients who experience difficulty with recharging after replacement surgery of this type for the implanted pulse generator. Copyright © 2012 S. Karger AG, Basel.

  12. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    Science.gov (United States)

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  13. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    Science.gov (United States)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  14. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy.

    Science.gov (United States)

    Barron, Daniel S; Fox, Peter T; Pardoe, Heath; Lancaster, Jack; Price, Larry R; Blackmon, Karen; Berry, Kristen; Cavazos, Jose E; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas

    2015-01-01

    Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses.

  15. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

    Directory of Open Access Journals (Sweden)

    Yuri B Saalmann

    2014-05-01

    Full Text Available The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.

  16. Hypertensive thalamic hemorrhage. Clinical symptoms and outcomes in 40 cases

    Energy Technology Data Exchange (ETDEWEB)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime

    1988-12-01

    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis.

  17. Deep-Brain Stimulation for Basal Ganglia Disorders.

    Science.gov (United States)

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  18. Me, myself my brain implant : deep brain stimulation raises quistions of personal authenticity and alienation

    NARCIS (Netherlands)

    Kraemer, U.A.F.

    2013-01-01

    In this article, I explore select case studies of Parkinson patients treated with deep brain stimulation (DBS) in light of the notions of alienation and authenticity. While the literature on DBS has so far neglected the issues of authenticity and alienation, I argue that interpreting these cases in

  19. [Obsessive-compulsive disorder, a new model of basal ganglia dysfunction? Elements from deep brain stimulation studies].

    Science.gov (United States)

    Haynes, W I A; Millet, B; Mallet, L

    2012-01-01

    Deep brain stimulation was first developed for movement disorders but is now being offered as a therapeutic alternative in severe psychiatric disorders after the failure of conventional therapies. One of such pathologies is obsessive-compulsive disorder. This disorder which associates intrusive thoughts (obsessions) and repetitive irrepressible rituals (compulsions) is characterized by a dysfunction of a cortico-subcortical loop. After having reviewed the pathophysiological evidence to show why deep brain stimulation was an interesting path to take for severe and resistant cases of obsessive-compulsive disorder, we will present the results of the different clinical trials. Finally, we will provide possible mechanisms for the effects of deep brain stimulation in this pathology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Analysis of correlation between white matter changes and functional responses in thalamic stroke: a DTI & EEG study.

    Science.gov (United States)

    Duru, Adil Deniz; Duru, Dilek Göksel; Yumerhodzha, Sami; Bebek, Nerses

    2016-06-01

    Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further, the neurophysiological tests including Benton Face Recognition (BFR), Digit Span test (DST), Warrington Topographic Memory test (WTMT

  1. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia.

    Science.gov (United States)

    Pergola, Giulio; Trizio, Silvestro; Di Carlo, Pasquale; Taurisano, Paolo; Mancini, Marina; Amoroso, Nicola; Nettis, Maria Antonietta; Andriola, Ileana; Caforio, Grazia; Popolizio, Teresa; Rampino, Antonio; Di Giorgio, Annabella; Bertolino, Alessandro; Blasi, Giuseppe

    2017-02-01

    Previous evidence suggests reduced thalamic grey matter volume (GMV) in patients with schizophrenia (SCZ). However, it is not considered an intermediate phenotype for schizophrenia, possibly because previous studies did not assess the contribution of individual thalamic nuclei and employed univariate statistics. Here, we hypothesized that multivariate statistics would reveal an association of GMV in different thalamic nuclei with familial risk for schizophrenia. We also hypothesized that accounting for the heterogeneity of thalamic GMV in healthy controls would improve the detection of subjects at familial risk for the disorder. We acquired MRI scans for 96 clinically stable SCZ, 55 non-affected siblings of patients with schizophrenia (SIB), and 249 HC. The thalamus was parceled into seven regions of interest (ROIs). After a canonical univariate analysis, we used GMV estimates of thalamic ROIs, together with total thalamic GMV and premorbid intelligence, as features in Random Forests to classify HC, SIB, and SCZ. Then, we computed a Misclassification Index for each individual and tested the improvement in SIB detection after excluding a subsample of HC misclassified as patients. Random Forests discriminated SCZ from HC (accuracy=81%) and SIB from HC (accuracy=75%). Left anteromedial thalamic volumes were significantly associated with both multivariate classifications (p<0.05). Excluding HC misclassified as SCZ improved greatly HC vs. SIB classification (Cohen's d=1.39). These findings suggest that multivariate statistics identify a familial background associated with thalamic GMV reduction in SCZ. They also suggest the relevance of inter-individual variability of GMV patterns for the discrimination of individuals at familial risk for the disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling and simulation of deep brain stimulation in Parkinson's disease

    NARCIS (Netherlands)

    Heida, Tjitske; Moroney, R.; Marani, Enrico; Usunoff, K.G.; Pereira, M.; Freire, M.

    2009-01-01

    Deep Brain Stimulation (DBS) is effective in the Parkinsonian state, while it seems to produce rather non-selective stimulation over an unknown volume of tissue. Despite a huge amount of anatomical and physiological data regarding the structure of the basal ganglia (BG) and their connections, the

  3. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms

    Directory of Open Access Journals (Sweden)

    Alexandra Clemente-Perez

    2017-06-01

    Full Text Available Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV and somatostatin (SOM expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.

  4. Analysis of deep brain stimulation electrode characteristics for neural recording

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2014-08-01

    Objective. Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. Approach. Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. Main results. Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to

  5. What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia?

    Science.gov (United States)

    Kopelman, Michael D

    2015-07-01

    In this review, the clinical, neuropsychological, and neuroimaging findings in the alcoholic Korsakoff syndrome and in thalamic amnesia, resulting from focal infarction, are compared. In both disorders, there is controversy over what is the critical site for anterograde amnesia to occur-damage to the anterior thalamus/mammillo-thalamic tract has most commonly been cited, but damage to the medio-dorsal nuclei has also been advocated. Both syndromes show 'core' features of an anterograde amnesic syndrome; but retrograde amnesia is generally much more extensive (going back many years or decades) in the Korsakoff syndrome. Likewise, spontaneous confabulation occurs more commonly in the Korsakoff syndrome, although seen in only a minority of chronic cases. These differences are attributed to the greater prevalence of frontal atrophy and frontal damage in Korsakoff cases. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. The safety of transcranial magnetic stimulation with deep brain stimulation instruments

    OpenAIRE

    Shimojima, Yoshio; Morita, Hiroshi; Nishikawa, Noriko; Kodaira, Minori; Hashimoto, Takao; Ikeda, Shu-ichi

    2010-01-01

    Objectives: Transcranial magnetic stimulation (TMS) has been employed in patients with an implanted deep brain Stimulation (DBS) device. We investigated the safety of TMS using Simulation models with an implanted DBS device. Methods: The DBS lead was inserted into plastic phantoms filled with dilute gelatin showing impedance similar to that of human brain. TMS was performed with three different types of magnetic coil. During TMS (I) electrode movement, (2) temperature change around the lead, ...

  7. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    Science.gov (United States)

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  8. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    Science.gov (United States)

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P 5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  9. A distinct boundary between the higher brain's susceptibility to ischemia and the lower brain's resistance.

    Directory of Open Access Journals (Sweden)

    C Devin Brisson

    Full Text Available Higher brain regions are more susceptible to global ischemia than the brainstem, but is there a gradual increase in vulnerability in the caudal-rostral direction or is there a discrete boundary? We examined the interface between `higher` thalamus and the hypothalamus the using live brain slices where variation in blood flow is not a factor. Whole-cell current clamp recording of 18 thalamic neurons in response to 10 min O2/glucose deprivation (OGD revealed a rapid anoxic depolarization (AD from which thalamic neurons do not recover. Newly acquired neurons could not be patched following AD, confirming significant regional thalamic injury. Coinciding with AD, light transmittance (LT imaging during whole-cell recording showed an elevated LT front that initiated in midline thalamus and that propagated into adjacent hypothalamus. However, hypothalamic neurons patched in paraventricular nucleus (PVN, n= 8 magnocellular and 12 parvocellular neurons and suprachiasmatic nucleus (SCN, n= 18 only slowly depolarized as AD passed through these regions. And with return to control aCSF, hypothalamic neurons repolarized and recovered their input resistance and action potential amplitude. Moreover, newly acquired hypothalamic neurons could be readily patched following exposure to OGD, with resting parameters similar to neurons not previously exposed to OGD. Thalamic susceptibility and hypothalamic resilience were also observed following ouabain exposure which blocks the Na(+/K(+ pump, evoking depolarization similar to OGD in all neuronal types tested. Finally, brief exposure to elevated [K(+]o caused spreading depression (SD, a milder, AD-like event only in thalamic neurons so SD generation is regionally correlated with strong AD. Therefore the thalamus-hypothalamus interface represents a discrete boundary where neuronal vulnerability to ischemia is high in thalamus (like more rostral neocortex, striatum, hippocampus. In contrast hypothalamic neurons are

  10. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson's disease.

    Science.gov (United States)

    Chen, Shengdi; Gao, Guodong; Feng, Tao; Zhang, Jianguo

    2018-01-01

    Deep Brain Stimulation (DBS) therapy for the treatment of Parkinson's Disease (PD) is now a well-established option for some patients. Postoperative standardized programming processes can improve the level of postoperative management and programming, relieve symptoms and improve quality of life. In order to improve the quality of the programming, the experts on DBS and PD in neurology and neurosurgery in China reviewed the relevant literatures and combined their own experiences and developed this expert consensus on the programming of deep brain stimulation in patients with PD in China. This Chinese expert consensus on postoperative programming can standardize and improve postoperative management and programming of DBS for PD.

  11. Neuropsychiatric Outcome of an Adolescent Who Received Deep Brain Stimulation for Tourette's Syndrome

    Directory of Open Access Journals (Sweden)

    S. J. Pullen

    2011-01-01

    Full Text Available This case study followed one adolescent patient who underwent bilateral deep brain stimulation of the centromedian parafascicular complex (CM-Pf for debilitating, treatment refractory Tourette's syndrome for a period of 1.5 years. Neurocognitive testing showed no significant changes between baseline and follow-up assessments. Psychiatric assessment revealed positive outcomes in overall adaptive functioning and reduction in psychotropic medication load in this patient. Furthermore, despite significant baseline psychiatric comorbidity, this patient reported no suicidal ideation following electrode implantation. Deep brain stimulation is increasingly being used in children and adolescents. This case reports on the positive neurologic and neuropsychiatric outcome of an adolescent male with bilateral CM-Pf stimulation.

  12. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Directory of Open Access Journals (Sweden)

    Piltz Sandra

    2011-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5 mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.

  13. From miracle to reconciliation: a hermeneutic phenomenological study exploring the experience of living with Parkinson's disease following deep brain stimulation.

    Science.gov (United States)

    Haahr, Anita; Kirkevold, Marit; Hall, Elisabeth O C; Ostergaard, Karen

    2010-10-01

    Deep Brain Stimulation for Parkinson's disease is a promising treatment for patients who can no longer be treated satisfactorily with L-dopa. Deep Brain Stimulation is known to relieve motor symptoms of Parkinson's disease and improve quality of life. Focusing on how patients experience life when treated with Deep Brain Stimulation can provide essential information on the process patients go through when receiving a treatment that alters the body and changes the illness trajectory. The aim of this study was to explore and describe the experience of living with Parkinson's disease when treated with Deep Brain Stimulation. The study was designed as a longitudinal study and data were gathered through qualitative in-depth interviews three times during the first year of treatment. Nine patients participated in the study. They were included when they had accepted treatment with Deep Brain Stimulation for Parkinson's disease. Data collection and data analysis were inspired by the hermeneutic phenomenological methodology of Van Manen. The treatment had a major impact on the body. Participants experienced great bodily changes and went through a process of adjustment in three phases during the first year of treatment with Deep Brain Stimulation. These stages were; being liberated: a kind of miracle, changes as a challenge: decline or opportunity and reconciliation: re-defining life with Parkinson's disease. The course of the process was unique for each participant, but dominant was that difficulties during the adjustment of stimulation and medication did affect the re-defining process. Patients go through a dramatic process of change following Deep Brain Stimulation. A changing body affects their entire lifeworld. Some adjust smoothly to changes while others are affected by loss of control, uncertainty and loss of everyday life as they knew it. These experiences affect the process of adjusting to life with Deep Brain Stimulation and re-define life with Parkinson's disease

  14. Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review.

    Science.gov (United States)

    Vázquez-Bourgon, Javier; Martino, Juan; Sierra Peña, María; Infante Ceberio, Jon; Martínez Martínez, M Ángeles; Ocón, Roberto; Menchón, José Manuel; Crespo Facorro, Benedicto; Vázquez-Barquero, Alfonso

    2017-07-01

    At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit. Copyright

  15. A case of herpes simplex encephalitis(HSE) with a thalamic lesion

    International Nuclear Information System (INIS)

    Fujimori, Katsuya; Koike, Ryoko; Yuasa, Tatsuhiko; Miyatake, Tadashi; Ito, Jusuke.

    1987-01-01

    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus. (author)

  16. Midline thalamic reuniens lesions improve executive behaviors.

    Science.gov (United States)

    Prasad, J A; Abela, A R; Chudasama, Y

    2017-03-14

    The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention. Published by Elsevier Ltd.

  17. Effect of Spinal Cord Stimulation on Gait in a Patient with Thalamic Pain

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available Thalamic pain is a central neuropathic pain disorder which occurs after stroke. Its severe chronic pain is often intractable to pharmacotherapies and affects the patients’ activities of daily living (ADL and quality of life (QOL. Recently, spinal cord stimulation (SCS has been reported to be effective in relieving the pain of thalamic pain; however, the effect of SCS on gait performance in patients is unknown. Therefore, we evaluated the gait performance before and after SCS in a case with thalamic pain. A 73-year-old male with thalamic pain participated in this study. We evaluated the gait of the patient two times: before SCS insertion and after 6 days of SCS. At the second evaluation, we measured the gait in three conditions: stimulation off, comfortable stimulation, and strong stimulation. SCS succeeded in improving the pain from 7 to 2 on an 11-point numerical rating scale. Step frequency and the velocity of gait tended to increase between pre- and poststimulation periods. There were no apparent differences in gait among the three stimulation conditions (off, comfortable, and strong at the poststimulation period. SCS may be effective on gait in patients with thalamic pain.

  18. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  19. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  20. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  1. Deep brain stimulation, continuity over time, and the true self

    NARCIS (Netherlands)

    Nyholm, S.R.; O'Neill, E.R.H.

    2016-01-01

    One of the topics that often comes up in ethical discussions of deep brain stimulation (DBS), is the question of what impact DBS has, or might have, on the patient’s self. This is often understood as a question of whether DBS poses a “threat” to personal identity, which is typically understood as

  2. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantification of deep medullary veins at 7 T brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kuijf, Hugo J.; Viergever, Max A.; Vincken, Koen L. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Bouvy, Willem H.; Razoux Schultz, Tom B.; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-10-15

    Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Five participants were scanned twice, to assess the robustness and reproducibility of manual and automated vein detection. Additionally, the method was evaluated on 24 participants to demonstrate its application. Deep medullary veins were assessed within an automatically created region-of-interest around the lateral ventricles, defined such that all veins must intersect it. A combination of vesselness, tubular tracking, and hysteresis thresholding located individual veins, which were quantified by counting and computing (3-D) density maps. Visual assessment was time-consuming (2 h/scan), with an intra-/inter-observer agreement on absolute vein count of ICC = 0.76 and 0.60, respectively. The automated vein detection showed excellent inter-scan reproducibility before (ICC = 0.79) and after (ICC = 0.88) visually censoring false positives. It had a positive predictive value of 71.6 %. Imaging at 7 T allows visualization and quantification of deep medullary veins. The presented method offers fast and reliable automated assessment of deep medullary veins. (orig.)

  4. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  5. Bibliometric profile of deep brain stimulation.

    Science.gov (United States)

    Hu, Kejia; Moses, Ziev B; Xu, Wendong; Williams, Ziv

    2017-10-01

    We aimed to identify and analyze the characteristics of the 100 most highly-cited papers in the research field of deep brain stimulation (DBS). The Web of Science was searched for highly-cited papers related to DBS research. The number of citations, countries, institutions of origin, year of publication, and research area were noted and analyzed. The 100 most highly-cited articles had a mean of 304.15 citations. These accrued an average of 25.39 citations a year. The most represented target by far was the subthalamic nucleus (STN). These articles were published in 46 high-impact journals, with Brain (n = 10) topping the list. These articles came from 11 countries, with the USA contributing the most highly-cited articles (n = 29); however, it was the University of Toronto (n = 13) in Canada that was the institution with the most highly-cited studies. This study identified the 100 most highly-cited studies and highlighted a historical perspective on the progress in the field of DBS. These findings allow for the recognition of the most influential reports and provide useful information that can indicate areas requiring further investigation.

  6. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson′s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wang

    2015-01-01

    Full Text Available Objective: This review examines the evidence that deep brain stimulation (DBS has extensive impact on nonmotor symptoms (NMSs of patients with Parkinson′s disease (PD. Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi, subthalamic nucleus (STN, and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  7. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study towards modelling sleep and wakefulness

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen Bhattacharya

    2014-05-01

    Full Text Available We present a preliminary study of a thalamo-cortico-thalamic (TCT implementation on SpiNNaker (Spiking Neural Network architecture, a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behaviour similar to Electroencephalogram (EEG time and power-spectra signatures in sleep-wake transition. The scale of the model is minimised for simplicity in this proof-of-concept study; thus the total number of spiking neurons is approximately 1000 and represents a `mini-column' of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG time series characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity---the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  8. Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique

    NARCIS (Netherlands)

    Contarino, M. Fiorella; Bot, Maarten; Speelman, Johannes D.; de Bie, Rob M. A.; Tijssen, Marina A.; Denys, Damiaan; Bour, Lo J.; Schuurman, P. Richard; van den Munckhof, Pepijn

    2013-01-01

    BACKGROUND: Displacement of deep brain stimulation (DBS) electrodes may occur after surgery, especially due to large subdural air collections, but other factors might contribute. OBJECTIVE: To investigate factors potentially contributing to postoperative electrode displacement, in particular,

  9. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    Science.gov (United States)

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  10. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    Science.gov (United States)

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Deep brain stimulation for cluster headache

    DEFF Research Database (Denmark)

    Grover, Patrick J; Pereira, Erlick A C; Green, Alexander L

    2009-01-01

    Cluster headache is a severely debilitating disorder that can remain unrelieved by current pharmacotherapy. Alongside ablative neurosurgical procedures, neuromodulatory treatments of deep brain stimulation (DBS) and occipital nerve simulation have emerged in the last few years as effective...... treatments for medically refractory cluster headaches. Pioneers in the field have sought to publish guidelines for neurosurgical treatment; however, only small case series with limited long-term follow-up have been published. Controversy remains over which surgical treatments are best and in which...... circumstances to intervene. Here we review current data on neurosurgical interventions for chronic cluster headache focusing upon DBS and occipital nerve stimulation, and discuss the indications for and putative mechanisms of DBS including translational insights from functional neuroimaging, diffusion weighted...

  12. CT classification of small thalamic hemorrhages. Topographic localization and clinical manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo (Hamamatsu Medical Center Hospital, Shizuoka (Japan))

    1984-06-01

    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type.

  13. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    Science.gov (United States)

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  14. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    International Nuclear Information System (INIS)

    Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens

    2017-01-01

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  15. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  16. Scientific and ethical issues related to deep brain stimulation for disorders of mood, behavior, and thought.

    Science.gov (United States)

    Rabins, Peter; Appleby, Brian S; Brandt, Jason; DeLong, Mahlon R; Dunn, Laura B; Gabriëls, Loes; Greenberg, Benjamin D; Haber, Suzanne N; Holtzheimer, Paul E; Mari, Zoltan; Mayberg, Helen S; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E; Vawter, Dorothy E; Vitek, Jerrold L; Walkup, John; Mathews, Debra J H

    2009-09-01

    A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.

  17. Effects of donepezil on behavioural manifestations of thalamic infarction: a single case observation

    Directory of Open Access Journals (Sweden)

    Rodrigo eRiveros

    2011-03-01

    Full Text Available Objective: To examine the effect of donepezil for the treatment of cognitive and behavioural disorders associated with thalamic lesions in a 45 years old male who suffered an infarct in the left thalamus. Background: Recent studies suggest that donepezil may improve executive functions impairments due to subcortical ischemic lesionsMethod: The crossover effects of donepezil were analyzed in a single case of thalamic infarction with cognitive and behavioural alterations. Results: Significant behavioural modifications related to improved performances in executive functions were observed with the treatment. Conclusions: The results suggest that donepezil may have significant effect on executive functions that can alter behavioural outcomes after thalamic infarctions

  18. Nucleus accumbens deep brain stimulation as treatment option for binge eating disorder?

    NARCIS (Netherlands)

    Lok, R.; Verhagen, M.; Staal, L.; Van Dijk, J.; Van Beek, A.; Temel, Y.; Jahanshahi, A.; Staal, M.; Van Dijk, G.

    2014-01-01

    Introduction: Binge eating disorder (BED) has been postulated to arise from mesolimbic dopaminergic system changes, presumably homologous to those seen in drug addiction. Deep Brain Stimulation (DBS) is regarded as a relatively novel but promising surgical treatment of addiction. Because of

  19. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    NARCIS (Netherlands)

    Plantinga, B.R.; Temel, Y.; Roebroeck, A.; Uludag, K.; Ivanov, D.; Kuijf, M.L.; ter Haar Romeny, B.M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target

  20. An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Hayashi, Yuichi; Iwasaki, Yasushi; Takekoshi, Akira; Yoshikura, Nobuaki; Asano, Takahiko; Mimuro, Maya; Kimura, Akio; Satoh, Katsuya; Kitamoto, Tetsuyuki; Yoshida, Mari; Inuzuka, Takashi

    2016-11-01

    Here we report an autopsy-verified case of frontotemporal lobar degeneration (FTLD)-transactivation responsive region (TAR) DNA binding protein (TDP) type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD). A 69-year-old woman presented with an 11-month history of progressive dementia, irritability, insomnia, and gait disturbance without a family history of dementia or prion disease. Neurological examination revealed severe dementia, frontal signs, and exaggerated bilateral tendon reflexes. Periodic sharp-wave complexes were not observed on the electroencephalogram. Brain diffusion MRI did not reveal abnormal changes. An easy Z score (eZIS) analysis for 99m Tc-ECD-single photon emission computed tomography ( 99m Tc-ECD-SPECT) revealed a bilateral decrease in thalamic regional cerebral blood flow (rCBF). PRNP gene analysis demonstrated methionine homozygosity at codon 129 without mutation. Cerebrospinal fluid (CSF) analysis showed normal levels of both 14-3-3 and total tau proteins. Conversely, prion protein was slowly amplified in the CSF by a real-time quaking-induced conversion assay. Her symptoms deteriorated to a state of akinetic mutism, and she died of sudden cardiac arrest, one year after symptom onset.  Despite the SPECT results supporting a clinical diagnosis of MM2-thalamic-type sCJD, a postmortem assessment revealed that this was a case of FTLD-TDP type A, and excluded prion disease. Thus, this case indicates that whereas a bilateral decreasing thalamic rCBF detected by 99m Tc-ECD-SPECT can be useful for diagnosing MM2-thalamic-type sCJD, it is not sufficiently specific. Postmortem diagnosis remains the gold standard for the diagnosis of this condition.

  1. Frontotemporal dementia with severe thalamic involvement : a clinical and neuropathological study

    Directory of Open Access Journals (Sweden)

    Radanovic Márcia

    2003-01-01

    Full Text Available Frontotemporal dementia (FTD is the third-leading cause of cortical dementia after Alzheimer's disease and Lewy body dementia, and is characterized by a dementia where behavioral disturbances are prominent and appear early in the course of the disease. We report the case of a 58 year-old man affected by dementia with behavioral disturbances, in addition to rigid-hypokinetic and a lower motor neuron syndrome that were present at later stages of the illness. Neuroimaging studies showed frontotemporal atrophy. Neuropathological studies revealed intense thalamic neuronal loss and astrocytic gliosis, as well as moderate frontotemporal neuronal loss, astrocytosis and spongiform degeneration. Thalamic degeneration has previously been described among the wide group of neuropathological features of FTD. The aim of the present study is to show the clinical and neuropathological aspects of thalamic degeneration in FTD, along with its role in behavioral disturbances, a common finding in this condition.

  2. Dissociation of Recognition and Recency Memory Judgments After Anterior Thalamic Nuclei Lesions in Rats

    Science.gov (United States)

    Dumont, Julie R.; Aggleton, John P.

    2013-01-01

    The anterior thalamic nuclei form part of a network for episodic memory in humans. The importance of these nuclei for recognition and recency judgments remains, however, unclear. Rats with anterior thalamic nuclei lesions and their controls were tested on object recognition, along with two types of recency judgment. The spontaneous discrimination of a novel object or a novel odor from a familiar counterpart (recognition memory) was not affected by anterior thalamic lesions when tested after retention delays of 1 and 60 min. To measure recency memory, rats were shown two familiar objects, one of which had been explored more recently. In one condition, rats were presented with two lists (List A, List B) of objects separated by a delay, thereby creating two distinct blocks of stimuli. After an additional delay, rats were presented with pairs of objects, one from List A and one from List B (between-block recency). No lesion-induced deficit was apparent for recency discriminations between objects from different lists, despite using three different levels of task difficulty. In contrast, rats with anterior thalamic lesions were significantly impaired when presented with a continuous list of objects and then tested on their ability to distinguish between those items early and late in the same list (within-block recency). The contrasting effects on recognition and recency support the notion that interlinked hippocampal–anterior thalamic interconnections support aspects of both spatial and nonspatial learning, although the role of the anterior thalamic nuclei may be restricted to a subclass of recency judgments (within-block). PMID:23731076

  3. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  4. The application of deep brain stimulation in the treatment of psychiatric disorders

    NARCIS (Netherlands)

    Graat, Ilse; Figee, Martijn; Denys, D.

    2017-01-01

    Deep brain stimulation (DBS) is a last-resort treatment for neurological and psychiatric disorders that are refractory to standard treatment. Over the last decades, the progress of DBS in psychiatry has been slower than in neurology, in part owing to the heterogenic symptomatology and complex

  5. Psychiatric and social outcome after deep brain stimulation for advanced Parkinson's disease

    NARCIS (Netherlands)

    Boel, J.A.; Odekerken, V.J.J.; Geurtsen, G.J.; Schmand, B.A.; Cath, D.C.; Figee, M.; van den Munckhof, P.; de Haan, R.J.; Schuurman, P.R.; de Bie, R.M.A.

    BACKGROUND: The aim of this study was to assess psychiatric and social outcome 12 months after bilateral deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) for advanced Parkinson's disease (PD). METHODS: We randomly assigned patients to receive GPi

  6. Psychiatric and social outcome after deep brain stimulation for advanced Parkinson's disease

    NARCIS (Netherlands)

    Boel, Judith A; Odekerken, Vincent J J; Geurtsen, Gert J; Schmand, Ben A; Cath, Danielle C; Figee, Martijn; van den Munckhof, Pepijn; de Haan, Rob J; Schuurman, P Richard; de Bie, Rob M A

    2016-01-01

    BACKGROUND: The aim of this study was to assess psychiatric and social outcome 12 months after bilateral deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) for advanced Parkinson's disease (PD). METHODS: We randomly assigned patients to receive GPi

  7. Subthalamic Nucleus Deep Brain Stimulation Alters Prefrontal Correlates of Emotion Induction.

    Science.gov (United States)

    Bick, Sarah K B; Folley, Bradley S; Mayer, Jutta S; Park, Sohee; Charles, P David; Camalier, Corrie R; Pallavaram, Srivatsan; Konrad, Peter E; Neimat, Joseph S

    2017-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in advanced Parkinson's disease. STN DBS may also affect emotion, possibly by impacting a parallel limbic cortico-striatal circuit. The objective of this study was to investigate changes in prefrontal cortical activity related to DBS during an emotion induction task. We used near infrared spectroscopy to monitor prefrontal cortex hemodynamic changes during an emotion induction task. Seven DBS patients were tested sequentially in the stimulation-on and stimulation-off states while on dopaminergic medication. Patients watched a series of positive, negative, and neutral videos. The general linear model was used to compare prefrontal oxygenated hemoglobin concentration between DBS states. Deep brain stimulation was correlated with prefrontal oxygenated hemoglobin changes relative to the stimulation off state in response to both positive and negative videos. These changes were specific to emotional stimuli and were not seen during neutral stimuli. These results suggest that STN stimulation influences the prefrontal cortical representation of positive and negative emotion induction. © 2016 International Neuromodulation Society.

  8. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  9. Comparison of Tc-99m ECD brain SPECT between patients with delayed development and cerebral palsy

    International Nuclear Information System (INIS)

    Cho, I.; Chun, K.; Won, K.; Lee, H.; Jang, S.; Lee, J.

    2002-01-01

    Purpose: In previous study, thalamic or cerebellar hypoperfusion were reported in patients with cerebral palsy. This study was performed to evaluate cerebral perfusion abnormalities using Tc-99m ECD brain SPECT in patients with delayed motor development. Methods: Nineteen patients (9 boys, 10 girls, mean age 25.5 months) with delayed development underwent brain SPECT after injection of 185∼370 MBq of Tc-99m ECD. The imaging was obtained between 30 minutes and 1hr after injection. The patients were divided clinically as follows, patients with delayed development (n=5) and patients with cerebral palsy (n=14) who has delayed development and abnormal movement. The clinical subtypes of cerebral palsy were spastic quadriplegia (n=5), spastic diplegia (n=6) and spastic hemiplegia (n=3). In each group, decrease of cerebral perfusion was evaluated visually as mild, moderate and severe and quantitation of cerebral perfusion after Lassen's correction was also obtained. Results: SPECT findings showed normal or mildly decreased thalamic perfusion in patients with delayed development and severe decrease of thalamic or cerebellar perfusion in patients with spastic quadriplegia. In patients with spastic diplegia, mild decrease of perfusion was observed in thalamus. In quantified data, thalamic perfusion was lowest in patients with spastic quadriplegia and highest in patients with delayed development, but there were no statistically significant differences. Conclusion: Brain SPECT with Tc-99m ECD has a role in the detection of perfusion abnormalities in patients with delayed development and cerebral palsy

  10. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients.

    Science.gov (United States)

    Chudy, Darko; Deletis, Vedran; Almahariq, Fadi; Marčinković, Petar; Škrlin, Jasenka; Paradžik, Veronika

    2018-04-01

    OBJECTIVE An effective treatment of patients in a minimally conscious state (MCS) or vegetative state (VS) caused by hypoxic encephalopathy or traumatic brain injury (TBI) is not yet available. Deep brain stimulation (DBS) of the thalamic reticular nuclei has been attempted as a therapeutic procedure mainly in patients with TBI. The purpose of this study was to investigate the therapeutic use of DBS for patients in VS or MCS. METHODS Fourteen of 49 patients in VS or MCS qualified for inclusion in this study and underwent DBS. Of these 14 patients, 4 were in MCS and 10 were in VS. The etiology of VS or MCS was TBI in 4 cases and hypoxic encephalopathy due to cardiac arrest in 10. The selection criteria for DBS, evaluating the status of the cerebral cortex and thalamocortical reticular formation, included: neurological evaluation, electrophysiological evaluation, and the results of positron emission tomography (PET) and MRI examinations. The target for DBS was the centromedian-parafascicular (CM-pf) complex. The duration of follow-up ranged from 38 to 60 months. RESULTS Two MCS patients regained consciousness and regained their ability to walk, speak fluently, and live independently. One MCS patient reached the level of consciousness, but was still in a wheelchair at the time the article was written. One VS patient (who had suffered a cerebral ischemic lesion) improved to the level of consciousness and currently responds to simple commands. Three VS patients died of respiratory infection, sepsis, or cerebrovascular insult (1 of each). The other 7 patients remained without substantial improvement of consciousness. CONCLUSIONS Spontaneous recovery from MCS/VS to the level of consciousness with no or minimal need for assistance in everyday life is very rare. Therefore, if a patient in VS or MCS fulfills the selection criteria (presence of somatosensory evoked potentials from upper extremities, motor and brainstem auditory evoked potentials, with cerebral glucose

  11. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  12. Rest and action tremor in Parkinson's disease: effects of Deep Brain Stimulation

    NARCIS (Netherlands)

    Heida, Tjitske; Wentink, E.C.

    2010-01-01

    One of the cardinal symptoms of Parkinson’s disease is rest tremor. While rest tremor generally disappears during sleep and voluntary movement, action tremor may be triggered by voluntary movement, and may even be more disabling than rest tremor. Deep brain stimulation (DBS) in the subthalamic

  13. Psychiatric and social outcome after deep brain stimulation for advanced Parkinson's disease

    NARCIS (Netherlands)

    Boel, Judith A.; Odekerken, Vincent J. J.; Geurtsen, Gert J.; Schmand, Ben A.; Cath, Danielle C.; Figee, Martijn; van den Munckhof, Pepijn; de Haan, Rob J.; Schuurman, P. Richard; de Bie, Rob M. A.; van Dijk, J. Marc C.; Staal, Michael

    BackgroundThe aim of this study was to assess psychiatric and social outcome 12 months after bilateral deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) for advanced Parkinson's disease (PD). MethodsWe randomly assigned patients to receive GPi DBS

  14. The yearly rate of Relative Thalamic Atrophy (yrRTA: a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Manuel eMenéndez-González

    2014-08-01

    Full Text Available Despite a strong correlation to outcome, the measurement of gray matter (GM atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS. This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meaning of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy (TA with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the yearly rate of Relative Thalamic Atrophy (yrRTA. In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  15. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    Science.gov (United States)

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  16. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  17. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  18. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  19. Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms

    Directory of Open Access Journals (Sweden)

    Stuart eHughes

    2011-08-01

    Full Text Available Although EEG alpha ( (8-13 Hz rhythms are often considered to reflect an ‘idling’ brain state, numerous studies indicate that they are also related to many aspects of perception. Recently, we outlined a potential cellular substrate by which such aspects of perception might be linked to basic  rhythm mechanisms. This scheme relies on a specialized subset of rhythmically bursting thalamocortical (TC neurons (high-threshold bursting cells in the lateral geniculate nucleus (LGN which are interconnected by gap junctions (GJs. By engaging GABAergic interneurons, that in turn inhibit conventional relay-mode TC neurons, these cells can lead to an effective temporal framing of thalamic relay-mode output. Although the role of GJs is pivotal in this scheme, evidence for their involvement in thalamic  rhythms has thus far mainly derived from experiments in in vitro slice preparations. In addition, direct anatomical evidence of neuronal GJs in the LGN is currently lacking. To address the first of these issues we tested the effects of the GJ inhibitors, carbenoxolone (CBX and 18-glycyrrhetinic acid (18-GA, given directly to the LGN via reverse microdialysis, on spontaneous LGN and EEG  rhythms in behaving cats. We also examined the effect of CBX on  rhythm-related LGN unit activity. Indicative of a role for thalamic GJs in these activities, 18-GA and CBX reversibly suppressed both LGN and EEG  rhythms, with CBX also decreasing neuronal synchrony. To address the second point, we used electron microscopy to obtain definitive ultrastructural evidence for the presence of GJs between neurons in the cat LGN. As interneurons show no phenotypic evidence of GJ coupling (i.e. dye-coupling and spikelets we conclude that these GJs must belong to TC neurons. The potential significance of these findings for relating macroscopic changes in  rhythms to basic cellular processes is discussed.

  20. Adaptive deep brain stimulation in advanced Parkinson disease.

    Science.gov (United States)

    Little, Simon; Pogosyan, Alex; Neal, Spencer; Zavala, Baltazar; Zrinzo, Ludvic; Hariz, Marwan; Foltynie, Thomas; Limousin, Patricia; Ashkan, Keyoumars; FitzGerald, James; Green, Alexander L; Aziz, Tipu Z; Brown, Peter

    2013-09-01

    Brain-computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p random intermittent stimulation. BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Copyright © 2013 American Neurological Association.

  1. Psychiatric and social outcome after deep brain stimulation for advanced Parkinson's disease

    NARCIS (Netherlands)

    Boel, Judith A.; Odekerken, Vincent J. J.; Geurtsen, Gert J.; Schmand, Ben A.; Cath, Danielle C.; Figee, Martijn; van den Munckhof, Pepijn; de Haan, Rob J.; Schuurman, P. Richard; de Bie, Rob M. A.; van Laar, Teus; van Dijk, J. Marc C.; Mosch, Arne; Hoffmann, Carel F. E.; Nijssen, Peter C. G.; Beute, Guus N.; van Vugt, Jeroen P. P.; Lenders, Mathieu W. P. M.; Contarino, M. Fiorella; Bour, Lo J.

    2016-01-01

    The aim of this study was to assess psychiatric and social outcome 12 months after bilateral deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) for advanced Parkinson's disease (PD). We randomly assigned patients to receive GPi DBS (n = 65) or STN

  2. The nature of tremor circuits in parkinsonian and essential tremor

    Science.gov (United States)

    Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2014-01-01

    Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that

  3. Comparison of brain and spinal cord magnetic resonance imaging features in neuromyelitis optica spectrum disorders patients with or without aquaporin-4 antibody.

    Science.gov (United States)

    Fan, Moli; Fu, Ying; Su, Lei; Shen, Yi; Wood, Kristofer; Yang, Li; Liu, Yaou; Shi, Fu-Dong

    2017-04-01

    The spinal cord and brain measurements are rarely investigated in neuromyelitis optica (NMO) patients with and without antibodies to aquaporin-4 (AQP4), directly compared to multiple sclerosis (MS) patients. To investigate magnetic resonance imaging (MRI) features of both brain and spinal cord in NMO patients with and without antibodies to AQP4, compared with MS patients and healthy controls (HC). We recruited 55 NMO including 30 AQP4 (+) and 25 AQP4 (-), 25 MS and 25 HC. Brain and spinal cord MRIs were obtained for each participant. Brain lesions (BL), whole brain and deep grey matter volumes (DGMV), white matter diffusion metrics and spinal cord lesions were measured and compared among groups. The incidence of BL was lower in the AQP4 (+) group than in the AQP4 (-) and MS groups (p<0.05). In the AQP4 (+) group, there was a lower incidence of infratentorial lesions (ITL) and higher spinal cord lesions length than in the MS group (p<0.05). The thalamic and hippocampal volumes were smaller in the AQP4 (-) group and MS group than in the HC group (p<0.05). The NMO patients with AQP4 (-) showed higher prevalence of BL, ITL, and similar spinal cord lesion length, compared to AQP4 (+), and demonstrated deep grey matter atrophy, suggesting an intermediate phenotype between that of typical MS and NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Distinct molecular components for thalamic- and cortical-dependent plasticity in the lateral amygdala.

    Science.gov (United States)

    Mirante, Osvaldo; Brandalise, Federico; Bohacek, Johannes; Mansuy, Isabelle M

    2014-01-01

    N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the lateral nucleus of the amygdala (LA) is a form of synaptic plasticity thought to be a cellular substrate for the extinction of fear memory. The LA receives converging inputs from the sensory thalamus and neocortex that are weakened following fear extinction. Combining field and patch-clamp electrophysiological recordings in mice, we show that paired-pulse low-frequency stimulation can induce a robust LTD at thalamic and cortical inputs to LA, and we identify different underlying molecular components at these pathways. We show that while LTD depends on NMDARs and activation of the protein phosphatases PP2B and PP1 at both pathways, it requires NR2B-containing NMDARs at the thalamic pathway, but NR2C/D-containing NMDARs at the cortical pathway. LTD appears to be induced post-synaptically at the thalamic input but presynaptically at the cortical input, since post-synaptic calcium chelation and NMDAR blockade prevent thalamic but not cortical LTD. These results highlight distinct molecular features of LTD in LA that may be relevant for traumatic memory and its erasure, and for pathologies such as post-traumatic stress disorder (PTSD).

  5. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.

    Science.gov (United States)

    Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe

    2018-04-01

    Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    International Nuclear Information System (INIS)

    Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-01-01

    The learned helplessness paradigm has been repeatedly shown to correlate with neurobiological aspects of depression in humans. In this model, rodents are exposed inescapable foot-shock in order to reveal susceptibility to escape deficit, defined as 'learned helplessness' (LH). Few methods are available to probe the neurobiological aspects underlying the differences in susceptibility in the living animal, thus far being limited to studies examining regional neurochemical changes with microdialysis. With the widespread implementation of small animal neuroimaging methods, including positron emission tomography (PET), it is now possible to explore the living brain on a systems level to define regional changes that may correlate with vulnerability to stress. In this study, 12 wild type Sprague-Dawley rats were exposed to 40 minutes of inescapable foot-shock followed by metabolic imaging using 2-deoxy-2[ 18 F]fluoro-D-glucose (18-FDG) 1 hour later. The escape test was performed on these rats 48 hours later (to accommodate radiotracer decay), where they were given the opportunity to press a lever to shut off the shock. A region of interest (ROI) analysis was used to investigate potential correlations (Pearson Regression Coefficients) between regional 18-FDG uptake following inescapable shock and subsequent learned helpless behavior (time to finish the test; number of successful lever presses within 20 seconds of shock onset). ROI analysis revealed a significant positive correlation between time to finish and 18-FDG uptake, and a negative correlation between lever presses and uptake, in the medial thalamic area (p=0.033, p=0.036). This ROI included the paraventricular thalamus, mediodorsal thalamus, and the habenula. In an effort to account for possible spillover artifact, the posterior thalamic area (including ventral medial and lateral portions) was also evaluated but did not reveal significant correlations (p=0.870, p=0.897). No other significant correlations were found

  7. Accelerated forgetting of contextual details due to focal medio-dorsal thalamic lesion

    Directory of Open Access Journals (Sweden)

    Sicong eTu

    2014-09-01

    Full Text Available Effects of thalamic nuclei damage and related white matter tracts on memory performance are still debated. This is particularly evident for the medio-dorsal thalamus which has been less clear in predicting amnesia than anterior thalamus changes. The current study addresses this issue by assessing 7 thalamic stroke patients with consistent unilateral lesions focal to the left medio-dorsal nuclei for immediate and delayed memory performance on standard visual and verbal tests of anterograde memory, and over the long-term (> 24 hrs on an object-location associative memory task. Thalamic patients showed selective impairment to delayed recall, but intact recognition memory. Patients also showed accelerated forgetting of contextual information after a 24 hour delay, compared to controls. Importantly, the mammillothalamic tract was intact in all patients, which suggests a role for the medio-dorsal nuclei in recall and early consolidation memory processes.

  8. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases.

    Science.gov (United States)

    Franzini, Angelo; Cordella, Roberto; Messina, Giuseppe; Marras, Carlo Efisio; Romito, Luigi Michele; Albanese, Alberto; Rizzi, Michele; Nardocci, Nardo; Zorzi, Giovanna; Zekaj, Edvin; Villani, Flavio; Leone, Massimo; Gambini, Orsola; Broggi, Giovanni

    2012-12-01

    Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.

  9. The effect of deep brain stimulation on the speech motor system.

    Science.gov (United States)

    Mücke, Doris; Becker, Johannes; Barbe, Michael T; Meister, Ingo; Liebhart, Lena; Roettger, Timo B; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-08-01

    Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the coordination of oral and glottal articulation. Sixteen native-speaking German adults with essential tremor, between 26 and 86 years old, with and without chronic deep brain stimulation of the nucleus ventralis intermedius and 12 healthy, age-matched subjects were recorded performing a fast syllable repetition task (/papapa/, /tatata/, /kakaka/). Syllable duration and voicing-to-syllable ratio as well as parameters related directly to consonant production, voicing during constriction, and frication during constriction were measured. Voicing during constriction was greater in subjects with essential tremor than in controls, indicating a perseveration of voicing into the voiceless consonant. Stimulation led to fewer voiceless intervals (voicing-to-syllable ratio), indicating a reduced degree of glottal abduction during the entire syllable cycle. Stimulation also induced incomplete oral closures (frication during constriction), indicating imprecise oral articulation. The detrimental effect of stimulation on the speech motor system can be quantified using acoustic measures at the subsyllabic level.

  10. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    Directory of Open Access Journals (Sweden)

    Alesch François

    2003-05-01

    Full Text Available Abstract Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz and 10 different 1800 MHz GSM (Global System for Mobile Communications mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant.

  11. Tourette syndrome deep brain stimulation: a review and updated recommendations.

    Science.gov (United States)

    Schrock, Lauren E; Mink, Jonathan W; Woods, Douglas W; Porta, Mauro; Servello, Dominico; Visser-Vandewalle, Veerle; Silburn, Peter A; Foltynie, Thomas; Walker, Harrison C; Shahed-Jimenez, Joohi; Savica, Rodolfo; Klassen, Bryan T; Machado, Andre G; Foote, Kelly D; Zhang, Jian-Guo; Hu, Wei; Ackermans, Linda; Temel, Yasin; Mari, Zoltan; Changizi, Barbara K; Lozano, Andres; Auyeung, M; Kaido, Takanobu; Agid, Yves; Welter, Marie L; Khandhar, Suketu M; Mogilner, Alon Y; Pourfar, Michael H; Walter, Benjamin L; Juncos, Jorge L; Gross, Robert E; Kuhn, Jens; Leckman, James F; Neimat, Joseph A; Okun, Michael S

    2015-04-01

    Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients. © 2014 International Parkinson and Movement Disorder Society.

  12. Distinct molecular components for thalamic- and cortical-dependent plasticity in the lateral amygdala

    Directory of Open Access Journals (Sweden)

    Osvaldo eMirante

    2014-07-01

    Full Text Available N-methyl-D-aspartate receptor (NMDAR-dependent long-term depression (LTD in the lateral nucleus of the amygdala (LA is a form of synaptic plasticity thought to be a cellular substrate for the extinction of fear memory. The LA receives converging inputs from the sensory thalamus and neocortex that are weakened following fear extinction. Combining field and patch-clamp electrophysiological recordings in mice, we show that a paired-pulse low-frequency stimulation can induce a robust LTD at thalamic and cortical inputs to LA, and we identify different underlying molecular components at these pathways. We show that while LTD depends on NMDARs and activation of the protein phosphatases PP2B and PP1 at both pathways, it requires NR2B-containing NMDARs at the thalamic pathway, but NR2C/D-containing NMDARs at the cortical pathway. LTD appears to be induced postsynaptically at the thalamic input but presynaptically at the cortical input, since postsynaptic calcium chelation and NMDAR blockade prevent thalamic but not cortical LTD. These results highlight distinct molecular features of LTD in LA that may be relevant for traumatic memory and its erasure, and for pathologies such as post-traumatic stress disorder (PTSD.

  13. 'Being in it together': living with a partner receiving deep brain stimulation for advanced Parkinson's disease--a hermeneutic phenomenological study.

    Science.gov (United States)

    Haahr, Anita; Kirkevold, Marit; Hall, Elisabeth O C; Østergaard, Karen

    2013-02-01

    This article is a report of an exploration of the lived experience of being a spouse to a person living with advanced Parkinson's disease, before and during the first year of deep brain stimulation. Parkinson's disease is a chronic progressive neurodegenerative disease. It has a profound impact on the everyday life for patients and spouses. Deep brain stimulation is offered with the aim of reducing symptoms of Parkinson's disease. The treatment is known to improve quality of life for patients, but little is known of how spouses experience life following their partners' treatment. A longitudinal interview study with a hermeneutic phenomenological approach. Ten spouses were included in the study. Data were gathered in 2007-2008, through qualitative in-depth interviews with spouses once before and three times during the first year of their partners' treatment with Deep Brain Stimulation. Data collection and data analysis were influenced by the hermeneutic phenomenological methodology of van Manen. The uniting theme 'Solidarity - the base for joined responsibility and concern' was the foundation for the relationship between spouses and their partners. Before treatment, the theme 'Living in partnership' was dominant. After treatment two dichotomous courses were described 'A sense of freedom embracing life' and 'The challenge of changes and constraint'. Spouses are deeply involved in their partners' illness and their experience of life is highly affected by their partners' illness, both before and after deep brain stimulation. The relationship is founded on solidarity and responsibility, which emphasizes spouses' need to be informed and involved in the process following Deep Brain Stimulation. © 2012 Blackwell Publishing Ltd.

  14. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Science.gov (United States)

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  15. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Casseb, R.F.; Castellano, G.; Ruocco, H.H.

    2013-01-01

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  16. Decoding thalamic afferent input using microcircuit spiking activity.

    Science.gov (United States)

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  17. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    Science.gov (United States)

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  18. Improvement of both dystonia and tics with 60 Hz pallidal deep brain stimulation.

    Science.gov (United States)

    Hwynn, Nelson; Tagliati, Michele; Alterman, Ron L; Limotai, Natlada; Zeilman, Pamela; Malaty, Irene A; Foote, Kelly D; Morishita, Takashi; Okun, Michael S

    2012-09-01

    Deep brain stimulation has been utilized in both dystonia and in medication refractory Tourette syndrome. We present an interesting case of a patient with a mixture of disabling dystonia and Tourette syndrome whose coexistent dystonia and tics were successfully treated with 60 Hz-stimulation of the globus pallidus region.

  19. A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients.

    Science.gov (United States)

    Zheng, Xuan; Xu, Xinghua; Zhang, Hui; Wang, Qun; Ma, Xiaodong; Chen, Xiaolei; Sun, Guochen; Zhang, Jiashu; Jiang, Jinli; Xu, Bainan; Zhang, Jun

    2016-05-01

    Thalamic gliomas are rare tumors that constitute 1%-5% of all central nervous system tumors. Despite advanced techniques and equipment, surgical resection remains challenging because of the vital structures adjacent to the tumor. Intraoperative magnetic resonance imaging (MRI) might play an active role during brain tumor surgery because it compensates for brain shift or operation-induced hemorrhage, which are challenging issues for neurosurgeons. We reviewed 38 patients treated surgically under intraoperative MRI guidance between January 2008 and July 2015 at our center. Preoperative, intraoperative, and postoperative MRI scans were reviewed. Preoperative and postoperative motor power, morbidity and mortality, resection rate, surgical approach, pathologic results, and patient demographics were also reviewed. Mean patient age was 37 years ± 18; 12 patients were included in the low-grade group, and 26 patients were included in the high-grade group. Under intraoperative MRI guidance, the gross total resection rate was increased from 16 (42.1%) to 26 (68.4%), and the near-total or subtotal resection rate was increased from 5 (13.2%) to 9 (23.7%). Hematoma formation was discovered in 3 patients on intraoperative MRI scan; each patient underwent a hemostatic operation immediately. With improvements in neurosurgical techniques and equipment, surgical resection is considered feasible in patients with thalamic gliomas. Intraoperative MRI may be helpful in achieving the maximal resection rate with minimal surgical-related morbidity. However, because of severe disease progression, the overall prognosis is unfavorable. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Neonatal thalamic hemorrhage is strongly associated with electrical status epilepticus in slow wave sleep.

    Science.gov (United States)

    Kersbergen, Karina J; de Vries, Linda S; Leijten, Frans S S; Braun, Kees P J; Nievelstein, Rutger A J; Groenendaal, Floris; Benders, Manon J N L; Jansen, Floor E

    2013-04-01

    Thalamic hemorrhage has been associated with neonatal cerebral sinovenous thrombosis (CSVT), especially when the straight sinus is involved, and often presents with neonatal seizures. Early thalamic injury has previously been shown to predispose to epilepsy and electrical status epilepticus in slow wave sleep (ESES). The objective of this study was to assess the prevalence of sleep-induced epileptic electroencephalography (EEG) abnormalities and postneonatal epilepsy after neonatal thalamic hemorrhage associated with CSVT, in the absence of more widespread cerebral damage. Between 2003 and 2008 15 neonates were diagnosed with a thalamic hemorrhage due to suspected or proven CSVT. Neurodevelopment and the history of seizures were assessed at follow-up in the outpatient clinic in all 14 survivors (age 2-9 years). Whole-night or sleep-deprived EEG recordings were obtained to assess the prevalence of interictal epileptiform activity (EA) and calculate a sleep-induced spike and wave index (SWI). Three children were diagnosed with classic ESES (SWI >85%). Two children had ESES spectrum disorder (SWI between 50% and 85%), and in two children significant sleep-induced epileptiform activity (SIEA) was noted (SWI between 25% and 50%). Two other children were diagnosed with focal epilepsy, in the absence of sleep-induced epileptiform EEG abnormalities. Five children (age 2-7 years) had normal EEG recordings at follow-up. Deficits in neurodevelopment were seen significantly more often in children with ESES, ESES spectrum, or SIEA. Neonates with thalamic hemorrhage associated with straight sinus thrombosis, without evidence of more widespread cerebral damage, are at high risk of developing ESES (spectrum) disorder (35%), SIEA (14%), or focal epilepsy (14%). Electrographic abnormalities may already be present prior to recognition of cognitive deficits. Early diagnosis may guide parents and caregivers, and subsequent treatment may improve neurodevelopmental outcome. Routine

  1. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Ciampi de Andrade, Daniel; Lefaucheur, Jean-Pascal; Galhardoni, Ricardo; Ferreira, Karine S L; Brandão Paiva, Anderson Rodrigues; Bor-Seng-Shu, Edson; Alvarenga, Luciana; Myczkowski, Martin L; Marcolin, Marco Antonio; de Siqueira, Silvia R D T; Fonoff, Erich; Barbosa, Egberto Reis; Teixeira, Manoel Jacobsen

    2012-05-01

    The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P=.019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Evaluation of deep brain stimulation for Parkinson's disease by using FDG PET

    International Nuclear Information System (INIS)

    Guan, Y.H.; Zuo, C.T.; Zhao, J.; Lin, X.T.; Sun, B.M.

    2002-01-01

    Objective: Patients are effectively treated with medication in their initial phases of Parkinson's disease. However, the drugs become less effective and the adverse effects revealed. Recent years, the chronic deep brain stimulation is becoming an important treatment for patients with patients with Parkinson's disease. It has shown that the Parkinson's state is characterized by pathological neural activity in the motor system including the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN). The chronic deep brain stimulation can make benefits in the patients by intermediate the pathological neural activity. It needs an external method to evaluate the mechanism of therapy and to monitor the effect of treatment. The objective of our study is to observe the regional glucose metabolism changes in the motor loops and demonstrate the mechanism of therapy and how to monitor the treatment. Patients and Methods: Employing FDG PET, we had studied 7 patients who suffered from Parkinson's disease all the patients were failing medical therapy.the electrodes were implanted in the brain by the direction of MRI.The target of DBS is STN. Resting FDG PET were performed on and off STN stimulation. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. PET imaging was read by visual interpretation in blind method and calculated by semi-quantitative analysis. The statistic data was analysis after FDG PET imaging. Results: Through the research, regional cerebral glucose metabolic changes with DBS on and off were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings. STN DBS improved UPDRS motor ratings (33%, P<0.001) and significantly increased regional glucose metabolism in the frontal lobe, temporal lobe, Parietal lobe cortex ipsilateral to stimulation. The heighten

  3. Stimulating at the right time: phase-specific deep brain stimulation.

    Science.gov (United States)

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. Assessment of paramedian thalamic infarcts: MR imaging, clinical features and prognosis

    International Nuclear Information System (INIS)

    Weidauer, Stefan; Zanella, Friedhelm E.; Lanfermann, Heinrich; Nichtweiss, Michael

    2004-01-01

    Considering the highly variable vascular supply of the thalamic nuclei, MRI and clinical syndromes can be heterogeneous in ischemic diseases. We attempt to determine MRI pattern and to analyse neurological features and prognosis of paramedian infarcts. In a prospective case series within 5 years from 1999 to 2003, MRI, MRA and clinical symptoms of 38 consecutive patients were analysed. The inferomedial (posterior thalamoperforating artery) territory was affected in 89%, and lesions in the anterolateral (tuberothalamic artery) territory occurred in 42%. However, definite attribution to anterolateral or inferomedial territories was not possible in 13%. Neurological manifestations were somnolence (87%), hemisyndromes (79%), cognitive deficits (58%), oculomotor nerve palsies (53%) and vertical gaze palsies (39%). The most common aetiologies were cardiac embolism (42%), intraarterial embolism (16%), small vessel disease (13%) and large artery arteriosclerosis (13%). Pathological MRA findings were encountered in 55%, and in 18%, lesions were only visible on diffusion-weighted imaging. Correlation of MRI pattern and neurological symptoms points out anterolateral thalamic lesions as the cause of amnestic deficits. Intracranial MRA allows a non-invasive prediction of basilar tip occlusion. Our results underline the necessity of additional diffusion-weighted imaging in detecting small thalamic and midbrain lesions. (orig.)

  5. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Free-living energy expenditure reduced after deep brain stimulation surgery for Parkinson's disease

    DEFF Research Database (Denmark)

    Jørgensen, Hans Ulrik; Werdelin, Lene; Lokkegaard, Annemette

    2012-01-01

    with deep brain stimulation in the subthalamic nucleus (STN-DBS) is now considered the gold standard in fluctuating PD. Many patients experience a gain of weight following the surgery. The aim of this study was to identify possible mechanisms, which may contribute to body weight gain in patients with PD...

  7. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia.

    Science.gov (United States)

    Ekmekci, Hakan; Kaptan, Hulagu

    2016-01-01

    Camptocormia is known as "bent spine syndrome" and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. The relationship between the DBS and camptocormia is discussed in this unique condition.

  8. Stimulating the self: The influence of conceptual frameworks on reactions to deep brain stimulation

    NARCIS (Netherlands)

    Mecacci, G.; Haselager, W.F.G.

    2014-01-01

    Deep brain stimulation (DBS) is generally considered to have great practical potential. Yet along with its remarkable efficacy, which is currently being tested in application to many pathologies, come a certain number of complications. In particular, there seem to be several adverse psychological

  9. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Objective: Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of

  10. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  11. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    Science.gov (United States)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  12. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Directory of Open Access Journals (Sweden)

    Prasad Shirvalkar

    2018-03-01

    Full Text Available Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1 identifying biomarkers of the subjective pain experience and (2 integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment.

  13. Effect of Deep Brain Stimulation on Speech Performance in Parkinson's Disease

    OpenAIRE

    Skodda, Sabine

    2012-01-01

    Deep brain stimulation (DBS) has been reported to be successful in relieving the core motor symptoms of Parkinson's disease (PD) and motor fluctuations in the more advanced stages of the disease. However, data on the effects of DBS on speech performance are inconsistent. While there are some series of patients documenting that speech function was relatively unaffected by DBS of the nucleus subthalamicus (STN), other investigators reported on improvements of distinct parameters of oral control...

  14. Author Details

    African Journals Online (AJOL)

    Bansberg, S. Vol 28, No 1 (2009) - Articles Spasmodic dysphonia may respond to bilateral thalamic deep brain stimulation. Abstract PDF. ISSN: 1015-8618. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions ...

  15. Reduced thalamic and pontine connectivity in Kleine-Levin syndrome

    Directory of Open Access Journals (Sweden)

    Maria eEngström

    2014-04-01

    Full Text Available The Kleine-Levin syndrome is a rare sleep disorder, characterized by exceptionally long sleep episodes. The neuropathology of the syndrome is unknown and treatment is often inadequate. The aim of the study was to improve understanding of the underlying neuropathology, related to cerebral networks, in Kleine-Levin syndrome during sleep episodes. One patient with Kleine-Levin syndrome and congenital nystagmus, was investigated by resting state functional Magnetic Resonance Imaging during both asymptomatic and hypersomnic periods. Fourteen healthy subjects were also investigated as control samples. Functional connectivity was assessed from seed regions of interest in the thalamus and the dorsal pons. Thalamic connectivity was normal in the asymptomatic patient whereas the connectivity between the brain stem, including dorsal pons, and the thalamus was diminished during hypersomnia. These results suggest that the patient’s nystagmus and hypersomnia might have their pathological origin in adjacent dorsal pontine regions. This finding provides additional knowledge of the cerebral networks involved in the neuropathology of this disabling disorder. Furthermore, these findings regarding a rare syndrome have broad implications and results could be of interest to researchers and clinicians in the whole field of sleep medicine.

  16. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  17. Aphasia and unilateral spatial neglect due to acute thalamic hemorrhage: clinical correlations and outcomes.

    Science.gov (United States)

    Osawa, Aiko; Maeshima, Shinichiro

    2016-04-01

    Thalamic hemorrhages are associated with a variety of cognitive dysfunctions, and it is well known that such cognitive changes constitute a limiting factor of recovery of the activities of daily living (ADL). The relationship between cognitive dysfunction and hematomas is unclear. In this study, we investigated the relationship between aphasia/neglect and hematoma volume, hematoma type, and the ADL. One hundred fifteen patients with thalamic hemorrhage (70 men and 45 women) were studied. Their mean age was 68.9 ± 10.3 years, and patients with both left and right lesions were included. We calculated hematoma volume and examined the presence or absence of aphasia/neglect and the relationships between these dysfunctions and hematoma volume, hematoma type, and the ADL. Fifty-nine patients were found to have aphasia and 35 were found to have neglect. Although there was no relationship between hematoma type and cognitive dysfunction, hematoma volume showed a correlation with the severity of cognitive dysfunction. The ADL score and ratio of patient discharge for patients with aphasia/neglect were lower than those for patients without aphasia/neglect. We observed a correlation between the hematoma volume in thalamic hemorrhage and cognitive dysfunction. Aphasia/neglect is found frequently in patients with acute thalamic hemorrhage and may influence the ADL.

  18. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease

    NARCIS (Netherlands)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling; Brown, Peter

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been

  19. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2017-01-01

    Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study

  20. Neuroanatomical considerations of isolated hearing loss in thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Nitin Agarwal, M.D.

    2016-12-01

    Conclusion: Presumably, this neurological deficit was caused by a hypertensive hemorrhage in the posterior right thalamus. The following case and discussion will review the potential neuroanatomical pathways that we suggest could make isolated hearing loss be part of a “thalamic syndrome.”

  1. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we

  2. Lucid dreams, an atypical sleep disturbance in anterior and mediodorsal thalamic strokes.

    Science.gov (United States)

    Sagnier, S; Coulon, P; Chaufton, C; Poli, M; Debruxelles, S; Renou, P; Rouanet, F; Olindo, S; Sibon, I

    2015-11-01

    Cognitive, affective, and behavioural disturbances are commonly reported following thalamic strokes. Conversely, sleep disorders are rarely reported in this context. Herein, we report the cases of two young patients admitted for an ischemic stroke located in the territories of the left pre-mammillary and paramedian arteries. Together with aphasia, memory complaint, impaired attention and executive functions, they reported lucid dreams with catastrophic content or conflicting situations. Lucid dreams are an atypical presentation in thalamic strokes. These cases enlarge the clinical spectrum of sleep-wake disturbances potentially observed after an acute cerebrovascular event. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    Science.gov (United States)

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep

  4. Penfield's prediction: a mechanism for deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Richard W. Murrow

    2014-10-01

    Full Text Available (1Context: Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. (2Hypothesis:The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield’s centrencephalic system which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. (3Evidence:This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science in

  5. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    Science.gov (United States)

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  6. Deep Brain Stimulation of the internal globus pallidus in refractory Tourette Syndrome.

    Science.gov (United States)

    Smeets, A Y J M; Duits, A A; Plantinga, B R; Leentjens, A F G; Oosterloo, M; Visser-Vandewalle, V; Temel, Y; Ackermans, L

    2016-03-01

    Deep Brain Stimulation in psychiatric disorders is becoming an increasingly performed surgery. At present, seven different targets have been stimulated in Tourette Syndrome, including the internal globus pallidus. We describe the effects on tics and comorbid behavioral disorders of Deep Brain Stimulation of the anterior internal globus pallidus in five patients with refractory Tourette Syndrome. This study was performed as an open label study with follow-up assessment between 12 and 38 months. Patients were evaluated twice, one month before surgery and at long-term follow-up. Primary outcome was tic severity, assessed by several scales. Secondary outcomes were comorbid behavioral disorders, mood and cognition. The final position of the active contacts of the implanted electrodes was investigated and side effects were reported. Three males and two females were included with a mean age of 41.6 years (SD 9.7). The total post-operative score on the Yale Global Tic Severity Scale was significantly lower than the pre-operative score (42.2±4.8 versus 12.8±3.8, P=0.043). There was also a significant reduction on the modified Rush Video-Based Tic Rating Scale (13.0±2.0 versus 7.0±1.6, P=0.041) and in the total number of video-rated tics (259.6±107.3 versus 49.6±24.8, P=0.043). No significant difference on the secondary outcomes was found, however, there was an improvement on an individual level for obsessive-compulsive behavior. The final position of the active contacts was variable in our sample and no relationship between position and stimulation effects could be established. Our study suggests that Deep Brain Stimulation of the anterior internal globus pallidus is effective in reducing tic severity, and possibly also obsessive-compulsive behavior, in refractory Tourette patients without serious adverse events or side-effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Author Details

    African Journals Online (AJOL)

    Lyons, M. Vol 28, No 1 (2009) - Articles Spasmodic dysphonia may respond to bilateral thalamic deep brain stimulation. Abstract PDF. ISSN: 1015-8618. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of ...

  8. Fluctuating drowsiness following cardiac catheterisation: artery of Percheron ischaemic stroke causing bilateral thalamic infarcts.

    Science.gov (United States)

    Hammersley, Daniel; Arora, Ankur; Dissanayake, Madhava; Sengupta, Nabarun

    2017-01-02

    An 81-year-old man underwent cardiac catheterisation to investigate breathlessness and left ventricular impairment of unknown cause. He had unobstructed coronary arteries. Immediately following the procedure, he became suddenly unresponsive with vertical gaze palsy, anisocoria and bilateral upgoing plantar responses. He made a rapid recovery to his premorbid state 25 min later with no residual focal neurological signs. He then had multiple unresponsive episodes, interspaced with complete resolution of symptoms and neurological signs. MRI of the brain identified bilateral medial thalamic infarcts and midbrain infarcts, consistent with an artery of Percheron territory infarction. By the time the diagnosis was reached, the thrombolysis window had elapsed. The unresponsive episodes diminished with time and the patient was discharged to inpatient rehabilitation. At 6-month review after the episode, the patient has a degree of progressive cognitive impairment. 2017 BMJ Publishing Group Ltd.

  9. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    International Nuclear Information System (INIS)

    Wisnowski, Jessica L.; Ceschin, Rafael C.; Choi, So Young; Schmithorst, Vincent J.; Painter, Michael J.; Nelson, Marvin D.; Blueml, Stefan; Panigrahy, Ashok

    2015-01-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  10. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)

    2015-05-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  11. A diamond-based electrode for detection of neurochemicals in the human brain

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2016-03-01

    Full Text Available Deep brain stimulation (DBS, a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV, but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n=4 undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes.

  12. The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications

    Directory of Open Access Journals (Sweden)

    Nelson B. Rodrigues

    2018-01-01

    Full Text Available Diffusion tensor imaging (DTI is an MRI-based technique that delineates white matter tracts in the brain by tracking the diffusion of water in neural tissue. This methodology, known as “tractography”, has been extensively applied in clinical neuroscience to explore nervous system architecture and diseases. More recently, tractography has been used to assist with neurosurgical targeting in functional neurosurgery. This review provides an overview of DTI principles, and discusses current applications of tractography for improving and helping develop novel deep brain stimulation (DBS targets.

  13. Holmes' tremor as a delayed complication of thalamic stroke.

    Science.gov (United States)

    Martins, William Alves; Marrone, Luiz Carlos Porcello; Fussiger, Helena; Vedana, Viviane Maria; Cristovam, Rafael do Amaral; Taietti, Marjorye Z; Marrone, Antonio Carlos Huf

    2016-04-01

    Movement disorders are not commonly associated with stroke. Accordingly, thalamic strokes have rarely been associated with tremor, pseudo-athetosis and dystonic postures. We present a 75-year-old man who developed a disabling tremor 1 year after a posterolateral thalamic stroke. This tremor had low frequency (3-4 Hz), did not disappear on focus and was exacerbated by maintaining a static posture and on target pursuit, which made it very difficult to perform basic functions. MRI demonstrated an old ischemic lesion at the left posterolateral thalamus. Treatment with levodopa led to symptom control. Lesions in the midbrain, cerebellum and thalamus may cause Holmes' tremor. Delayed onset of symptoms is usually seen, sometimes appearing 2 years after the original injury. This may be due to maturation of a complex neuronal network, leading to slow dopaminergic denervation. Further studies are needed to improve our understanding of this unique disconnection syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor

    OpenAIRE

    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z

    2013-01-01

    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  15. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers.

    Directory of Open Access Journals (Sweden)

    Leila Etemadi

    Full Text Available Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29 were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose. Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN. The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.

  16. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    Science.gov (United States)

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    Science.gov (United States)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  18. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia

    DEFF Research Database (Denmark)

    Schjerling, Lisbeth; Hjermind, Lena E; Jespersen, Bo

    2013-01-01

    Object The authors' aim was to compare the subthalamic nucleus (STN) with the globus pallidus internus (GPi) as a stimulation target for deep brain stimulation (DBS) for medically refractory dystonia. Methods In a prospective double-blind crossover study, electrodes were bilaterally implanted in ...

  19. Deep brain stimulation of the subthalamic nucleus: effectiveness in advanced Parkinson's disease patients previously reliant on apomorphine

    OpenAIRE

    Varma, T; Fox, S; Eldridge, P; Littlechild, P; Byrne, P; Forster, A; Marshall, A; Cameron, H; McIver, K; Fletcher, N; Steiger, M

    2003-01-01

    Objectives: To assess the efficacy of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with advanced Parkinson's disease previously reliant on apomorphine as their main antiparkinsonian medication.

  20. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    Science.gov (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of

  1. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: gabriela@ifi.unicamp.br [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: seixas.fk@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)

    2013-08-15

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  2. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    Science.gov (United States)

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  3. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson's disease

    NARCIS (Netherlands)

    van Wouwe, N.C.; Ridderinkhof, K.R.; van den Wildenberg, W.P.M.; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD).

  4. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    Science.gov (United States)

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  5. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    Science.gov (United States)

    Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F

    2012-01-01

    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  6. [Deep brain stimulation in parkinsonian patients with dopa intolerance].

    Science.gov (United States)

    García-Ruiz, Pedro J; Feliz-Feliz, Cici; Ayerbe Gracia, Joaquín; Matías Arbelo, José; Salvador, Carlos; Val Fernández, Javier Del; García-Caldentey, Juan

    2017-10-28

    Deep brain stimulation (DBS) is at present, a useful treatment for patients with advanced Parkinson's disease and motor complications. The crucial step toward consistent DBS outcomes remains careful patient selection; several conditions must be fulfilled including excellent levo dopa response. We report two cases of early onset Parkinson's disease with severe intolerance to levo dopa but excellent and sustained response to DBS. DBS can be a useful alternative for parkinsonian patients with severe intolerance to levo dopa, provided a positive acute response to levo dopa or apomorphine is obtained. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Thalamocortical Oscillations in the Sleeping and Aroused Brain

    Science.gov (United States)

    Steriade, Mircea; McCormick, David A.; Sejnowski, Terrence J.

    1993-10-01

    Sleep is characterized by synchronized events in billions of synaptically coupled neurons in thalamocortical systems. The activation of a series of neuromodulatory transmitter systems during awakening blocks low-frequency oscillations, induces fast rhythms, and allows the brain to recover full responsiveness. Analysis of cortical and thalamic networks at many levels, from molecules to single neurons to large neuronal assemblies, with a variety of techniques, ranging from intracellular recordings in vivo and in vitro to computer simulations, is beginning to yield insights into the mechanisms of the generation, modulation, and function of brain oscillations.

  8. Authenticity and autonomy in deep-brain stimulation.

    Science.gov (United States)

    Wardrope, Alistair

    2014-08-01

    Felicitas Kraemer draws on the experiences of patients undergoing deep-brain stimulation (DBS) to propose two distinct and potentially conflicting principles of respect: for an individual's autonomy (interpreted as mental competence), and for their authenticity. I argue instead that, according to commonly-invoked justifications of respect for autonomy, authenticity is itself in part constitutive of an analysis of autonomy worthy of respect; Kraemer's argument thus highlights the shortcomings of practical applications of respect for autonomy that emphasise competence while neglecting other important dimensions of autonomy such as authenticity, since it shows that competence alone cannot be interpreted as a reliable indicator of an individual's capacity for exercising autonomy. I draw from relational accounts to suggest how respect for a more expansive conception of autonomy might be interpreted for individuals undergoing DBS and in general. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Landmark-based deep multi-instance learning for brain disease diagnosis.

    Science.gov (United States)

    Liu, Mingxia; Zhang, Jun; Adeli, Ehsan; Shen, Dinggang

    2018-01-01

    In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    Directory of Open Access Journals (Sweden)

    Paul Sauleau

    Full Text Available The mechanisms behind weight gain following deep brain stimulation (DBS surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN or the globus pallidus internus (GPi. Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET and weight gain following GPi-DBS in patients with Parkinson's disease (PD. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040. There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6, left superior gyrus (BA 8, the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46, and the left and right somatosensory association cortices (BA 7. However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067. These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  11. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder.

    Science.gov (United States)

    Karchemskiy, Asya; Garrett, Amy; Howe, Meghan; Adleman, Nancy; Simeonova, Diana I; Alegria, Dylan; Reiss, Allan; Chang, Kiki

    2011-12-30

    Children of parents with bipolar disorder (BD), especially those with attention deficit hyperactivity disorder (ADHD) and symptoms of depression or mania, are at significantly high risk for developing BD. As we have previously shown amygdalar reductions in pediatric BD, the current study examined amygdalar volumes in offspring of parents (BD offspring) who have not yet developed a full manic episode. Youth participating in the study included 22 BD offspring and 22 healthy controls of comparable age, gender, handedness, and IQ. Subjects had no history of a manic episode, but met criteria for ADHD and moderate mood symptoms. MRI was performed on a 3T GE scanner, using a 3D volumetric spoiled gradient echo series. Amygdalae were manually traced using BrainImage Java software on positionally normalized brain stacks. Bipolar offspring had similar amygdalar volumes compared to the control group. Exploratory analyses yielded no differences in hippocampal or thalamic volumes. Bipolar offspring do not show decreased amygdalar volume, possibly because these abnormalities occur after more prolonged illness rather than as a preexisting risk factor. Longitudinal studies are needed to determine whether amygdalar volumes change during and after the development of BD. 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    Science.gov (United States)

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  13. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  14. Deep 3D convolution neural network for CT brain hemorrhage classification

    Science.gov (United States)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  15. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    Science.gov (United States)

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  16. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  17. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Science.gov (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. European clinical guidelines for Tourette syndrome and other tic disorders. Part IV : deep brain stimulation

    NARCIS (Netherlands)

    Mueller-Vahl, Kirsten R.; Cath, Danielle C.; Cavanna, Andrea E.; Dehning, Sandra; Porta, Mauro; Robertson, Mary M.; Visser-Vandewalle, Veerle

    Ten years ago deep brain stimulation (DBS) has been introduced as an alternative and promising treatment option for patients suffering from severe Tourette syndrome (TS). It seemed timely to develop a European guideline on DBS by a working group of the European Society for the Study of Tourette

  19. New Insights Offered by a Computational Model of Deep Brain Stimulation

    DEFF Research Database (Denmark)

    Modolo, J.; Mosekilde, Erik; Beuter, A.

    2007-01-01

    Deep brain stimulation (DBS) is a standard neurosurgical procedure used to treat motor symptoms in about 5% of patients with Parkinson's disease (PD). Despite the indisputable success of this procedure, the biological mechanisms underlying the clinical benefits of DBS have not yet been fully...... and exploring the physiological mechanisms which respond to this treatment strategy (i.e., DBS). Finally, we present new insights into the ways this computational model may help to elucidate the dynamic network effects produced in a cerebral structure when DBS is applied. (C) 2007 Elsevier Ltd. All rights...

  20. Lateral and Anterior Thalamic Lesions Impair Independent Memory Systems

    Science.gov (United States)

    Mitchell, Anna S.; Dalrymple-Alford, John C.

    2006-01-01

    Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei,…

  1. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct.

    Directory of Open Access Journals (Sweden)

    Laura Serra

    Full Text Available A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F. had a pervasive deficit in episodic memory, but only one of them (R.F. suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P. implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC. Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal

  2. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  3. Evaluation of brain perfusion SPECT imaging using 99mTc-ECD

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Kinuya, Keiko; Higashi, Sotaro; Kawasaki, Yasuhiro; Sumiya, Hisashi; Shuke, Noriyuki; Hisada, Kinichi; Yamashita, Junkoh; Yamaguchi, Nariyoshi

    1991-01-01

    Fundamental and clinical evaluation was performed on 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD), that is a new agent for brain perfusion SPECT. Radiochemical purity reaches a plateau of approximately 98% at 30 min after reconstruction and remains stable up to 24 hours later. A biodistribution study showed approximately 5% injected dose in the brain, very slow brain washout of 5.6% per hour on the average, and rapid washout from the other organ mainly through the urinary system. Brain ECD distribution was determined within 2 min postinjection and remained stable for up to 1 hour. Three hours later, slight but significant changes in brain distribution were observed, that were relative reduction of cerebral cortical activity and gray to white matter activity ratio, and relative elevation of white matter and thalamic activities. Comparative studies of ECD images with 123 I-iodoamphetamine (IMP) and 99m Tc-d, l-hexa-methylpro-pyleneamine oxime (HMPAO) images revealed that radioactivity contrast between affected and unaffected areas was less prominent in ECD than in IMP in cerebral and cerebellar cortical lesions, more prominent in ECD than in IMP in striatal and thalamic lesions, and somewhat more prominent in ECD than in HMPAO in both lesions. Imaging around 1 hour postinjection seems to be more appropriate than immediate postinjection imaging because of the clearance of the extracranial radioactivity and somewhat better radioactivity contrast between affected and unaffected areas. (author)

  4. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    Science.gov (United States)

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  5. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease

    International Nuclear Information System (INIS)

    Hesselmann, Volker; Sorger, Bettina; Girnus, Ralf; Lasek, Kathrin; Schulte, Oliver; Krug, Barbara; Lackner, Klaus; Maarouf, Mohammad; Sturm, Volker; Wedekind, Christoph; Bunke, Juergen

    2004-01-01

    This article deals with technical aspects of intraoperative functional magnetic resonance imaging (fMRI) for monitoring the effect of deep brain stimulation (DBS) in a patient with Parkinson's disease. Under motor activation, therapeutic high-frequency stimulation of the subthalamic nucleus was accompanied by an activation decrease in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. Furthermore, an activation increase in the contralateral basal ganglia and insula region were detected. These findings demonstrate that fMRI constitutes a promising clinical application for investigating brain activity changes induced by DBS. (orig.)

  6. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    Science.gov (United States)

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  7. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    NARCIS (Netherlands)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-01-01

    Oswal et al. characterise the effect of deep brain stimulation (DBS) on STN-cortical synchronisation in Parkinson-s disease. They propose that cortical driving of the STN in beta frequencies is subdivided anatomically and spectrally, corresponding to the hyperdirect and indirect pathways. DBS

  8. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of deep brain stimulation on postural stability in patients with Parkinson disease

    OpenAIRE

    Zelenková, Jana

    2012-01-01

    Parkinson's disease is a neurodegenerative disease of the basal ganglia. Its main symptoms are rigidity, tremor, bradykinesia, hypokinesia and postural instability. One possible way how to infuence diseases is neurosurgical treatment - deep brain stimulation. The principle is the implantation of electrodes in the basal ganglia and modulation of activity of the basal ganglia circuits due to electrical stimulation. Stimulation affects the motor symptoms of Parkinson's disease. This thesis deals...

  10. Cerebral blood flow and cerebral oxygen metabolism in thalamic hemorrhage

    International Nuclear Information System (INIS)

    Yasui, Nobuyuki; Asakura, Ken

    1987-01-01

    Cerebral blood flow (CBF), cerebral oxygen consumption (CMRO 2 ), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were studied in 20 cases of thalamic hemorrhage using positron CT and 15 O labeled gas steady-state inhalation method. CBF reduction was limited around the thalamus in the small sized hematoma. CBF were significantly diminished in the mean cortical, parietal, temporal, basal ganglia and thalamic area ipsilateral and cerebellar cortex contralateral to the medium sized hematoma. There was bilateral and diffuse CBF reduction in the large sized hematoma which was caused by increased intracranial pressure. CMRO 2 value were similary changed as CBF. OEF change showed within normal limit. Diffuse CBV reduction was observed in the large sized hematoma. This reduction was the result of decreased vascular bed caused by mass effect of the hematoma and hydrocephalus. Effect of surgical treatment such as ventricular drainage and hematoma evacuation were also discussed in correlation to CBF in some case using positron and single photon ECT. (author)

  11. Deep brain stimulation in addiction due to psychoactive substance use.

    Science.gov (United States)

    Kuhn, Jens; Bührle, Christian P; Lenartz, Doris; Sturm, Volker

    2013-01-01

    Addiction is one of the most challenging health problems. It is associated with enormous individual distress and tremendous socioeconomic consequences. Unfortunately, its underlying mechanisms are not fully understood, and pharmacological, psychological, or social interventions often fail to achieve long-lasting remission. Next to genetic, social, and contextual factors, a substance-induced dysfunction of the brain's reward system is considered a decisive factor for the establishment and maintenance of addiction. Due to its successful application and approval for several neurological disorders, deep brain stimulation (DBS) is known as a powerful tool for modulating dysregulated networks and has also been considered for substance addiction. Initial promising case reports of DBS in alcohol and heroin addiction in humans have recently been published. Likewise, results from animal studies mimicking different kinds of substance addiction point in a similar direction. The objective of this review is to provide an overview of the published results on DBS in addiction, and to discuss whether these preliminary results justify further research, given the novelty of this treatment approach. © 2013 Elsevier B.V. All rights reserved.

  12. Passive accessory joint mobilization in the multimodal management of chronic dysesthesia following thalamic stroke.

    Science.gov (United States)

    Griffin, Kristina; O'Hearn, Michael; Franck, Carla C; Courtney, Carol A

    2018-03-20

    Case Report. Stroke is the most common cause of long-term disability. Dysesthesia, an unpleasant sensory disturbance, is common following thalamic stroke and evidence-based interventions for this impairment are limited. The purpose of this case report was to describe a decrease in dysesthesia following manual therapy intervention in a patient with history of right lacunar thalamic stroke. A 66-year-old female presented with tingling and dysesthesia in left hemisensory distribution including left trunk and upper/lower extremities, limiting function. Decreased left shoulder active range of motion, positive sensory symptoms but no sensory loss in light touch was found. She denied pain and moderate shoulder muscular weakness was demonstrated. Laterality testing revealed right/left limb discrimination deficits and neglect-like symptoms were reported. Passive accessory joint motion assessment of glenohumeral and thoracic spine revealed hypomobility and provoked dysesthesia. Interventions included passive oscillatory joint mobilization of glenohumeral joint, thoracic spine, ribs and shoulder strengthening. After six sessions, shoulder function, active range of motion, strength improved and dysesthesia decreased. Global Rating of Change Scale was +5 and QuickDASH score decreased from 45% to 22% disability. Laterality testing was unchanged. Manual therapy may be a beneficial intervention in management of thalamic stroke-related dysesthesia. Implications for Rehabilitation While pain is common following thalamic stroke, patients may present with chronic paresthesia or dysesthesia, often in a hemisensory distribution. Passive movement may promote inhibition of hyperexcitable cortical pathways, which may diminish aberrant sensations. Passive oscillatory manual therapy may be an effective way to treat sensory disturbances such as paresthesias or dysesthesia.

  13. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  14. Effects of intravenous glucose on Dopaminergic function in the human brain in vivo

    NARCIS (Netherlands)

    Haltia, Lauri T.; Rinne, Juha O.; Merisaari, Harri; Maguire, Ralph P.; Savontaus, Eriika; Helin, Semi; Nagren, Kjell; Kaasinen, Valtteri

    Dopamine is known to regulate food intake by modulating food reward via the mesolimbic circuitry of the brain. The objective of this study was to compare the effects of high energy input (i.v. glucose) on striatal and thalamic dopamine release in overweight and lean individuals. We hypothesized that

  15. Origin and evolution of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Vittorio Alessandro eSironi

    2011-08-01

    Full Text Available This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the 18th century and was subsequently used by the early 20th century, even for therapeutic purposes. In mid-20th century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, DBS was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson's disease, essential tremor and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette's syndrome, psychiatric diseases (depression, obsessive-compulsive disorder, some kinds of headache, eating disorders and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results.

  16. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2012-01-01

    Full Text Available Introduction: Attention deficit hyperactivity disorder (ADHD captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting state functional connectivity (rs-fcMRI studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical-striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD.Methods: We correlated the rs-fcMRI of five thalamic regions of interest with spatial span working memory scores in a sample of 67 children aged 7-11 years (ADHD and typically developing children; TDC. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7-11 years from the ADHD-200 dataset. Thalamic regions of interest were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus.Results/Conclusions: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.

  17. Selectively stimulating neural populations in the subthalamic region using a novel deep brain stimulation lead design

    NARCIS (Netherlands)

    van Dijk, Kees Joab; Verhagen, R.; Bour, L.J.; Heida, Tjitske

    2013-01-01

    Deep brain stimulation (DBS) of the Subthalamic Nucleus (STN) is widely used in advanced stages of Parkinson's disease(PD) and has proven to be an effective treatment of the various motor symptoms. The therapy involves implanting a lead consisting of multiple electrodes in the STN through which

  18. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson’s disease

    NARCIS (Netherlands)

    Wouwe, N.C. van; Ridderinkhof, K.R.; Wildenberg, W.P.M. van den; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson’s disease (PD).

  19. Olfactory Functioning in Parkinson's Disease: The Effects of Deep Brain Stimulation

    DEFF Research Database (Denmark)

    van Hartevelt, Tim Johannes

    2014-01-01

    The sense of smell is vital for species survival in terms of food selection and detection as well as procreation. Disorders of the sense of smell are not uncommon and can have a significant effect on general health and well-being including quality of life. In Parkinson's disease (PD), the loss...... of sense of smell is one of the most common and earliest symptoms, appearing approximately 5 years prior to any motor symptoms. Deep brain stimulation (DBS) has proven remarkably effective in alleviating the symptoms of PD including olfactory dysfunction. This remains a difficult area to research with many...

  20. The added value of semimicroelectrode recording in deep brain stimulation of the subthalamic nucleus for Parkinson disease

    NARCIS (Netherlands)

    Jonker, Pascal K. C.; van Dijk, J. Marc C.; van Hulzen, Arjen L. J.; van Laar, Teus; Staal, Michiel J.; Journee, H. Louis

    2013-01-01

    Object. Accurate placement of the leads is crucial in deep brain stimulation (DBS). To optimize the surgical positioning of the lead, a combination of anatomical targeting on MRI, electrophysiological mapping, and clinical testing is applied during the procedure. Electrophysiological mapping is

  1. Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus.

    Science.gov (United States)

    Alcaraz, Fabien; Marchand, Alain R; Vidal, Elisa; Guillou, Alexandre; Faugère, Angélique; Coutureau, Etienne; Wolff, Mathieu

    2015-09-23

    The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to

  2. Ethical issues in deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Maartje eSchermer

    2011-05-01

    Full Text Available Deep brain stimulation (DBS is currently used to treat neurological disorders like Parkinson’s disease (PD, essential tremor and dystonia, and is explored as an experimental treatment for psychiatric disorders like Major Depression (MD and Obsessive Compulsive Disorder (OCD. This mini review discusses ethical issues in DBS treatment and research, as they have been discussed in the medical and ethical literature.With regard to DBS treatment, the most important issues are balancing risks and benefits and ensuring respect for the autonomous wish of the patient. This implies special attention to patient selection, psycho-social impact of treatment, effects on personal identity, and treatment of children. Moreover, it implies a careful informed consent process in which unrealistic expectations of patients and their families are addressed and in which special attention is given to competence. In the context of research, the fundamental ethical challenge is to promote high-quality scientific research in the interest of future patients, while at the same time safeguarding the rights and interests of vulnerable research subjects. Several guidelines have been proposed to ensure this. One of the preconditions to further development of responsible and transparent research practices is the establishment of a comprehensive registry.

  3. Thalamic structures and associated cognitive functions: Relations with age and aging

    Science.gov (United States)

    Fama, Rosemary; Sullivan, Edith V.

    2015-01-01

    The thalamus, with its cortical, subcortical, and cerebellar connections, is a critical node in networks supporting cognitive functions known to decline in normal aging, including component processes of memory and executive functions of attention and information processing. The macrostructure, microstructure, and neural connectivity of the thalamus changes across the adult lifespan. Structural and functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) have demonstrated, regional thalamic volume shrinkage and microstructural degradation, with anterior regions generally more compromised than posterior regions. The integrity of selective thalamic nuclei and projections decline with advancing age, particularly those in thalamofrontal, thalamoparietal, and thalamolimbic networks. This review presents studies that assess the relations between age and aging and the structure, function, and connectivity of the thalamus and associated neural networks and focuses on their relations with processes of attention, speed of information processing, and working and episodic memory. PMID:25862940

  4. OPTIMAL REPRESENTATION OF MER SIGNALS APPLIED TO THE IDENTIFICATION OF BRAIN STRUCTURES DURING DEEP BRAIN STIMULATION

    Directory of Open Access Journals (Sweden)

    Hernán Darío Vargas Cardona

    2015-07-01

    Full Text Available Identification of brain signals from microelectrode recordings (MER is a key procedure during deep brain stimulation (DBS applied in Parkinson’s disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN, since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals through method of frames. We obtain coefficients that minimize the Euclidean norm of order two. From optimal coefficients, we extract some features from signals combining the wavelet packet and cosine dictionaries. For a comparison frame with the state of the art, we also process the signals using the discrete wavelet transform (DWT with several mother functions. We validate the proposed methodology in a real data base. We employ simple supervised machine learning algorithms, as the K-Nearest Neighbors classifier (K-NN, a linear Bayesian classifier (LDC and a quadratic Bayesian classifier (QDC. Classification results obtained with the proposed method improves significantly the performance of the DWT. We achieve a positive identification of the STN superior to 97,6%. Identification outcomes achieved by the MOF are highly accurate, as we can potentially get a false positive rate of less than 2% during the DBS.

  5. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression.

    Science.gov (United States)

    Widge, Alik S; Malone, Donald A; Dougherty, Darin D

    2018-01-01

    Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial "failures" are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this "valley of disillusionment," DBS may be nearing a "slope of enlightenment." Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care.

  6. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    Science.gov (United States)

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  7. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-01-01

    The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson's disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of

  8. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NARCIS (Netherlands)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Tjitske; Veltink, Peter H.

    2015-01-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson's disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional

  9. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms.

    Science.gov (United States)

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Puppi Munhoz, Renato; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an established and effective treatment for Parkinson's disease (PD). After surgery, a number of extensive programming sessions are performed to define the most optimal stimulation parameters. Programming sessions mainly rely only on neurologist's experience. As a result, patients often undergo inconsistent and inefficient stimulation changes, as well as unnecessary visits. We reviewed the literature on initial and follow-up DBS programming procedures and integrated our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We propose four algorithms including the initial programming and specific algorithms tailored to symptoms experienced by patients following DBS: speech disturbances, stimulation-induced dyskinesia and gait impairment. We conducted a literature search of PubMed from inception to July 2014 with the keywords "deep brain stimulation", "festination", "freezing", "initial programming", "Parkinson's disease", "postural instability", "speech disturbances", and "stimulation induced dyskinesia". Seventy papers were considered for this review. Based on the literature review and our experience at TWH, we refined four algorithms for: (1) the initial programming stage, and management of symptoms following DBS, particularly addressing (2) speech disturbances, (3) stimulation-induced dyskinesia, and (4) gait impairment. We propose four algorithms tailored to an individualized approach to managing symptoms associated with DBS and disease progression in patients with PD. We encourage established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Classification of brain MRI with big data and deep 3D convolutional neural networks

    Science.gov (United States)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  11. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS treatment planning. In this work, we developed a deep learning convolutional neural network (CNN algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  12. Isolated amnesia following a bilateral paramedian thalamic infarct. Possible etiologic role of a whiplash injury.

    Science.gov (United States)

    Barontini, F; Maurri, S

    1992-04-01

    A previously healthy 45 years old carpenter suffered a whiplash injury in a road accident on July, 18th, 1990. He continued to work in spite of occipital headache, episodic sweatening and slight hypersomnia. On August, 8th, 1990 while parking his car into the deck of a ferry-boat he was found slightly confuse and markedly amnestic. A post-traumatic subdural haematoma was suspected. As a CT-scan of the brain was normal, a toxic encephalopathy or an hysterical amnesia were proposed. However, a MRI performed on August, 22th, 1990, apart from a small infarct in the white matter of the left occipital lobe, showed two small bilateral paramedian thalamic infarcts. The last lesions usually follow a thrombotic or embolic occlusion of the "basilar communicating artery" (BCA) belonging to the vertebro-basilar system. The possible etiologic relationship between this syndrome and the previous whiplash injury has been considered. Six months later, while a control MRI showed a reduction of the brain lesions, a neuropsychological examination revealed a slight improvement of memory dysfunction evident also at a distance of further 6 months. This case is interesting because it tests the high sensitivity of MRI in amnestic syndromes and because of the possible role of a whiplash injury in the etiology of BPTI.

  13. Assessing the direct effects of deep brain stimulation using embedded axon models

    Science.gov (United States)

    Sotiropoulos, Stamatios N.; Steinmetz, Peter N.

    2007-06-01

    To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.

  14. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans

    Science.gov (United States)

    Magnin, Michel; Rey, Marc; Bastuji, Hélène; Guillemant, Philippe; Mauguière, François; Garcia-Larrea, Luis

    2010-01-01

    Thalamic and cortical activities are assumed to be time-locked throughout all vigilance states. Using simultaneous intracortical and intrathalamic recordings, we demonstrate here that the thalamic deactivation occurring at sleep onset most often precedes that of the cortex by several minutes, whereas reactivation of both structures during awakening is synchronized. Delays between thalamus and cortex deactivations can vary from one subject to another when a similar cortical region is considered. In addition, heterogeneity in activity levels throughout the cortical mantle is larger than previously thought during the descent into sleep. Thus, asynchronous thalamo-cortical deactivation while falling asleep probably explains the production of hypnagogic hallucinations by a still-activated cortex and the common self-overestimation of the time needed to fall asleep. PMID:20142493

  15. Anaesthesia for a patient with Deep Brain Stimulator: Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Raj mala

    2014-07-01

    Full Text Available Deep brain stimulator (DBS devices are used for unilateral or bilateral stimulation of thalamus, subthalamus and globus pallidus to treat movement disorders. DBS can interfere with domestic and medical equipment such as electrocardiography (ECG, slow wave diathermy, electrocautery, peripheral nerve stimulators, pacemakers, external and implantable cardioverters and defibrillators. This case report describes a patient with such a device who presented for bilateral (B/L cataract surgery.

  16. Deep Brain Stimulation in Huntington’s Disease—Preliminary Evidence on Pathophysiology, Efficacy and Safety

    Directory of Open Access Journals (Sweden)

    Lars Wojtecki

    2016-08-01

    Full Text Available Huntington’s disease (HD is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD.

  17. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    Science.gov (United States)

    2015-10-01

    currently investigating the effects of CG stimulation in subjects with debilitating pain due to cervical or thoracic SCI. This study stemmed from...had a low thoracic injury and pain in lumbar dermatomes, whereas Subject 1 had mainly mid- cervical pain that responded minimally to DBS and matched...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  18. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson's disease

    NARCIS (Netherlands)

    Volkmann, Jens; Albanese, Alberto; Kulisevsky, Jaime; Tornqvist, Aana-Lena; Houeto, Jean-Luc; Pidoux, Bernard; Bonnet, Anne-Marie; Mendes, Alexandre; Benabid, Alim-Louis; Fraix, Valerie; van Blercom, Nadege; Xie, Jing; Obeso, José; Rodriguez-Oroz, Maria Cruz; Guridi, Jurge; Schnitzler, Alfons; Timmermann, Lars; Gironell, Alexandre A.; Molet, Juan; Pascual-Sedano, Benta; Rehncrona, Stig; Moro, Elena; Lang, Anthony C.; Lozano, Andres M.; Bentivoglio, Anna Rita; Scerrati, Massimo; Contarino, Maria Fiorella; Romito, Luigi; Janssens, Marc; Agid, Yves

    2009-01-01

    We assessed the effects of deep brain stimulation of the subthalamic nucleus (STN-DBS) or internal pallidum (GPi-DBS) on health-related quality of life (HrQoL) in patients with advanced Parkinson's disease participating in a previously reported multicenter trial. Sickness Impact Profile (SIP)

  19. [Motor neglect of thalamic origin: report on two cases (author's transl)].

    Science.gov (United States)

    Laplane, D; Escourolle, R; Degos, J D; Sauron, B; Massiou, H

    1982-01-01

    Two cases of thalamic lesions with motor neglect are presented. The syndrome of motor neglect was complete in those cases with a) underutilization of left limbs, but good utilization upon verbal orders, b) loss of placement reaction, c) weakness of movement when hand was approaching the target, d) weakness of motor reaction to nociceptive stimuli. Those cases confirm that motor neglect exists after thalamic lesions and bring pathologic clues for topographic discussion. Motor neglect seems to be a particular case of partial unilateral neglect throwing some doubt on the hypothesis of a global trouble of hemispheric activation. Prevalence of left motor neglects suggests some linkage between propositional motility and language. One may suppose that in the right hemisphere language is able to have a vicarious action when spontaneous activation is lost; at the opposite, in the left hemisphere language and motility would be too linked to let this dissociation be generally possible.

  20. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    International Nuclear Information System (INIS)

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-01-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using 18 F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis

  1. Treatment of movement disorders using deep brain stimulation – illustrative case reports and technical notes

    Directory of Open Access Journals (Sweden)

    Tadej Strojnik

    2012-05-01

    Full Text Available Operative neuromodulation is the field of electrically or chemically altering the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks to produce therapeutic effects. Deep brain stimulation (DBS is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. This article presents the first DBS cases in Slovenia. In the article the technical features and adjustments of magnetic resonance (MR imaging and development of a new microdrive, which was clinically successfully tested, are described and discussed.

  2. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men

    NARCIS (Netherlands)

    Koopman, K. E.; Roefs, A.; Elbers, D. C. E.; Fliers, E.; Booij, J.; Serlie, M. J.; La Fleur, S. E.

    2016-01-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between

  3. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults.

    Science.gov (United States)

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian

    2017-04-15

    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery

  4. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    NARCIS (Netherlands)

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with

  5. Hitting the right target : noninvasive localization of the subthalamic nucleus motor part for specific deep brain stimulation

    NARCIS (Netherlands)

    Brunenberg, E.J.L.

    2011-01-01

    Deep brain stimulation of the subthalamic nucleus (STN) has gained momentum as a therapy for advanced Parkinson’s disease. The stimulation effectively alleviates the patients’ typical motor symptoms on a long term, but can give rise to cognitive and psychiatric adverse effects as well. Based on

  6. Closing the loop of deep brain stimulation

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  7. Closing the loop of deep brain stimulation.

    Science.gov (United States)

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-12-20

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  8. Closing the loop of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2013-12-01

    Full Text Available High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfils these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  9. Numerical Characterization of Intraoperative and Chronic Electrodes in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi

    2015-02-01

    Full Text Available Intraoperative electrode is used in the Deep Brain stimulation (DBS technique to pinpoint the brain target and to choose the best parameters for the stimulating signal. However, when the intraoperative electrode is replaced with the chronic one, the observed effects do not always coincide with predictions.To investigate the causes of such discrepancies, in this work, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved.Results of simulations on the electric potential and the activating function along neuronal fibers show that the different geometries and sizes of the two electrodes do not change shapes and polarities of these functions, but only the amplitudes. A similar effect is caused by the presence of different tissue layers (edema or glial tissue in the peri-electrode space. On the contrary, a not accurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident may induce a complete different electric stimulation on some groups of fibers.

  10. A computational relationship between thalamic sensory neural responses and contrast perception.

    Science.gov (United States)

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  11. Episodic memory following deep brain stimulation of the ventral anterior limb of the internal capsule and electroconvulsive therapy

    NARCIS (Netherlands)

    Bergfeld, Isidoor O; Mantione, Mariska; Hoogendoorn, Mechteld L C; Horst, Ferdinand; Notten, Peter; Schuurman, P Richard; Denys, D.

    2017-01-01

    BACKGROUND: Electroconvulsive Therapy (ECT) and Deep Brain Stimulation (DBS) are effective treatments for patients with treatment-resistant depression (TRD). However, a common side effect of ECT is autobiographical memory loss (e.g., personal experiences), whereas the impact of DBS on

  12. Episodic memory following deep brain stimulation of the ventral anterior limb of the internal capsule and electroconvulsive therapy

    NARCIS (Netherlands)

    Bergfeld, Isidoor O.; Mantione, Mariska; Hoogendoorn, Mechteld L. C.; Horst, Ferdinand; Notten, Peter; Schuurman, P. Richard; Denys, Damiaan

    2017-01-01

    Background: Electroconvulsive Therapy (ECT) and Deep Brain Stimulation (DBS) are effective treatments for patients with treatment-resistant depression (TRD). However, a common side effect of ECT is autobiographical memory loss (e.g., personal experiences), whereas the impact of DBS on

  13. Use of dexmedetomidine during deep brain stimulation for Tourette Syndrome : a case report and review of the literature

    NARCIS (Netherlands)

    Bos, Michael; Janssen, Mark; Temel, Yasin; van Zundert, André; Ackermans, Linda

    2017-01-01

    Deep brain stimulation is invasive and used in selected patients with intractable Tourette Syndrome. The anaesthetic technique of first choice during implantation of the electrodes is an awake technique with local anaesthetics and conscious sedation. The anaesthetic management can be challenging,

  14. Impact of deep brain stimulation of the ventral anterior limb of the internal capsule on cognition in depression

    NARCIS (Netherlands)

    Bergfeld, Isidoor O.; Mantione, Mariska; Hoogendoorn, M L C; Ruhe, H. G.; Horst, Ferdinand; Notten, P; van Laarhoven, J; van den Munckhof, M. P.; Beute, G. N.; Schuurman, P R; Denys, D

    Background. Preliminary studies report no negative and a possible positive impact of deep brain stimulation (DBS) on cognition of patients with treatment-resistant depression (TRD). However, these studies neither controlled for practice effects nor compared active with sham stimulation. Method. To

  15. Impact of deep brain stimulation of the ventral anterior limb of the internal capsule on cognition in depression

    NARCIS (Netherlands)

    Bergfeld, I O; Mantione, M; Hoogendoorn, M L C; Ruhé, H G; Horst, F; Notten, P; van Laarhoven, J; van den Munckhof, P; Beute, G; Schuurman, P R; Denys, D

    2017-01-01

    BACKGROUND: Preliminary studies report no negative and a possible positive impact of deep brain stimulation (DBS) on cognition of patients with treatment-resistant depression (TRD). However, these studies neither controlled for practice effects nor compared active with sham stimulation. METHOD: To

  16. Impact of deep brain stimulation of the ventral anterior limb of the internal capsule on cognition in depression

    NARCIS (Netherlands)

    Bergfeld, I. O.; Mantione, M.; Hoogendoorn, M. L. C.; Ruhé, H. G.; Horst, F.; Notten, P.; van Laarhoven, J.; van den Munckhof, P.; Beute, G.; Schuurman, P. R.; Denys, D.

    2017-01-01

    Background. Preliminary studies report no negative and a possible positive impact of deep brain stimulation (DBS) on cognition of patients with treatment-resistant depression (TRD). However, these studies neither controlled for practice effects nor compared active with sham stimulation. Method. To

  17. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression

    Directory of Open Access Journals (Sweden)

    Alik S. Widge

    2018-03-01

    Full Text Available Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial “failures” are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this “valley of disillusionment,” DBS may be nearing a “slope of enlightenment.” Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI, the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care.

  18. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression

    Science.gov (United States)

    Widge, Alik S.; Malone, Donald A.; Dougherty, Darin D.

    2018-01-01

    Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial “failures” are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this “valley of disillusionment,” DBS may be nearing a “slope of enlightenment.” Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care. PMID:29618967

  19. Surgical management of thalamic gliomas: case selection, technical considerations, and review of literature.

    Science.gov (United States)

    Sai Kiran, Narayanam Anantha; Thakar, Sumit; Dadlani, Ravi; Mohan, Dilip; Furtado, Sunil Valentine; Ghosal, Nandita; Aryan, Saritha; Hegde, Alangar S

    2013-07-01

    This study aimed to identify (1) the thalamic gliomas suitable for surgical resection and (2) the appropriate surgical approach based on their location and the displacement of the posterior limb of the internal capsule (PLIC). A retrospective study over a 5-year period (from 2006 to 2010) was performed in 41 patients with thalamic gliomas. The mean age of these patients was 20.4 years (range, 2-65 years). Twenty (49 %) tumors were thalamic, 19 (46 %) were thalamopeduncular, and 2 (5 %) were bilateral. The PLIC, based on T2-weighted magnetic resonance axial sections, was displaced anterolaterally in 23 (56 %) cases and laterally in 6 (14 %) cases. It was involved by lesion in eight (20 %) cases and could not be identified in four (10 %) cases. Resection, favored in patients with well-defined, contrast-enhancing lesions, was performed in 34 (83 %) cases, while a biopsy was resorted to in 7 (17 %) cases. A gross total resection or near total resection (>90 %) could be achieved in 26 (63 %) cases. The middle temporal gyrus approach, used when the PLIC was displaced anterolaterally, was the commonly used approach (63.5 %). Common pathologies were pilocytic astrocytoma (58 %) in children and grade III/IV astrocytomas (86 %) in adults. Preoperative motor deficits improved in 64 % of the patients with pilocytic lesions as compared to 0 % in patients with grade III/IV lesions (P value, 0.001). Postoperatively, two patients (5 %) had marginal worsening of motor power, two patients developed visual field defects, and one patient developed a third nerve paresis. Radical resection of thalamic gliomas is a useful treatment modality in a select subset of patients and is the treatment of choice for pilocytic astrocytomas. Tailoring the surgical approach, depending on the relative position of the PLIC, has an important bearing on outcome.

  20. Globus Pallidus Interna Deep Brain Stimulation in a Patient with Medically Intractable Meige Syndrome

    Directory of Open Access Journals (Sweden)

    Dae-Woong Bae

    2014-10-01

    Full Text Available Medical therapies in patients with Meige syndrome, including botulinum toxin injection, have been limited because of incomplete response or adverse side effects. We evaluated a patient with Meige syndrome who was successfully treated with deep brain stimulation (DBS in the globus pallidus interna (GPi. This case report and other previous reports suggest that bilateral GPi DBS may be an effective treatment for medically refractory Meige syndrome, without significant adverse effects.

  1. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M

    2014-01-01

    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...

  2. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  3. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  4. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses.

    Science.gov (United States)

    Simor, Attila; Györffy, Balázs András; Gulyássy, Péter; Völgyi, Katalin; Tóth, Vilmos; Todorov, Mihail Ivilinov; Kis, Viktor; Borhegyi, Zsolt; Szabó, Zoltán; Janáky, Tamás; Drahos, László; Juhász, Gábor; Kékesi, Katalin Adrienna

    2017-03-01

    Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    Science.gov (United States)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  6. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety.

    Directory of Open Access Journals (Sweden)

    Rodrigo Noseda

    Full Text Available Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a 'decision' is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH; but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.

  7. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  8. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  9. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  10. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    Science.gov (United States)

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  11. Advanced fiber tracking in early acquired brain injury causing cerebral palsy.

    Science.gov (United States)

    Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B

    2015-01-01

    Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.

  12. Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation.

    Science.gov (United States)

    Quinn, Emma J; Blumenfeld, Zack; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren A; Trager, Megan H; Hill, Bruce C; Kilbane, Camilla; Henderson, Jaimie M; Brontë-Stewart, Helen

    2015-11-01

    Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P closed-loop DBS. © 2015 International Parkinson and Movement Disorder Society.

  13. Informed Consent Decision-Making in Deep Brain Stimulation.

    Science.gov (United States)

    Mandarelli, Gabriele; Moretti, Germana; Pasquini, Massimo; Nicolò, Giuseppe; Ferracuti, Stefano

    2018-05-11

    Deep brain stimulation (DBS) has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia), in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases.

  14. Informed Consent Decision-Making in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Gabriele Mandarelli

    2018-05-01

    Full Text Available Deep brain stimulation (DBS has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia, in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases.

  15. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Science.gov (United States)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  16. Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: A meta-analysis.

    Science.gov (United States)

    Alomar, Soha; King, Nicolas K K; Tam, Joseph; Bari, Ausaf A; Hamani, Clement; Lozano, Andres M

    2017-01-01

    The thalamus has been a surgical target for the treatment of various movement disorders. Commonly used therapeutic modalities include ablative and nonablative procedures. A major clinical side effect of thalamic surgery is the appearance of speech problems. This review summarizes the data on the development of speech problems after thalamic surgery. A systematic review and meta-analysis was performed using nine databases, including Medline, Web of Science, and Cochrane Library. We also checked for articles by searching citing and cited articles. We retrieved studies between 1960 and September 2014. Of a total of 2,320 patients, 19.8% (confidence interval: 14.8-25.9) had speech difficulty after thalamotomy. Speech difficulty occurred in 15% (confidence interval: 9.8-22.2) of those treated with a unilaterally and 40.6% (confidence interval: 29.5-52.8) of those treated bilaterally. Speech impairment was noticed 2- to 3-fold more commonly after left-sided procedures (40.7% vs. 15.2%). Of the 572 patients that underwent DBS, 19.4% (confidence interval: 13.1-27.8) experienced speech difficulty. Subgroup analysis revealed that this complication occurs in 10.2% (confidence interval: 7.4-13.9) of patients treated unilaterally and 34.6% (confidence interval: 21.6-50.4) treated bilaterally. After thalamotomy, the risk was higher in Parkinson's patients compared to patients with essential tremor: 19.8% versus 4.5% in the unilateral group and 42.5% versus 13.9% in the bilateral group. After DBS, this rate was higher in essential tremor patients. Both lesioning and stimulation thalamic surgery produce adverse effects on speech. Left-sided and bilateral procedures are approximately 3-fold more likely to cause speech difficulty. This effect was higher after thalamotomy compared to DBS. In the thalamotomy group, the risk was higher in Parkinson's patients, whereas in the DBS group it was higher in patients with essential tremor. Understanding the pathophysiology of speech

  17. Oscillations in Pedunculopontine Nucleus in Parkinson's disease and its relationship with deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Min eLi

    2015-09-01

    Full Text Available The recent development of deep brain stimulation (DBS of the pedunculopontine nucleus (PPN for the treatment of parkinsonian patients, particularly those in advanced stages with axial symptoms, has ignited interest into the study of this brain nucleus. In contrast to the extensively studied alterations of neural activity that occur in the basal ganglia in Parkinson’s disease (PD, our understanding of the activity of the PPN remains insufficient. In recent years, however, a series of studies recording oscillatory activity in the PPN of parkinsonian patients have made important findings. Here, we briefly review recent studies that explore the different kinds of oscillations observed in the PPN of parkinsonian patients, and how they underlie the pathophysiology of PD and the efficacy of PPN DBS in these disorders.

  18. Anaesthetic management of shoulder arthroscopic repair in Parkinson′s disease with deep brain stimulator

    Directory of Open Access Journals (Sweden)

    Ranju Gandhi

    2014-01-01

    Full Text Available We describe the anaesthetic management of arthroscopic repair for complete rotator cuff tear of shoulder in a 59-year-old female with Parkinson′s disease (PD with deep brain stimulator (DBS using a combination of general anaesthesia with interscalene approach to brachial plexus block. The DBS consists of implanted electrodes in the brain connected to the implantable pulse generator (IPG normally placed in the anterior chest wall subcutaneously. It can be programmed externally from a hand-held device placed directly over the battery stimulator unit. In our patient, IPG with its leads was located in close vicinity of the operative site with potential for DBS malfunction. Implications of DBS in a patient with PD for shoulder arthroscopy for anaesthesiologist are discussed along with a brief review of DBS.

  19. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    Directory of Open Access Journals (Sweden)

    Christophe Lenglet

    Full Text Available Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD, essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS. Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI. This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric

  20. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee

    2013-01-01

    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  1. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.

    Science.gov (United States)

    Wachinger, Christian; Reuter, Martin; Klein, Tassilo

    2018-04-15

    We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end learning-based approach to brain segmentation that jointly learns an abstract feature representation and a multi-class classification. We propose a 3D patch-based approach, where we do not only predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. To address a class imbalance problem, we arrange two networks hierarchically, where the first one separates foreground from background, and the second one identifies 25 brain structures on the foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the Laplace-Beltrami operator. As network architecture, we use three convolutional layers with pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. The final segmentation is inferred from the probabilistic output of the network with a 3D fully connected conditional random field, which ensures label agreement between close voxels. The roughly 2.7million parameters in the network are learned with stochastic gradient descent. Our results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely learning-based method may have a high potential for the adaptation to young, old, or diseased brains by fine-tuning the pre-trained network with a small training sample on the target application, where the availability of larger datasets with manual annotations may boost the overall segmentation accuracy in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  3. Thalamic hemorrhage following carotid angioplasty and stenting

    International Nuclear Information System (INIS)

    Friedman, Jonathan A.; Kallmes, David F.; Wijdicks, Eelco F.M.

    2004-01-01

    Carotid angioplasty and stenting (CAS) has emerged as an alternative treatment of carotid stenosis for patients poorly suited for endarterectomy. Intracerebral hemorrhage following carotid revascularization is rare and thought to be related to hyperperfusion injury in most cases. Early experience suggests an increased incidence of hemorrhage following CAS as compared to endarterectomy. We describe a patient who suffered a thalamic hemorrhage following CAS. Because this hemorrhage occurred in a vascular territory unlikely to have been supplied by the treated artery, this case suggests that the mechanism of intracerebral hemorrhage following CAS may in some cases be different from the hyperperfusion hemorrhage classically described following endarterectomy. (orig.)

  4. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  5. Disrupted Auto-Activation, Dysexecutive and Confabulating Syndrome Following Bilateral Thalamic and Right Putaminal Stroke

    Directory of Open Access Journals (Sweden)

    Lieve De Witte

    2008-01-01

    Full Text Available Objective: Clinical, neuropsychological, structural and functional neuroimaging results are reported in a patient who developed a unique combination of symptoms after a bi-thalamic and right putaminal stroke. The symptoms consisted of dysexecutive disturbances associated with confabulating behavior and auto-activation deficits. Background: Basal ganglia and thalamic lesions may result in a variety of motor, sensory, neuropsychological and behavioral syndromes. However, the combination of a dysexecutive syndrome complicated at the behavioral level with an auto-activation and confabulatory syndrome has never been reported. Methods: Besides clinical and neuroradiological investigations, an extensive set of standardized neuropsychological tests was carried out. Results: In the post-acute phase of the stroke, a dysexecutive syndrome was found in association with confabulating behavior and auto-activation deficits. MRI showed focal destruction of both thalami and the right putamen. Quantified ECD SPECT revealed bilateral hypoperfusions in the basal ganglia and thalamus but no perfusion deficits were found at the cortical level. Conclusion: The combination of disrupted auto-activation, dysexecutive and confabulating syndrome in a single patient following isolated subcortical damage renders this case exceptional. Although these findings do not reveal a functional disruption of the striato-ventral pallidal-thalamic-frontomesial limbic circuitry, they add to the understanding of the functional role of the basal ganglia in cognitive and behavioral syndromes.

  6. Bilateral thalamic stroke due to occlusion of the artery of Percheron in a patient with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    López-Serna Raúl

    2009-09-01

    Full Text Available Abstract Introduction Bilateral thalamic infarcts are rare presentations of stroke. They are the result of a complex combination of risk factors and a predisposing vessel distribution. The artery of Percheron, characterized by a single arterial trunk that irrigates both paramedian thalamic regions, can be occluded as a result of embolic diseases leading to bilateral paramedian thalamic infarcts. Clinical and image findings of this uncommon form of posterior circulation infarct are presented along with their anatomic and pathophysiologic correlates. Case presentation A 27-year-old Mexican man with no relevant medical history was admitted to hospital after he was found deeply stuporous. On admission, an urgent neuroimaging protocol for stroke, including magnetic resonance imaging and magnetic resonance imaging angiography, was performed. The scans revealed symmetric bilateral hyperintense paramedian thalamic lesions consistent with acute ischemic events. The posterior circulation was patent including the tip of the basilar artery and both posterior cerebral arteries, making the case compatible with occlusion of the artery of Percheron. Further evaluation with an aim to define the etiology revealed a patent foramen ovale as the cause of embolism. Conclusion Bilateral thalamic infarcts are unusual presentations of posterior circulation stroke; once they are diagnosed by an adequate neuroimaging protocol, a further evaluation to define the cause is necessary. Cardioembolism should always be considered in relatively young patients. A complete evaluation should be conducted by an interdisciplinary team including neurologists, cardiologists and neurosurgeons.

  7. The safety of transcranial magnetic stimulation with deep brain stimulation instruments.

    Science.gov (United States)

    Shimojima, Yoshio; Morita, Hiroshi; Nishikawa, Noriko; Kodaira, Minori; Hashimoto, Takao; Ikeda, Shu-Ichi

    2010-02-01

    Transcranial magnetic stimulation (TMS) has been employed in patients with an implanted deep brain stimulation (DBS) device. We investigated the safety of TMS using simulation models with an implanted DBS device. The DBS lead was inserted into plastic phantoms filled with dilute gelatin showing impedance similar to that of human brain. TMS was performed with three different types of magnetic coil. During TMS (1) electrode movement, (2) temperature change around the lead, and (3) TMS-induced current in various situations were observed. The amplitude and area of each evoked current were measured to calculate charge density of the evoked current. There was no movement or temperature increase during 0.2 Hz repetitive TMS with 100% stimulus intensity for 1 h. The size of evoked current linearly increased with TMS intensity. The maximum charge density exceeded the safety limit of 30 muC/cm(2)/phase during stimulation above the loops of the lead with intensity over 50% using a figure-eight coil. Strong TMS on the looped DBS leads should not be administered to avoid electrical tissue injury. Subcutaneous lead position should be paid enough attention for forthcoming situations during surgery. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    Science.gov (United States)

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  9. Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala

    Directory of Open Access Journals (Sweden)

    Tae-Yeon Eom

    2017-05-01

    Full Text Available Individuals with 22q11.2 deletion syndrome (22q11DS are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections. This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs. This deficit in thalamo-LA synaptic transmission is sufficient to cause fear memory deficits. Our results suggest that dysregulation of the Dgcr8–Drd2 mechanism at thalamic inputs to the amygdala underlies emotional memory deficits in 22q11DS.

  10. Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala.

    Science.gov (United States)

    Eom, Tae-Yeon; Bayazitov, Ildar T; Anderson, Kara; Yu, Jing; Zakharenko, Stanislav S

    2017-05-23

    Individuals with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections). This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs. This deficit in thalamo-LA synaptic transmission is sufficient to cause fear memory deficits. Our results suggest that dysregulation of the Dgcr8-Drd2 mechanism at thalamic inputs to the amygdala underlies emotional memory deficits in 22q11DS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    2018-01-01

    Full Text Available Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS, yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM magnetic susceptibility in both healthy controls (HC and MS patients. Four hundred (400 patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3 single nucleotide polymorphisms (SNPs associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation and rs1799945 (H63D mutation, as well as the rs1049296 SNP in the transferrin gene (C2 mutation. The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM voxel-based analysis (VBA and region-of-interest (ROI analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+6.1 ppb and H63D (+6.9 ppb gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: −5.3 ppb, right: −6.7 ppb, p < 0.05. Female MS patients had lower susceptibility in the caudate (−6.0 ppb and putamen (left: −3.9 ppb, right: −4.6 ppb than men, but only when they had a wild-type allele (p < 0.05. Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS and decreases in thalamus susceptibility (in progressive MS, coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.

  12. Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study

    Science.gov (United States)

    Sinjab, Barah; Martinian, Lillian; Sisodiya, Sanjay M; Thom, Maria

    2013-01-01

    Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25–87 years) and eight controls (age range 38–85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in

  13. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  14. Lightning may pose a danger to patients receiving deep brain stimulation: case report.

    Science.gov (United States)

    Prezelj, Neža; Trošt, Maja; Georgiev, Dejan; Flisar, Dušan

    2018-05-01

    Deep brain stimulation (DBS) is an established treatment option for advanced stages of Parkinson's disease and other movement disorders. It is known that DBS is susceptible to strong electromagnetic fields (EMFs) that can be generated by various electrical devices at work, home, and in medical environments. EMFs can interfere with the proper functioning of implantable pulse generators (IPGs). Very strong EMFs can generate induction currents in implanted electrodes and even damage the brain. Manufacturers of DBS devices have issued a list of warnings on how to avoid this danger. Strong EMFs can result from natural forces as well. The authors present the case of a 66-year-old woman who was being treated with a rechargeable DBS system for neck dystonia when her apartment was struck by lightning. Domestic electronic devices that were operating during the event were burned and destroyed. The woman's IPG switched off but remained undamaged, and she suffered no neurological consequences.

  15. Direct visualization of anatomic subfields within the superior aspect of the human lateral thalamus by MRI at 7T.

    Science.gov (United States)

    Kanowski, M; Voges, J; Buentjen, L; Stadler, J; Heinze, H-J; Tempelmann, C

    2014-09-01

    The morphology of the human thalamus shows high interindividual variability. Therefore, direct visualization of landmarks within the thalamus is essential for an improved definition of electrode positions for deep brain stimulation. The aim of this study was to provide anatomic detail in the thalamus by using inversion recovery TSE imaging at 7T. The MR imaging protocol was optimized on 1 healthy subject to segment thalamic nuclei from one another. Final images, acquired with 0.5(2)-mm2 in-plane resolution and 3-mm section thickness, were compared with stereotactic brain atlases to assign visualized details to known anatomy. The robustness of the visualization of thalamic nuclei was assessed with 4 healthy subjects at lower image resolution. Thalamic subfields were successfully delineated in the dorsal aspect of the lateral thalamus. T1-weighting was essential. MR images had an appearance very similar to that of myelin-stained sections seen in brain atlases. Visualized intrathalamic structures were, among others, the lamella medialis, the external medullary lamina, the reticulatum thalami, the nucleus centre médian, the boundary between the nuclei dorso-oralis internus and externus, and the boundary between the nuclei dorso-oralis internus and zentrolateralis intermedius internus. Inversion recovery-prepared TSE imaging at 7T has a high potential to reveal fine anatomic detail in the thalamus, which may be helpful in enhancing the planning of stereotactic neurosurgery in the future. © 2014 by American Journal of Neuroradiology.

  16. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  17. Concentric structure of thalamic lesions in acute necrotizing encephalopathy

    International Nuclear Information System (INIS)

    Mizuguchi, M.; Nakano, I.; Hayashi, M.; Kuwashima, M.; Yoshida, K.; Nakai, Y.; Itoh, M.; Takashima, S.

    2002-01-01

    Acute necrotizing encephalopathy of childhood (ANE) is characterized by multiple, symmetrical brain lesions affecting the bilateral thalami, putamina and cerebral white matter, which often show a concentric structure on CT and MRI. To reveal the pathological substrate of this finding, comparison was made between CT and necropsy findings of three fatal cases of ANE. Cranial CT demonstrated a concentric structure of the thalamocerebral lesions in one patient who died 3.5 days after the onset of encephalopathy, but not in the other two patients who died within 30 h. Neuropathological examination of postmortem brains revealed laminar changes of vascular and parenchymal pathology in all the cases. Excessive permeability of blood vessels and resultant vasogenic edema became more prominent with increasing depth from the cerebral surface. The deep portion of the lesions showed severe perivascular hemorrhage, accounting for the central high density on the CT images of one patient. (orig.)

  18. Real-Time Ultrasound-Guided Catheter Navigation for Approaching Deep-Seated Brain Lesions: Role of Intraoperative Neurosonography with and without Fusion with Magnetic Resonance Imaging.

    Science.gov (United States)

    Manjila, Sunil; Karhade, Aditya; Phi, Ji Hoon; Scott, R Michael; Smith, Edward R

    2017-01-01

    Brain shift during the exposure of cranial lesions may reduce the accuracy of frameless stereotaxy. We describe a rapid, safe, and effective method to approach deep-seated brain lesions using real-time intraoperative ultrasound placement of a catheter to mark the dissection trajectory to the lesion. With Institutional Review Board approval, we retrospectively reviewed the radiographic, pathologic, and intraoperative data of 11 pediatric patients who underwent excision of 12 lesions by means of this technique. Full data sets were available for 12 lesions in 11 patients. Ten lesions were tumors and 2 were cavernous malformations. Lesion locations included the thalamus (n = 4), trigone (n = 3), mesial temporal lobe (n = 3), and deep white matter (n = 2). Catheter placement was successful in all patients, and the median time required for the procedure was 3 min (range 2-5 min). There were no complications related to catheter placement. The median diameter of surgical corridors on postresection magnetic resonance imaging was 6.6 mm (range 3.0-12.1 mm). Use of real-time ultrasound guidance to place a catheter to aid in the dissection to reach a deep-seated brain lesion provides advantages complementary to existing techniques, such as frameless stereotaxy. The catheter insertion technique described here provides a quick, accurate, and safe method for reaching deep-seated lesions. © 2017 S. Karger AG, Basel.

  19. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    Science.gov (United States)

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  20. Clinical appraisal of stereotactic hematoma aspiration surgery for hypertensive thalamic hemorrhage

    International Nuclear Information System (INIS)

    Sasaki, Koji; Matsumoto, Keizo

    1992-01-01

    Three hundred and four patients with hypertensive thalamic hemorrhage were managed by medical treatment, ventricular drainage, or CT-controlled stereotactic aspiration surgery (AS). The therapeutic results of the 6-month outcome were analyzed and correlated with the volume of the hematoma. A hematoma volume of 20 ml was thought to be the critical size in determining whether the outcome would be favorable or unfavorable. Indications for AS are suggested as follows. In patients with a small-sized hematoma having a volume of less than 10 ml use of AS should be restricted to patients with severe paralysis or other neurological complications and the elderly (aged 70 years or older). For patients with a medium-sized hematoma having a volume between 10 ml and 20 ml, AS is indicated for patients having severe paralysis and disturbances of consciousness. For patients with a large-sized hematoma having a volume of 20 ml or more, AS increases not only the survival rate of patients but also reduces the number of bedridden patients. We conclude that AS opens up a new avenue of surgical treatment for hypertensive thalamic hemorrhage, which has been no indication for hematoma evacuation by conventional craniotomy. (author)

  1. Optogenetically inspired deep brain stimulation: linking basic with clinical research.

    Science.gov (United States)

    Lüscher, Christian; Pollak, Pierre

    2016-01-01

    In the last decade, optogenetics has revolutionised the neurosciences. The technique, which allows for cell-type specific excitation and inhibition of neurons in the brain of freely moving rodents, has been used to tighten the links of causality between neural activity and behaviour. Optogenetics is also enabling an unprecedented characterisation of circuits and their dysfunction in a number of brain diseases, above all those conditions that are not caused by neurodegeneration. Notable progress has been made in addiction, depression and obsessive-compulsive disorders, as well as other anxiety disorders. By extension, the technique has also been used to propose blueprints for innovative rational treatment of these diseases. The goal is to design manipulations that disrupt pathological circuit function or restore normal activity. This can be achieved by targeting specific projections in order to apply specific stimulation protocols validated by ex-vivo analysis of the mechanisms underlying the dysfunction. In a number of cases, specific forms of pathological synaptic plasticity have been implicated. For example, addictive drugs via strong increase of dopamine trigger a myriad of alterations of glutamate and γ-aminobutyric acid transmission, also called drug-evoked synaptic plasticity. This opens the way to the design of optogenetic reversal protocols, which might restore normal transmission with the hope to abolish the pathological behaviour. Several proof of principle studies for this approach have recently been published. However, for many reasons, optogenetics will not be translatable to human applications in the near future. Here, we argue that an intermediate step is novel deep brain stimulation (DBS) protocols that emulate successful optogenetic approaches in animal models. We provide a roadmap for a translational path to rational, optogenetically inspired DBS protocols to refine existing approaches and expand to novel indications.

  2. Patients' expectations in subthalamic nucleus deep brain stimulation surgery for Parkinson disease.

    Science.gov (United States)

    Hasegawa, Harutomo; Samuel, Michael; Douiri, Abdel; Ashkan, Keyoumars

    2014-12-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson disease. However, some patients feel less satisfied with the outcome of surgery. We sought to study the relationship between expectations, satisfaction, and outcome in STN DBS for Parkinson disease. Twenty-two consecutive patients undergoing STN DBS completed a modified 39-item Parkinson disease questionnaire (PDQ-39) preoperatively and 6 months postoperatively. A satisfaction questionnaire accompanied the postoperative questionnaire. Patients expected a significant improvement from surgery preoperatively: preoperative score (median PDQ-39 summary score [interquartile range]): 37.0 (9.5), expected postoperative score: 13.0 (8.0), P Parkinson disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Persistence of disturbed thalamic glucose metabolism in a case of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Scheurich, Armin; Siessmeier, Thomas; Schmidt, Lutz G; Bartenstein, Peter

    2003-10-30

    We report the case of a 40-year-old alcoholic male patient, hospitalized with an acute ataxia of stance and gait, ocular muscle weakness with nystagmus and a global apathetic-confusional state. After admission, an amnestic syndrome with confabulation was also observed and diagnosis of Wernicke-Korsakoff syndrome was made. Under treatment with intravenous thiamine, the patient recovered completely from gaze weakness and ataxia, whereas a severe amnestic syndrome persisted. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed bilateral thalamic and severe bilateral temporal-parietal hypometabolism resembling a pattern typical for Alzheimer's disease. Longitudinal assessment of the alcohol-abstinent and thiamine-substituted patient revealed improvements of clinical state and neuropsychological performance that were paralleled by recovered cerebral glucose metabolism. In contrast to metabolic rates that increased between 7.1% (anterior cingulate, left) and 23.5% (parietal, left) in cortical areas during a 9-month remission period, thalamic glucose metabolism remained severely disturbed over time (change: left +0.2%, right +0.3%).

  4. Unilateral thalamic hypometabolism on FDG brain PET in patient with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sager, Sait; Asa, Sertac; Uslu, Lebriz; Halac, Metin

    2011-01-01

    Interictal Brain 18 F fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) imaging has been widely used for localizing the focus of a seizure. Hypometabolism in the extratemporal cortex on FDG-PET study is an important finding to localize seizure focus, which might be seen as ipsilateral, contralateral or bilateral thalamus hypometabolism in epileptic patients. In this case report, it is aimed to show ipsilateral thalamus hypometabolism on FDG PET brain study of a 24-year-old male patient with temporal lobe epilepsy. (author)

  5. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    Science.gov (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The role of deep brain stimulation in Parkinson’s disease: an overview and update on new developments

    Directory of Open Access Journals (Sweden)

    Fang JY

    2017-03-01

    Full Text Available John Y Fang, Christopher Tolleson Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA Abstract: Parkinson’s disease (PD is a progressive neurodegenerative disorder characterized by the loss of neuronal dopamine production in the brain. Oral therapies primarily augment the dopaminergic pathway. As the disease progresses, more continuous delivery of therapy is commonly needed. Deep brain stimulation (DBS has become an effective therapy option for several different neurologic and psychiatric conditions, including PD. It currently has US Food and Drug Administration approval for PD and essential tremor, as well as a humanitarian device exception for dystonia and obsessive-compulsive disorder. For PD treatment, it is currently approved specifically for those patients suffering from complications of pharmacotherapy, including motor fluctuations or dyskinesias, and a disease process of at least 4 years of duration. Studies have demonstrated superiority of DBS and medical management compared to medical management alone in selected PD patients. Optimal patient selection criteria, choice of target, and programming methods for PD and the other indications for DBS are important topics that continue to be explored and remain works in progress. In addition, new hardware options, such as different types of leads, and different software options have recently become available, increasing the potential for greater efficacy and/or reduced side effects. This review gives an overview of therapeutic management in PD, specifically highlighting DBS and some of the recent changes with surgical therapy. Keywords: Parkinson’s disease, deep brain stimulation, functional neurosurgery 

  7. Deep brain stimulation for the treatment of Alzheimer disease and dementias.

    Science.gov (United States)

    Laxton, Adrian W; Lozano, Andres M

    2013-01-01

    To review the use of deep brain stimulation (DBS) for treatment of dementia. A PubMed literature search was conducted to identify all studies that have investigated the use of DBS for treatment of dementia. Three studies examined the use of DBS for dementia. One study involved fornix DBS for Alzheimer disease (AD), and two studies involved DBS of the nucleus basalis of Meynert, one to treat AD and one to treat Parkinson disease dementia. Evidence for the use of DBS to treat dementia is preliminary and limited. Fornix and nucleus basalis of Meynert DBS can influence activity in the pathologic neural circuits that underlie AD and Parkinson disease dementia. Further investigation into the potential clinical effects of DBS for dementia is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    Science.gov (United States)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  9. Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing.

    Science.gov (United States)

    Kulikova, Sofya P; Tolmacheva, Elena A; Anderson, Paul; Gaudias, Julien; Adams, Brendan E; Zheng, Thomas; Pinault, Didier

    2012-11-01

    Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.

    Science.gov (United States)

    Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.

  11. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank - A Review of Emerging Issues and Technologies

    Directory of Open Access Journals (Sweden)

    Wissam Deeb

    2016-11-01

    Full Text Available This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual Deep Brain Stimulation Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson’s disease, essential tremor, Alzheimer’s disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year’s international Think Tank, with a view toward current and near future advancement of the field.

  12. [Intervening in the neural basis of one's personality: a practice-oriented ethical analysis of neuropharmacology and deep-brain stimulation].

    Science.gov (United States)

    Synofzik, M

    2007-12-01

    Through the rapid progress in neuropharmacology it seems to become possible to effectively improve our cognitive capacities and emotional states by easily applicable means. Moreover, deep-brain stimulation may allow an effective therapeutic option for those neurological and psychiatric diseases which still can not be sufficiently treated by pharmacological measures. So far, however, both the benefit and the harm of these techniques are only insufficiently understood by neuroscience and detailed ethical analyses are still missing. In this article ethical criteria and most recent empirical evidence are systematically brought together for the first time. This analysis shows that it is irrelevant for an ethical evaluation whether a drug or a brain-machine interface is categorized as "enhancement" or "treatment" or whether it changes "human nature". The only decisive criteria are whether the intervention (1.) benefits the patient, (2.) does not harm the patient and (3.) is desired by the patient. However, current empirical data in both fields, neuropharmacology and deep-brain stimulation are still too sparse to adequately evaluate these criteria. Moreover, the focus in both fields has been strongly misled by neglecting the distinction between "benefit" and "efficacy": In past years research and clinical practice have only focused on physiological effects, but not on the actual benefit to the patient.

  13. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus.

    Science.gov (United States)

    Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris

    2012-08-01

    The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms.

    Science.gov (United States)

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Munhoz, Renato Puppi; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an effective treatment for essential tremor (ET) and dystonia. After surgery, a number of extensive programming sessions are performed, mainly relying on neurologist's personal experience as no programming guidelines have been provided so far, with the exception of recommendations provided by groups of experts. Finally, fewer information is available for the management of DBS in ET and dystonia compared with Parkinson's disease. Our aim is to review the literature on initial and follow-up DBS programming procedures for ET and dystonia and integrate the results with our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We conducted a literature search of PubMed from inception to July 2014 with the keywords "balance", "bradykinesia", "deep brain stimulation", "dysarthria", "dystonia", "gait disturbances", "initial programming", "loss of benefit", "micrographia", "speech", "speech difficulties" and "tremor". Seventy-six papers were considered for this review. Based on the literature review and our experience at TWH, we refined three algorithms for management of ET, including: (1) initial programming, (2) management of balance and speech issues and (3) loss of stimulation benefit. We also depicted algorithms for the management of dystonia, including: (1) initial programming and (2) management of stimulation-induced hypokinesia (shuffling gait, micrographia and speech impairment). We propose five algorithms tailored to an individualized approach to managing ET and dystonia patients with DBS. We encourage the application of these algorithms to supplement current standards of care in established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.

    Science.gov (United States)

    Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias

    2013-01-01

    Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Deep Brain Stimulation Salvages a Flourishing Dental Practice: A Dentist with Essential Tremor Recounts his Experience

    OpenAIRE

    Giacopuzzi, Guy; Lising, Melanie; Halpern, Casey H

    2016-01-01

    In recounting his experience with deep brain stimulation (DBS), a practicing dentist challenged with long-standing bilateral essential tremor of the hands?shares insights into his diagnosis, treatments, and ultimately successful DBS surgery at Stanford University Medical Center, CA, USA. Now nearly one year after his surgery, his practice continues to flourish and he encourages others in his profession to consider the possibility of DBS as a definitive?treatment for tremors of the hand, which...

  17. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    Science.gov (United States)

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. State of the Art: Novel Applications for Deep Brain Stimulation.

    Science.gov (United States)

    Roy, Holly A; Green, Alexander L; Aziz, Tipu Z

    2018-02-01

    Deep brain stimulation (DBS) is a rapidly developing field of neurosurgery with potential therapeutic applications that are relevant to conditions traditionally viewed as beyond the limits of neurosurgery. Our objective, in this review, is to highlight some of the emerging applications of DBS within three distinct but overlapping spheres, namely trauma, neuropsychiatry, and autonomic physiology. An extensive literature review was carried out in MEDLINE, to identify relevant studies and review articles describing applications of DBS in the areas of trauma, neuropsychiatry and autonomic neuroscience. A wide range of applications of DBS in these spheres was identified, some having only been tested in one or two cases, others much better studied. We have identified various avenues for DBS to be applied for patient benefit in cases relevant to trauma, neuropsychiatry and autonomic neuroscience. Further developments in DBS technology and clinical trial design will enable these novel applications to be effectively and rigorously assessed and utilized most effectively. © 2017 International Neuromodulation Society.

  19. Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description

    Directory of Open Access Journals (Sweden)

    Tumul Chowdhury

    2017-08-01

    Full Text Available Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate and related risk factors in patients undergoing DBS surgery.Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model.Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42 and treated in 57% of cases.Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.

  20. Four cases of small, traumatic hemorrhage in the deep midline portion of the brain

    International Nuclear Information System (INIS)

    Kim, Suho; Tsukahara, Tetsuya; Iwama, Mitsuru; Nishikawa, Michio

    1981-01-01

    Four cases recently encountered are presented in which computerized tomography (CT) demonstrated a small, traumatic hemorrhage in the deep midline portion of the brain. The lesions of hemorrhage revealed by CT were: Case 1, in the septum pellucidum and left lateral ventricle; Case 2, in the Monro's foramen and right lateral ventricle and Case 3, midbrain. These three cases had no other abnormal findings. In addition, a hemorrhage of the corpus callosum and diffuse brain damage were seen in Case 4. These small hemorrhages might be caused not only by the direct damage, but also by a local tendency to bleed due to hystoiogical fragility or the existence of a vascular anomaly, such as AVM or cryptic angioma. The prognoses quod vitam of our cases were relatively better than the previous reports of these hemorrhages, but the prognoses quod functionem were poor. The patients have shown prolonged psychoneurological disorder; these symptoms might be caused by damage to the limbic system. (author)

  1. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  2. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    Science.gov (United States)

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  3. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.

    Science.gov (United States)

    Lavallée, Philippe; Urbain, Nadia; Dufresne, Caroline; Bokor, Hajnalka; Acsády, László; Deschênes, Martin

    2005-08-17

    Sensory stimuli evoke strong responses in thalamic relay cells, which ensure a faithful relay of information to the neocortex. However, relay cells of the posterior thalamic nuclear group in rodents, despite receiving significant trigeminal input, respond poorly to vibrissa deflection. Here we show that sensory transmission in this nucleus is impeded by fast feedforward inhibition mediated by GABAergic neurons of the zona incerta. Intracellular recordings of posterior group neurons revealed that the first synaptic event after whisker deflection is a prominent inhibition. Whisker-evoked EPSPs with fast rise time and longer onset latency are unveiled only after lesioning the zona incerta. Excitation survives barrel cortex lesion, demonstrating its peripheral origin. Electron microscopic data confirm that trigeminal axons make large synaptic terminals on the proximal dendrites of posterior group cells and on the somata of incertal neurons. Thus, the connectivity of the system allows an unusual situation in which inhibition precedes ascending excitation resulting in efficient shunting of the responses. The dominance of inhibition over excitation strongly suggests that the paralemniscal pathway is not designed to relay inputs triggered by passive whisker deflection. Instead, we propose that this pathway operates through disinhibition, and that the posterior group forwards to the cerebral cortex sensory information that is contingent on motor instructions.

  4. High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei.

    Science.gov (United States)

    Metzger, C D; Eckert, U; Steiner, J; Sartorius, A; Buchmann, J E; Stadler, J; Tempelmann, C; Speck, O; Bogerts, B; Abler, B; Walter, M

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing.

  5. Reorganization of Functional Brain Maps After Exercise Training: Importance of Cerebellar-Thalamic-Cortical Pathway

    OpenAIRE

    Holschneider, DP; Yang, J; Guo, Y; Maarek, J-M I

    2007-01-01

    Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs.

  6. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    Science.gov (United States)

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  7. Practical CT classification for thalamic hemorrhage. Relationship between localization of hematoma and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Hiroki; Furuya, Kazuhide; Segawa, Hiromu; Taniguchi, Tamiki; Sano, Keiji [Fuji Brain Inst. and Hospital, Shizuoka (Japan); Shiokawa, Yoshiaki

    1994-06-01

    The study was designed to establish CT classification for predicting prognosis of thalamic hemorrhage. A retrospective analysis was made on CT scans from 100 patients with hypertensive thalamic hemorrhage less than 4 cm. Four lines were drawn on axial CT scans at the level of the pineal body: (A) line between the lateral edge of the anterior horn and the midpoint of the third ventricle; (B) vertebral line to the sagittal line from the midpoint of the third ventricle; (C) line between the lateral edge of the trigone and the midpoint of the third ventricle; and (D) line between the lateral edge of the anterior horn and the lateral edge of the trigone. According to the lateral extension, the location of hematoma fell into three types: anterior type in which the center of hematoma was located between lines A and B (type A); posterior type in which the center of hematoma was located between lines B and C and external margin of hematoma was localized medial to line D (type P); postero-lateral type in which the center of hematoma was located between lines B and C and showed lateral extension beyond line D (type PL). Severe hemiparesis was observed in 15.3% for type A, 21.8% for type P, and 59.3% for type PL. Good prognosis was seen in 84.7% for type A, 70.9% for type P, and 12.5% for type PL. Acute disturbance of consciousness was significantly observed in patients with medial extension of hematoma (86.4%) as compared with those without it (21.4%). These results indicated that CT classification is a simple means for predicting functional outcome of motor paresis and consciousness disturbance in patients with thalamic hemorrhage. (N.K.).

  8. Practical CT classification for thalamic hemorrhage. Relationship between localization of hematoma and prognosis

    International Nuclear Information System (INIS)

    Kurita, Hiroki; Furuya, Kazuhide; Segawa, Hiromu; Taniguchi, Tamiki; Sano, Keiji; Shiokawa, Yoshiaki.

    1994-01-01

    The study was designed to establish CT classification for predicting prognosis of thalamic hemorrhage. A retrospective analysis was made on CT scans from 100 patients with hypertensive thalamic hemorrhage less than 4 cm. Four lines were drawn on axial CT scans at the level of the pineal body: (A) line between the lateral edge of the anterior horn and the midpoint of the third ventricle; (B) vertebral line to the sagittal line from the midpoint of the third ventricle; (C) line between the lateral edge of the trigone and the midpoint of the third ventricle; and (D) line between the lateral edge of the anterior horn and the lateral edge of the trigone. According to the lateral extension, the location of hematoma fell into three types: anterior type in which the center of hematoma was located between lines A and B (type A); posterior type in which the center of hematoma was located between lines B and C and external margin of hematoma was localized medial to line D (type P); postero-lateral type in which the center of hematoma was located between lines B and C and showed lateral extension beyond line D (type PL). Severe hemiparesis was observed in 15.3% for type A, 21.8% for type P, and 59.3% for type PL. Good prognosis was seen in 84.7% for type A, 70.9% for type P, and 12.5% for type PL. Acute disturbance of consciousness was significantly observed in patients with medial extension of hematoma (86.4%) as compared with those without it (21.4%). These results indicated that CT classification is a simple means for predicting functional outcome of motor paresis and consciousness disturbance in patients with thalamic hemorrhage. (N.K.)

  9. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease.

    Science.gov (United States)

    Blumenfeld, Zack; Brontë-Stewart, Helen

    2015-12-01

    High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.

  10. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  11. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  12. Motor outcome and electrode location in deep brain stimulation in Parkinson's disease.

    Science.gov (United States)

    Koivu, Maija; Huotarinen, Antti; Scheperjans, Filip; Laakso, Aki; Kivisaari, Riku; Pekkonen, Eero

    2018-05-30

    To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. STN-DBS improves motor function and enables the reduction in antiparkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  13. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    Science.gov (United States)

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-09-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.

  14. Does processing a shallow and a deep orthography produce different brain activity patterns? An ERP study conducted in Hebrew.

    Science.gov (United States)

    Bar-Kochva, Irit

    2011-01-01

    Orthographies range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Two forms of script transcribe the Hebrew language: the shallow pointed script (with diacritics) and the deep unpointed script (without diacritics). This study was set out to examine whether the reading of these scripts evokes distinct brain activity. Preliminary results indicate distinct Event-related-potentials (ERPs). As an equivalent finding was absent when ERPs of non-orthographic stimuli with and without meaningless diacritics were compared, the results imply that print-specific aspects of processing account for the distinct activity elicited by the pointed and unpointed scripts.

  15. Dr. Robert G. Heath: a controversial figure in the history of deep brain stimulation.

    Science.gov (United States)

    O'Neal, Christen M; Baker, Cordell M; Glenn, Chad A; Conner, Andrew K; Sughrue, Michael E

    2017-09-01

    The history of psychosurgery is filled with tales of researchers pushing the boundaries of science and ethics. These stories often create a dark historical framework for some of the most important medical and surgical advancements. Dr. Robert G. Heath, a board-certified neurologist, psychiatrist, and psychoanalyst, holds a debated position within this framework and is most notably remembered for his research on schizophrenia. Dr. Heath was one of the first physicians to implant electrodes in deep cortical structures as a psychosurgical intervention. He used electrical stimulation in an attempt to cure patients with schizophrenia and as a method of conversion therapy in a homosexual man. This research was highly controversial, even prior to the implementation of current ethics standards for clinical research and often goes unmentioned within the historical narrative of deep brain stimulation (DBS). While distinction between the modern practice of DBS and its controversial origins is necessary, it is important to examine Dr. Heath's work as it allows for reflection on current neurosurgical practices and questioning the ethical implication of these advancements.

  16. Optimization of multiple coils immersed in a conducting liquid for half-hemisphere or whole-brain deep transcranial magnetic stimulation: a simulation study.

    Science.gov (United States)

    Sousa, Sónia C P; Almeida, Jorge; Cavaleiro Miranda, Pedro; Salvador, Ricardo; Silvestre, João; Simões, Hugo; Crespo, Paulo

    2014-01-01

    Transcranial magnetic stimulation (TMS) was proposed in 1985. Nevertheless, its wider use in the treatment of several neurologic diseases has been hindered by its inability to stimulate deep-brain regions. This is mainly due to the physical limiting effect arising from the presence of surface discontinuities, particularly between the scalp and air. Here, we present the optimization of a system of large multiple coils for whole-brain and half-hemisphere deep TMS, termed orthogonal configuration. COMSOL(®)-based simulations show that the system is capable of reaching the very center of a spherical brain phantom with 58% induction relative to surface maximum. Such penetration capability surpasses to the best of our knowledge that of existing state of the art TMS systems. This induction capability strongly relies on the immersion of the stimulating coils and part of the head of the patient in a conducting liquid (e.g. simple saline solution). We show the impact of the presence of this surrounding conducting liquid by comparing the performance of our system with and without such liquid. In addition, we also compare the performance of the proposed coil with that of a circular coil, a figure-eight coil, and the H-coil. Finally, in addition to its whole-brain stimulation capability (e.g. potentially useful for prophylaxis of epileptic patients) the system is also able to stimulate mainly one brain hemisphere, which may be useful in stroke rehabilitation, among other applications.

  17. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  18. Deep Brain Stimulation Salvages a Flourishing Dental Practice: A Dentist with Essential Tremor Recounts his Experience.

    Science.gov (United States)

    Giacopuzzi, Guy; Lising, Melanie; Halpern, Casey H

    2016-10-22

    In recounting his experience with deep brain stimulation (DBS), a practicing dentist challenged with long-standing bilateral essential tremor of the hands shares insights into his diagnosis, treatments, and ultimately successful DBS surgery at Stanford University Medical Center, CA, USA. Now nearly one year after his surgery, his practice continues to flourish and he encourages others in his profession to consider the possibility of DBS as a definitive treatment for tremors of the hand, which may salvage their practice.

  19. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Bao, Faxiu; Ma, Shaohui; Guo, Chenguang; Jin, Chenwang; Zhang, Ming [First Affiliated Hospital of Xi' an Jiaotong University, Department of Medical Imaging, Xi' an, Shaanxi (China); Li, Dan [First Affiliated Hospital of Xi' an Jiaotong University, Department of Respiratory and Critical Care Medicine, Xi' an, Shaanxi (China)

    2014-08-15

    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ({sup 1}H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  20. Multivoxel proton magnetic resonance spectroscopy detects thalamic neurochemical metabolic changes in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Rania E. Mohamed

    2017-06-01

    Conclusion: The multi-voxel 1H-MRS can provide an insight to the neurochemical metabolic changes occurring in both thalami in patients with MDD. Increased severity of depression is significantly related to these thalamic neurochemical changes.