WorldWideScience

Sample records for tgf-betarii dn mice

  1. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor beta type II receptor in a panel of small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Krarup, M; Nørgaard, P

    1998-01-01

    Our panel of SCLC cell lines have previously been examined for their radiobiological characteristics and sensitivity to treatment with TGF beta 1. In this study we examined the possible correlations between radiobiological parameters and the expression of the TGF beta type II receptor (TGF beta......-rII). We have, in other studies, shown that the presence of TGF beta-rII was mandatory for transmitting the growth inhibitory effect of TGF beta. The results showed a statistically significant difference in Dq, i.e. the shoulder width of the survival curve, between cell lines expressing TGF beta......-rII and cell lines which did not express the receptor (P = 0.01). Cell lines expressing TGF beta-rII had a high Dq-value. TGF beta-rII expression did not correlate with any other radiobiological parameters. We suggest that an intact growth inhibitory pathway mediated by the TGF beta-rII may have a significant...

  2. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Mervi E. Hyvönen

    2015-01-01

    Full Text Available The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.

  3. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    Science.gov (United States)

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies.

  4. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  5. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1.

    Science.gov (United States)

    Jeong, Dana; Kim, Dong-Hyeon; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Kim, Hong-Seok; Seo, Kun-Ho

    2017-02-22

    Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 10 8 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.

  6. Application of serum TGF-β1 determination for early diagnosis of diabetic nephropathy

    International Nuclear Information System (INIS)

    Jiang Zhonglin; Jiang Guoliang

    2005-01-01

    Objective: To investigate the feasibility of obtaining early diagnosis of diabetic nephropathy (DN) with determination of serum transforming growth factor-β 1 (TGF- β 1 ). Methods: Serum TGF-β 1 (with ELISA) and β 2 -microglobulin (β 2 -m, with RIA) levels as well as urinany β 2 -m, albumin and mciro-amount of proteins were determined in 35 controls and 84 diabetic patients with different degrees of albuminuria (Group A: urinary albumin excretion UAE 300mg/24h, n=28). Results: The serum TGF-β 1 , β 2 -m and urinary β 2 -m contents were correlated well with UAE in the diabetic patients. Conclusion: TGF-β 1 and β 2 -m were sensitive markers for early renal function injury in diabetic patients and determination of serum TGF-β 1 levels was clinically useful for diagnosis of early DN. (authors)

  7. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  8. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.

  9. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.

    Science.gov (United States)

    Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T

    2014-08-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.

  10. Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Hua [Department of Emergency, Xi’an Children’s Hospital, Xi' an, 710003, Shanxi (China); Fu, Jia [Department of Infection, Xi’an Children’s Hospital, Xi' an, 710003, Shanxi (China); Sun, Da-Qing, E-mail: daqingsuncd@163.com [Department of Respiration, Xi’an Children’s Hospital, NO. 69 Xijuyuan Lane, Xi' an 710003, Shanxi (China)

    2016-04-29

    Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally, the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC. - Highlights: • Halofuginone (HF) increases the survival of suckling BALB/c mice infected with acute CVB3. • HF reduces the expression of Th17 cell markers (IL-17 and IL-23) and the number of CD4{sup +} IL17{sup +} cells. • Pro-inflammatory cytokines levels associated with myocarditis were reduced by HF in CVB3-treated suckling mice. • HF alleviates VMC via inhibition of TGF-β1-mediated NF-κB p65/TNF-α pathway.

  11. A cluster of coregulated genes determines TGF-β–induced regulatory T-cell (Treg) dysfunction in NOD mice

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe

    2011-01-01

    Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  12. Stellate Cell Activation and Imbalanced Expression of TGF-β1/TGF-β3 in Acute Autoimmune Liver Lesions Induced by ConA in Mice

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-01-01

    Full Text Available Objective. To study the pathogenic feature of liver injury, activation of hepatic stellate cells, and dynamic expression of TGF-β1/TGF-β3 to reveal their role in liver injury induced by ConA. Methods. Mice were randomly divided into control group and ConA treatment group. ConA (20 mg/kg was injected through vena caudalis in ConA treatment group; the controls received the same volume of saline injection. After injection for 2 h, 8 h, 24 h, and 48 h, animals were terminated. Blood, liver, and spleen were harvested. Liver function and histopathology were studied. α-SMA, vimentin, TGF-β1, and TGF-β3 were detected. Results. After ConA injection, liver damage started to increase. Expression of α-SMA, vimentin, TGF-β1, and TGF-β3 was significantly enhanced; all above indicators reached peak at 8 h; but from 24 h after ConA injection, TGF-β3 expression began to decline, while the TGF-β1/TGF-β3 ratio at 48 h was significantly lower than control. Conclusion. (1 Autoimmune liver injury induced by ConA showed time-based features, in which the most serious liver lesions happened at 8 h after ConA injection. (2 Early activation of HSC and imbalance expression of TGF-β1 and TGF-β3 existed in ConA-induced acute autoimmune liver injury, which may be associated with liver dysfunction and the mechanisms of progression to fibrosis.

  13. Conditional expression of the dominant-negative TGF-β receptor type II elicits lingual epithelial hyperplasia in transgenic mice.

    Science.gov (United States)

    Li, Feng; Zhou, Mingliang

    2013-05-01

    The transforming growth factor-β (TGF-β) signaling pathway is generally believed to be a potent inhibitor of proliferation. However, many epithelia lacking the essential Tgfbr2 gene still maintain normal tissue homeostasis. Here, transgenic mice expressing rtTA from the human keratin 14 (K14) promoter were used to generate an inducible dominant-negative TGF-β receptor type II (Tgfbr2) mutant model, which allowed us to distinguish between the primary and secondary effects of TGF-β signaling disruption by Doxycycline treatment in K14+ epithelial stem cells. We showed that in mice lacking TGF-β signaling in K14+ cells, invasive carcinomas developed on the ventral surface of the tip of the tongue, while filiform papillae on the dorsal surface showed different pathological changes from the tip to the posterior of the tongue. In addition, acetylation levels of histone H4 and histone H3 rapidly increased, while pMAPK activity was enhanced and Jagged2 inactivated in lingual epithelia after disruption of TGF-β signaling. Our results contribute to the understanding of TGF-β signaling in regulating homeostasis and carcinogenesis in lingual epithelia. Copyright © 2013 Wiley Periodicals, Inc.

  14. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication.

    Science.gov (United States)

    Tapella, Laura; Cerruti, Matteo; Biocotino, Isabella; Stevano, Alessio; Rocchio, Francesca; Canonico, Pier Luigi; Grilli, Mariagrazia; Genazzani, Armando A; Lim, Dmitry

    2018-02-01

    Astrocytes participate in the development and resolution of neuroinflammation in numerous ways, including the release of cytokines and growth factors. Among many, astrocytes release transforming growth factors beta (TGF-β) TGF-β1, TGF-β2 and TGF-β3. TGF-β1 is the most studied isoform, while production and release of TGF-β2 and TGF-β3 by astrocytes have been poorly characterized. Here, we report that purified cultures of hippocampal astrocytes produce mainly TGF-β3 followed by TGF-β2 and TGF-β1. Furthermore, astrocytes release principally the active form of TGF-β3 over the other two. Changes in release of TGF-β were sensitive to the calcineurin (CaN) inhibitor FK506. Starvation had no effect on TGF-β1 and TGF-β3 while TGF-β2 mRNA was significantly up-regulated in a CaN-dependent manner. We further investigated production and release of astroglial TGF-β in Alzheimer's disease-related conditions. Oligomeric β-amyloid (Aβ) down-regulated TGF-β1, while up-regulating TGF-β2 and TGF-β3, in a CaN-dependent manner. In cultured hippocampal astrocytes from 3xTg-AD mice, TGF-β2 and TGF-β3, but not TGF-β1, were up-regulated, and this was CaN-independent. In hippocampal tissues from symptomatic 3xTg-AD mice, TGF-β2 was up-regulated with respect to control mice. Finally, treatment with recombinant TGF-βs showed that TGF-β2 and TGF-β3 significantly reduced PSD95 protein in cultured hippocampal neurons, and this effect was paralleled by conditioned media from Aβ-treated astrocytes or from astrocytes from 3xTg-AD mice. Taken together, our data suggest that TGF-β2 and TGF-β3 are produced by astrocytes in a CaN-dependent manner and should be investigated further in the context of astrocyte-mediated neurodegeneration. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2016-12-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

  16. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    Science.gov (United States)

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice

  17. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGF-β expression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  18. Endoglin Expression and The Level of TGF- β are Increased in The Placental Tissue and Correlated with Low Fetal Weight in Malaria Infected Mice

    Directory of Open Access Journals (Sweden)

    Sujarot Dwi Sasmito

    2015-01-01

    Full Text Available Malaria infection during pregnancy can cause accumulation of infected red blood cells in placental intervillous space and induces placental tissue inflammation and hypoxia. This condition triggers endoglin expressionand release of soluble endoglin that can interfere TGF-β binding with the receptor. The aim of this study was to investigate the correlation between placental endoglin expression and TGF-β level with low fetal weight (LFW in malaria-infected mice. Nine pregnant mice infected with Plasmodium berghei on the day ninth post mating (malaria-infected group and eight normal pregnant mice (non-infected group were used in this study. The mice were sacrificed on the day 18th post mating, and all fetal body weights were measured by analytical scale. Enzyme Link Immunosorbent Assay (ELISA was done to determine the level of placental TGF-β while immunohistochemical staining was performed to examine endoglin expression in placental tissue. The mean of fetal body weights of malaria-infected group was significantly lower than non-infected group (p= 0,002, while the expression of placental endoglin in malaria- infected group was substantially higher than non-infected group (p= 0.003. The level of placental TGF-β in malaria-infected group was also considerably higher than non-infected group, but the difference was not significant (p= 0.064. Pearson correlation test showed that there were significant negative correlations between fetal body weights with the level of placental TGF-β (p= 0.017, r= -0.568 and the expression of placental endoglin (p= 0.002, r= -0.694. Malaria infection in pregnant mice will increase both TGF-β and endoglin in placenta tissue and correlate with low fetal weight.

  19. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Shabeena [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Ahsan, Haseeb [Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025 (India); Khan, Mohammad Rashid [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Siddiqui, Waseem A., E-mail: wasiddiqui01@gmail.com [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India)

    2013-12-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  20. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    International Nuclear Information System (INIS)

    Siddiqui, Shabeena; Ahsan, Haseeb; Khan, Mohammad Rashid; Siddiqui, Waseem A.

    2013-01-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  1. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Shabeena [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Ahsan, Haseeb [Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025 (India); Khan, Mohammad Rashid [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Siddiqui, Waseem A., E-mail: wasiddiqui01@gmail.com [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India)

    2013-12-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  2. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    Science.gov (United States)

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (Pgranulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  3. Long-term reduction in food allergy susceptibility in mice by combining breastfeeding-induced tolerance and TGF-β-enriched formula after weaning.

    Science.gov (United States)

    Rekima, A; Macchiaverni, P; Turfkruyer, M; Holvoet, S; Dupuis, L; Baiz, N; Annesi-Maesano, I; Mercenier, A; Nutten, S; Verhasselt, V

    2017-04-01

    Oral tolerance induction in early life is a promising approach for food allergy prevention. Its success requires the identification of factors necessary for its persistence. We aimed to assess in mice duration of allergy prevention by breastfeeding-induced oral tolerance and whether oral TGF-β supplementation after weaning would prolong it. We quantified ovalbumin (OVA) and OVA-specific immunoglobulin levels by ELISA in milk from the EDEN birth cohort. As OVA-specific Ig was found in all samples, we assessed whether OVA-immunized mice exposed to OVA during lactation could prevent allergic diarrhoea in their 6- and 13-week-old progeny. In some experiments, a TGF-β-enriched formula was given after weaning. At 6 weeks, only 13% and 34% of mice breastfed by OVA-exposed mothers exhibited diarrhoea after six and seven OVA challenges vs. 44% and 72% in mice breastfed by naïve mothers (P = 0.02 and 0.01). Protection was associated with decreased levels of MMCP1 and OVA-specific IgE (P food allergy by breastfeeding-induced tolerance is of limited duration. Nutritional intervention by TGF-β supplementation after weaning could prolong beneficial effects of breast milk on food allergy prevention. © 2016 John Wiley & Sons Ltd.

  4. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun Watanabe

    Full Text Available Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN, and TGF-β1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs. Urine samples from Japanese patients with type 2 diabetes (n = 46 were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF-β1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF-β1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF-β1-induced epithelial to mesenchymal transition (EMT. In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037, eGFR (r = -0.376, p = 0.01, urinary β2-microglobulin (r = 0.385, p = 0.008, and urinary N-acetyl-beta-D-glucosaminidase (NAG (r = 0.502, p = 0.000. A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF-β1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF-β1-induced tubular injury in DN.

  5. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    Science.gov (United States)

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF

  6. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE KO ) and APP/glial fibrillary acidic protein (GFAP)-apoE KO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE KO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE KO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE KO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE KO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation

  7. The effect of Echinococcus granulosus on spleen cells and TGF-β expression in the peripheral blood of BALB/c mice.

    Science.gov (United States)

    Yin, S; Chen, X; Zhang, J; Xu, F; Fang, H; Hou, J; Zhang, X; Wu, X; Chen, X

    2017-03-01

    Cystic echinococcosis (CE) caused by the cestode Echinococcus granulosus (E. granulosus) is a zoonotic parasitic disease. The effective immune evasion mechanisms of E. granulosus allow it to parasitize its hosts. However, the status of the innate and adaptive immune cells and their contributions to E. granulosus progression remain poorly understood. In this study, we aimed to determine the impact of E. granulosus infection on T cells, NK cell responses and TGF-β expression during the early infection phase in BALB/c mice. In E. granulosus infections, there was an increasing tendency in the percentage of CD4 + CD25 + T cells and CD4 + Foxp3 + T cells and peripheral blood TGF-β levels and relative expression of the Foxp3 gene. Moreover, there were a decreasing tendency in the percentage of NK cells and NK cell cytotoxicity and the expression of NKG2D on NK cells. The TGF-β1/Smad pathway was activated by E. granulosus in mice. Above results can be reversed by the inhibitor SB-525334 (potent activin receptor-like kinase 5 inhibitor). These results suggest that the TGF-β/Smad pathway plays an important role in changes of T-cell or NK cell responses. These results may contribute to revealing the preliminary molecular mechanisms in establishing hydatid infection. © 2017 John Wiley & Sons Ltd.

  8. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Md Mahiuddin Ahmed

    Full Text Available Down syndrome (DS is caused by an extra copy of human chromosome 21 (Hsa21. Although it is the most common genetic cause of intellectual disability (ID, there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC, with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective

  9. The dynamics of TGF-β in dental pulp, odontoblasts and dentin.

    Science.gov (United States)

    Niwa, Takahiko; Yamakoshi, Yasuo; Yamazaki, Hajime; Karakida, Takeo; Chiba, Risako; Hu, Jan C-C; Nagano, Takatoshi; Yamamoto, Ryuji; Simmer, James P; Margolis, Henry C; Gomi, Kazuhiro

    2018-03-13

    Transforming growth factor-beta (TGF-β) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-β in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-β1 and TGF-β3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-β2 is high in dental pulp. TGF-β1 is a major isoform of TGF-β, and latent TGF-β1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-β1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-β1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-β1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-β1 expression did not change between wild-type and MMP20 null mice. TGF-β1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-β1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.

  10. [Influence of kaempferol on TGF-β1/Smads signal path in liver tissue of mice with Schistosoma japonicum infection].

    Science.gov (United States)

    Cai, Wen; Zhao, Lei; Li, Hua-rong; Zhang, Shu-ling

    2014-08-01

    To investigate the influence of kaempferol on transforming growth factor(TGF-β1/Smads signal tiransduction in liver tissue of mice with schistosomiasis liver fibrosis. Forty BALB/c mice were randomly divided into a normal control group (8 mice), a praziquantel group (8 mice ), and 4 praziquantel + kaempferol groups with different kaempferol dosages (5, 10, 15, 20 mg/kg respectively, 6 mice each group). Besides the normal control group, all the mice in the other 5 groups were infected with Schistosoma japonicum. After the infection for 6 weeks, the praziquantel group and the 4 praziquantel + kaempferol groups were treated with praziquantel 500 mg/(kg.d) for 2 d, then the mice in the praziquantel group were drenched with normal saline for 6 weeks, and those in the 4 praziquantel + kaempferol groups were drenched with kaempferol 5, 10, 15, 20 mg/kg respectively for 6 weeks. After the treatment, all the animals were sacrificed by the cervical dislocation method, and the area of egg granuloma and the degree of fibrosis in the livers of the mice were observed by HE and Masson staining. The expressions of TGF-β1, Smad2/3, Smad7 proteins were measured by the immunohistochemical method, and the mRNA levels of the 3 proteins were detected by RT-PCR. Compared with the mice in the praziquantel group, the areas of egg granuloma of the liver of the mice in the 4 praziquantel + kaempferol groups were smaller, and the degrees of the hepatic fibrosis of the mice were lesser, and their expressions of Smad2 and Smad3 at protein and their mRNA levels were significantly lower (all P kaempferol can significantly reduce the degrees of hepatic fibrosis and granuloma caused by schistosome eggs after the praziquantel treatment.

  11. Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

    Science.gov (United States)

    Madala, Satish K.; Korfhagen, Thomas R.; Schmidt, Stephanie; Davidson, Cynthia; Edukulla, Ramakrishna; Ikegami, Machiko; Violette, Shelia M.; Weinreb, Paul H.; Sheppard, Dean

    2014-01-01

    A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of

  12. Both ERK/MAPK and TGF-Beta/Smad Signaling Pathways Play a Role in the Kidney Fibrosis of Diabetic Mice Accelerated by Blood Glucose Fluctuation

    Directory of Open Access Journals (Sweden)

    Xiaoyun Cheng

    2013-01-01

    Full Text Available Background. The notion that diabetic nephropathy is the leading cause of renal fibrosis prompted us to investigate the effects of blood glucose fluctuation (BGF under high glucose condition on kidney in the mice. Methods. The diabetic and BGF animal models were established in this study. Immunohistochemistry, Western blot, and RT-PCR analysis were applied to detect the expression of type I collagen, matrix metalloproteinase-1 (MMP1, metalloproteinase inhibitor 1 (TIMP1, transforming growth factor beta 1 (TGF-β1, phosphorylated-ERK, p38, smad2/3, and Akt. Results. BGF treatment increased type I collagen synthesis by two times compared with the control. The expression of MMP1 was reduced markedly while TIMP1 synthesis was enhanced after BGF treatment. ERK phosphorylation exhibits a significant increase in the mice treated with BGF. Furthermore, BGF can markedly upregulate TGF-β1 expression. The p-smad2 showed 2-fold increases compared with the only diabetic mice. However, p-AKT levels were unchanged after BGF treatment. Conclusions. These data demonstrate that BGF can accelerate the trend of kidney fibrosis in diabetic mice by increasing collagen production and inhibiting collagen degradation. Both ERK/MAPK and TGF-β/smad signaling pathways seem to play a role in the development of kidney fibrosis accelerated by blood glucose fluctuation.

  13. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  14. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes.

    Science.gov (United States)

    Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J; Dria, Karl J; Wallace, Joseph M; Goodlett, Charles R; Roper, Randall J

    2017-08-01

    Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis

  15. Digastric Muscle Phenotypes of the Ts65Dn Mouse Model of Down Syndrome.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Down syndrome is frequently associated with complex difficulties in oromotor development, feeding, and swallowing. However, the muscle phenotypes underlying these deficits are unclear. We tested the hypotheses that the Ts65Dn mouse model of DS has significantly altered myosin heavy chain (MyHC isoform profiles of the muscles involved in feeding and swallowing, as well as reductions in the speed of these movements during behavioral assays. SDS-PAGE, immunofluorescence, and qRT-PCR were used to assess MyHC isoform expression in pertinent muscles, and functional feeding and swallowing performance were quantified through videofluoroscopy and mastication assays. We found that both the anterior digastric (ADG and posterior digastric (PDG muscles in 11-day old and 5-6 week old Ts65Dn groups showed significantly lower MyHC 2b protein levels than in age-matched euploid control groups. In videofluoroscopic and videotape assays used to quantify swallowing and mastication performance, 5-6 week old Ts65Dn and euploid controls showed similar swallow rates, inter-swallow intervals, and mastication rates. In analysis of adults, 10-11 week old Ts65Dn mice revealed significantly less MyHC 2b mRNA expression in the posterior digastric, but not the anterior digastric muscle as compared with euploid controls. Analysis of MyHC 2b protein levels across an adult age range (10-53 weeks of age revealed lower levels of MyHC 2b protein in the PDG of Ts65Dn than in euploids, but similar levels of MyHC 2b in the ADG. Cumulatively, these results indicate biochemical differences in some, but not all, muscles involved in swallowing and jaw movement in Ts65Dn mice that manifest early in post-natal development, and persist into adulthood. These findings suggest potential utility of this model for future investigations of the mechanisms of oromotor difficulties associated with Down syndrome.

  16. Experience-dependent reduction of soluble β-amyloid oligomers and rescue of cognitive abilities in middle-age Ts65Dn mice, a model of Down syndrome.

    Science.gov (United States)

    Sansevero, Gabriele; Begenisic, Tatjana; Mainardi, Marco; Sale, Alessandro

    2016-09-01

    Down syndrome (DS) is the most diffused genetic cause of intellectual disability and, after the age of forty, is invariantly associated with Alzheimer's disease (AD). In the last years, the prolongation of life expectancy in people with DS renders the need for intervention paradigms aimed at improving mental disability and counteracting AD pathology particularly urgent. At present, however, there are no effective therapeutic strategies for DS and concomitant AD in mid-life people. The most intensively studied mouse model of DS is the Ts65Dn line, which summarizes the main hallmarks of the DS phenotype, included severe learning and memory deficits and age-dependent AD-like pathology. Here we report for the first time that middle-age Ts65Dn mice display a marked increase in soluble Aβ oligomer levels in their hippocampus. Moreover, we found that long-term exposure to environmental enrichment (EE), a widely used paradigm that increases sensory-motor stimulation, reduces Aβ oligomers and rescues spatial memory abilities in trisomic mice. Our findings underscore the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes in DS subjects. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGFmice

    Science.gov (United States)

    Dogan, Soner; Hu, Xin; Zhang, Yan; Maihle, Nita J; Grande, Joseph P; Cleary, Margot P

    2007-01-01

    Introduction Obesity is a risk factor for postmenopausal breast cancer and is associated with shortened mammary tumor (MT) latency in MMTV-TGFmice with dietary-induced obesity. One link between obesity and breast cancer is the adipokine, leptin. Here, the focus is on diet-induced obesity and MT and mammary fat pad (MFP) leptin and apoptotic signaling proteins. Methods MMTV-TGFmice were fed low-fat or high-fat diets from 10 to 85 weeks of age. High-Fat mice were divided into Obesity-Prone and Obesity-Resistant groups based on final body weights. Mice were followed to assess MT development and obtain serum, MFP, and MT. Results Incidence of palpable MTs was significantly different: Obesity-Prone > Obesity-Resistant > Low-Fat. Serum leptin was significantly higher in Obesity-Prone compared with Obesity-Resistant and Low-Fat mice. Low-Fat mice had higher MFP and MT ObRb (leptin receptor) protein and Jak2 (Janus kinase 2) protein and mRNA levels in comparison with High-Fat mice regardless of body weight. Leptin (mRNA) and pSTAT3 (phosphorylated signal transducer and activator of transcription 3) (mRNA and protein) also were higher in MTs from Low-Fat versus High-Fat mice. Expression of MT and MFP pro-apoptotic proteins was higher in Low-Fat versus High-Fat mice. Conclusion These results confirm a connection between body weight and MT development and between body weight and serum leptin levels. However, diet impacts MT and MFP leptin and apoptosis signaling proteins independently of body weight. PMID:18162139

  18. Surfactant protein D attenuates sub-epithelial fibrosis in allergic airways disease through TGF-β.

    Science.gov (United States)

    Ogawa, Hirohisa; Ledford, Julie G; Mukherjee, Sambuddho; Aono, Yoshinori; Nishioka, Yasuhiko; Lee, James J; Izumi, Keisuke; Hollingsworth, John W

    2014-11-29

    Surfactant protein D (SP-D) can regulate both innate and adaptive immunity. Recently, SP-D has been shown to contribute to the pathogenesis of airway allergic inflammation and bleomycin-induced pulmonary fibrosis. However, in allergic airways disease, the role of SP-D in airway remodeling remains unknown. The objective of this study was to determine the contribution of functional SP-D in regulating sub-epithelial fibrosis in a mouse chronic house dust mite model of allergic airways disease. C57BL/6 wild-type (WT) and SP-D-/- mice (C57BL/6 background) were chronically challenged with house dust mite antigen (Dermatophagoides pteronyssinus, Dp). Studies with SP-D rescue and neutralization of TGF-β were conducted. Lung histopathology and the concentrations of collagen, growth factors, and cytokines present in the airspace and lung tissue were determined. Cultured eosinophils were stimulated by Dp in presence or absence of SP-D. Dp-challenged SP-D-/- mice demonstrate increased sub-epithelial fibrosis, collagen production, eosinophil infiltration, TGF-β1, and IL-13 production, when compared to Dp-challenged WT mice. By immunohistology, we detected an increase in TGF-β1 and IL-13 positive eosinophils in SP-D-/- mice. Purified eosinophils stimulated with Dp produced TGF-β1 and IL-13, which was prevented by co-incubation with SP-D. Additionally, treatment of Dp challenged SP-D-/- mice with exogenous SP-D was able to rescue the phenotypes observed in SP-D-/- mice and neutralization of TGF-β1 reduced sub-epithelial fibrosis in Dp-challenged SP-D-/- mice. These data support a protective role for SP-D in the pathogenesis of sub-epithelial fibrosis in a mouse model of allergic inflammation through regulation of eosinophil-derived TGF-β.

  19. Adult-Onset Fluoxetine Treatment Does Not Improve Behavioral Impairments and May Have Adverse Effects on the Ts65Dn Mouse Model of Down Syndrome

    Directory of Open Access Journals (Sweden)

    Markus Heinen

    2012-01-01

    Full Text Available Down syndrome is caused by triplication of chromosome 21 and is associated with neurocognitive phenotypes ranging from severe intellectual disability to various patterns of more selective neuropsychological deficits, including memory impairments. In the Ts65Dn mouse model of Down syndrome, excessive GABAergic neurotransmission results in local over-inhibition of hippocampal circuits, which dampens hippocampal synaptic plasticity and contributes to cognitive impairments. Treatments with several GABAA receptor antagonists result in increased plasticity and improved memory deficits in Ts65Dn mice. These GABAA receptor antagonists are, however, not suitable for clinical applications. The selective serotonin reuptake inhibitor fluoxetine, in contrast, is a widely prescribed antidepressant that can also enhance plasticity in the adult rodent brain by lowering GABAergic inhibition. For these reasons, we wondered if an adult-onset 4-week oral fluoxetine treatment restores spatial learning and memory impairments in Ts65Dn mice. Fluoxetine did not measurably improve behavioral impairments of Ts65Dn mice. On the contrary, we observed seizures and mortality in fluoxetine-treated Ts65Dn mice, raising the possibility of a drug × genotype interaction with respect to these adverse treatment outcomes. Future studies should re-address this in larger animal cohorts and determine if fluoxetine treatment is associated with adverse treatment effects in individuals with Down syndrome.

  20. Triggered Firing and Atrial Fibrillation in Transgenic Mice With Selective Atrial Fibrosis Induced by Overexpression of TGF-β1

    Science.gov (United States)

    Choi, Eue-Keun; Chang, Po-Cheng; Lee, Young-Soo; Lin, Shien-Fong; Zhu, Wuqiang; Maruyama, Mitsunori; Fishbein, Michael C.; Chen, Zhenhui; der Lohe, Michael Rubart-von; Field, Loren J.; Chen, Peng-Sheng

    2013-01-01

    Background Calcium transient triggered firing (CTTF) is induced by large intracellular calcium (Cai) transient and short action potential duration (APD). We hypothesized that CTTF underlies the mechanisms of early afterdepolarization (EAD) and spontaneous recurrent atrial fibrillation (AF) in transgenic (Tx) mice with overexpression of transforming growth factor β1 (TGF-β1). Methods and Results MHC-TGFcys33ser Tx mice develop atrial fibrosis because of elevated levels of TGF-β1. We studied membrane potential and Cai transients of isolated superfused atria from Tx and wild-type (Wt) littermates. Short APD and persistently elevated Cai transients promoted spontaneous repetitive EADs, triggered activity and spontaneous AF after cessation of burst pacing in Tx but not Wt atria (39% vs. 0%, P=0.008). We were able to map optically 4 episodes of spontaneous AF re-initiation. All first and second beats of spontaneous AF originated from the right atrium (4/4, 100%), which is more severely fibrotic than the left atrium. Ryanodine and thapsigargin inhibited spontaneous re-initiation of AF in all 7 Tx atria tested. Western blotting showed no significant changes of calsequestrin or sarco/endoplasmic reticulum Ca2+-ATPase 2a. Conclusions Spontaneous AF may occur in the Tx atrium because of CTTF, characterized by APD shortening, prolonged Cai transient, EAD and triggered activity. Inhibition of Ca2+ release from the sarcoplasmic reticulum suppressed spontaneous AF. Our results indicate that CTTF is an important arrhythmogenic mechanism in TGF-β1 Tx atria. PMID:22447020

  1. CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function.

    Science.gov (United States)

    Yoshioka, Yuya; Ono, Mitsuaki; Maeda, Azusa; Kilts, Tina M; Hara, Emilio Satoshi; Khattab, Hany; Ueda, Junji; Aoyama, Eriko; Oohashi, Toshitaka; Takigawa, Masaharu; Young, Marian F; Kuboki, Takuo

    2016-02-01

    The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  3. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  4. TGF-β1 of no avail as prognostic marker in lyme disease

    Directory of Open Access Journals (Sweden)

    Julia Schumann

    2014-05-01

    Full Text Available Background. Within the present in vivo study using the wild type mouse strains C3H/HeN and FVB/N it was intended to (1 measure TGF-β1 expression in the course of lyme disease, (2 examine the potential correlation of TGF-β1 expression with the clinical outcome of a Borrelia infection (with a focus on lyme arthritis, (3 develop a diagnostic tool based on the endogenous factor TGF-β1 to predict the progressivity of lyme disease.Findings. In the course of lyme disease there was an increase in the serum content of active TGF-β1, which became significant 56 days post infection (p < 0.001. The serum concentration of total TGF-β1 in the course of infection initially decreased then rebounded and subsequently dropped again. Despite considerable individual variations in active TGF-β1 serum concentrations there were no identifiable dissimilarities in the clinical appearance of the mice. Likewise, no correlation could be seen between the serum content of active TGF-β1 and the severity of lyme arthritis of tibiotarsal joints of infected mice.Conclusions. The present study clearly shows that TGF-β1 is of no avail as prognostic marker in lyme disease. Hence, the search for an endogenous predictive factor, which can be determined in an easy and reliable manner, remains open.

  5. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Science.gov (United States)

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  7. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis.

    Science.gov (United States)

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-11-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. © 2013 British Society for Immunology.

  8. Andrographolide Ameliorates Liver Fibrosis in Mice: Involvement of TLR4/NF-κB and TGF-β1/Smad2 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Liteng Lin

    2018-01-01

    Full Text Available Liver fibrosis is characterized by activated hepatic stellate cells (HSC and extracellular matrix accumulation. Blocking the activation of HSC and the inflammation response are two major effective therapeutic strategies for liver fibrosis. In addition to the long history of using andrographolide (Andro for inflammatory disorders, we aimed at elucidating the pharmacological effects and potential mechanism of Andro on liver fibrosis. In this study, liver fibrosis was induced by carbon tetrachloride (CCl4 and the mice were intraperitoneally injected with Andro for 6 weeks. HSC cell line (LX-2 and primary HSC were also treated with Andro in vitro. Treatment of CCl4-induced mice with Andro decreased the levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST, Sirius red staining as well as the expression of α smooth muscle actin (α-SMA and transforming growth factor- (TGF- β1. Furthermore, the expression of Toll-like receptor (TLR4 and NF-κB p50 was also inhibited by Andro. Additionally, in vitro data confirmed that Andro treatment not only attenuated the expression of profibrotic and proinflammatory factors but also blocked the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways. These results demonstrate that Andro prevents liver inflammation and fibrosis, which is in correlation with the inhibition of the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways, highlighting Andro as a potential therapeutic strategy for liver fibrosis.

  9. The Influence of Corn Silk Polysaccharide on Signal Pathway of TGF-β1 in Type 2 Diabetic Mellitus Rat.

    Science.gov (United States)

    Wen, Xianchun; Yue, Liling

    2015-01-01

    In prevention stage, comparing with normal control group, triglycerides, blood sugar (BG), 24-hour urinary protein and cholesterol (CHO) were higher in T2DM group, but weight and urea nitrogen (BUN) was less in it. 24-hour urinary protein and cholesterol (CHO) were higher in T2DM group than the intervention group. 24-hour urinary protein and BG in the intervention group were higher than normal control group, but BUN is less than normal control group; In the intervention group the weight of kidney and weight of rat were also higher than T2DM group, but CHO and 24-hour urinary protein were less than T2DM group. The expression of TGF-β1 in T2DM group were more than the other groups. In treatment stage, serum creatinine (Cr), weight, BG and CHO, TGand 24-hour urinary protein quantitative were significantly higher in the DN rats than those in the normal control rats (P>0.05). The expression level of TGF-β1 and triglyceride level in the corn silk dihydroxycorn silk3 treated group were obviously lower than those in the DN rats.

  10. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model

    DEFF Research Database (Denmark)

    Thomsen, Lise Høj; Fog-Tonnesen, Morten; Nielsen Fink, Lisbeth

    2017-01-01

    Uncontrolled activation of transforming growth factor beta (TGF-β) family members is hypothesized to participate in type 2 diabetes (T2D) dependent diabetic nephropathy (DN). We evaluated and compared downstream activation of the Smad2-signaling pathway in kidney samples from T2D patients...... to kidneys from the T2D model of leptin receptor deficient db/db mouse. Furthermore, expression of TGF-β family members was evaluated to elucidate molecular mechanisms in the mouse model. Kidney samples from patients with advanced stages of DN showed elevated pSmad2 staining whereas db/db mouse kidneys...... surprisingly showed a decrease in pSmad2 in the tubular compartment. Structurally, kidney tissue showed dilated tubules and expanded glomeruli, but no clear fibrotic pattern was found in the diabetic mice. Selective TGF-β family members were up-regulated at the mRNA level. Antagonists of bone morphogenetic...

  11. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling.

    Directory of Open Access Journals (Sweden)

    Daijiro Hori

    Full Text Available Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening.qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT were followed weekly for pulse wave velocity (PWV and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice.Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway.

  12. Effects of chronic vs. intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGFmice at different ages

    Science.gov (United States)

    DOGAN, SONER; ROGOZINA, OLGA P.; LOKSHIN, ANNA E.; GRANDE, JOSEPH P.; CLEARY, MARGOT P.

    2010-01-01

    Calorie restriction prevents mammary tumor (MT) development in rodents. Usually, chronic calorie restriction (CCR) has been implemented. In contrast, intermittent calorie restriction (ICR) has been less frequently used. Recent studies indicate that when a direct comparison of the same degree of CCR vs. ICR was made using MMTV-TGFmice which develop MTs in the second year of life, ICR provided greater protection than CCR in delaying MT detection and reducing tumor incidence. Adiponectin and leptin are two adipocytokines secreted from adipose tissue which have opposite effects on many physiological functions, including proliferation of human breast cancer cells. A recent study indicated that a low adiponectin/leptin ratio was associated with breast cancer. We evaluated the relationship of adiponectin and leptin to MT development in MMTV-TGF-α calorie-restricted mice at several ages. Mice were enrolled at 10 weeks of age and subjected to 25% caloric reduction implemented either chronically or intermittently. Mice were euthanized at designated time points up to 74 weeks of age. Serum samples were collected to measure adiponectin and leptin concentrations. Both CCR and ICR mice had significantly reduced MT incidence. For the groups studied, serum leptin increased over time, while there was a trend for an increase in serum adiponectin levels in ad libitum and ICR mice, with no change in CCR mice between 10 and 74 weeks of age. The adiponectin/leptin ratio was significantly reduced as mice aged, but this ratio in ICR mice was significantly higher than that for ad libitum and CCR mice. No correlation was noted between serum adiponectin and leptin. These findings demonstrate that intermittent calorie restriction delays the early development of MTs. This delay was associated with reduced serum leptin levels following the restriction phases of the protocol. Additionally, serum leptin levels correlated with body weight and body fat in the groups studied. PMID:22966277

  13. Drak2 Does Not Regulate TGF-β Signaling in T Cells.

    Directory of Open Access Journals (Sweden)

    Tarsha L Harris

    Full Text Available Drak2 is a serine/threonine kinase expressed highest in T cells and B cells. Drak2-/- mice are resistant to autoimmunity in mouse models of type 1 diabetes and multiple sclerosis. Resistance to these diseases occurs, in part, because Drak2 is required for the survival of autoreactive T cells that induce disease. However, the molecular mechanisms by which Drak2 affects T cell survival and autoimmunity are not known. A recent report demonstrated that Drak2 negatively regulated transforming growth factor-β (TGF-β signaling in tumor cell lines. Thus, increased TGF-β signaling in the absence of Drak2 may contribute to the resistance to autoimmunity in Drak2-/- mice. Therefore, we examined if Drak2 functioned as a negative regulator of TGF-β signaling in T cells, and whether the enhanced susceptibility to death of Drak2-/- T cells was due to augmented TGF-β signaling. Using several in vitro assays to test TGF-β signaling and T cell function, we found that activation of Smad2 and Smad3, which are downstream of the TGF-β receptor, was similar between wildtype and Drak2-/- T cells. Furthermore, TGF-β-mediated effects on naïve T cell proliferation, activated CD8+ T cell survival, and regulatory T cell induction was similar between wildtype and Drak2-/- T cells. Finally, the increased susceptibility to death in the absence of Drak2 was not due to enhanced TGF-β signaling. Together, these data suggest that Drak2 does not function as a negative regulator of TGF-β signaling in primary T cells stimulated in vitro. It is important to investigate and discern potential molecular mechanisms by which Drak2 functions in order to better understand the etiology of autoimmune diseases, as well as to validate the use of Drak2 as a target for therapeutic treatment of these diseases.

  14. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    Science.gov (United States)

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  15. Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.

    Science.gov (United States)

    Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao

    2014-01-01

    Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.

  16. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Pham, Hoa Thi Thai; Huang, Wansu; Han, Chuangye; Li, Juman; Xie, Qiuqiao; Wei, Jinbin; Xu, Xiaohui; Lai, Zefeng; Huang, Xiang; Huang, Renbin; Wen, Qingwei

    2017-01-01

    Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.

  17. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    Science.gov (United States)

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  18. The Protective Effects of Oral Low-dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice

    Directory of Open Access Journals (Sweden)

    Isabele Beserra Santos Gomes

    2015-09-01

    Full Text Available Aims: Diabetic nephropathy (DN is one of the major causes of end-stage renal disease, and the incidence of DN is increasing worldwide. Considering our previous report indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg demonstrated renoprotective, anti-oxidative and anti-apoptotic effects in the C57BL/6J model of diabetic nephropathy, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE-/-. Methods: DN was induced by streptozotocin (100 mg/kg/day, for 3 days in adult apoE-/-mice. Six weeks later, the mice were divided into the following groups: diabetic apoE-/- mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks, diabetic ApoE-/- mice treated with vehicle (DV and non-treated non-diabetic (ND mice.Results: Quercetin treatment caused a reduction in polyuria (~30%, glycemia (~25%, abolished the hypertriglyceridemia and had significant effects on renal function, including decreased proteinuria (~15% and creatininemia (~30%, which were accompanied by beneficial effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight.Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical and morphological modifications. Thus, this translational study highlights the importance of quercetin as a potential nutraceutical for the management of DN, including in diabetes associated with dyslipidemia.

  19. TGF-β1 Induces EMT in Bovine Mammary Epithelial Cells Through the TGFβ1/Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-08-01

    Full Text Available Background/Aims: Transforming growth factor-β1 (TGF-β1 plays a crucial role in chronic inflammation in various tissues, and is related to inflammation-caused organ fibrogenesis associated with the epithelial-mesenchymal transition (EMT and the deposition of the extracellular matrix (ECM. However, the effect of TGF-β1 on bovine mammary epithelial cells (BMECs with mastitis, and its mechanism, remain unknown. Methods: We analyzed the level of TGF-β1 in inflamed mammary tissues and cells using western blotting. BMECs were treated with TGF-β1, and EMT-related gene and protein expression changes were evaluated using quantitative real-time polymerase chain reaction (qPCR, western blotting, and immunofluorescence. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor, and analyzed EMT-related protein expression by western blotting. In addition, we injected TGF-β1 into mice mammary glands to investigate whether it can cause mammary fibrosis in vivo. Results: The TGF-β1 level was up-regulated in mammary tissues with mastitis and in inducible inflammatory BMECs. TGF-β1 treatment activated the TGF/ Smad signaling pathway in BMECs during their transition to the EMT phenotype, as indicated by morphological changes from a cobblestone-like shape to a spindle-like one. TGF-β1 treatment also up-regulated the expression of α-smooth muscle actin, vimentin, and collagen I, albumin, and down-regulated the expression of E-cadherin both in mRNA level and protein level. Furthermore, TGF-β1 enhanced the gene expressions of MMP2, MMP7, and fibronectin in BMECs. TGF-β1 injection induced mice mammary infection and fibrosis. Conclusion: These findings suggested that aberrant up-regulation of TGF-β1 in bovine mastitic mammary glands might play an important role in bovine mammary fibrosis caused by unresolved inflammation.

  20. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP on HFD/STZ-Induced Nephropathy in Mice

    Directory of Open Access Journals (Sweden)

    Yen-Jung Chou

    2016-09-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM. Inonotus obliquus (IO is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP, from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10–100 kDa, LIOP (300 mg/kg had progressively increased their sensitivity to glucose (less insulin tolerance, reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1, while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF-κB/TGF

  1. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    Science.gov (United States)

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  2. Immunohistochemistry Evaluation of TGF-β1, SOX-9, Type II Collagen and Aggrecan in Cartilage Lesions Treated with Conditioned Medium of Umbilical Cord Mesencyhmal Stem Cells in Wistar Mice (Rattus novergicus

    Directory of Open Access Journals (Sweden)

    Bintang Soetjahjo

    2018-01-01

    Full Text Available Currently, umbilical cord mesenchymal stem cells have the potential to be used as treatment options for any cartilage lesion. This research aimed to evaluate the effects of conditioned medium from umbilical cord mesenchymal stem cells (UC-MSC on damaged cartilage through the expression of proteins TGF-β1, SOX-9, type II collagen and aggrecan, which are known to be related to chondrogenesis. UC-MSC were isolated from 19-days-pregnant Wistar mice and were cultured using the standard procedure to obtain 80% confluence. Subsequently, the culture was confirmed through a microscopic examination that was driven to be an embryoid body to obtain a pre-condition medium. This research utilized 3-month-old male Wistar mice and was categorized into 6 groups (3 control and 3 treatment groups. Each animal had surgery performed to create a femur condyle cartilage defect. The treatment groups were administered a dose of stem cells at 1 mL/kg. Next, immunohistochemical (IHC staining was performed to examine the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the 2nd, 3rd, and 4th month of evaluation. The results were analyzed statistically using ANOVA test. For each of the treatment groups, there was increased expression (p < 0.05 in all proteins TGF-β1, SOX-9, type II collagen and aggrecan when compared with control groups at the 2nd, 3rd, and 4th month of evaluation. Pre-conditioned medium from UC-MSC potentially increases the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the damaged cartilage of Wistar mice.

  3. Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Stagni, Fiorenza; Raspanti, Alessandra; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Ciani, Elisabetta; Giuliani, Alessandro; Bighinati, Andrea; Calzà, Laura; Magistretti, Jacopo; Bartesaghi, Renata

    2017-07-01

    Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early

  4. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  5. Combination of active components of Xiexin decoction ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/Smad pathways in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Wu

    Full Text Available Xiexin decoction, a herbal therapeutic agent commonly used in traditional Chinese medicine, is recognized for its beneficial effects on diabetic nephropathy exerted through the combined action of multiple components, including Rhizoma Coptidis alkaloids (A, Radix et Rhizoma Rhei polysaccharides (P, and Radix Scutellaria flavones (F. Our previous studies have shown that a combination of A, P, and F (APF exhibits renoprotective effects against diabetic nephropathy. This study was aimed at determining the effects of APF on renal fibrosis in diabetic nephropathy and elucidating the underlying molecular mechanisms. To evaluate the effects of APF, in vivo, db/db diabetic mice were orally administered a low or high dose of APF (300 or 600 mg/kg, respectively once a day for 8 weeks. We evaluated the blood and urine indices of metabolic and renal function, renal tissue histopathology, renal inflammation, and fibrosis. APF treatment significantly ameliorated glucose and lipid metabolism dysfunction, decreased urinary albumin excretion, normalized creatinine clearance, and reduced the morphological changes in renal tissue. Additionally, APF administration in db/db diabetic mice reduced the elevated levels of renal inflammation mediators such as intercellular adhesion molecule-1, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, and active nuclear factor κB (NF-κB. APF treatment also reduced type I and IV collagen, transforming growth factor-β1 (TGF-β1, and TGF-β1 type II receptor expression levels, and decreased the phosphorylation of Smad2/3 in the kidneys of db/db diabetic mice. These results suggest that APF reduces renal fibrosis in diabetic nephropathy through the NF-κB and TGF-β1/Smad signaling pathways. In vitro, APF treatment reduced cell proliferation and protein expression of α-smooth muscle actin, collagen I, TGF-β1 and NF-κB in mesangial cells cultured with high glucose concentrations. Our findings indicate

  6. Effects of electromagnetic radiation on morphology and TGF-β3 expression in mouse testicular tissue.

    Science.gov (United States)

    Luo, Yaning; Wang, Xiaowu; Chen, Yongbin; Xu, Shenglong; Ding, Guirong; Shi, Changhong

    2013-08-09

    Exposure to electromagnetic pulses in certain doses may lead to increase in the permeability of the blood testes barrier (BTB) in mice, which in turn affects spermatogenesis, penetration and spermiation. TGF-β3 is a key molecule involved in BTB permeability via regulation of tight junction proteins, and it participates in regulating spermatogenesis, synthesis of steroids and production of the extracellular matrix in testicular tissue. Therefore, it is hypothesized that TGF-β3 plays important roles in electromagnetic pulse (EMP)-induced changes in BTB permeability. In the present study, we carried out whole-body irradiation on mice using EMP of different intensities. No obvious pathological changes or significant increase in apoptosis was detected in testicular tissues after exposure to 100 and 200 pulses of intensity 200kV/m; however, with 400 pulses we observed the degeneration and shrinkage of testicular tissues along with a significant increase in apoptotic rate. Moreover, in the 100- and 200-EMP groups, a non-significant increase in TGF-β3 mRNA and protein expression was observed, whereas in the 400-EMP group a significant increase was observed (P<0.05). These results indicate that increase in the apoptotic rate of testicular tissues and increase in TGF-β3 expression may be one of the mechanisms for EMP-induced increase in BTB permeability in mice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. DN2 Thymocytes Activate a Specific Robust DNA Damage Response to Ionizing Radiation-Induced DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Irene Calvo-Asensio

    2018-06-01

    Full Text Available For successful bone marrow transplantation (BMT, a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro “Plastic Thymus” culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i rapid DNA damage response (DDR activation in response to ionizing radiation-induced DNA damage, (ii efficient repair of DNA double-strand breaks, and (iii induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.

  8. Combined effects of moderately elevated blood glucose and locally produced TGF-beta1 on glomerular morphology and renal collagen production

    DEFF Research Database (Denmark)

    Krag, Søren; Nyengaard, Jens R; Wogensen, Lise

    2007-01-01

    BACKGROUND: There is a correlation between renal graft rejection and blood glucose (BG) levels. Furthermore, diabetic patients may develop non-diabetic renal diseases, which in some circumstances progress rapidly. Since transforming growth factor-beta1 (TGF-beta) levels are elevated in many renal...... diseases, the accelerated progression may be due to interactions between glucose and locally produced TGF-beta1. Therefore, we investigated the effect of mild hyperglycaemia on glomerular morphology and collagen production in TGF-beta1 transgenic mice. METHODS: To achieve BG concentrations of approximately...... 15 mmol/l in TGF-beta1 transgenic and non-transgenic mice, we used multiple streptozotocin (STZ) injections, and after 8 weeks, we measured the changes in glomerular morphology and total collagen content. We also analysed extracellular matrix (ECM) and protease mRNA levels using real-time polymerase...

  9. The change of transforming growth factor {beta} 1 (TGF- {beta} 1) expression by melatonin in irradiated lung

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seong Soon; Choi, Ihl Bohng [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-09-15

    The changed expressions of TGF- {beta} 1, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of TGF-{beta} 1 in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of TGF- {beta} 1 protein were identified using immunohistochemical staining. The relative mRNA expression levels in the irradiation-only and melatonin pretreatment group 2 and 4 weeks after irradiation were 1.92- and 1.80-fold ({rho} = 0.064) and 2.38- and 1.94-fold ({rho} = 0.004) increased, respectively compared to those in the control group. Increased expressions of TGF- {beta} 1 protein were prominently detected in regions of histopathological radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of TGF- {beta} 1 expression. At 2 and 4 weeks after irradiation, the expression levels of protein were 15.8% vs. 16.9% ({rho} = 0.565) and 36.1% vs. 25.7% ({rho} = 0.009), respectively. The mRNA and protein expressions of TGF- {beta} 1 in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

  10. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    Science.gov (United States)

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  11. Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Petkova-Kirova, Polina; Nerbonne, Jeanne M; Choi, Bum-Rak; Salama, Guy

    2007-01-01

    Enhanced dispersion of repolarization (DR) and refractoriness may be a unifying mechanism central to arrhythmia genesis in the long QT (LQT) syndrome. The role of DR in promoting arrhythmias was investigated in several strains of molecularly engineered mice: (a) Kv4.2 dominant negative transgenic (Kv4.2DN) that lacks the fast component of the transient outward current, I(to,f), have action potential (AP) and QT prolongation, but no spontaneous arrhythmias, (b) Kv1.4 targeted mice (Kv1.4-/-) that lack the slow component of I(to) (I(to,s)), have no QT prolongation and no spontaneous arrhythmias, and (c) double transgenic (Kv4.2DN x Kv1.4-/-) mice that lack both I(to,f) and I(to,s), have AP and QT prolongation, and spontaneous ventricular tachyarrhythmias. Hearts were perfused, stained with di-4-ANEPPS and optically mapped. Activation patterns and conduction velocities were similar between the strains but AP duration at 75% recovery (APD75) was longer in Kv4.2DN (28.0 +/- 2.5 ms, P mice than controls (20.3 +/- 1.0 ms, n = 5). Dispersion of refractoriness between apex and base was markedly reduced in Kv4.2DN (0.3 +/- 0.5 ms, n = 6, P mice compared with controls (10 +/- 2 ms, n = 5). A premature pulse elicited ventricular tachycardia (VT) in Kv1.4-/- (n = 4/5) and Kv4.2DN x Kv1.4-/- hearts (n = 5/5) but not Kv4.2DN hearts (n = 0/6). Voltage-clamp recordings showed that I(to,f) was 30% greater in myocytes from the apex than base which may account for the absence of DR in Kv4.2DN mice. Thus, dispersion of repolarization (DR) appears to be an important determinant of arrhythmia vulnerability.

  12. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    Science.gov (United States)

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  13. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis.

    Science.gov (United States)

    Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin

    2015-11-01

    Transforming growth factor beta 1 (TGF-β1) is implicated in osteoarthritis. We therefore studied the role of TGF-β1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf-β1 signaling protects adult knee joints in mice against the development of osteoarthritis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. The role of TGF-β in the pathophysiology of peritoneal endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, S F; Duncan, W Colin; Horne, Andrew W

    2017-09-01

    Endometriosis is estimated to affect 6-10% of women of reproductive age and it is associated with chronic pelvic pain, dysmenorrhoea and subfertility. It is currently managed surgically or medically but symptoms recur in up to 75% of cases and available medical treatments have undesirable side effects. Endometriosis is defined as the presence of endometrial tissue outside the uterus with lesions typically found on the peritoneum. The aetiology of endometriosis is uncertain but there is increasing evidence that transforming growth factor (TGF)-β plays a major role. A descriptive review was undertaken of the published literature on the expression pattern of TGF-β ligands and signalling molecules in women with and without endometriosis, and on the potential roles of TGF-β signalling in the development and progression of peritoneal endometriosis. The current understanding of the TGF-β signalling pathway is summarized. We searched the Pubmed database using the terms 'transforming growth factor beta' and 'endometriosis' for studies published between 1995 and 2016. The initial search identified 99 studies and these were used as the basic material for this review. We also extended our remit for important older publications. In addition, we searched the reference lists of studies used in this review for additional studies we judged as relevant. Studies which were included in the review focused on peritoneal endometriosis only as increasing evidence suggests that ovarian and deep endometriosis may have a differing pathophysiology. Thus, a final 95 studies were included in the review. TGF-β1 is reported to be increased in the peritoneal fluid, serum, ectopic endometrium and peritoneum of women with endometriosis compared to women without endometriosis, and TGF-β1-null mice have reduced endometriosis lesion growth when compared to their wild-type controls. Studies in mice and women have indicated that increasing levels of TGF-β ligands are associated with decreased

  15. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling

    Directory of Open Access Journals (Sweden)

    Neha S. Dole

    2017-11-01

    Full Text Available Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR. Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRIIocy−/−, we show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility.

  16. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling.

    Science.gov (United States)

    Dole, Neha S; Mazur, Courtney M; Acevedo, Claire; Lopez, Justin P; Monteiro, David A; Fowler, Tristan W; Gludovatz, Bernd; Walsh, Flynn; Regan, Jenna N; Messina, Sara; Evans, Daniel S; Lang, Thomas F; Zhang, Bin; Ritchie, Robert O; Mohammad, Khalid S; Alliston, Tamara

    2017-11-28

    Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/- ), we show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Published by Elsevier Inc.

  17. Yougui Pills Attenuate Cartilage Degeneration via Activation of TGF-β/Smad Signaling in Chondrocyte of Osteoarthritic Mouse Model.

    Science.gov (United States)

    Zhang, Lei; Wang, Ping-Er; Ying, Jun; Jin, Xing; Luo, Cheng; Xu, Taotao; Xu, Shibing; Dong, Rui; Xiao, Luwei; Tong, Peijian; Jin, Hongting

    2017-01-01

    Yougui pills (YGPs) have been used for centuries in the treatment of Chinese patients with Kidney-Yang Deficiency Syndrome. Despite the fact that the efficiency of YGPs on treating osteoarthritis has been verified in clinic, the underlying mechanisms are not totally understood. The present study observes the therapeutic role of YGPs and mechanisms underlying its chondroprotective action in osteoarthritic cartilage. To evaluate the chondroprotective effects of YGPs, we examined the impact of orally administered YGPs in a model of destabilization of the medial meniscus (DMM). Male C57BL/6J mice were provided a daily treatment of YGPs and a DMM surgery was performed on the right knee. At 12 weeks post-surgery, the joints were harvested for tissue analyses, including histomorphometry, OARSI scoring, micro-CT and immunohistochemistry for COL-2, MMP-13 and pSMAD-2. We also performed the relative experiments mentioned above in mice with Tgfbr2 conditional knockout ( TGF-βRII Col2ER mice) in articular cartilage. To evaluate the safety of YGPs, hematology was determined in each group. Amelioration of cartilage degradation was observed in the YGPs group, with increases in cartilage area and thickness, proteoglycan matrix, and decreases in OARSI score at 12 weeks post surgery. In addition, reduced BV/TV and Tb. Th, and elevated Tb. Sp were observed in DMM-induced mice followed by YGPs treatment. Moreover, the preservation of cartilage correlated with reduced MMP-13, and elevated COL-2 and pSMAD-2 protein expressional levels were also revealed in DMM-induced mice treated with YGPs. Similarly, TGF-βRII Col2ER mice exhibited significant OA-like phenotype. However, no significant difference in cartilage structure was observed in TGF-βRII Col2ER mice after YGPs treatment. Interestingly, no obvious adverse effects were observed in mice from each group based on the hematologic analyses. These findings suggested that YGPs could inhibit cartilage degradation through enhancing TGF

  18. Initiation of protein synthesis by a labeled derivative of the Lactobacillus casei DN-114 001 strain during transit from the stomach to the cecum in mice harboring human microbiota.

    Science.gov (United States)

    Oozeer, R; Mater, D D G; Goupil-Feuillerat, N; Corthier, G

    2004-12-01

    Although studies on the survival of bacteria in the digestive tract have been reported in the literature, little data are available on the physiological adaptation of probiotics to the digestive environment. In previous work, a transcriptional fusion system (i.e., luciferase genes under the control of a deregulated promoter) was used to demonstrate that a derivative of the Lactobacillus casei DN-114 001 strain, ingested in a fermented milk and thus exhibiting initially a very weak metabolic activity, synthesized proteins de novo after its transit in the digestive tract of mice harboring human microbiota (known as human-microbiota-associated mice). With the same genetic system and animal model, we here investigate for the first time the ability of L. casei to reinitiate synthesis in the different digestive tract compartments. In this study, most ingested L. casei cells transited from the stomach to the duodenum-jejunum within 1 h postingestion. No luciferase activity was observed in these digestive tract compartments after the first hour. At later times, the bulk of bacteria had transited to the ileum and the cecum. Luciferase synthesis was detected between 1.5 and 2.0 h postingestion at the ileal level and from 1.5 h to at least 6.0 h postingestion in the cecum, where the activity remained at a maximum level. These results demonstrate that ingested L. casei (derivative of the DN-114 001 strain) administered via a fermented milk has already reinitiated protein synthesis when it reaches the ileal and cecal compartments.

  19. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  20. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins

    Science.gov (United States)

    Robertson, Ian B.; Rifkin, Daniel B.

    2016-01-01

    The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems. PMID:27252363

  1. Retracted: Association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in a Caucasian population.

    Science.gov (United States)

    Liu, Guohui; Zhou, Tian-Biao; Jiang, Zongpei; Zheng, Dongwen

    2015-03-01

    The association of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism with type-2 diabetic nephropathy (T2DN) susceptibility and the risk of type-2 diabetes mellitus (T2DM) developing into T2DN in Caucasian populations is still controversial. A meta-analysis was performed to evaluate the association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in Caucasian populations. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic databases. Sixteen articles were identified for the analysis of the association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in Caucasian populations. ACE I/D gene polymorphism was not associated with T2DN susceptibility and the risk of patients with T2DM developing T2DN in Caucasian populations. Sensitivity analysis according to sample size of case (ACE I/D gene polymorphism was not associated with T2DN susceptibility and the risk of patients with T2DM developing T2DN in Caucasian populations. However, more studies should be performed in the future. © The Author(s) 2014.

  2. Surface Expression of TGF-β Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer

    Science.gov (United States)

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-01-01

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGF-β which is expressed naturally by platelets and regulatory T cells. Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGF-β in the tumor microenvironment. We found that human breast, lung and colon cancers expressed GARP aberrantly. In genetic studies in normal mammary gland epithelial and carcinoma cells, GARP expression increased TGF-β bioactivity and promoted malignant transformation in immune deficient mice. In breast carcinoma-bearing mice that were immune competent, GARP overexpression promoted Foxp3+ regulatory T cell activity, which in turn contributed to enhancing cancer progression and metastasis. Notably, administration of a panel of GARP-specific monoclonal antibodies limited metastasis in an orthotopic model of human breast cancer. Overall, these results define the oncogenic effects of the GARP-TGF-β axis in the tumor microenvironment and suggest mechanisms that might be exploited for diagnostic and therapeutic purposes. PMID:27913437

  3. Time course of anti-inflammatory effect of low-dose radiotherapy: Correlation with TGF-β1 expression

    International Nuclear Information System (INIS)

    Arenas, Meritxell; Gil, Felix; Gironella, Meritxell; Hernandez, Victor; Biete, Albert; Pique, Josep M.; Panes, Julian

    2008-01-01

    Background and Purpose: Low-dose radiotherapy (LD-RT) has a potent anti-inflammatory effect, and transforming growth factor (TGF)-β 1 is a potential mediator of this effect. The objectives of this study were to characterize the in vivo effects of LD-RT on leukocyte recruitment over time, and its relationship with TGF-β 1 production. Materials and methods: Mice were submitted to abdominal irradiation with a dose of 0.3 Gy, or to sham radiation and studied 5, 24, 48 or 72 h after irradiation. Four hours before the study a proinflammatory stimulus consisting of LPS or placebo was administered. Leukocyte-endothelial cell interactions in intestinal venules were assessed using intravital microscopy. Circulating levels and intestinal tissue production of TGF-β 1 were determined. Results: Compared to non-irradiated LPS-challenged group, the number of adherent leukocytes was significantly reduced 5, 24 and 48 h, but not 72 h after irradiation in LPS-challenged mice. Rolling leukocytes were significantly decreased at all time points analyzed. Plasma TGF-β 1 levels were increased 5 and 24 h after irradiation. Increased intestinal production during this period was corroborated by in vitro culture experiments. Conclusions: LD-RT has a sustained inhibitory effect on leukocyte recruitment for 48 h, which is initially associated with an increase in TGF-β 1 intestinal production

  4. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  5. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis.

    Science.gov (United States)

    Chakraborty, Kaustav; Chatterjee, Soumya; Bhattacharyya, Arindam

    2017-09-01

    Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF. © 2017 International Federation for Cell Biology.

  6. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Benoît Gore

    Full Text Available Mutations affecting transforming growth factor-beta (TGF-β superfamily receptors, activin receptor-like kinase (ALK-1, and endoglin (ENG occur in patients with pulmonary arterial hypertension (PAH. To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs and pulmonary endothelial cells (PECs from 14 patients with idiopathic PAH (iPAH and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV systolic pressure (RVSP, RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/- and wild-type (Eng+/+ mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.

  7. Spectroscopic Classification of ASASSN-13dn

    Science.gov (United States)

    Martini, P.; Elias, J.; Points, S.; Prieto, J. L.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Jencson, J.; Basu, U.; Beacom, J. F.; Szczygiel, D.; Pojmanski, G.; Brimacombe, J.; Bersier, D.

    2013-12-01

    We obtained optical spectra of ASASSN-13dn (ATel #5665). The candidate was confirmed with the new KOSMOS instrument (Kitt Peak Ohio State Multi-Object Spectrograph), which is presently being commissioned at the KPNO 4-m Mayall telescope. Observations were obtained with both the blue and red VPH grisms (50 min each) for a combined wavelength range of 380nm to 965nm at R ~ 2000. The spectrum of ASASSN-13dn is characteristic of a Type II SN at the redshift of its host galaxy (z=0.023).

  8. Regulation of a TGF-β1-CD147 self-sustaining network in the differentiation plasticity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wu, J; Lu, M; Li, Y; Shang, Y-K; Wang, S-J; Meng, Y; Wang, Z; Li, Z-S; Chen, H; Chen, Z-N; Bian, H

    2016-10-20

    Cellular plasticity has an important role in the progression of hepatocellular carcinoma (HCC). In this study, the involvement of a TGF-β1-CD147 self-sustaining network in the regulation of the dedifferentiation progress was fully explored in HCC cell lines, hepatocyte-specific basigin/CD147-knockout mice and human HCC tissues. We demonstrated that TGF-β1 stimulation upregulated CD147 expression and mediated the dedifferentiation of HCC cells, whereas all-trans-retinoic acid induced the downregulation of CD147 and promoted differentiation in HCC cells. Overexpression of CD147 induced the dedifferentiation and enhanced the malignancy of HCC cells, and increased the transcriptional expression of TGF-β1 by activating β-catenin. CD147-induced matrix metalloproteinase (MMP) production activated pro-TGF-β1. The activated TGF-β1 signaling subsequently repressed the HNF4α expression via Smad-Snail1 signaling and enhanced the dedifferentiation progress. Hepatocyte-specific basigin/CD147-knockout mice decreased the susceptibility to N-nitrosodiethylamine-induced tumorigenesis by suppressing TGF-β1-CD147 signaling and inhibiting dedifferentiation in hepatocytes during tumor progression. CD147 was positively correlated with TGF-β1 and negatively correlated with HNF4α in human HCC tissues. Positive CD147 staining and lower HNF4α levels in tumor tissues were significantly associated with poor survival of patients with HCC. The overexpression of HNF4α and Smad7 and the deletion of CD147 by lentiviral vectors jointly reprogrammed the expression profile of hepatocyte markers and attenuated malignant properties including proliferation, cell survival and tumor growth of HCC cells. Our results highlight the important role of the TGF-β1-CD147 self-sustaining network in driving HCC development by regulating differentiation plasticity, which provides a strong basis for further investigations of the differentiation therapy of HCC targeting TGF-β1 and CD147.

  9. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice

    Science.gov (United States)

    Bhanot, Abhishek; Shri, Richa

    2010-01-01

    Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa. PMID:21713142

  10. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  11. Inhibitory Effect of NH4Cl Treatment on Renal Tgfß1 Signaling Following Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Martina Feger

    2015-09-01

    Full Text Available Background/Aims: Consequences of obstructive nephropathy include tissue fibrosis, a major pathophysiological mechanism contributing to development of end-stage renal disease. Transforming growth factor β 1 (Tgfβ1 is involved in the progression of renal fibrosis. According to recent observations, ammonium chloride (NH4Cl prevented phosphate-induced vascular remodeling, effects involving decrease of Tgfβ1 expression and inhibition of Tgfβ1-dependent signaling. The present study, thus, explored whether NH4Cl influences renal Tgfβ1-induced pro-fibrotic signaling in obstructive nephropathy induced by unilateral ureteral obstruction (UUO. Methods: UUO was induced for seven days in C57Bl6 mice with or without additional treatment with NH4Cl (0.28 M in drinking water. Transcript levels were determined by RT-PCR as well as protein abundance by Western blotting, blood pH was determined utilizing a blood gas and chemistry analyser. Results: UUO increased renal mRNA expression of Tgfb1, Tgfβ-activated kinase 1 (Tak1 protein abundance and Smad2 phosphorylation in the nuclear fraction of the obstructed kidney tissues, effects blunted in NH4Cl treated mice as compared to control treated mice. The mRNA levels of the transcription factors nuclear factor of activated T cells 5 (Nfat5 and SRY (sex determining region Y-box 9 (Sox9 as well as of tumor necrosis factor α (Tnfα, interleukin 6 (Il6, plasminogen activator inhibitor 1 (Pai1 and Snai1 were up-regulated in the obstructed kidney tissues following UUO, effects again significantly ameliorated following NH4Cl treatment. Furthermore, the increased protein and mRNA expression of α-smooth muscle actin (α-Sma, fibronectin and collagen type I in the obstructed kidney tissues following UUO were significantly attenuated following NH4Cl treatment. Conclusion: NH4Cl treatment ameliorates Tgfβ1-dependent pro-fibrotic signaling and renal tissue fibrosis markers following obstructive nephropathy.

  12. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  13. B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex.

    Science.gov (United States)

    Wallace, Caroline H; Wu, Bill X; Salem, Mohammad; Ansa-Addo, Ephraim A; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J; Liu, Bei; Li, Zihai

    2018-04-05

    GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell-independent antibody production. In contrast, B cell-specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell-dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.

  14. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  15. Proteomic profile in glomeruli of type-2 diabetic KKAy mice using 2-dimensional differential gel electrophoresis.

    Science.gov (United States)

    Liu, Xiaodan; Yang, Gang; Fan, Qiuling; Wang, Lining

    2014-12-17

    Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. To search for glomerular proteins associated with early-stage DN, glomeruli of spontaneous type 2 diabetic KKAy mice were analyzed by 2-dimensional differential gel electrophoresis (2D-DIGE). Glomeruli of 20-week spontaneous type 2 diabetic KKAy mice and age-matched C57BL/6 mice were isolated by kidney perfusion with magnetic beads. Proteomic profiles of glomeruli were investigated by using 2D-DIGE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Western blot analysis was used to confirm the results of proteomics. Immunohistochemical and semi-quantitative analysis were used to confirm the differential expression of prohibitin and annexin A2 in glomeruli. We identified 19 differentially expressed proteins - 17 proteins were significantly up-regulated and 2 proteins were significantly down-regulated in glomeruli of diabetic KKAy mice. Among them, prohibitin and annexin A2 were up-regulated and Western blot analysis validated the same result in proteomics. Immunohistochemical analysis also revealed up-regulation of prohibitin and annexin A2 in glomeruli of KKAy mice. Our findings suggest that prohibitin and annexin A2 may be associated with early-stage DN. Further functional research might help to reveal the pathogenesis of DN.

  16. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  17. Targeted inhibition of TGF-β results in an initial improvement but long-term deficit in force production after contraction-induced skeletal muscle injury.

    Science.gov (United States)

    Gumucio, Jonathan P; Flood, Michael D; Phan, Anthony C; Brooks, Susan V; Mendias, Christopher L

    2013-08-15

    Transforming growth factor-β (TGF-β) is a proinflammatory cytokine that regulates the response of many tissues following injury. Previous studies in our lab have shown that treating muscles with TGF-β results in a dramatic accumulation of type I collagen, substantial fiber atrophy, and a marked decrease in force production. Because TGF-β promotes atrophy and fibrosis, our objective was to investigate whether the inhibition of TGF-β after injury would enhance the recovery of muscle following injury. We hypothesized that inhibiting TGF-β after contraction-induced injury would improve the functional recovery of muscles by preventing muscle fiber atrophy and weakness, and by limiting the accumulation of fibrotic scar tissue. To test this hypothesis, we induced an injury using a series of in situ lengthening contractions to extensor digitorum longus muscles of mice treated with either a bioneutralizing antibody against TGF-β or a sham antibody. Compared with controls, muscles from mice receiving TGF-β inhibitor showed a greater recovery in force 3 days and 7 days after injury but had a decrease in force compared with controls at the 21-day time point. The early enhancement in force in the TGF-β inhibitor group was associated with an initial improvement in tissue morphology, but, at 21 days, while the control group was fully recovered, the TGF-β inhibitor group displayed an irregular extracellular matrix and an increase in atrogin-1 gene expression. These results indicate that the inhibition of TGF-β promotes the early recovery of muscle function but is detrimental overall to full muscle recovery following moderate to severe muscle injuries.

  18. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    Science.gov (United States)

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  19. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice

    International Nuclear Information System (INIS)

    Bounaama, Abdelkader; Djerdjouri, Bahia; Laroche-Clary, Audrey; Le Morvan, Valérie; Robert, Jacques

    2012-01-01

    Highlights: ► 1,2-Dimethylhydrazine (DMH) toxicity was driven by oxidative stress. ► Arginase activity correlated to aberrant crypt foci (ACF). ► Curcumin diet restored redox status and induced apoptosis of dysplastic ACF. ► Curcumin reduced arginase activity and up regulated TGF-β1 and HES-1 transcripts. -- Abstract: This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.

  20. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  1. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

    Science.gov (United States)

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-07-22

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging.

  2. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  3. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    Science.gov (United States)

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  4. The effect of genistein on TGF-β signal, dysregulation of apoptosis, cyclooxygenase-2 pathway, and NF-kB pathway in mice peritoneum of endometriosis model

    Directory of Open Access Journals (Sweden)

    Sutrisno Sutrisno

    2017-12-01

    Full Text Available This research aimed to investigate the effect of genistein on TGF-β, dysregulation of apoptosis, NF-κB pathway, COX-2 pathway in mice of endometriosis model. Twenty-eight female mice (Mus musculus were divided into seven groups (n = 4, involving control (normal non-treated group; endometriosis group; the endometriosis group treated with various genistein dosages (0.78; 1.04; 1.3 mg/day for 15 days, and endometriosis group treated with standard drug, namely leuprolide acetate (0.00975 mg each day for 15 days or dienogest (0.0052 mg/day for 15 days. Mice of endometriosis model were made by implanting myometrial and endometrial tissues under the condition of immunodeficiency. The TGF-β, Bcl-2, Bax, NF-κB, COX-2, and PGE-2 were analyzed immunohistochemically. The increase of Bcl-2 expression in endometriosis was decreased significantly by genistein dosage of 0.78 and 1.3 mg/day (p < 0.05. The decrease of Bax expression in endometriosis was increased significantly by genistein dosage of 1.04 and 1.3 mg/day (p < 0.05. The implantation increased the expression of NF-κB, COX-2, and PGE significantly compared with the control group (p < 0.05. This increase was reduced significantly by the administration of genistein at dosage of 0.78 and 1.3 mg/day (p < 0.05. It can be concluded that genistein potentially inhibits endometriosis development through the normalization of apoptosis dysregulation, the inhibition of NF-κB and COX-2 pathways in the peritoneal tissues. Therefore, genistein can be used as a holistic treatment strategy for endometriosis.

  5. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers.

    Directory of Open Access Journals (Sweden)

    David Gonzalez

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα, Tcf4 and α-smooth muscle actin (α-SMA levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs, which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.

  6. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  7. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    Science.gov (United States)

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  8. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    Science.gov (United States)

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore

  9. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.

    Directory of Open Access Journals (Sweden)

    Paul D Bozyk

    Full Text Available In bronchopulmonary dysplasia (BPD, alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.

  10. DN detection during SLSF tests

    International Nuclear Information System (INIS)

    Braid, T.H.; Harper, H.A.; Wilson, R.E.; Baldwin, R.D.; Gilbert, D.M.; Baxter, D.E.; Gillins, R.L.; Jeffries, G.L.

    1982-01-01

    During two tests in the Sodium Loop Safety Facility (W2 and P4), two systems were operated to detect delayed neutrons from exposed fuel. One monitored directly the sodium in the in-pile loop with a transit delay from the flux region of approx.2 seconds; the other conducted a sample stream of sodium to external detectors with a transit delay which could be varied from approx.10 to approx. 40 seconds. Detectors of a wide range of sensitivity were operated in pulse and current mode; DN signals varying from 2 recoil to many grams of molten fuel could be recorded reliably without saturation. During the W2 and P4 tests a continuous DN record was made. Massive fuel failure signals were observed during reactor transients in both tests, including events interpreted as fuel melting and exposure of large areas. The steady signal from the blockage in P4 was studied as a function of reactor power and sodium temperature

  11. TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease

    Directory of Open Access Journals (Sweden)

    Sung Il Kim

    2012-06-01

    Full Text Available Transforming growth factor-β (TGF-β is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1, which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1.

  12. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice.

    Directory of Open Access Journals (Sweden)

    Justin L McCarville

    Full Text Available Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg were examined using the novel Mouse Drawer System (MDS aboard the International Space Station (ISS over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2 and transforming growth factor-beta1 (TGF-β1 were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.

  13. Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF-β1 Signaling

    Science.gov (United States)

    Lee, Chun Geun; Herzog, Erica L.; Ahangari, Farida; Zhou, Yang; Gulati, Mridu; Lee, Chang-Min; Peng, Xueyan; Feghali-Bostwick, Carol; Jimenez, Sergio A.; Varga, John; Elias, Jack A.

    2014-01-01

    Interstitial lung disease (ILD) with pulmonary fibrosis is an important manifestation in systemic sclerosis (SSc, scleroderma) where it portends a poor prognosis. However, biomarkers that predict the development and or severity of SSc-ILD have not been validated, and the pathogenetic mechanisms that engender this pulmonary response are poorly understood. In this study, we demonstrate in two different patient cohorts that the levels of chitotriosidase (Chit1) bioactivity and protein are significantly increased in the circulation and lungs of SSc patients compared with demographically matched controls. We also demonstrate that, compared with patients without lung involvement, patients with ILD show high levels of circulating Chit1 activity that correlate with disease severity. Murine modeling shows that in comparison with wild-type mice, bleomycin-induced pulmonary fibrosis was significantly reduced in Chit1−/− mice and significantly enhanced in lungs from Chit1 overexpressing transgenic animals. In vitro studies also demonstrated that Chit1 interacts with TGF-β1 to augment fibroblast TGF-β receptors 1 and 2 expression and TGF-β–induced Smad and MAPK/ERK activation. These studies indicate that Chit1 is potential biomarker for ILD in SSc and a therapeutic target in SSc-associated lung fibrosis and demonstrate that Chit1 augments TGF-β1 effects by increasing receptor expression and canonical and noncanonical TGF-β1 signaling. PMID:22826322

  14. Data of evolutionary structure change: 2QU0A-2DN1B [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available >A 2QU0A WGKVGGNAGAYGence> HHHH...2QU0A-2DN1B 2QU0 2DN1 A B VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTT...index>0 2DN1 B 2DN1B ...ence>WGKVN--VDEVGence> GGG --HHHHH VAL CA 367 GLY CA 400 2QU0

  15. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling.

    Science.gov (United States)

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF-β1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-β1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF-β1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-β1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  16. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway.

    Science.gov (United States)

    Jiang, Mingxia; Zhang, Haifen; Zhai, Lijie; Ye, Bianliang; Cheng, Yin; Zhai, Chengkai

    2017-11-16

    Growing evidence indicates that oxidative stress (OS) plays a pivotal role in Diabetic nephropathy (DN). In a previous study we demonstrated that ALA/LA protected HK-2 cells against high glucose-induced cytotoxicity. So we aimed to establish the glucose injury model of HK-2 cells and investigate the beneficial effects of ALA/LA on high glucose-induced excessive production of TGF-β1 and the possible mechanisms mediating the effects. The expression of OS markers in high glucose-induced HK-2 cells treated with ALA/LA., including the antioxidant enzymes and reactive oxygen species (ROS) production, as well as the apoptosis rate were assayed by ELISA and flow cytometry. The p38/transforming growth factor β 1 (TGF-β 1 ) signal pathway were measured by real-time RT-PCR and western blot. The modeling condition of glucose toxicity on HK-2 cells was at the glucose concentration of 40.9 mM. ALA/LA can significantly increase the activities of antioxidant enzymes and decrease ROS production stimulated by high glucose. The study also found that ALA/LA caused a decrease in the apoptosis rate and TGF-β 1 level of HK-2 cells under high glucose stress through the ROS/p38 pathway. ALA/LA exerts protective effects in vitro through inhibition of ROS generation, down regulation of the activation of the p38MAPK pathway and the expression of TGF-β 1 in HK-2 cells.

  17. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  18. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice.

    Science.gov (United States)

    Rouf, Rosanne; MacFarlane, Elena Gallo; Takimoto, Eiki; Chaudhary, Rahul; Nagpal, Varun; Rainer, Peter P; Bindman, Julia G; Gerber, Elizabeth E; Bedja, Djahida; Schiefer, Christopher; Miller, Karen L; Zhu, Guangshuo; Myers, Loretha; Amat-Alarcon, Nuria; Lee, Dong I; Koitabashi, Norimichi; Judge, Daniel P; Kass, David A; Dietz, Harry C

    2017-08-03

    Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

  19. AAV-dominant negative tumor necrosis factor (DN-TNF gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Laura Taylor Alto

    Full Text Available CNS inflammation is a hallmark of neurodegenerative disease, and recent studies suggest that the inflammatory response may contribute to neuronal demise. In particular, increased tumor necrosis factor (TNF signaling is implicated in the pathology of both Parkinson's disease (PD and Alzheimer's disease (AD. We have previously shown that localized gene delivery of dominant negative TNF to the degenerating brain region can limit pathology in animal models of PD and AD. TNF is upregulated in Huntington's disease (HD, like in PD and AD, but it is unknown whether TNF signaling contributes to neuronal degeneration in HD. We used in vivo gene delivery to test whether selective reduction of soluble TNF signaling could attenuate medium spiny neuron (MSN degeneration in the YAC128 transgenic (TG mouse model of Huntington's disease (HD. AAV vectors encoding cDNA for dominant-negative tumor necrosis factor (DN-TNF or GFP (control were injected into the striatum of young adult wild type WT and YAC128 TG mice and achieved 30-50% target coverage. Expression of dominant negative TNF protein was confirmed immunohistologically and biochemically and was maintained as mice aged to one year, but declined significantly over time. However, the extent of striatal DN-TNF gene transfer achieved in our studies was not sufficient to achieve robust effects on neuroinflammation, rescue degenerating MSNs or improve motor function in treated mice. Our findings suggest that alternative drug delivery strategies should be explored to determine whether greater target coverage by DN-TNF protein might afford some level of neuroprotection against HD-like pathology and/or that soluble TNF signaling may not be the primary driver of striatal neuroinflammation and MSN loss in YAC128 TG mice.

  20. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  1. EFFECTS OF EPIDERMAL GROWTH FACTOR (EGF), TRANSFORMING GROWTH FACTOR- (TGF), AND 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN ON FUSION OF EMBRYONIC PALATES IN SERUM-FREE ORGAN CULTURE USING WILD-TYPE, EGF KNOCKOUT, AND TGF KNOCKOUT MOUSE STRAINS

    Science.gov (United States)

    Backround: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing cleft palate (CP). TCDD exposure disrupts expression of epidermal growth factor (EGF) receptor, EGF, and transforming growth factor- (TGF) in the palate and affects proliferation and different...

  2. THE EFFECTS OF Jatropha curcas L SEED EXTRACT IN REGULATION EXPRESSION TUMOR MARKER OF TGF- β1 GENE

    Directory of Open Access Journals (Sweden)

    Endah Wulandari

    2017-04-01

    Full Text Available The role of TGF-β1 is known as the main immunosuppresor associated with tumor, but on the other opinion, it is associated with proliferation and tumor invasion. The increase and decrease of the secretion of TGF-β is to regulate the proliferation, differentiation, and death of various cell types. Now we all know the extract of Jatropha curcas L seed serves as antitumor. Allegedly, it can regulate the expression of TGF-β1 in control of cell number. The purpose of this study is to determine the effects of Jatropha seeds to the regulation of gene expression of TGF-β1 as a tumor marker. The method is performed by giving a dose groups the extract of jatropha seed (0, 5, 25, 50, 250 mg/BB in mice. Then measurement of mRNA expression (RT-PCR, the protein of TGF-β1 levels (ELISA, and qualitative observations of liver histology were done. The expression of TGF-β1 mRNA is significantly 4.39 to 7.34 times higher than (ANOVA, p 0.05 than the control. Histological observation of liver showed the extract of jatropha seed induces damage nucleus of hepatocytes cell and sinusoidal. The effects extract of jatropha seed increased the level of TGF-β1 mRNA but not followed by increasing protein of TGF-β1 levels, and it was stimulated necrosis and apoptosis of hepatocytes cell.

  3. αB-crystallin is essential for the TGF-β2-mediated epithelial to mesenchymal transition of lens epithelial cells.

    Science.gov (United States)

    Nahomi, Rooban B; Pantcheva, Mina B; Nagaraj, Ram H

    2016-05-15

    Transforming growth factor (TGF)-β2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-β2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-β2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-β2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-β2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. Role of TGF-β in a mouse model of high turnover renal osteodystrophy.

    Science.gov (United States)

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck

  5. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    Science.gov (United States)

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  6. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    Science.gov (United States)

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  7. A novel nonsteroidal antifibrotic oligo decoy containing the TGF-beta element found in the COL1A1 gene which regulates murine schistosomiasis liver fibrosis.

    Science.gov (United States)

    Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R

    2005-08-01

    Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.

  8. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.

    Science.gov (United States)

    Barros Maranhão, Juliana; de Oliveira Moreira, Drielen; Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Ferretti, Renato; Pereira, Juliano Alves; Santo Neto, Humberto; Marques, Maria Julia

    2015-10-01

    In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  9. Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure.

    Science.gov (United States)

    Yamada, Yuko; Kinoshita, Hideyuki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Minami, Takeya; Yamada, Chinatsu; Shibata, Junko; Nakao, Kazuhiro; Cho, Kosai; Arai, Yuji; Yasuno, Shinji; Nishikimi, Toshio; Ueshima, Kenji; Kamakura, Shiro; Nishida, Motohiro; Kiyonaka, Shigeki; Mori, Yasuo; Kimura, Takeshi; Kangawa, Kenji; Nakao, Kazuwa

    2014-10-01

    Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure. We compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice. Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis.

    Science.gov (United States)

    Takemoto, Ai; Okitaka, Mina; Takagi, Satoshi; Takami, Miho; Sato, Shigeo; Nishio, Makoto; Okumura, Sakae; Fujita, Naoya

    2017-02-08

    The tumour microenvironment is critical for various characteristics of tumour malignancies. Platelets, as part of the tumour microenvironment, are associated with metastasis formation via increasing the rate of tumour embolus formation in microvasculature. However, the mechanisms underlying the ability of tumour cells to acquire invasiveness and extravasate into target organs at the site of embolization remain unclear. In this study, we reported that platelet aggregation-inducing factor podoplanin expressed on tumour cell surfaces were found to not only promote the formation of tumour-platelet aggregates via interaction with platelets, but also induced the epithelial-mesenchymal transition (EMT) of tumour cells by enhancing transforming growth factor-β (TGF-β) release from platelets. In vitro and in vivo analyses revealed that podoplanin-mediated EMT resulted in increased invasiveness and extravasation of tumour cells. Treatment of mice with a TGF-β-neutralizing antibody statistically suppressed podoplanin-mediated distant metastasis in vivo, suggesting that podoplanin promoted haematogenous metastasis in part by releasing TGF-β from platelets that was essential for EMT of tumour cells. Therefore, our findings suggested that blocking the TGF-β signalling pathway might be a promising strategy for suppressing podoplanin-mediated haematogenous metastasis in vivo.

  11. TGF-b y un inhibidor específico de TGF-b regulan pericentrina B y MYH9 en células de glioma TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Rich Jeremy N.

    2006-07-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.Los gliomas malignos son tumores vasculares heterogéneos altamente invasivos. El factor de transformación de creci­miento P (TGF-P es una citoquina multifuncional que es expresada por gliomas de grado III /IV y promueve angiogenesis de tumores, invasión y escape inmunológico. Recientemente se demostró que una pequeña molécula inhibidora (SB-431542 del receptor de TGF-P tipo I (TGF-P-RI, bloquea la señal de transducción mediada por TGF-P, la inducción del factor angiogénico de expresión y la movilidad celular. Ya que las líneas celulares de gliomas mues­tran sensitividad diferencial a TGF-P, se esperaba que también mostrarían impacto diferencial por el bloqueo de la señal de TGF-p. En el presente trabajo se usó un análisis diferencial en gel (DIGE, por sus

  12. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  13. Exogenous modulation of TGF-β1 influences TGF-βR-III-associated vascularization during wound healing in irradiated tissue

    International Nuclear Information System (INIS)

    Wehrhan, F.; Schultze-Mosgau, S.; Grabenbauer, G.G.; Roedel, F.; Amann, K.

    2004-01-01

    Background and purpose: Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region, wound-healing disorders occur. Previous experimental studies showed altered expression of transforming growth factor-(TGF-)β isoforms following surgery in irradiated graft beds. Altered levels of TGF-β 1 are reported to promote fibrosis and to suppress vascularization during wound healing, whereas expression of TGF-β receptor-III (TGF-βR-III) is associated with vascularization. The aim of the study was to analyze the influence of anti-TGF-β 1 treatment on TGF-βR-III-associated vascularization in the transition area between irradiated graft bed and graft. Material and methods: Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy (four fractions of 10 Gy each; n=16 animals). A free myocutaneous gracilis flap taken from the groin was then transplanted to the neck in all rats. The time interval between operation and transplantation was 4 weeks. Eight animals received 1 μg anti-TGF-β 1 into the graft bed by intradermal injection on days 1-7 after surgery. On days 3, 7, 14, 28, 56, and 120, skin samples were taken from the transition area between transplant and graft bed and from the graft bed itself. Immunohistochemistry was performed using the ABC-POX method to analyze the TGF-βR-III and E-selection expression. Histomorphometry was performed to analyze the percentage and the area of positively stained vessels. Results: A significantly higher expression of TGF-βR-III was seen in the irradiated and anti-TGF-β 1 -treated graft bed in comparison to the group receiving preoperative irradiation followed by transplantation alone. The percentage of TGF-βR-III positively staining capillaries from the total amount of capillaries in the anti-TGF-β 1 -treated graft bed was higher than in the group irradiated only. The total area of capillaries was also higher

  14. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy.

    Science.gov (United States)

    Duan, Li-Jun; Ding, Min; Hou, Li-Jun; Cui, Yuan-Tao; Li, Chun-Jun; Yu, De-Min

    2017-03-11

    Long noncoding RNA taurine-upregulated gene 1 (lncRNA TUG1) has been reported to play a key role in the progression of diabetic nephropathy (DN). However, the role of lncRNA TUG1 in the regulation of diabetic nephropathy remains largely unknown. The aim of the present study is to identify the regulation of lncRNA TUG1 on extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ, and investigate the underlying mechanisms in progression of DN. Microarray was performed to screen differentially expressed miRNAs in db/db DN mice. Afterwards, computational prediction programs (TargetScan, miRanda, PicTar and miRGen) was applied to predict the target gene of miRNAs. The complementary binding of miRNA and lncRNA was assessed by luciferase assays. Protein and mRNA expression were detected by western blot and real time quantitate PCR. MiRNA-377 was screened by miRNA microarray and differentially up-regulated in db/db DN mice. PPARγ was predicted to be the target of miR-377 and the prediction was verified by luciferase assays. Expression of miR-377 was up-regulated in mesangial cell treated with high glucose (25 mM), and overexpression of miR-377 inhibited PPARγ expression and promoted PAI-1 and TGF-β1 expression. The expression of TUG1 antagonized the effect of miR-377 on the downregulation of its target PPARγ and inhibited extracellular matrix accumulation, including PAI-1, TGF-β1, fibronectin (FN) and collagen IV (Col IV), induced by high glucose. LncRNA TUG1 acts as an endogenous sponge of miR-377 and downregulates miR-377 expression levels, and thereby relieving the inhibition of its target gene PPARγ and alleviates extracellular matrix accumulation of mesangial cells, which provides a novel insight of diabetic nephropathy pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice.

    Science.gov (United States)

    Silva, Vagner R R; Katashima, Carlos K; Lenhare, Luciene; Silva, Carla G B; Morari, Joseane; Camargo, Rafael L; Velloso, Licio A; Saad, Mario A; da Silva, Adelino S R; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-08-28

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging.

  16. EST Table: DN237607 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available tatin; Flags: Precursor gb|AAT40571.1| myostatin [Aepyceros melampus] 10/09/03 49 %/132 aa FBpp0273825|DpseG...ef|XP_966819.1| PREDICTED: similar to myostatin [Tribolium castaneum] DN237607 BmP ...

  17. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available DNA methyltransferase (DNMT is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs. This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP. The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for Ca

  18. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.

    Science.gov (United States)

    Herbach, Nadja; Schairer, Irene; Blutke, Andreas; Kautz, Sabine; Siebert, Angela; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2009-04-01

    Diabetic nephropathy is the leading cause of end-stage renal disease and the largest contributor to the total cost of diabetes care. Rodent models are excellent tools to gain more insight into the pathogenesis of diabetic nephropathy. In the present study, we characterize the age-related sequence of diabetes-associated kidney lesions in GIPR(dn) transgenic mice, a novel mouse model of early-onset diabetes mellitus. Clinical-chemical analyses as well as qualitative and quantitative morphological analyses of the kidneys of GIPR(dn) transgenic animals and nontransgenic littermate controls were performed at 3, 8, 20, and 28 wk of age. Early renal changes of transgenic mice consisted of podocyte hypertrophy, reduced numerical volume density of podocytes in glomeruli, and homogenous thickening of the glomerular basement membrane, followed by renal and glomerular hypertrophy as well as mesangial expansion and matrix accumulation. At 28 wk of age, glomerular damage was most prominent, including advanced glomerulosclerosis, tubulointerstitial lesions, and proteinuria. Real-time PCR demonstrated increased glomerular expression of Col4a1, Fn1, and Tgfb1. Immunohistochemistry revealed increased mesangial deposition of collagen type IV, fibronectin, and laminin. The present study shows that GIPR(dn) transgenic mice exhibit renal changes that closely resemble diabetes-associated kidney alterations in humans. Data particularly from male transgenic mice indicate that podocyte hypertrophy is directly linked to hyperglycemia, without the influence of mechanical stress. GIPR(dn) transgenic mice are considered an excellent new tool to study the mechanisms involved in onset and progression of diabetic nephropathy.

  19. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  20. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  1. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.; Petrunak, Elyse M.; Cano, Kristin E.; Thangirala, Avinash; Iskra, Brian; Brothers, Molly; Vonberg, Machell; Leal, Belinda; Richter, Blair; Kodali, Ravindra; Taylor, Alexander B.; Du, Shoucheng; Barnes, Christopher O.; Sulea, Traian; Calero, Guillermo; Hart, P. John; Hart, Matthew J.; Demeler, Borries; Hinck, Andrew P. (Texas-HSC); (NRCC); (Pitt)

    2017-02-22

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor required for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.

  2. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Fukada

    Full Text Available BACKGROUND: Zinc (Zn is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS. The Slc39a13 knockout (Slc39a13-KO mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.

  3. [Effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell-T6 (HSC-T6)].

    Science.gov (United States)

    Li, Ying; Deng, Liang; Qian, Wei; Zhou, Jian-ning; Xu, Ke-shu

    2011-11-01

    To investigate the effects of exogenous TGF-β3 on the expression of endogenous TGF-b3 in hepatic stellate cell (HSC). HSCs were cultured and divided into two groups: TGF-β3 group and blank control group, the cells of TGF-β3 group were exposed to TGF-b3 (10 ng/ml), whereas the blank control group was not treated. The cells were incubated in the presence of exogenous TGF-β3 and then (1) were harvested at 0h, 1h, 2h, 4h, 12h, 24h, and real time PCR was performed to detect the mRNA expression of endogenous TGF-β3. (2) The cells were collected at 0h, 1h, 6h, 12h, and western-blot was used to detect the protein synthesis of endogenous TGF-β3 in HSC; (3) The cell culture supernatant was harvested at 0h, 1h, 2h, 4h, 8h, 14h, 24h, and ELISA was performed to measure the total protein of extracellular TGF-β3; HSCs were treated with TGF-β3 (10 ng/ml) for 2h. The cells were then incubated in serum-free medium and the cell culture supernatant was harvested at 2.25h, 2.5h, 3h, 4h, 6h, 10h and 14h. ELISA was used to detect the extracellular secret ion of endogenous TGF-β3 by HSCs. (1) Exogenous TGF-β3 treatment induced a marked increase in TGF-β3 mRNA expression. By 2h of exogenous TGF-β3 treatment, maximal TGF-β3 mRNA expression levels (2.796 ± 0.518) of 2.74 fold above control values (1.022 ± 0.038) was reached (P endogenous TGF-β3 was found between two groups. (P > 0.05); (3) The total expression level of TGF-β3 reached a peak [(18.931 ± 2.904) ng/ml] at 4h after TGF-β3 treatment (1.89-fold higher than basic TGF-β3 (10 ng/ml). After that, it slowly declined. The expression peak [(0.835 ± 0.027) ng/ml] induction of extracellular secreted TGF-β3 was at 3h (32.12-fold higher than control [(0.026 ± 0.022) ng/ml], (P Exogenous TGF-β3 could increase the expression of endogenous TGF-β3 mRNA and extracellular secreted TGF-β3 protein obviously.

  4. The curious case of SN 2011dn: A very peculiar type Ia supernova?

    Science.gov (United States)

    Rachubo, Alisa

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves, which led to the major discovery of the accelerated expansion of the universe. However, SNe Ia are not so uniform as one may expect, as there are many peculiar SNe Ia that exhibit differences in their photometric and spectroscopic behavior from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia without these peculiar SNe Ia. Here we consider SN 2011dn, a peculiar SN Ia candidate. In 2011, Salvo, et al. carried out a preliminary analysis of a subset of the data prescribed here, and identified spectral and photometric peculiarities in this object's evolution that warranted further analysis. Here, we present a complete re-reduction and reanalysis of B, V,R, and I photometry of SN 2011dn obtained at Mount Laguna Observatory, spanning from 7 days before maximum light in B to 88 days past maximum light. In addition, we also consider total flux spectra from 9 days before maximum light to 4 days after maximum light, along with ultraviolet (UV) photometry obtained with the Swift telescope. From SN 2011dn's optical spectra, we find that SN 2011dn most closely resembles a SN 1991T-like type Ia supernova ('91T-like SN Ia). Such SNe Ia are typically more luminous than normal SNe Ia, and possess broader (i.e., they decline less rapidly than normal from maximum light) light curves. Their Deltam15(B) (drop in B magnitude 15 days after maximum light) are typically significantly less than the canonical value of 1.1, and can be as low as 0.8. In the earlier preliminary analysis, Salvo et al. measured a surprisingly high Deltam15(B) value for SN 2011dn, of ˜ 1.1. Since SN 2011dn was embedded in UGC 11501 (its host galaxy), however, it is possible that some of the light from the host galaxy was included in the photometric aperture, resulting in inaccurate photometric measurements. Here, in order to better isolate the

  5. Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells.

    Science.gov (United States)

    Niu, Honglin; Nie, Lei; Liu, Maodong; Chi, Yanqing; Zhang, Tao; Li, Ying

    2014-08-20

    Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and is associated with excessive cardiovascular morbidity and mortality. The angiotensin converting enzyme inhibitor (ACEI) benazepril has been shown to slow the progression of chronic renal disease and have beneficial effects in patients with a combination of chronic renal disease and cardiovascular disease. Transforming growth factor-β(1) (TGF-β(1)) plays a central role in the pathogenesis and progression of DN. Integrin-linked kinase (ILK) can modulate TGF-β(1)-induced glomerular mesangial cell (GMC) injury, which is a prominent characteristic of renal pathology in kidney diseases. As an integrin cytoplasmic-binding protein, ILK regulates fibronectin (FN) matrix deposition and the actin cytoskeleton. Smooth muscle α-actin (α-SMA) is involved in progressive renal dysfunction in both human and experimental renal disease. To explore the mechanisms of benazepril's reno-protective effects, we examined the expression of TGF-β(1), ILK, and α-SMA in GMC exposed to high glucose (HG) and in the kidneys of streptozotocin (STZ)-induced diabetic rats using real-time quantitative RT-PCR and western blot analysis. To elucidate the mechanism(s) of the effect of benazepril on GMC cellular processes, we assessed the effect of benazepril on Angiotensin II (Ang II) signalling pathways using western blot analysis. The expression of TGF-β(1), ILK, and α-SMA increased significantly in the diabetic group compared with the control group. Benazepril treatment inhibited the expression of these genes in DN but failed to rescue the same levels in the control group. Similar results were found in GMC treated with HG or benazepril. Ang II increased ERK and Akt phosphorylation in the HG group, and benazepril could not completely block these responses, suggesting that other molecules might be involved in the progression of DN. Our findings suggest that benazepril decreases ILK and α-SMA expression, at least in

  6. Inactivation of TGF-β signaling in lung cancer results in increased CDK4 activity that can be rescued by ELF

    International Nuclear Information System (INIS)

    Baek, Hye Jung; Kim, Sang Soo; Silva, Fabio May da; Volpe, Eugene A.; Evans, Stephen; Mishra, Bibhuti; Mishra, Lopa; Blair Marshall, M.

    2006-01-01

    Escape from TGF-β inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-β adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf -/- mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-β signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-β adaptor protein in suppressing early lung cancer

  7. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Directory of Open Access Journals (Sweden)

    Dnyanada S. Khanolkar

    2014-12-01

    Full Text Available A bacterial isolate capable of utilizing tributyltin chloride (TBTCl as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM. Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2 through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.

  8. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Science.gov (United States)

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  9. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin, E-mail: iamicehe@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Cao, Bo, E-mail: caobo19814@126.com [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, 300162 (China); Zhang, Di, E-mail: zhangdibad@163.com [Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, Tianjin First Center Hospital, Tianjin 300192 (China); Xiao, Na [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Chen, Hong [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Li, Guo-qiang; Peng, Shou-chun [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Wei, Lu-qing, E-mail: luqing-wei@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2016-10-15

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  10. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    International Nuclear Information System (INIS)

    Liu, Bin; Cao, Bo; Zhang, Di; Xiao, Na; Chen, Hong; Li, Guo-qiang; Peng, Shou-chun; Wei, Lu-qing

    2016-01-01

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  11. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    Directory of Open Access Journals (Sweden)

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  12. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy.

    Science.gov (United States)

    Li, Mengjie; Wang, Xufang; Aa, Jiye; Qin, Weisong; Zha, Weibin; Ge, Yongchun; Liu, Linsheng; Zheng, Tian; Cao, Bei; Shi, Jian; Zhao, Chunyan; Wang, Xinwen; Yu, Xiaoyi; Wang, Guangji; Liu, Zhihong

    2013-06-01

    Early diagnosis of diabetic nephropathy (DN) is difficult although it is of crucial importance to prevent its development. To probe potential markers and the underlying mechanism of DN, an animal model of DN, the db/db mice, was used and serum and urine metabolites were profiled using gas chromatography/time-of-flight mass spectrometry. Metabolic patterns were evaluated based on serum and urine data. Principal component analysis of the data revealed an obvious metabonomic difference between db/db mice and controls, and db/db mice showed distinctly different metabolic patterns during the progression from diabetes to early, medium, and later DN. The identified metabolites discriminating between db/db mice and controls suggested that db/db mice have perturbations in the tricarboxylic acid cycle (TCA, citrate, malate, succinate, and aconitate), lipid metabolism, glycolysis, and amino acid turnover. The db/db mice were characterized by acidic urine, high TCA intermediates in serum at week 6 and a sharp decline thereafter, and gradual elevation of free fatty acids in the serum. The sharp drop of serum TCA intermediates from week 6 to 8 indicated the downregulated glycolysis and insulin resistance. However, urinary TCA intermediates did not decrease in parallel with those in the serum from week 6 to 10, and an increased portion of TCA intermediates in the serum was excreted into the urine at 8, 10, and 12 wk than at 6 wk, indicating kidney dysfunction occurred. The relative abundances of TCA intermediates in urine relative to those in serum were suggested as an index of renal damage.

  13. TGF-β converts Th1 cells into Th17 cells through stimulation of Runx1 expression.

    Science.gov (United States)

    Liu, Hou-Pu; Cao, Anthony T; Feng, Ting; Li, Qingjie; Zhang, Wenbo; Yao, Suxia; Dann, Sara M; Elson, Charles O; Cong, Yingzi

    2015-04-01

    Differentiated CD4(+) T cells preserve plasticity under various conditions. However, the stability of Th1 cells is unclear, as is whether Th1 cells can convert into Th17 cells and thereby contribute to the generation of IFN-γ(+) IL-17(+) CD4(+) T cells, the number of which correlates with severity of colitis. We investigated whether IFN-γ(+) Th1 cells can convert into Th17 cells under intestinal inflammation and the mechanisms involved. IFN-γ(Thy1.1+) Th1 cells were generated by culturing naïve CD4(+) T cells from IFN-γ(Thy1.1) CBir1 TCR-Tg reporter mice, whose TCR is specific for an immunodominant microbiota antigen, CBir1 flagellin, under Th1 polarizing conditions. IFN-γ(Thy1.1+) Th1 cells induced colitis in Rag(-/-) mice after adoptive transfer and converted into IL-17(+) Th17, but not Foxp3(+) Treg cells in the inflamed intestines. TGF-β and IL-6, but not IL-1β and IL-23, regulated Th1 conversion into Th17 cells. TGF-β induction of transcriptional factor Runx1 is crucial for the conversion, since silencing Runx1 by siRNA inhibited Th1 conversion into Th17 cells. Furthermore, TGF-β enhanced histone H3K9 acetylation but inhibited H3K9 trimethylation of Runx1- and ROR-γt-binding sites on il-17 or rorc gene in Th1 cells. We conclude that Th1 cells convert into Th17 cells under inflammatory conditions in intestines, which is possibly mediated by TGF-β induction of Runx1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance.

    Science.gov (United States)

    Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M

    2017-02-01

    Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.

  15. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Science.gov (United States)

    Greco, Stephanie H; Tomkötter, Lena; Vahle, Anne-Kristin; Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  16. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Directory of Open Access Journals (Sweden)

    Stephanie H Greco

    Full Text Available Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  17. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

    Science.gov (United States)

    Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H. Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival. PMID:26172047

  18. Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.

    Science.gov (United States)

    Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2017-03-30

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. TGF Afterglows: A New Radiation Mechanism From Thunderstorms

    Science.gov (United States)

    Rutjes, C.; Diniz, G.; Ferreira, I. S.; Ebert, U.

    2017-10-01

    Thunderstorms are known to create terrestrial gamma ray flashes (TGFs) which are microsecond-long bursts created by runaway of thermal electrons from propagating lightning leaders, as well as gamma ray glows that possibly are created by relativistic runaway electron avalanches (RREA) that can last for minutes or more and are sometimes terminated by a discharge. In this work we predict a new intermediate thunderstorm radiation mechanism, which we call TGF afterglow, as it is caused by the capture of photonuclear neutrons produced by a TGF. TGF afterglows are milliseconds to seconds long; this duration is caused by the thermalization time of the intermediate neutrons. TGF afterglows indicate that the primary TGF has produced photons in the energy range of 10-30 MeV; they are nondirectional in contrast to the primary TGF. Gurevich et al. might have reported TGF afterglows in 2011.

  20. Transforming growth factor beta activity in urine of patients with type 2 diabetes and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Rivarola E.W.R.

    1999-01-01

    Full Text Available Diabetic nephropathy (DN is characterized structurally by progressive mesangial deposition of extracellular matrix (ECM. Transforming growth factor-ß (TGF-ß is considered to be one of the major cytokines involved in the regulation of ECM synthesis and degradation. Several studies suggest that an increase in urinary TGF-ß levels may reflect an enhanced production of this polypeptide by the kidney cells. We evaluated TGF-ß in occasional urine samples from 14 normal individuals and 23 patients with type 2 diabetes (13 with persistent proteinuria >500 mg/24 h, DN, 6 with microalbuminuria, DMMA, and 4 with normal urinary albumin excretion, DMN by enzyme immunoassay. An increase in the rate of urinary TGF-ß excretion (pg/mg UCreat. was observed in patients with DN (296.07 ± 330.77 (P<0.001 compared to normal individuals (17.04 ± 18.56 (Kruskal-Wallis nonparametric analysis of variance; however, this increase was not observed in patients with DMMA (25.13 ± 11.30 or in DMN (18.16 ± 11.82. There was a positive correlation between the rate of urinary TGF-ß excretion and proteinuria (r = 0.70, a = 0.05 (Pearson's analysis, one of the parameters of disease progression.

  1. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis.

    Science.gov (United States)

    Meng, Xiangqi; Vander Ark, Alexandra; Daft, Paul; Woodford, Erica; Wang, Jie; Madaj, Zachary; Li, Xiaohong

    2018-04-01

    TGF-β plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-β signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2 Col1CreERT KO) or in osteoclasts (Tgfbr2 LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2 Col1CreERT KO mice, but was inhibited in the Tgfbr2 LysMCre KO mice, relative to their respective control Tgfbr2 FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2 Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2 Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2 Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Modulation role of angelica sinensis on transforming growth factor beta 1 (TGF-β1) expression induced by radiation in the lung tissue

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Zhou Fuxiang; Zhang Gong; Liang Chen; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation- induced TGF-β 1 release in the animal model, so as to find an effective method to reduce the lung toxicity after thoracic irradiation. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Four study groups were defined: those that received neither irradiation nor Angelica Sinensis (NT group), those that received Angelica Sinensis but no irradiation (AS group), those that underwent irradiation without Angelica Sinensis (XRT group) and those that received both Angelica Sinensis and irradiation (AS/XRT group). Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 24, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation) . The TGF-β 1 mRNA expressions in the lung tissue were quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemical Streptavidin-Peroxidase method and positive cell counting were used for objective quantification of TGF-β 1 protein expression. Results: NT and AS groups exhibited low levels of TGF-β 1 protein expression with positive cell counts between 9 and 31. And there is an significantly elevated level of TGF-β 1 positive inflammatory cells in XRT group (P 1 in XRT group was significantly higher than the nonirradiated groups (P 1 response on mRNA level, but the statistical comparison of the TNF-αmRNA expression between the XRT and AS/XRT treatment-group was not significant (P=0.054). Conclusion: This study demonstrates a significant radiation-induced increase of TGF-β 1 (on mRNA and protein level) in the lung tissue, and the predominant localisation of TGF-β 1 in areas of inflammatory cell infiltrates suggests involvement of this cytokine in the pathogenesis of radiation-induced lung injury

  3. Touchscreen learning deficits in Ube3a, Ts65Dn and Mecp2 mouse models of neurodevelopmental disorders with intellectual disabilities.

    Science.gov (United States)

    Leach, P T; Crawley, J N

    2017-12-20

    Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Science.gov (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Protective effect of urinary trypsin inhibitor on the development of radiation-induced lung fibrosis in mice

    International Nuclear Information System (INIS)

    Katoh, Hiroyuki; Ishikawa, Hitoshi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi; Hasegawa, Masatoshi; Yoshida, Yukari

    2010-01-01

    This study aimed to analyze whether Ulinastatin, a urinary trypsin inhibitor (UTI), inhibits the transforming growth factor (TGF)-β signaling pathway and lung fibrosis induced by thoracic irradiation in a lung injury mouse model. The thoraces of 9-week-old female fibrosis-sensitive C57BL/6 mice were irradiated with a single X-ray dose of 12 Gy or 24 Gy. UTI was administrated intraperitoneally at a dose of 200,000 units/kg concurrently with radiation (concurrent UTI) or daily during the post-irradiation period for 8-14 days (post-RT UTI). Mice were sacrificed at 16 weeks after irradiation to assess the histological grade of lung fibrosis and immunohistochemical TGF-β expression. Survival rates of mice given 24 Gy to the whole lung ±UTI were also compared. Post-RT UTI reduced the score of lung fibrosis in mice, but concurrent UTI had no beneficial effects in irradiated mice. The fibrosis score in post-RT UTI mice was 3.2±1.0, which was significantly smaller than that of irradiated mice without UTI treatment (RT alone; 6.0±1.3; p 2 =0.26, p<0.01). The survival rate at 30 weeks for post-RT UTI mice was significantly better than that of RT alone mice (33% vs. 10%, p<0.05). The administration of post-RT UTI suppressed TGF-β expression and radiation-induced lung fibrosis, which resulted in significant survival prolongation of the irradiated mice. (author)

  6. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  7. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  8. Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice.

    Science.gov (United States)

    Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja

    2006-12-15

    Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.

  9. GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Oxana Bereshchenko

    2014-04-01

    Full Text Available Regulatory T (Treg cells expressing the transcription factor forkhead box P3 (FoxP3 control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ, a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg, associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production.

  10. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression in Genetically Hyper-Muscular Mice

    Science.gov (United States)

    2007-07-01

    muscle growth inhibitor myostatin and mice expressing a dominant negative form of the myostatin receptor (MLC-dnActRIIB mice). Mammary cancer was...hypermuscular mice and the results are pending. In the interim we used genetic and pharmacological inhibition of the myostatin pathway to potentially...metabolic syndrome induced by the tumor. However, despite increasing normal muscle growth, myostatin inhibition failed to protect mice from cancer

  11. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.

    Science.gov (United States)

    Kim, Su Hee; Kim, Soo Hyun; Jung, Youngmee

    2015-05-28

    Mimicking the native tissue microenvironment is critical for effective tissue regeneration. Mechanical cues and sustained biological cues are important factors, particularly in load-bearing tissues such as articular cartilage or bone. Carriers including hydrogels and nanoparticles have been investigated to achieve sustained release of protein drugs. However, it is difficult to apply such carriers alone as scaffolds for cartilage regeneration because of their weak mechanical properties, and they must be combined with other biomaterials that have adequate mechanical strength. In this study, we developed the multifunctional scaffold which has similar mechanical properties to those of native cartilage and encapsulates TGF-β3 for chondrogenesis. In our previous work, we confirmed that poly(lactide-co-caprolacton) (PLCL) did not foam when exposed to supercritical CO2 below 45°C. Here, we used a supercritical carbon dioxide (scCO2)-1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) co-solvent system to facilitate processing under mild conditions because high temperature causes protein denaturation and decreases bioactivity of the protein. This processing made it possible to fabricate a TGF-β3 encapsulated elastic porous PLCL scaffold at 37°C. We investigated the tissue regeneration efficiency of the TGF-β3 encapsulated PLCL scaffold using human adipose-derived stem cells (ADSCs) in vitro and in vivo (Groups; i. PLCL scaffold+Fibrin gel+TGF-β3, ii. TGF-β3 encapsulated PLCL scaffold+Fibrin gel, iii. TGF-β3 encapsulated PLCL scaffold). We evaluated the chondrogenic abilities of the scaffolds at 4, 8, and 12weeks after subcutaneous implantation of the constructs in immune-deficient mice. Based on TGF-β3 release studies, we confirmed that TGF-β3 molecules were released by 8weeks and remained in the PLCL matrix. Explants of TGF-β3 encapsulated scaffolds by a co-solvent system exhibited distinct improvement in the compressive E-modulus and deposition of extracellular matrix

  12. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  13. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  14. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling.

    Science.gov (United States)

    Lech, Maciej; Lorenz, Georg; Kulkarni, Onkar P; Grosser, Marian O O; Stigrot, Nora; Darisipudi, Murthy N; Günthner, Roman; Wintergerst, Maximilian W M; Anz, David; Susanti, Heni Eka; Anders, Hans-Joachim

    2015-12-01

    The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Feedback regulation of TGF-β signaling.

    Science.gov (United States)

    Yan, Xiaohua; Xiong, Xiangyang; Chen, Ye-Guang

    2018-01-01

    Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  17. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  18. Identification of Tisp40 as an Essential Regulator of Renal Tubulointerstitial Fibrosis via TGF-β/Smads Pathway

    Directory of Open Access Journals (Sweden)

    Cheng-cheng Xiao

    2017-06-01

    Full Text Available Background: Tisp40, a transcription factor of the CREB/CREM family, is involved in cell proliferation, differentiation and other biological functions, but its role in renal tubulointerstitial fibrosis is unknown. Methods: In our study, we investigated the effects of Tisp40 on extracellular matrix (ECM accumulation, epithelial-mesenchymal transition (EMT and the underlying molecular mechanisms in transforming growth factor-β (TGF-β-stimulated TCMK-1 cells by quantitative real-time polymerase chain reaction (qPCR, Western blot analysis and immunofluorescence in vitro, and further explored the role of Tisp40 on renal fibrosis induced by ischemia-reperfusion (I/R by qPCR, Western blot analysis, hydroxyproline analysis, Masson trichrome staining and immunohistochemistry staining in vivo. Results: The data showed that Tisp40 was upregulated in a model of renal fibrosis induced by I/R injury (IRI. Upon IRI, Tisp40-deficient mice showed attenuated renal fibrosis compared with wild-type mice. Furthermore, the expression of α-smooth muscle actin, E-cadherin, fibronectin, and collagen I was suppressed. Tisp40 overexpression aggravated ECM accumulation and EMT in the TGF-β-stimulated TCMK-1 cell line, whereas the opposite occurred in cells treated with small interfering RNA (siRNA targeting Tisp40. Importantly, it is changes in the Smad pathway that attenuate renal fibrosis. Conclusion: These findings suggest that Tisp40 plays a critical role in the TGF-β/ Smads pathway involved in this process. Hence, Tisp40 could be a useful therapeutic target in the fight against renal tubulointerstitial fibrosis.

  19. A role for E2-2 at the DN3 stage of early thymopoiesis

    DEFF Research Database (Denmark)

    Wikström, Ingela; Forssell, Johan; Penha-Goncalves, Mario N

    2008-01-01

    Roles for the E-proteins E2A and HEB during T lymphocyte development have been well established. Based on our previous observations of counter selection against T cells lacking E2-2, it seemed reasonable to assume that there would be a function also for E2-2 in thymocyte development. Aiming...... proteins, Id2 displayed a prominent expression exclusively in DN1, whereas Id3 showed some expression in DN1, followed by a down regulation and then a prominent induction, peaking in the DP stage. E2-2 was expressed during the DN stages, as well as in the DP stage, suggesting that E2-2 operates in concert...

  20. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS.

    Science.gov (United States)

    Stagni, Fiorenza; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Uguagliati, Beatrice; Salvalai, Maria Elisa; Bortolotto, Valeria; Grilli, Mariagrazia; Rimondini, Roberto; Bartesaghi, Renata

    2017-12-01

    Intellectual disability is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Reduced neurogenesis and impaired neuron maturation are considered major determinants of altered brain function in DS. Since the DS brain starts at a disadvantage, attempts to rescue neurogenesis and neuron maturation should take place as soon as possible. The brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in brain development by specifically binding to tropomyosin-related kinase receptor B (TrkB). Systemic BDNF administration is impracticable because BDNF has a poor blood-brain barrier penetration. Recent screening of a chemical library has identified a flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), a small-molecule that crosses the blood-brain barrier and binds with high affinity and specificity to the TrkB receptor. The therapeutic potential of TrkB agonists for neurogenesis improvement in DS has never been examined. The goal of our study was to establish whether it is possible to restore brain development in the Ts65Dn mouse model of DS by targeting the TrkB receptor with 7,8-DHF. Ts65Dn mice subcutaneously injected with 7,8-DHF in the neonatal period P3-P15 exhibited a large increase in the number of neural precursor cells in the dentate gyrus and restoration of granule cell number, density of dendritic spines and levels of the presynaptic protein synaptophysin. In order to establish the functional outcome of treatment, mice were treated with 7,8-DHF from P3 to adolescence (P45-50) and were tested with the Morris Water Maze. Treated Ts65Dn mice exhibited improvement of learning and memory, indicating that the recovery of the hippocampal anatomy translated into a functional rescue. Our study in a mouse model of DS provides novel evidence that treatment with 7,8-DHF during the early postnatal period restores the major trisomy-linked neurodevelopmental defects, suggesting that therapy with 7,8-DHF may represent a

  1. RETRACTED: Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population.

    Science.gov (United States)

    Zhou, Tian-Biao; Guo, Xue-Feng; Jiang, Zongpei; Li, Hong-Yan

    2015-12-01

    The following article has been included in a multiple retraction: Tian-Biao Zhou, Xue-Feng Guo, Zongpei Jiang, and Hong-Yan Li Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population Journal of Renin-Angiotensin-Aldosterone System 1470320314563425, first published on February 1, 2015 doi: 10.1177/1470320314563425 This article has been retracted at the request of the Editors and the Publisher. After conducting a thorough investigation, SAGE found that the submitting authors of a number of papers published in the Journal of the Renin-Angiotensin Aldosterone System ( JRAAS) (listed below) had supplied fabricated contact details for their nominated reviewers. The Editors accepted these papers based on the reports supplied by the individuals using these fake reviewer email accounts. After concluding that the peer review process was therefore seriously compromised, SAGE and the journal Editors have decided to retract all affected articles. Online First articles (these articles will not be published in an issue) Wenzhuang Tang, Tian-Biao Zhou, and Zongpei Jiang Association of the angiotensinogen M235T gene polymorphism with risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563426, first published on December 18, 2014 doi: 10.1177/1470320314563426 Tian-Biao Zhou, Hong-Yan Li, Zong-Pei Jiang, Jia-Fan Zhou, Miao-Fang Huang, and Zhi-Yang Zhou Role of renin-angiotensin-aldosterone system inhibitors in radiation nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563424, first published on December 18, 2014 doi: 10.1177/1470320314563424 Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January

  2. Reduced number and morphofunctional change of alveolar macrophages in MafB gene-targeted mice.

    Directory of Open Access Journals (Sweden)

    Michiko Sato-Nishiwaki

    Full Text Available Alveolar macrophages (AMs play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD. We previously demonstrated that the transcription factor, MafB, increased in the AMs of mice exposed to cigarette smoke, and in those of human patients with COPD. The aim of this study was to evaluate the role of MafB in AMs using newly established transgenic (TG mice that specifically express dominant negative (DN MafB in macrophages under the control of macrophage scavenger receptor (MSR enhancer-promoter. We performed cell differential analyses in bronchoalveolar lavage cells, morphological analyses with electron microscopy, and flow cytometry-based analyses of surface markers and a phagocytic capacity assay in macrophages. AM number in the TG mice was significantly decreased compared with wild-type (WT mice. Morphologically, the high electron density area in the nucleus increased, the shape of pseudopods on the AMs was altered, and actin filament was less localized in the pseudopods of AMs of TG mice, compared with WT mice. The expression of surface markers, F4/80 and CD11b, on peritoneal macrophages in TG mice was reduced compared with WT mice, while those on AMs remained unchanged. Phagocytic capacity was decreased in AMs from TG mice, compared with WT mice. In conclusion, MafB regulates the phenotype of macrophages with respect to the number of alveolar macrophages, the nuclear compartment, cellular shape, surface marker expression, and phagocytic function. MSR-DN MafB TG mice may present a useful model to clarify the precise role of MafB in macrophages.

  3. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.

    Science.gov (United States)

    Liu, Feng; Wang, Xiao; Su, Mengying; Yu, Mengyuan; Zhang, Shengchun; Lai, Jianbin; Yang, Chengwei; Wang, Yaqin

    2015-09-17

    SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.

  4. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  5. Serenoa repens extracts promote hair regeneration and repair of hair loss mouse models by activating TGF-β and mitochondrial signaling pathway.

    Science.gov (United States)

    Zhu, H-L; Gao, Y-H; Yang, J-Q; Li, J-B; Gao, J

    2018-06-01

    Plenty of plant extracts have been used for treating hair loss. This study aims to investigate the effects of liposterolic extracts of Serenoa repens (LSESr) on hair cell growth and regeneration of hair, and clarify the associated mechanisms. Human keratinocyte cells (HACAT) were cultured, incubated with dihydrotestosterone (DHT) and treated with LSESr. Cell viability was examined by using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H- tetrazolium bromide (MTT) assay. Hair loss C57BL/6 mouse model was established by inducing with DHT. Hair growth, density, and thickness were evaluated. Back skin samples were collected and stained with hematoxylin and eosin (HE) assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), cleaved caspase 3 and transforming growth factor β2 (TGF-β2) were examined using Western blot assay. LSESr treatment significantly increased HACAT cell viabilities compared to DHT-only treated cells (p<0.05). LSESr treatment post injection of DHT significantly converted skin color from pink to gray and increased hair density, weight and thickness compared to DHT-only treated mice (p<0.05). LSESr treatment significantly triggered follicle growth and decreased inflammatory response. LSESr treatment significantly decreased TGF-β2 and cleaved caspase 3 expression of hair loss mouse models compared to that of DHT treated mice (p<0.05). LSESr treatment significantly enhanced Bcl-2 expression and reduced Bax expression compared to that of DHT treated mice (p<0.05). Meanwhile, effects of LSESr were substantial even achieving to the potential of finasteride. LSESr promoted the hair regeneration and repair of hair loss mouse models by activating TGF-β signaling and mitochondrial signaling pathway.

  6. Overexpression of extracellular superoxide dismutase reduces severity of radiation-induced lung toxicity through downregulation of the TGF-β signal transduction pathway

    International Nuclear Information System (INIS)

    Rabbani, Z.N.; Anscher, M.S.; Archer, E.; Chen, L.; Samulski, T.V.; Folz, R.J.; Dewhirst, M.W.; Vujaskovic, Z.

    2003-01-01

    The objective of this study is to determine whether overexpression of ECSOD, ameliorates acute radiation induced lung injury by inhibiting activation of TGF-β and down regulating phosphorylation of (p)Smad 3 signal transduction protein. Transgenic (TG) B6C3 mice that overexpress human EC-SOD (hEC-SOD) and wild-type (WT) littermates received single dose of 15 Gy to the whole thorax and sacrificed at 1day, 1wk, 2wk, 3wk, 6wk, 10 and 14 weeks. Different endpoints were assessed to look for lung damage. Starting at 3rd week after radiation, there was significant increase in breathing rates, right lung wet weights and lung tissue damage score of XRT-WT vs. XRT-TG (p<0.05). In BALF, total cell counts per ml were significantly increased in XRT-WT whereas XRT-TG animals did not show any significant increase except at 14 weeks after irradiation (p<0.05). Macrophages and lymphocytes were the predominant inflammatory cells in BALF of XRT-WT compared to XRT-TG (p<0.05). XRT-WT group had a significantly higher percentage of activated TGF-β1 than the XRT-TG (p=0.04) at 14 weeks. There was a mild immunoreactivity of pSmad3 in bronchial epithelium and type II pneumocytes of control animals. In XRT-WT pSmad3 immunostaining was moderate at 1 week and moderate to strong at 3, 6 and 10 weeks whereas in XRT-TG mice immmunostaining was mild to moderate. This study shows that, the overexpression of ECSOD in transgenic animals is radioprotective in acute phase of radiation induced lung injury. Fewer inflammatory cells in XRT-TG group confirms the deprivation of important source for free radicals and TGF-β cytokine. Significant reduction in TGF-β activation in ECSOD overexpressing animals, followed by downregulation of pSmad3 indicates important role of reactive oxygen species in activation of TGF-β signal transduction pathway

  7. All-trans retinoic acid promotes TGF-β-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus.

    Directory of Open Access Journals (Sweden)

    Ling Lu

    Full Text Available It has been documented all-trans retinoic acid (atRA promotes the development of TGF-β-induced CD4(+Foxp3(+ regulatory T cells (iTreg that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs.Addition of atRA to naïve CD4(+CD25(- cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3(+ iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4(+ cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4(+ cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4(+ cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4(+ cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered.We have identified the cellular and molecular mechanism(s by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.

  8. RETRACTED: Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population.

    Science.gov (United States)

    Zhong, Weiqiang; Jiang, Zongpei; Zhou, Tian-Biao

    2015-12-01

    This article has been included in a multiple retraction: Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10.1177/1470320314566019 This article has been retracted at the request of the Editors and the Publisher. After conducting a thorough investigation, SAGE found that the submitting authors of a number of papers published in the Journal of the Renin-Angiotensin Aldosterone System ( JRAAS) (listed below) had supplied fabricated contact details for their nominated reviewers. The Editors accepted these papers based on the reports supplied by the individuals using these fake reviewer email accounts. After concluding that the peer review process was therefore seriously compromised, SAGE and the journal Editors have decided to retract all affected articles. Online First articles (these articles will not be published in an issue) Wenzhuang Tang, Tian-Biao Zhou, and Zongpei Jiang Association of the angiotensinogen M235T gene polymorphism with risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563426, first published on December 18, 2014 doi: 10.1177/1470320314563426 Tian-Biao Zhou, Hong-Yan Li, Zong-Pei Jiang, Jia-Fan Zhou, Miao-Fang Huang, and Zhi-Yang Zhou Role of renin-angiotensin-aldosterone system inhibitors in radiation nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563424, first published on December 18, 2014 doi: 10.1177/1470320314563424 Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10

  9. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang, E-mail: yangsun@nju.edu.cn; Wu, Xuefeng, E-mail: wuxf@nju.edu.cn; Xu, Qiang, E-mail: molpharm@163.com

    2016-07-15

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  10. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2016-01-01

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  11. Age-Dependent Decrease in Serum Transforming Growth Factor (TGF-Beta 1 in Healthy Japanese Individuals; Population Study of Serum TGF-Beta 1 Level in Japanese

    Directory of Open Access Journals (Sweden)

    Yoshihiro Okamoto

    2005-01-01

    Full Text Available Transforming growth factor-beta1 (TGF-β1, a multi-functional cytokine, is involved in regulating a variety of cellular activities and the serum/plasma TGF-β1 level is altered with various diseases. However, most published reports have described adult patients, and so we investigated the clinical significance of serum TGF-β1 level in pediatric patients. The diagnostic application of the measurement of serum TGF-β1 level depends critically on the control value, however, there is no information on the control value of serum TGF-β1 for children.

  12. Expression of TGF-β3 in Isolated Fibroblasts from Foreskin

    Directory of Open Access Journals (Sweden)

    Mahnaz Mahmoudi Rad

    2015-05-01

    Full Text Available Background: The multifunctional transforming growth factor beta (TGF-β is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3 in human foreskin fibroblasts (HFF’s. Methods: We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA. Results: The highest TGF-β3 expression (8.3-fold greater than control was obtained by lipofection after 72 hours using 3 μl of transfection reagent. Expression was 1.4-fold greater than control by electroporation. Conclusions: In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.

  13. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    Science.gov (United States)

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  14. TGF-β/Smad signaling in renal fibrosis

    Directory of Open Access Journals (Sweden)

    Xiao-Ming eMeng

    2015-03-01

    Full Text Available TGF-β (transforming growth factor-β is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF- signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix, and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases. Taken together, TGF-/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for chronic kidney diseases associated with renal fibrosis.

  15. Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Stagni, Fiorenza; Giacomini, Andrea; Emili, Marco; Trazzi, Stefania; Guidi, Sandra; Sassi, Martina; Ciani, Elisabetta; Rimondini, Roberto; Bartesaghi, Renata

    2016-10-01

    Cognitive disability is an unavoidable feature of Down syndrome (DS), a genetic disorder due to the triplication of human chromosome 21. DS is associated with alterations of neurogenesis, neuron maturation and connectivity that are already present at prenatal life stages. Recent evidence shows that pharmacotherapies can have a large impact on the trisomic brain provided that they are administered perinatally. Epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, performs many actions in the brain, including inhibition of DYRK1A, a kinase that is over-expressed in the DS brain and contributes to the DS phenotype. Young adults with DS treated with EGCG exhibit some cognitive benefits, although these effects disappear with time. We deemed it extremely important, however, to establish whether treatment with EGCG at the initial stages of brain development leads to plastic changes that outlast treatment cessation. In the current study, we exploited the Ts65Dn mouse model of DS in order to establish whether pharmacotherapy with EGCG during peak of neurogenesis in the hippocampal dentate gyrus (DG) enduringly restores hippocampal development and memory performance. Euploid and Ts65Dn mice were treated with EGCG from postnatal day 3 (P3) to P15. The effects of treatment were examined at its cessation (at P15) or after one month (at P45). We found that at P15 treated trisomic pups exhibited restoration of neurogenesis, total hippocampal granule cell number and levels of pre- and postsynaptic proteins in the DG, hippocampus and neocortex. However, at P45 none of these effects were still present, nor did treated Ts65Dn mice exhibit any improvement in hippocampus-dependent tasks. These findings show that treatment with EGCG carried out in the neonatal period rescues numerous trisomy-linked brain alterations. However, even during this, the most critical time window for hippocampal development, EGCG does not elicit enduring effects on the hippocampal physiology

  16. Quasirecognition by prime graph of finite simple groups ${}^2D_n(3$

    Directory of Open Access Journals (Sweden)

    Behrooz Khosravi

    2014-12-01

    Full Text Available Let $G$ be a finite group. In [Ghasemabadi et al., characterizations of the simple group ${}^2D_n(3$ by prime graph and spectrum, Monatsh Math., 2011] it is proved that if $n$ is odd, then ${}^2D _n(3$ is recognizable by prime graph and also by element orders. In this paper we prove that if $n$ is even, then $D={}^2D_{n}(3$ is quasirecognizable by prime graph, i.e. every finite group $G$ with $Gamma(G=Gamma(D$ has a unique nonabelian composition factor and this factor is isomorphic to $D$.

  17. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    International Nuclear Information System (INIS)

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-01-01

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  18. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  19. α7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile-Duct Ligated Mice.

    Science.gov (United States)

    Ehrlich, Laurent; O'Brien, April; Hall, Chad; White, Tori; Chen, Lixian; Wu, Nan; Venter, Julie; Scrushy, Marinda; Mubarak, Muhammad; Meng, Fanyin; Dostal, David; Wu, Chaodong; Lairmore, Terry C; Alpini, Gianfranco; Glaser, Shannon

    2018-03-26

    α7-nAChR is a nicotinic acetylcholine receptor (specifically expressed on hepatic stellate cells, Kupffer cells, and cholangiocytes) that regulates inflammation and apoptosis in the liver. Thus, targeting α7-nAChR may be therapeutic in biliary diseases. Bile-duct ligation (BDL) was performed on wild-type (WT) and α7-nAChR-/- mice. We first evaluated the expression of α7-nAChR by immunohistochemistry (IHC) in liver sections. IHC was also performed to assess intrahepatic bile-duct mass (IBDM), and Sirius Red staining was performed to quantify the amount of collagen deposition. Immunofluorescence was performed to assess co-localization of α7-nAChR with bile ducts (co-stained with CK-19) and hepatic stellate cells (HSCs) (co-stained with desmin). The mRNA expression of α7-nAChR, Ki67/PCNA (proliferation), fibrosis genes (TGF-β1, Fibronectin-1, Col1α1, and α-SMA), and inflammatory markers (IL-6, IL-1β, and TNFα) was measured by real-time PCR. Biliary TGF-β1 and hepatic CD68 (Kupffer cell marker) expression was assessed using IHC. α7-nAChR immunoreactivity was observed in both bile ducts and HSCs and increased following BDL. α7-nAChR-/- BDL mice exhibited decreased: (i) bile duct mass, liver fibrosis, and inflammation; and (ii) immunoreactivity of TGF-1 as well as expression of fibrosis genes compared to WT BDL mice. α7-nAChR activation triggers biliary proliferation and liver fibrosis and may be a therapeutic target in managing extra-hepatic biliary obstruction.

  20. The GARP/Latent TGF-β1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance.

    Science.gov (United States)

    Edwards, Justin P; Hand, Timothy W; Morais da Fonseca, Denise; Glass, Deborah D; Belkaid, Yasmine; Shevach, Ethan M

    2016-06-01

    Treg cells can secrete latent TGF-β1 (LTGF-β1), but can also utilize an alternative pathway for transport and expression of LTGF-β1 on the cell surface in which LTGF-β1 is coupled to a distinct LTGF-β binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF-β1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF-β1 in the induction of oral tolerance. When Foxp3(-) OT-II T cells were transferred to wild-type recipient mice followed by OVA feeding, the conversion of Foxp3(-) to Foxp3(+) OT-II cells was dependent on recipient Treg cells. Neutralization of IL-2 in the recipient mice also abrogated this conversion. The GARP/LTGF-β1 complex on recipient Treg cells, but not dendritic cell-derived TGF-β1, was required for efficient induction of Foxp3(+) T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvβ8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF-β1 complex. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Ghrelin Attenuates Liver Fibrosis through Regulation of TGF-β1 Expression and Autophagy

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Ghrelin is a stomach-derived growth hormone secretagogue that promotes various physiological effects, including energy metabolism and amelioration of inflammation. The purpose of this study was to investigate the protective mechanism of ghrelin against liver fibrosis. Liver fibrosis was induced in C57BL/6 mice by intraperitoneal injection of CCl4 (2.0 mL/kg of 10% CCl4 v/v solution in peanut oil two times per week for eight weeks. Ghrelin (10 μg/kg was intraperitoneally injected two times per week for eight weeks. A second murine liver fibrosis model was induced by bile duct ligation (BDL and concurrent ghrelin administration for four weeks. Hematoxylin eosin (H&E, and Masson’s trichrome were used to detect pathological changes to liver tissue. Western blotting was used to detect protein levels of transforming growth factor (TGF-β1, phosphorylated Smad3 (p-Smad3, I-collage, α-smooth muscle actin (α-SMA, matrix metalloproteinases (MMPs 2, tissue inhibitor of matrix metalloproteinases (TIMPs 1, phosphorylated NF-κB (p-NF-κB, and microtubule-associated protein light chain 3 (LC3. In addition, qRT-PCR was used to detect mRNA levels of TGF-β1, I-collage, α-SMA, MMP2, TIMP1 and LC3, while levels of TGF-β1, p-Smad3, I-collage, α-SMA, and LC3 were detected immunohistochemically. Levels of aspartate aminotransferase and alanine aminotransferase were significantly decreased by ghrelin treatment. Ghrelin administration also significantly reduced the extent of pathological changes in both murine liver fibrosis models. Expression levels of I-collage and α-SMA in both models were clearly reduced by ghrelin administration. Furthermore, ghrelin treatment decreased protein expression of TGF-β1 and p-Smad3. The protein levels of NF-κB and LC3 were increased in the CCl4- and BDL-treatment groups but were significantly reduced following ghrelin treatment. In addition, ghrelin inhibited extracellular matrix formation by decreasing NF-κB expression

  2. ALK and TGF-Beta Resistance in Breast Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH‐15‐1‐0650 TITLE: ALK and TGF-Beta Resistance in Breast Cancer PRINCIPAL INVESTIGATOR: Xin-Hua Feng CONTRACTING...and TGF-Beta Resistance in Breast Cancer 5b. GRANT NUMBER W81XWH‐15‐1‐0650 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xin-Hua Feng...response is a hallmark in human cancer . However, the mechanisms underlying TGF- resistance in breast cancer have not been elucidated. Anaplastic

  3. Topical Application of Propolis Enhances Cutaneous Wound Healing by Promoting TGF-Beta/Smad-Mediated Collagen Production in a Streptozotocin-Induced Type I Diabetic Mouse Model

    Directory of Open Access Journals (Sweden)

    Wael N. Hozzein

    2015-09-01

    Full Text Available Background/Aims: Impaired wound healing is considered to be one of the most serious complications associated with diabetes as it significantly increases the susceptibility of patients to infection. Propolis is a natural bee product used extensively in foods and beverages that has significant benefits to human health. In particular, propolis has antioxidant, anti-inflammatory and analgesic effects that could be useful for improving wound healing. In this study, we investigated the effects of topical application of propolis on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Methods: Sixty male mice were distributed equally into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated daily with a topical application of propolis. Results: We found that diabetic mice exhibited delayed wound closure characterized by a significant decrease in the levels of TGF-β1 and a prolonged elevation of the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α and MMP9 in wound tissues compared with control non-diabetic mice. Moreover, the wound tissues of diabetic mice showed a marked reduction in the phosphorylation of Smad2 and Smad3 as well as a marked reduction in collagen production. Interestingly, compared with untreated diabetic mice, topical application of propolis significantly enhanced the closure of diabetic wounds and decreased the levels of IL-1β, IL-6, TNF-α and MMP9 to near normal levels. Most importantly, compared with untreated diabetic mice, the treatment of diabetic mice with propolis significantly enhanced the production of collagen via the TGF-β1/Smad2,3 signaling axis in wounded tissues. Conclusion: Our findings reveal the molecular mechanisms underlying the improved healing and closure of diabetic wounds following topical propolis application.

  4. TGF-β Small Molecule Inhibitor SB431542 Reduces Rotator Cuff Muscle Fibrosis and Fatty Infiltration By Promoting Fibro/Adipogenic Progenitor Apoptosis.

    Directory of Open Access Journals (Sweden)

    Michael R Davies

    Full Text Available Rotator cuff tears represent a large burden of muscle-tendon injuries in our aging population. While small tears can be repaired surgically with good outcomes, critical size tears are marked by muscle atrophy, fibrosis, and fatty infiltration, which can lead to failed repair, frequent re-injury, and chronic disability. Previous animal studies have indicated that Transforming Growth Factor-β (TGF-β signaling may play an important role in the development of these muscle pathologies after injury. Here, we demonstrated that inhibition of TGF-β1 signaling with the small molecule inhibitor SB431542 in a mouse model of massive rotator cuff tear results in decreased fibrosis, fatty infiltration, and muscle weight loss. These observed phenotypic changes were accompanied by decreased fibrotic, adipogenic, and atrophy-related gene expression in the injured muscle of mice treated with SB431542. We further demonstrated that treatment with SB431542 reduces the number of fibro/adipogenic progenitor (FAP cells-an important cellular origin of rotator cuff muscle fibrosis and fatty infiltration, in injured muscle by promoting apoptosis of FAPs. Together, these data indicate that the TGF-β pathway is a critical regulator of the degenerative muscle changes seen after massive rotator cuff tears. TGF-β promotes rotator cuff muscle fibrosis and fatty infiltration by preventing FAP apoptosis. TGF-β regulated FAP apoptosis may serve as an important target pathway in the future development of novel therapeutics to improve muscle outcomes following rotator cuff tear.

  5. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  6. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    Science.gov (United States)

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  7. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β.

    Science.gov (United States)

    Song, Jianguo; Shi, Weiwei

    2018-01-01

    TGF-β's multipotent cellular effects and their relations are critical for TGF-β's pathophysiological functions. However, these effects may appear to be paradoxical in understanding TGF-β's functions. Apoptosis and epithelial-mesenchymal transition (EMT) are two fundamental events that are deeply linked to various physiological and disease-related processes. These two major cellular fates are subtly regulated and can be potently stimulated by TGF-β, which profoundly contribute to the biological roles of TGF-β. Moreover, these two events are also indirectly and directly correlated with TGF-β-mediated growth inhibition and are relevant to the current understanding of the roles of TGF-β in tumorigenesis and cancer progression. Although TGF-β-induced apoptosis and EMT can be singly independent cellular events, they can also be mutually exclusive but interrelated concomitant events in various cases. Thus, the modulation of apoptosis and EMT is essential for the seemingly paradoxical functions of TGF-β. However, the concomitant effect of TGF-β on apoptosis and EMT, the balance and regulated alterations of them are still been ignored or underestimated. This review focuses on the TGF-β-induced concomitant apoptosis and EMT. We aim to provide an insight in understanding their significance, balance, and modulation in TGF-β-mediated biological functions. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes.

    Science.gov (United States)

    Khakipoor, Shokoufeh; Ophoven, Christian; Schrödl-Häußel, Magdalena; Feuerstein, Melanie; Heimrich, Bernd; Deitmer, Joachim W; Roussa, Eleni

    2017-08-01

    The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H( + ) recording using the H( + ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H + changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  9. TGF beta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGF beta-receptor I signalling

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Blaese, Marcet A.; Loeffler, Heidi; Coppes, Rob P.; Rodemann, H. Peter

    Background and purpose: It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGF beta-1 and that this may be due to TGF beta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGF

  10. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    Science.gov (United States)

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  11. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  12. Role of TGF-β on cardiac structural and electrical remodeling

    Directory of Open Access Journals (Sweden)

    Roberto Ramos-Mondragón

    2008-12-01

    Full Text Available Roberto Ramos-Mondragón, Carlos A Galindo, Guillermo AvilaDepartamento de Bioquímica, Cinvestav-IPN, MéxicoAbstract: The type β transforming growth factors (TGF-βs are involved in a number of human diseases, including heart failure and myocardial arrhythmias. In fact, during the last 20 years numerous studies have demonstrated that TGF-β affects the architecture of the heart under both normal and pathological conditions. Moreover, TGF-β signaling is currently under investigation, with the aim of discovering potential therapeutic roles in human disease. In contrast, only few studies have investigated whether TGF-β affects electrophysiological properties of the heart. This fact is surprising since electrical remodeling represents an important substrate for cardiac disease. This review discusses the potential role of TGF-β on cardiac excitation-contraction (EC coupling, action potentials, and ion channels. We also discuss the effects of TGF-β on cardiac development and disease from structural and electrophysiological points of view.Keywords: transforming growth factor, ion channel, cardiac electrophysiology

  13. Um suplemento entre dois mundos: Causas e consequências da transição papel/digital do DN Jovem

    OpenAIRE

    Freitas, Helena de Sousa

    2012-01-01

    The DN Jovem, a supplement that the Portuguese newspaper Diário de Notícias (DN) began publishing in May 1983, quickly became a showcase for new prose writers, poets, photographers and illustrators. In June 1996, when access to the Internet didn’t even reach one percent of Portuguese homes, its contents migrated from print to online. The transition, determined by the Administration of DN within a newspaper’s restructuring, announced the death of a supplement that was, according to Portuguese ...

  14. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  15. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  16. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pang, Mingshu; Teng, Yao; Huang, Jianyong; Yuan, Yuan; Lin, Feng; Xiong, Chunyang

    2017-01-01

    Hepatocellular carcinoma (HCC) was usually coupled with increased stiffness of the extracellular matrix (ECM) and elevated level of transforming growth factor-β1 (TGF-β1). However, the mechanism by which substrate rigidity modulated TGF-β1 signaling transduction remained unknown. This paper investigated the molecular mechanism of how matrix stiffness regulating TGF-β1 signaling in HCC cells. By means of stiffness tunable collagen I-coated polyacrylamide (PA) gels, we found that the expressions of β1 integrin, p-FAK Y397 and p-Smad2 upregulated on stiffer gels as well as the content of TGF-β1 in culture media of HCC cells, which were inhibited by RGD blocking peptides, Y-27632 (ROCK inhibitor) or Blebbistatin (myosin II inhibitor). Cellular traction force was also significantly higher when plated on stiffer substrates but dramatically decreased after treatment with Y-27632 or Blebbistatin. Furthermore, the upregulation of p-Smad2 in the HCC cells on stiffer PA gels induced by exogenetic latent TGF-β1 was downregulated in the presence of RGD peptides. The nuclear translocation of Smad2 induced by latent TGF-β1 was inhibited by Y-27632 or Blebbistatin. Our results suggested that the extracellular matrix stiffness regulated latent TGF-β1 activation by cytoskeletal tension in HCC cells, showing that matrix stiffness was a key regulator involving the TGF-β1 activity in HCC cells. The current study presented a mechanism of how hepatocirrhosis developed into liver cancer. - Highlights: • TGF-β1 signaling pathway regulated by ECM stiffness was studied in hepatocellular carcinoma. • Matrix stiffness promoted latent TGF-β1 activation via β1 integrin-FAK-Rho GTPase pathway. • A mechanism of how hepatocirrhosis developed into liver cancer was presented.

  17. Effect of the administration of a fermented milk containing Lactobacillus casei DN-114001 on intestinal microbiota and gut associated immune cells of nursing mice and after weaning until immune maturity

    Directory of Open Access Journals (Sweden)

    Carmuega Esteban

    2008-06-01

    Full Text Available Abstract Background Microbial colonization of the intestine after birth is an important step for the development of the gut immune system. The acquisition of passive immunity through breast-feeding may influence the pattern of bacterial colonization in the newborn. The aim of this work was to evaluate the effect of the administration of a probiotic fermented milk (PFM containing yogurt starter cultures and the probiotic bacteria strain Lactobacillus casei DN-114001 to mothers during nursing or their offspring, on the intestinal bacterial population and on parameters of the gut immune system. Results Fifteen mice of each group were sacrificed at ages 12, 21, 28 and 45 days. Large intestines were taken for determination of intestinal microbiota, and small intestines for the study of secretory-IgA (S-IgA in fluid and the study of IgA+ cells, macrophages, dendritic cells and goblet cells on tissue samples. The consumption of the PFM either by the mother during nursing or by the offspring after weaning modified the development of bifidobacteria population in the large intestine of the mice. These modifications were accompanied with a decrease of enterobacteria population. The administration of this PFM to the mothers improved their own immune system and this also affected their offspring. Offspring from mice that received PFM increased S-IgA in intestinal fluids, which mainly originated from their mother's immune system. A decrease in the number of macrophages, dendritic cells and IgA+ cells during the suckling period in offspring fed with PFM was observed; this could be related with the improvement of the immunity of the mothers, which passively protect their babies. At day 45, the mice reach maturity of their own immune system and the effects of the PFM was the stimulation of their mucosal immunity. Conclusion The present work shows the beneficial effect of the administration of a PFM not only to the mothers during the suckling period but also to

  18. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype.

    Science.gov (United States)

    Kusunoki, Yasuo; Matsui, Isao; Hamano, Takayuki; Shimomura, Akihiro; Mori, Daisuke; Yonemoto, Sayoko; Takabatake, Yoshitsugu; Tsubakihara, Yoshiharu; St-Arnaud, René; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-11-01

    Vitamin D hydroxylated at carbon 25 (25(OH)D) is generally recognized as a precursor of active vitamin D. Despite its low affinity for the vitamin D receptor (VDR), both deficient and excessive 25(OH)D levels are associated with poor clinical outcomes. Here we studied direct effects of 25(OH)D3 on the kidney using 25(OH)D-1α-hydroxylase (CYP27B1) knockout mice. The effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed as proximal tubular cells and macrophages are two major cell types that take up 25(OH)D and contribute to the pathogenesis of kidney injury. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-β1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-β1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-β1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.

  19. Effects of Cordyceps sinensis on the Expressions of NF-κB and TGF-β1 in Myocardium of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    You-you Gu

    2015-01-01

    Full Text Available Objective. To investigate the effect of Cordyceps sinensis (CS on the expressions of NF-κB and TGF-β1 in myocardium of streptozotocin-induced diabetic rats. Methods. A total of 53 healthy male SD rats, mice age of 8 weeks and weight of 220 ± 20 g, were randomly divided into five groups by randomized block design: normal control group (n=10, diabetic group (n=10, low dose of CS group (n=12; CS 0.6 g·kg−1·d−1, middle dose of CS group (n=11; CS 2.5 g·kg−1·d−1, and high dose of CS group (n=10; CS 5 g·kg−1·d−1. The diabetic models with tail intravenous injection by streptozotocin (45 mg·kg−1. Diabetic rats were sacrificed after 8 weeks; the expressions of NF-κB and TGF-β1 proteins and mRNA in the cardiac muscle were determined by using immunohistochemistry staining and reverse transcription polymerase chain reaction (RT-PCR method. The data were analyzed using one factor analysis of variance. Result. The expressions of NF-κB and TGF-β1 proteins and mRNA in the cardiac muscle of diabetic rats were significantly raised (P<0.05, which could be decreased by CS (P<0.05. Conclusions. The changes on the expressions of NF-κB and TGF-β1 in myocardium may be involved in the occurrence of diabetic cardiomyopathy (DC. CS may play its role on myocardial protection by regulating the expressions of NF-κB and TGF-β1 in myocardium.

  20. TGF-β1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse.

    Directory of Open Access Journals (Sweden)

    David A Barron

    2010-10-01

    Full Text Available TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression.

  1. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis

    DEFF Research Database (Denmark)

    Tomcik, Michal; Palumbo-Zerr, Katrin; Zerr, Pawel

    2015-01-01

    (SSc). METHODS: The expression of S100A4 was analysed in human samples, murine models of SSc and in cultured fibroblasts by real-time PCR, immunohistochemistry and western blot. The functional role of S100A4 was evaluated using siRNA, overexpression, recombinant protein and S100A4 knockout (S100A4...... or stimulation with recombinant S100A4 induced an activated phenotype in resting normal fibroblasts. In contrast, knockdown of S100A4 reduced the pro-fibrotic effects of TGF-β and decreased the release of collagen. S100A4(-/-) mice were protected from bleomycin-induced skin fibrosis with reduced dermal...

  2. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    Science.gov (United States)

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs.

  3. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    Science.gov (United States)

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  4. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Multipoint Space Measurements of TGF's with the TRYAD Mission

    Science.gov (United States)

    Fuchs, J.; Briggs, M. S.; Jenke, P.

    2017-12-01

    The Terrestrial RaY Analysis and Detection (TRYAD) is a twin 6U cubesat mission designed to detect Terrestrial Gamma-ray Flashes (TGF's) from low earth orbit. Current observations of TGF's are predominantly done from single point measurements; the objective of this mission is to capture two simultaneous observations to identify a characteristic beam profile. Working models for production of TGF's suggest two main scenarios exist: one being creation in the lightening step leader which results in a wider beam profile, the other is a larger field effect in the storm resulting in a narrow beam. The TRYAD detector consists of four plastic scintillation bars that will detect flux correlated with GPS position and time. Both satellites will fly at a controlled separation of several hundred kilometers gathering data over the tropics. The data gathered from the spacecraft are matched to lightening data from the World Wide Lightning Location Network (WWLLN) to get ground and time localization along with the two point flux measurement. TRYAD will fly in 2019. We will present simulations describing TRYADs ability to discriminate between current TGF models, the TRYAD science instrument, along with its capabilities and impact for TGF science.

  6. The role of TGF-β in polycystic ovary syndrome.

    Science.gov (United States)

    Raja-Khan, Nazia; Urbanek, Margrit; Rodgers, Raymond J; Legro, Richard S

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic oligoanovulation and hyperandrogenism and associated with insulin resistance, type 2 diabetes, and cardiovascular risk. In recent years, genetic studies have linked PCOS to a dinucleotide marker D19S884 in the fibrillin 3 gene. Fibrillins make up the major component of microfibrils in the extracellular matrix (ECM) and interact with molecules in the ECM to regulate transforming growth factor β (TGF-β) signaling. Therefore, variations in fibrillin 3 and subsequent dysregulation of TGF-β may contribute to the pathogenesis of PCOS. Here, we review the evidence from genetic studies supporting the role of TGF-β in PCOS and describe how TGF-β dysregulation may contribute to (1) the fetal origins of PCOS, (2) reproductive abnormalities in PCOS, and (3) cardiovascular and metabolic abnormalities in PCOS.

  7. Renal Kallikrein Activation and Renoprotection after Dual Blockade of Renin-Angiotensin System in Diet-Induced Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Xia Zou

    2015-01-01

    Full Text Available Purpose. The objective of this study is to investigate the effect of dual blockage of renin-angiotensin system (RAS on renal kallikrein expression and inflammatory response in diabetic nephropathy (DN. Methods. Rats were randomly divided into 5 groups with 10 rats in each group: normal control; DN model induced by high fat and high sucrose diets; and DN treated with either benazepril 10 mg/kg/d, irbesartan 30 mg/kg/d, or both. After 8-week treatment, we examined changes in the kidney histopathology, function and immunohistochemical stain of kallikrein, macrophage marker CD68, and profibrotic markers transforming growth factor- (TGF- β and α-smooth muscle action (SMA. Results. DN rats showed enlarged kidneys with glomerulosclerosis, interstitial chronic inflammation and fibrosis, and proteinuria. All the pathological damage and functional impairments were improved after the RAS blockades (all P<0.05. Compared with monotherapy, combined treatment further alleviated the kidney impairments in parallel to increased tubular immunoreactivity for kallikrein and decreased immunopositive cells for CD68, TGF-β, and α-SMA. Conclusion. The renoprotective effects of the dual RAS blockade in diabetic nephropathy may be attributed to improved tubular kallikrein expression and interstitial inflammatory response.

  8. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  9. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  10. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... II receptor gene, as examined by Southern blotting. Also, the type I receptor could not be detected by ligand binding assay in this cell line, despite expression of mRNA for this receptor. This agrees with previous findings that type I receptor cannot bind TGF beta 1 without co-expression of the type...

  11. Riccardin D-N induces lysosomal membrane permeabilization by inhibiting acid sphingomyelinase and interfering with sphingomyelin metabolism in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Niu, Huanmin [Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012 (China); Sun, Bin [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Xiao, Yanan [School of Pharmaceutical Science, Shandong University, Jinan 250012 (China); Li, Wei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China); Yuan, Huiqing [Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang, E-mail: louhongxiang@sdu.edu.cn [Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012 (China)

    2016-11-01

    Lysosomes are important targets for anticancer drug discovery. Our previous study showed that Riccardin D-N (RD-N), a natural macrocylic bisbibenzyl derivative produced by Mannich reaction, induced cell death by accumulating in lysosomes. Experiments were performed on human lung squamous cell carcinoma tissue from left inferior lobar bronchus of patient xenografts and H460 cells. RD-N was administrated for 25 days. The specimens of xenografts in Balb/c athymic (nu +/nu +) male mice were removed for immunohistochemistry, subcellular fractionation, enzyme activities and Western blotting analysis. mRFP-GFP-LC3 reporter was used to examine autophagy in H460 cells. Sphingomyelin assay was evaluated by thin-layer chromatography and assay kit. Lysosomal membrane permeabilization (LMP) caused by acid sphingomyelinase (ASM) inhibition and subsequent changes of sphingomyelin (SM) metabolism selectively destabilized the cancer cell lysosomes in RD-N-treated H460 cells in vitro and tumor xenograft model in vivo. The destabilized lysosomes induced the release of cathepsins from the lysosomes into the cytosol and further triggered cell death. These results explain the underlying mechanism of RD-N induced LMP. It can be concluded that a more lysosomotropic derivative was synthesized by introduction of an amine group, which could have more potential applications in cancer therapy. - Highlights: • Riccardin D-N (RD-N) significantly downregulated LAMP1 expressions. • RD-N inhibited the acid sphingomyelinase activity. • RD-N induced lysosomal membrane permeabilization in vivo. • RD-N induced SM accumulation in the lysosomal membranes. • RD-N also induced the release of cathepsins from destabilized lysosomes.

  12. Riccardin D-N induces lysosomal membrane permeabilization by inhibiting acid sphingomyelinase and interfering with sphingomyelin metabolism in vivo

    International Nuclear Information System (INIS)

    Li, Lin; Niu, Huanmin; Sun, Bin; Xiao, Yanan; Li, Wei; Yuan, Huiqing; Lou, Hongxiang

    2016-01-01

    Lysosomes are important targets for anticancer drug discovery. Our previous study showed that Riccardin D-N (RD-N), a natural macrocylic bisbibenzyl derivative produced by Mannich reaction, induced cell death by accumulating in lysosomes. Experiments were performed on human lung squamous cell carcinoma tissue from left inferior lobar bronchus of patient xenografts and H460 cells. RD-N was administrated for 25 days. The specimens of xenografts in Balb/c athymic (nu +/nu +) male mice were removed for immunohistochemistry, subcellular fractionation, enzyme activities and Western blotting analysis. mRFP-GFP-LC3 reporter was used to examine autophagy in H460 cells. Sphingomyelin assay was evaluated by thin-layer chromatography and assay kit. Lysosomal membrane permeabilization (LMP) caused by acid sphingomyelinase (ASM) inhibition and subsequent changes of sphingomyelin (SM) metabolism selectively destabilized the cancer cell lysosomes in RD-N-treated H460 cells in vitro and tumor xenograft model in vivo. The destabilized lysosomes induced the release of cathepsins from the lysosomes into the cytosol and further triggered cell death. These results explain the underlying mechanism of RD-N induced LMP. It can be concluded that a more lysosomotropic derivative was synthesized by introduction of an amine group, which could have more potential applications in cancer therapy. - Highlights: • Riccardin D-N (RD-N) significantly downregulated LAMP1 expressions. • RD-N inhibited the acid sphingomyelinase activity. • RD-N induced lysosomal membrane permeabilization in vivo. • RD-N induced SM accumulation in the lysosomal membranes. • RD-N also induced the release of cathepsins from destabilized lysosomes.

  13. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  14. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β.

    Science.gov (United States)

    Albro, Michael B; Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Shim, Jay J; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-01-01

    Transforming growth factor beta (TGF-β) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-β in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-β concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-β exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-β in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-β enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-β supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically. Copyright © 2015

  15. H-mode transition physics close to DN on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.

    2004-01-01

    Full text: ELMy H-mode is the base-line operating scenario for the next step fusion device ITER. To improve active and passive pedestal control a deeper understanding of H- mode physics is desirable. MAST contributes towards this understanding with good edge diagnostics, and by accessing extreme parameter regimes. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX-Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. The 30% reduction in threshold power close to C-DN observed on ASDEX-Upgrade, though significant, is less than the factor of two or more observed in both large spherical tokamaks, MAST and NSTX. This points towards the importance of field line curvature for this effect. The power thresholds measured in C-DN on MAST and NSTX are very similar. Despite this strong effect on the power threshold, changes in most edge parameters in L-mode due to the different magnetic configurations are small. However, significant changes are seen in the toroidal impurity flow velocity, related to the radial electric field, and in the scrape-off-layer temperature decay length at the high field side. The statistical comparison of MAST data with various H-mode theories suggests that different instabilities need to be stabilised at different spatial positions in the region where the pedestal forms to access H-mode. Pedestal temperatures observed on MAST are two to five times lower than in MAST equivalent discharges at ASDEX-Upgrade. However, the pedestal densities are similar. The differences in L-mode are less significant. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are

  16. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takayo; Yoshida, Yuichi [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Imai, Yasuharu [Department of Gastroenterology, Ikeda Municipal Hospital, Ikeda, Osaka (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine and Department of Cell Growth and Tumor Regulation, Proteo-Medicine Research Center (ProMRes), Ehime University, Shitsukawa, Toon, Ehime (Japan); Iwamoto, Ryo; Mekada, Eisuke [Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Takehara, Tetsuo [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan)

    2013-07-26

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.

  17. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    International Nuclear Information System (INIS)

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi; Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro; Imai, Yasuharu; Higashiyama, Shigeki; Iwamoto, Ryo; Mekada, Eisuke; Takehara, Tetsuo

    2013-01-01

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis

  18. Trisonic Gas-Dynamics Facility (TGF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The TGF is a two-foot square, continuous-flow, closed-circuit wind tunnel which is optimal for conducting research experiments. The facility provides a...

  19. Expression of TGF-β1 and CTGF Is Associated with Fibrosis of Denervated Sternocleidomastoid Muscles in Mice.

    Science.gov (United States)

    Liu, Fei; Tang, Weifang; Chen, Donghui; Li, Meng; Gao, Yinna; Zheng, Hongliang; Chen, Shicai

    2016-01-01

    Injury to the recurrent laryngeal nerve often leads to permanent vocal cord paralysis, which has a significant negative impact on the quality of life. Long-term denervation can induce laryngeal muscle fibrosis, which obstructs the muscle recovery after laryngeal reinnervation. However, the mechanisms of fibrosis remain unclear. In this study, we aimed to analyze the changes in the expression of fibrosis-related factors, including transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) in denervated skeletal muscles using a mouse model of accessory nerve transection. Because of the small size, we used sternocleidomastoid muscles instead of laryngeal muscles for denervation experiments. Masson's trichrome staining showed that the grade of atrophy and fibrosis of muscles became more severe with time, but showed a plateau at 4 weeks after denervation, followed by a slow decrease. Quantitative assessment and immunohistochemistry showed that TGF-β1 expression peaked at 1 week after denervation (p muscle cells were detected at 1 week after denervation, peaked at 2 weeks (p muscle fibrosis. They may induce the differentiation of myoblasts into myofibroblasts, as characterized by the activation of α-SMA. These findings may provide insights on key pathological processes in denervated skeletal muscle fibrosis and develop novel therapeutic strategies.

  20. Role of TGF-β signaling in inherited and acquired myopathies

    Directory of Open Access Journals (Sweden)

    Burks Tyesha N

    2011-05-01

    Full Text Available Abstract The transforming growth factor-beta (TGF-β superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs, and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.

  1. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    Science.gov (United States)

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  2. In silico investigation of ADAM12 effect on TGF-β receptors trafficking

    Directory of Open Access Journals (Sweden)

    LeMeur Nolwenn

    2009-09-01

    Full Text Available Abstract Background The transforming growth factor beta is known to have pleiotropic effects, including differentiation, proliferation and apoptosis. However the underlying mechanisms remain poorly understood. The regulation and effect of TGF-β signaling is complex and highly depends on specific protein context. In liver, we have recently showed that the disintegrin and metalloproteinase ADAM12 interacts with TGF-β receptors and modulates their trafficking among membranes, a crucial point in TGF-β signaling and development of fibrosis. The present study aims to better understand how ADAM12 impacts on TGF-β receptors trafficking and TGF-β signaling. Findings We extracted qualitative biological observations from experimental data and defined a family of models producing a behavior compatible with the presence of ADAM12. We computationally explored the properties of this family of models which allowed us to make novel predictions. We predict that ADAM12 increases TGF-β receptors internalization rate between the cell surface and the endosomal membrane. It also appears that ADAM12 modifies TGF-β signaling shape favoring a permanent response by removing the transient component observed under physiological conditions. Conclusion In this work, confronting differential models with qualitative biological observations, we obtained predictions giving new insights into the role of ADAM12 in TGF-β signaling and hepatic fibrosis process.

  3. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    I. van der Pluijm, PhD

    2016-10-01

    Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.

  4. Plasma TGF beta level in rats after hemithoracic irradiation

    NARCIS (Netherlands)

    Vujaskovic, Z; Down, JD; vanWaarde, MAWH; vanAssen, AJ; Szabo, BG; Konings, AWT

    Changes in TGF-beta plasma levels were observed 18 weeks after hemithoracic irradiation in rats. This coincides with an increase in the breathing frequency, being most pronounced between 22 and 28 weeks after irradiation. The correlation suggests a potential role of the circulating TGF-beta in the

  5. Increased transforming growth factor beta (TGF-β) and pSMAD3 signaling in a Murine Model for Contrast Induced Kidney Injury.

    Science.gov (United States)

    Kilari, Sreenivasulu; Yang, Binxia; Sharma, Amit; McCall, Deborah L; Misra, Sanjay

    2018-04-26

    We tested the hypothesis that post-contrast acute kidney injury (PC-AKI) occurs due to increase in transforming growth factor beta (Tgf-β) and pSMAD3 signaling in a murine model of PC-AKI. Mice had nephrectomy performed and twenty-eight days later, 100-μL of radio-contrast (Vispaque 320) or saline was administered via the jugular vein. Animals were sacrificed at 2, 7, and 28 days later and the serum BUN, creatinine, urine protein levels, and kidney weights were assessed. In human kidney-2 (HK-2) cells, gene and protein expression with cellular function was assessed following inhibition of TGFβR-1 plus contrast exposure. After contrast administration, the average serum creatinine is significantly elevated at all time points. The average gene expression of connective tissue growth factor (Ctgf), Tgfβ-1, matrix metalloproteinase-9 (Mmp-9), and collagen IVa (Col IVa) are significantly increased at 2 days after contrast administration (P < 0.05). Cellular proliferation is decreased and there is increased apoptosis with tubulointerstitial fibrosis. Contrast administered to HK-2 cells results in increased pSMAD3 levels and gene expression of Ctgf, Tgfβ-1, Tgfβ-2, Col IVa, Mmp-9, and caspase/7 activity with a decrease in proliferation (all, P < 0.05). TGFβR-1 inhibition decreased the expression of contrast mediated pro-fibrotic genes in HK-2 cells with no change in the proliferation and apoptosis.

  6. Um suplemento entre dois mundos : Causas e consequências da transição papel/digital do DN Jovem

    Directory of Open Access Journals (Sweden)

    Helena de Sousa Freitas

    2012-01-01

    Full Text Available The DN Jovem, a supplement that the Portuguese newspaper Diário de Notícias (DN began publishing in May 1983, quickly became a showcase for new prose writers, poets, photographers and illustrators. In June 1996, when access to the Internet didn’t even reach one percent of Portuguese homes, its contents migrated from print to online. The transition, determined by the Administration of DN within a newspaper’s restructuring, announced the death of a supplement that was, according to Portuguese writer José Jorge Letria, “the most important spot for the revelation and affirmation of new literary values” in democratic Portugal.

  7. Molecular Cloning and Expression Analysis of Transforming Growth Factor TGF-β1 and TGF-β3 in Half-smooth Tongue Sole (Cynoglossus semilaevis) Following Stimulation with Vibrio harveyi%半滑舌鳎转化生长因子TGF-β1和TGF-β3基因的克隆及受哈维氏弧菌感染后表达分析

    Institute of Scientific and Technical Information of China (English)

    李雪; 陈松林; 杨长庚; 邵长伟; 李仰真; 位战飞

    2016-01-01

    转化生长因子β (transforming growth factor β,TGF-β)是一类具有多种功能的蛋白超家族,在细胞免疫、细胞增殖分化和组织损伤的修复中起着关键性作用.本研究从半滑舌鳎(Cynoglossus semilaevis)肝脏中克隆获得了TGF-β1和TGF-β3基因.推导的TGF-β1和TGF-β3氨基酸序列均含有多个N糖基化位点和一个TGF-β家族标签.系统进化树分析显示,半滑舌鳎TG F-β1和TGF-β3分别与鱼类的TGF-β1和TGF-β3亲缘关系最为密切.qRT-PCR结果表明,半滑舌鳎TGF-β1和TGF-β3基因在健康鱼的多个组织中均有表达,二者在皮肤中表达量最高,在肌肉中表达量最低.经哈维氏弧菌(Vibrio harveyi)感染后,TGF-β1在肝脏、脾脏和肾脏中呈现先上升后下降的表达趋势,在感染48 h后的肝脏中表达量达到最大值,是对照组的3.17倍;TGF-β3在脾脏、肾脏和鳃中也呈现先上升后下降的表达趋势,在感染24 h后的鳃中表达量达到最大值,是对照组的4.71倍.以上结果提示,TG F-β1和TGF-β3可能在半滑舌鳎抵御细菌感染的免疫中发挥了重要作用,本研究为证明二者参与机体免疫调节提供了有力证据,为半滑舌鳎分子免疫研究提供了理论依据.

  8. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.

    Science.gov (United States)

    Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo

    2018-02-01

    The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  10. [Zaocys type II collagen regulates mesenteric lymph node Treg/Th17 cell balance in mice with collagen-induced arthritis].

    Science.gov (United States)

    Wang, Hao; Feng, Zhitao; Zhu, Junqing; Li, Juan

    2014-05-01

    To investigate the effect of oral administration of Zaocys type II collagen (ZCII) on the percentages of Treg/Th17 cells in mesenteric lymph node lymphocytes (MLNLs) in mice with collagen-induced arthritis (CIA). CIA was induced in male C57BL/6 mice by immunization with chicken type II collagen. Three weeks later, ZCII, purified by pepsin digestion, was orally administered in the mice for 7 consecutive days (daily dose of 10, 20, or 40 µg/kg). The severity of arthritis in each limb was evaluated using a macroscopic scoring system, and histopathological changes of the joint were observed microscopically with HE staining. The percentages of Treg and Th17 cells in MLNLs was detected by flow cytometry, and the levels of transforming growth factor-β (TGF-β) and interleukin-17 (IL-17) in the supernatant of MLNLs were measured by enzyme-linked immunosorbent assay. Compared with normal control mice, the mice with CIA had significantly higher scores for arthritis and histopathological changes, with also significantly increased percentages of Treg and Th17 cells in MLNLs and elevated levels of TGF-β and IL-17 in MLNL supernatant (P<0.05). In ZCII peptide-treated mice, the scores for arthritis and histopathological changes were significantly lower than those in CIA model group (P<0.05), and Treg cell percentage in MLNLs was up-regulated while Th17 cell percentage lowered; the level of TGF-β was increased but IL-17 was decreased significantly (P<0.05). Oral administration of ZCII improves CIA in mice by regulating the percentages of Treg/Th17 cells and the cytokine levels in MLNLs, suggesting the value of ZCII as a promising candidate agent for treatment of rheumatoid arthritis.

  11. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF-β1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF-β1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF-β1 pretreatment protects epithelial cells from γ-radiation in vivo.

  12. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    Science.gov (United States)

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  13. IL-6 Inhibits Upregulation of Membrane-Bound TGF-β 1 on CD4+ T Cells and Blocking IL-6 Enhances Oral Tolerance.

    Science.gov (United States)

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L

    2017-02-01

    Oral administration of Ag induces regulatory T cells that express latent membrane-bound TGF-β (latency-associated peptide [LAP]) and have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP + on CD4 + T cells. The combination of anti-CD3 mAb, anti-CD28 mAb, and recombinant IL-2 induced expression of LAP on naive CD4 + T cells, independent of Foxp3 or exogenous TGF-β. In vitro generated CD4 + LAP + Foxp3 - T cells were suppressive in vitro, inhibiting proliferation of naive CD4 + T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing Abs against cytokines, we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNF-α. IL-6 abrogated the in vitro induction of CD4 + LAP + T cells by STAT3-dependent inhibition of Lrrc32 (glycoprotein A repetitions predominant [GARP]), the adapter protein that tethers TGF-β to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4 + T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that proinflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-01-01

    Highlights: → We constructed CCL4 induced liver fibrosis model successfully. → We proofed that the TGF-β1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. → The therapy effect of TGF-β1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0

  15. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qing; Liu, Qi [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xu, Ning [The Second Hospital of YuLin, Shanxi Province (China); Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Shi, Xiao-Feng, E-mail: sxff2003@yahoo.com.cn [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  16. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    Science.gov (United States)

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  17. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.

    Science.gov (United States)

    Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun

    2016-05-01

    The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.

  18. The Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Protects against Dyslipidemia-Related Kidney Injury in Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2014-06-01

    Full Text Available The goal of this study was to investigate the possible protective effects of sitagliptin against dyslipidemia-related kidney injury in apolipoprotein E knockout (apoE−/− mice. Eight-week-old male apoE−/− mice were randomized to receive either a high fat diet (HFD, apoE−/− group or HFD mixed with sitagliptin (sita + apoE−/− group for 16 weeks. A control group of age- and gender-matched C57BL/6J mice were fed a HFD. The apoE−/− group exhibited increases in body weight and serum lipid levels in addition to high-density lipoprotein, and increases in 24-h urinary 8-hydroxy-2-deoxyguanosine and albuminuria excretion. Decreased insulin sensitivity was also observed in the apoE−/− group. These mice additionally contained enlargements of the glomerular mesangial matrix area, lipid deposition area, and renal interstitium collagen area. The apoE−/− group also demonstrated down-regulation of phosphorylated AMP-activated protein kinase (AMPK, increases in renal mRNA expression of transforming growth factor-beta 1 (TGF-β1 and fibronectin (FN, and increased protein expression of Akt, TGF-β1, FN and p38/ERK mitogen-activated protein kinase (MAPK. Sitagliptin treatment successfully ameliorated all the deleterious effects of dyslipidemia tested. To our knowledge, this is the first time that sitagliptin has been shown to reverse the renal dysfunction and structural damage induced by dyslipidemia in apoE−/− mice. Our results suggest that the renoprotective mechanism of sitagliptin may be due to a reduction in Akt levels, a restoration of AMPK activity, and inhibition of TGF-β1, FN, and p38/ERK MAPK signaling pathways.

  19. Possible measurements of the spin one observables in elastic dN, dd collisions at the NICA deuteron beams

    International Nuclear Information System (INIS)

    Sharov, V I

    2016-01-01

    The report shows the possibilities of studying the spin one observables in the elastic dN and dd interactions at the NICA collider of the VBLHEP JINR. The use of the colliding deuteron beams would allow us to carry out the measurements of the differential cross sections I 0 (dN, dd) of the elastic scattering of unpolarized deuterons and the differential cross sections I pol (dN,dd) and the vector A y (Ed,θ) and tensor A yy (Ed,θ) and A xx (E d .θ) analyzing powers in elastic collisions of the vector and tensor polarized deuterons. The planned luminosity of the colliding polarized deuteron beams will provide sufficiently high elastic events counting rate. The use of the colliding beams of the polarized deuterons for the spin one >dN and dd observables research has a number of significant advantages in comparison with the experiments with the “fixed” target. The angular acceptance of the collider detector covers the full solid angle 4π radians while the wide ranges of the energies of the dN, dd interactions and the 4-momentum transfer squared are available. (paper)

  20. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Science.gov (United States)

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  1. Časopis "Módní svět" a "Lada" v kulturním kontextu

    OpenAIRE

    Šrolová, Kristýna

    2010-01-01

    The thesis discusses tbe fashion magazine Módní svět (Fashion World) and its enclosure Lada, which it implants into their cultural and historica1 context. The magazine Módní svět (Fashion World) was puhli,hed from 1875 to 1935 and thi, a1,o deline, lhe time circmnscription of tbe themes in tbe thesis. It contextua11y deals with tbe women society during tbe tum of 19th to 20th century, with women's emancipatory movement, with tbe beginning of publishing of rn.agazines for women and fashion mag...

  2. A Requirement for ZAK Kinase Activity in Canonical TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Shyam Nyati

    2016-12-01

    Full Text Available The sterile alpha motif and leucine zipper containing kinase ZAK (AZK, MLT, MLK7, is a MAPK-kinase kinase (MKKK. Like most MAPKKKs which are known to activate the c-Jun. amino-terminal kinase (JNK pathway, ZAK has been shown to participate in the transduction of Transforming growth factor-β (TGF-β-mediated non-canonical signaling. A role for ZAK in SMAD-dependent, canonical TGF-β signaling has not been previously appreciated. Using a combination of functional genomics and biochemical techniques, we demonstrate that ZAK regulates canonical TGFβRI/II signaling in lung and breast cancer cell lines and may serve as a key node in the regulation of TGFBR kinase activity. Remarkably, we demonstrate that siRNA mediated depletion of ZAK strongly inhibited TGF-β dependent SMAD2/3 activation and subsequent promoter activation (SMAD binding element driven luciferase expression; SBE4-Luc. A ZAK specific inhibitor (DHP-2, dose-dependently activated the bioluminescent TGFBR-kinase activity reporter (BTR, blocked TGF-β induced SMAD2/3 phosphorylation and SBE4-Luc activation and cancer cell-invasion. In aggregate, these findings identify a novel role for the ZAK kinase in canonical TGF-β signaling and an invasive cancer cell phenotype thus providing a novel target for TGF-β inhibition.

  3. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice.

    Science.gov (United States)

    Lu, Jian-Hua; Liu, Yi-Qian; Deng, Qiao-Wen; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.

  4. Impact of High Glucose and Proteasome Inhibitor MG132 on Histone H2A and H2B Ubiquitination in Rat Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Chenlin Gao

    2013-01-01

    Full Text Available Background. Hyperglycemia plays a pivotal role in the development of diabetic nephropathy (DN and may be related to epigenetic metabolic memory. One of the most crucial epigenetic mechanisms is histone modification, which is associated with the expression of a fibrosis factor in vascular injury. Aim .In this study, we investigated the ubiquitination of histones H2A and H2B to explore the epigenetic mechanisms of DN. Materials and Methods. The GMCs were cultured as follows: normal group, high glucose group, mannitol group, and intervention group. After 12 hr, 24 hr, and 48 hr, histones ubiquitination, transforming growth factor-β (TGF-β, and fibronectin (FN were measured using WB, RT-PCR, and IF. Result. High glucose can induce the upregulation of FN. H2A ubiquitination in GMCs increased in high glucose group (P<0.01, whereas it decreased significantly in intervention group (P<0.05. In contrast, H2B ubiquitination decreased with an increasing concentration of glucose, but it was recovered in the intervention group (P<0.05. Expression of TGF-β changed in response to abnormal histone ubiquitination. Conclusions. The high glucose may induce H2A ubiquitination and reduce H2B ubiquitination in GMCs. The changes of histone ubiquitination may be due in part to DN by activating TGF-β signaling pathway.

  5. The integrable quantum group invariant A2n-1(2) and Dn+1(2) open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Pimenta, Rodrigo A.; Retore, Ana L.

    2017-11-01

    A family of A2n(2) integrable open spin chains with Uq (Cn) symmetry was recently identified in arxiv:arXiv:1702.01482. We identify here in a similar way a family of A2n-1(2) integrable open spin chains with Uq (Dn) symmetry, and two families of Dn+1(2) integrable open spin chains with Uq (Bn) symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2) chains with other integrable boundary conditions, which do not have quantum group symmetry.

  6. The integrable quantum group invariant A2n−1(2 and Dn+1(2 open spin chains

    Directory of Open Access Journals (Sweden)

    Rafael I. Nepomechie

    2017-11-01

    Full Text Available A family of A2n(2 integrable open spin chains with Uq(Cn symmetry was recently identified in arXiv:1702.01482. We identify here in a similar way a family of A2n−1(2 integrable open spin chains with Uq(Dn symmetry, and two families of Dn+1(2 integrable open spin chains with Uq(Bn symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2 chains with other integrable boundary conditions, which do not have quantum group symmetry.

  7. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    Science.gov (United States)

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  8. Λ{sub b} → π{sup -}(D{sub s}{sup -})Λ{sub c}(2595), π{sup -}(D{sub s}{sup -})Λ{sub c}(2625) decays and DN, D*N molecular components

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei-Hong [Guangxi Normal University, Department of Physics, Guilin (China); Centro Mixto Universidad de Valencia-CSIC Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Bayar, Melahat [Kocaeli University, Department of Physics, Izmit (Turkey); Oset, Eulogio [Centro Mixto Universidad de Valencia-CSIC Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain)

    2017-01-15

    From the perspective that Λ{sub c}(2595) and Λ{sub c}(2625) are dynamically generated resonances from the DN, D*N interaction and coupled channels, we have evaluated the rates for Λ{sub b} → π{sup -}Λ{sub c}(2595) and Λ{sub b} → π{sup -}Λ{sub c}(2625) up to a global unknown factor that allows us to calculate the ratio of rates and compare with experiment, where good agreement is found. Similarly, we can also make predictions for the ratio of rates of the, yet unknown, decays of Λ{sub b} → D{sub s}{sup -}Λ{sub c}(2595) and Λ{sub b} → D{sub s}{sup -}Λ{sub c}(2625) and make estimates for their individual branching fractions. (orig.)

  9. TGF-β receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    International Nuclear Information System (INIS)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian; Brandan, Enrique

    2010-01-01

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type β (TGF-β), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-β-receptors (TGF-β-Rs) during skeletal muscle differentiation. We found a decrease of TGF-β signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-β. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-β-R type I (TGF-β-RI) and type II (TGF-β-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-β-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-β-RII lacking the cytoplasmic domain. The TGF-β-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-β-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-β receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  10. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brandan, Enrique, E-mail: ebrandan@bio.puc.cl [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  11. Immunohistochemical Expression of TGF-β1 and Osteonectin in engineered and Ca(OH2-repaired human pulp tissues

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre CHISINI

    Full Text Available Abstract The aim of the present study was to evaluate the expression of transforming growth factor-β1 (TGF-β1 and osteonectin (ON in pulp-like tissues developed by tissue engineering and to compare it with the expression of these proteins in pulps treated with Ca(OH2 therapy. Tooth slices were obtained from non-carious human third molars under sterile procedures. The residual periodontal and pulp soft tissues were removed. Empty pulp spaces of the tooth slice were filled with sodium chloride particles (250–425 µm. PLLA solubilized in 5% chloroform was applied over the salt particles. The tooth slice/scaffold (TS/S set was stored overnight and then rinsed thoroughly to wash out the salt. Scaffolds were previously sterilized with ethanol (100–70° and washed with phosphate-buffered saline (PBS. TS/S was treated with 10% EDTA and seeded with dental pulp stem cells (DPSC. Then, TS/S was implanted into the dorsum of immunodeficient mice for 28 days. Human third molars previously treated with Ca(OH2 for 90 days were also evaluated. Samples were prepared and submitted to histological and immunohistochemical (with anti-TGF-β1, 1:100 and anti-ON, 1:350 analyses. After 28 days, TS/S showed morphological characteristics similar to those observed in dental pulp treated with Ca(OH2. Ca(OH2-treated pulps showed the usual repaired pulp characteristics. In TS/S, newly formed tissues and pre-dentin was colored, which elucidated the expression of TGF-β1 and ON. Immunohistochemistry staining of Ca(OH2-treated pulps showed the same expression patterns. The extracellular matrix displayed a fibrillar pattern under both conditions. Regenerative events in the pulp seem to follow a similar pattern of TGF-β1 and ON expression as the repair processes.

  12. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.

    Science.gov (United States)

    Remy, Ingrid; Montmarquette, Annie; Michnick, Stephen W

    2004-04-01

    Transforming growth factor beta (TGF-beta) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-beta pathway with other signalling cascades that control the same cellular processes may modulate TGF-beta responses. Here we report the discovery of a new functional link between TGF-beta and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-beta stimulation, placing PKB-Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-beta-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-beta-mediated pathways.

  13. Renal Protective Effect of Xiao-Chai-Hu-Tang on Diabetic Nephropathy of Type 1-Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Lin

    2012-01-01

    Full Text Available Xiao-Chai-Hu-Tang (XCHT, a traditional Chinese medicine formula consisting of seven medicinal plants, is used in the treatment of various diseases. We show here that XCHT could protect type-1 diabetic mice against diabetic nephropathy, using streptozotocin (STZ-induced diabetic mice and high-glucose (HG-exposed rat mesangial cell (RMC as models. Following 4 weeks of oral administration with XCHT, renal functions and renal hypertrophy significantly improved in the STZ-diabetic mice, while serum glucose was only moderately reduced compared to vehicle treatment. Treatment with XCHT in the STZ-diabetic mice and HG-exposed RMC resulted in a decrease in expression levels of TGF-β1, fibronectin, and collagen IV, with concomitant increase in BMP-7 expression. Data from DPPH assay, DHE stain, and CM-H2DCFDA analysis indicated that XCHT could scavenge free radicals and inhibit high-glucose-induced ROS in RMCs. Taken together, these results suggest that treatment with XCHT can improve renal functions in STZ-diabetic mice, an effect that is potentially mediated through decreasing oxidative stress and production of TGF-β1, fibronectin, and collagen IV in the kidney during development of diabetic nephropathy. XCHT, therefore merits further investigation for application to improve renal functions in diabetic disorders.

  14. Assessment of reproductive and developmental effects of DINP, DnHP and DCHP using quantitative weight of evidence.

    Science.gov (United States)

    Dekant, Wolfgang; Bridges, James

    2016-11-01

    Quantitative weight of evidence (QWoE) methodology utilizes detailed scoring sheets to assess the quality/reliability of each publication on toxicity of a chemical and gives numerical scores for quality and observed toxicity. This QWoE-methodology was applied to the reproductive toxicity data on diisononylphthalate (DINP), di-n-hexylphthalate (DnHP), and dicyclohexylphthalate (DCHP) to determine if the scientific evidence for adverse effects meets the requirements for classification as reproductive toxicants. The scores for DINP were compared to those when applying the methodology DCHP and DnHP that have harmonized classifications. Based on the quality/reliability scores, application of the QWoE shows that the three databases are of similar quality; but effect scores differ widely. Application of QWoE to DINP studies resulted in an overall score well below the benchmark required to trigger classification. For DCHP, the QWoE also results in low scores. The high scores from the application of the QWoE methodology to the toxicological data for DnHP represent clear evidence for adverse effects and justify a classification of DnHP as category 1B for both development and fertility. The conclusions on classification based on the QWoE are well supported using a narrative assessment of consistency and biological plausibility. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Brown, Jeremy K; Saunders, Philippa T K; Duncan, W Colin; Horne, Andrew W

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pperitoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  16. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis.

    Science.gov (United States)

    Yan, Xiaohua; Wu, Jingyi; Jiang, Quanlong; Cheng, Hao; Han, Jing-Dong J; Chen, Ye-Guang

    2018-02-01

    Evading TGF-β-mediated growth inhibition is often associated with tumorigenesis in liver, including hepatocellular carcinoma (HCC). To better understand the functions and the underlying molecular mechanisms of TGF-β in HCC initiation and progression, we carried out transcriptome sequencing (RNA-Seq) to identify the target genes of TGF-β. CXXC5, a member of the CXXC-type zinc finger domain-containing protein family, was identified as a novel TGF-β target gene in Hep3B HCC cells. Knockdown of CXXC5 attenuated the expression of a substantial portion of TGF-β target genes and ameliorated TGF-β-induced growth inhibition or apoptosis of Hep3B cells, suggesting that CXXC5 is required for TGF-β-mediated inhibition of HCC progression. Analysis of the TCGA database indicated that CXXC5 expression is reduced in the majority of HCC tissue samples in comparison to that in normal tissues. Furthermore, CXXC5 associates with the histone deacetylase HDAC1 and competes its interaction with Smad2/3, thereby abolishing the inhibitory effect of HDAC1 on TGF-β signaling. These observations together suggest that CXXC5 may act as a tumor suppressor by promoting TGF-β signaling via a positive feedback loop, and reveal a strategy for HCC to bypass TGF-β-mediated cytostasis by disrupting the positive feedback regulation. Our findings shed new light on TGF-β signaling regulation and demonstrate the function of CXXC5 in HCC development.

  17. Meeting report - TGF-β superfamily: signaling in development and disease.

    Science.gov (United States)

    Zhang, Ying E; Newfeld, Stuart J

    2013-11-01

    The latest advances on the transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were reported at the July 2013 FASEB Summer Research Conference 'The TGF-β Superfamily: Development and Disease'. The meeting was held in Steamboat Springs, Colorado, USA at 6700 feet above sea level in the Rocky Mountains. This was the seventh biannual meeting in the series. In attendance were investigators from a broad range of disciplines with a common interest in the mechanics of TGF-β and BMP signaling pathways, their normal developmental and homeostatic functions, and the diseases associated with pathway misregulation.

  18. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-01-01

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  19. The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Chunling Huang

    Full Text Available Despite optimal control of hyperglycaemia, hypertension, and dyslipidaemia, the number of patients with diabetic nephropathy (DN continues to grow. Strategies to target various signaling pathways to prevent DN have been intensively investigated in animal models and many have been proved to be promising. However, targeting these pathways once kidney disease is established, remain unsatisfactory. The clinical scenario is that patients with diabetes mellitus often present with established kidney damage and need effective treatments to repair and reverse the kidney damage. In this studies, eNOS-/- mice were administered with streptozotocin to induce diabetes. At 24 weeks, at which time we have previously demonstrated albuminuria and pathological changes of diabetic nephropathy, mice were randomised to receive TRAM34 subcutaneously, a highly selective inhibitor of potassium channel KCa3.1 or DMSO (vehicle for a further 14 weeks. Albuminuria was assessed, inflammatory markers (CD68, F4/80 and extracellular matrix deposition (type I collagen and fibronectin in the kidneys were examined. The results clearly demonstrate that TRAM34 reduced albuminuria, decreased inflammatory markers and reversed extracellular matrix deposition in kidneys via inhibition of the TGF-β1 signaling pathway. These results indicate that KCa3.1 blockade effectively reverses established diabetic nephropathy in this rodent model and provides a basis for progressing to human studies.

  20. XIAP gene expression and function is regulated by autocrine and paracrine TGF-β signaling

    Directory of Open Access Journals (Sweden)

    Van Themsche Céline

    2010-08-01

    Full Text Available Abstract Background X-linked inhibitor of apoptosis protein (XIAP is often overexpressed in cancer cells, where it plays a key role in survival and also promotes invasiveness. To date however, the extracellular signals and intracellular pathways regulating its expression and activity remain incompletely understood. We have previously showed that exposure to each of the three TGF-β (transforming growth factor beta isoforms upregulates XIAP protein content in endometrial carcinoma cells in vitro. In the present study, we have investigated the clinical relevance of TGF-β isoforms in endometrial tumours and the mechanisms through which TGF-β isoforms regulate XIAP content in uterine cancer cells. Methods TGF-β isoforms immunoreactivity in clinical samples from endometrial tumours was assessed using immunofluorescence. Two model cancer cell lines (KLE endometrial carcinoma cells and HeLa cervical cancer cells and pharmacological inhibitors were used to investigate the signalling pathways regulating XIAP expression and activity in response to autocrine and paracrine TGF-β in cancer cell. Results We have found immunoreactivity for each TGF-β isoform in clinical samples from endometrial tumours, localizing to both stromal and epithelial/cancer cells. Blockade of autocrine TGF-β signaling in KLE endometrial carcinoma cells and HeLa cervical cancer cells reduced endogenous XIAP mRNA and protein levels. In addition, each TGF-β isoform upregulated XIAP gene expression when given exogenously, in a Smad/NF-κB dependent manner. This resulted in increased polyubiquitination of PTEN (phosphatase and tensin homolog on chromosome ten, a newly identified substrate for XIAP E3 ligase activity, and in a XIAP-dependent decrease of PTEN protein levels. Although each TGF-β isoform decreased PTEN content in a XIAP- and a Smad-dependent manner, decrease of PTEN levels in response to only one isoform, TGF-β3, was blocked by PI3-K inhibitor LY294002. Conclusions

  1. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice.

    Science.gov (United States)

    Wu, Pei-Chang; Tsai, Chia-Ling; Gordon, Gabriel M; Jeong, Shinwu; Itakura, Tatsuo; Patel, Nitin; Shi, Songtao; Fini, M Elizabeth

    2015-01-01

    Previously, we demonstrated that scleral stem/progenitor cells (SSPCs) from mice have a chondrogenic differentiation potential, which is stimulated by transforming growth factor-β (TGF-β). In the present study, we hypothesized that chondrogenesis in the sclera could be a possible mechanism in myopia development. Therefore, we investigated the association of form-deprivation myopia (FDM) with expressions in mice sclera representing the chondrogenic phenotype: collagen type II (Col2) and α-smooth muscle actin (α-SMA). The mRNA levels of α-SMA and Col2 in cultured murine SSPCs during chondrogenesis stimulated by TGF-β2 were determined by real-time quantitative RT-PCR (qRT-PCR). The expression patterns of α-SMA and Col2 were assessed by immunohistochemistry in a three dimensional pellet culture. In an FDM mouse model, a western blot analysis and immunofluorescence study were used to detect the changes in the α-SMA and Col2 protein expressions in the sclera. In the RPE-choroid complex, qRT-PCR was used to detect any changes in the TGF-β mRNA expression. The treatment of SSPCs in vitro with TGF-β2 for 24 h at 1 or 10 ng/ml led to increased levels of both the α-SMA and Col2 expressions. In addition, we observed the formation of cartilage-like pellets from TGF-β2-treated SSPCs. Both α-SMA and Col2 were expressed in the pellet. In an in-vivo study, the α-SMA and Col2 protein expressions were significantly increased in the sclera of FDM eyes in comparison to contralateral control eyes. Similarly, the levels of TGF-β in the RPE-choroid complex of an FDM eye were also significantly elevated. Based on the concept of stem cells possessing multipotent differentiation potentials, scleral chondrogenesis induced by SSPCs may play a role in myopia development. The increased expressions of the cartilage-associated proteins Col2 and α-SMA during scleral chondrogenesis may be potential markers for myopia development. In addition, the increased levels of TGF-β mRNA in

  2. Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model.

    Science.gov (United States)

    Stringer, Megan; Abeysekera, Irushi; Dria, Karl J; Roper, Randall J; Goodlett, Charles R

    2015-11-01

    Down syndrome (DS) or Trisomy 21 causes intellectual disabilities in humans and the Ts65Dn DS mouse model is deficient in learning and memory tasks. DYRK1A is triplicated in DS and Ts65Dn mice. Ts65Dn mice were given up to ~20mg/kg/day epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, or water beginning on postnatal day 24 and continuing for three or seven weeks, and were tested on a series of behavioral and learning tasks, including a novel balance beam test. Ts65Dn as compared to control mice exhibited higher locomotor activity, impaired novel object recognition, impaired balance beam and decreased spatial learning and memory. Neither EGCG treatment improved performance of the Ts65Dn mice on these tasks. Ts65Dn mice had a non-significant increase in Dyrk1a activity in the hippocampus and cerebellum. Given the translational value of the Ts65Dn mouse model, further studies will be needed to identify the EGCG doses (and mechanisms) that may improve cognitive function. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Effects of Tangshenling Mixture and benazepril on rats with diabetic nephropathy and its mechanism].

    Science.gov (United States)

    He, Xue-Lin; Li, Jian-Ping; Chen, Yi-Ping; Zhang, Zhi-Gang; Lin, Wei-Qin; Chen, Jiang-Hua

    2006-01-01

    To investigate the effects of Tangshenling Mixture (TSLM) and benazepril on rats with diabetic nephropathy (DN) and its mechanism. Diabetic nephropathy was induced in rats by intraperitoneal injection of streptozotocin. Fifty-eight rats with DN were randomly divided into four groups: untreated group, TSLM-treated group, TSLM plus benazepril-treated group and benazepril-treated group. Another seven normal rats were included in normal control group. Then, rats in each group were accordingly given normal saline, TSLM, TSLM plus benazepril and benazepril orally for six weeks respectively. Blood and urine biochemical indexes, plasma atrial natriuretic factor (ANF), pathomorphology of renal tissue, transforming growth factor beta1 (TGF-beta1) and glucose transporter 1 (GLUT1) mRNAs in renal tissue were observed. Both TSLM and benazepril could decrease urinary albumin excretion rates, creatinine clearance and ratio of kidney weight to body weight of the rats with DN as well as reduce the pathological damages of the renal tissues. TSLM could reduce the level of plasma ANF and the expression of GLUT1 mRNA, but had no significant effect on the expression of TGF-beta1 mRNA. Benazepril could reduce the expression of TGF-beta1 mRNA, but had no significant effect on plasma ANF and the expression of GLUT1 mRNA. TSLM can reduce the pathological damages of renal tissues in rats with early-stage DN, and its mechanism may relate to decreasing the level of plasma ANF and the expression of GLUT1 mRNA which is different from that of benazepril. It seems that TSLM has synergetic effect with benazepril.

  4. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  5. Condensation pool experiments with steam using DN200 blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  6. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF

    DEFF Research Database (Denmark)

    J D'Souza, Rochelle C; Knittle, Anna M; Nagaraj, Nagarjuna

    2014-01-01

    and phosphorylation and knowledge of protein interactions and transcriptional regulation provided a comprehensive representation of the dynamic signaling events underlying TGF-β-induced changes in cell behavior. Our data suggest that in epithelial cells stimulated with TGF-β, early signaling is a mixture of both pro...... changes of cultured human keratinocytes undergoing EMT and cell cycle arrest in response to stimulation with TGF-β. We quantified significant changes in 2079 proteins and 2892 phosphorylation sites regulated by TGF-β. We identified several proteins known to be involved in TGF-β-induced cellular processes...... by phosphorylation of the transcriptional regulators of the SMAD family by the TGF-β receptor complex, we observed rapid kinetics of changes in protein phosphorylation, indicating that many responses were mediated through SMAD-independent TGF-β signaling. Combined analysis of changes in protein abundance...

  7. Andrographolide protects against radiation-induced lung injury in mice

    International Nuclear Information System (INIS)

    Kang Yahui; Wang Jinfeng; Zhang Qu; Huang Guanhong; Ma Jianxin; Yang Baixia; He Xiangfeng; Wang Zhongming

    2014-01-01

    Objective: To investigate the protective effect of andrographolide against radiation-induced lung injury (RILI) in C57BL/6 mice. Methods: Eighty C57BL mice were randomly divided into four groups: un-irradiated and normal saline-treated group (n = 20, control group), un-irradiated and andrographolide-treated group (n = 20, drug group), radiation plus normal saline-treated group (n = 20, radiation group) and radiation plus andrographolide-treated group (n = 20, treatment group). Before radiation, the mice in drug group and treatment group were administered daily via gavage with andrographolide (20 mg·kg -1 ·d -1 )) for 30 d, while the same volume of normal saline solution was given daily in the control and radiation groups. The model of RILI in C57BL mice was established by irradiating whole mouse chest with a single dose of 15 Gy of 6 MV X-rays. The pathological changes of the lung stained with HE/Masson were observed with a light microscope. The transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in serum were examined by enzyme-linked immunosorbent assay. The activities of malondialdehyde (MDA) and superoxide dismutase (SOD) and the content of hydroxyproline in lung tissues were examined by corresponding kits. Results: Compared with radiation group, there was an obvious amelioration in pathological injury of lung tissue in the treatment group. The lung coefficient, the activities of lung tissue MDA, the content of Hyp, the serum content of hydroxide free radical, and the serum levels of TGF-β1 and TNF-α in the treatment group were significantly lower than those in radiation group at 24 th week, (t lung coefficient = 1.60, t MDA = 7.06, t Hyp = 17.44, t TGF-β1 = 16.67, t TNF-α = 14.03, P < 0.05), while slightly higher than those in control group. The activity of SOD was significantly higher in the treatment group than that in radiation group (t = 60.81, P < 0.05), while lower than those in control group and drug group. There were no

  8. Nanotopography follows force in TGF-β1 stimulated epithelium

    International Nuclear Information System (INIS)

    Thoelking, Gerold; Oberleithner, Hans; Riethmuller, Christoph; Reiss, Bjoern; Wegener, Joachim; Pavenstaedt, Hermann

    2010-01-01

    Inflammation and cellular fibrosis often imply an involvement of the cytokine TGF-β1. TGF-β1 induces epithelial-to-mesenchymal transdifferentiation (EMT), a term describing the loss of epithelium-specific function. Indicative for this process are an elongated cell shape parallel to stress fibre formation. Many signalling pathways of TGF-β1 have been discovered, but mechanical aspects have not yet been investigated. In this study, atomic force microscopy (AFM) was used to analyse surface topography and mechanical properties of EMT in proximal kidney tubule epithelium (NRK52E). Elongated cells, an increase of stress fibre formation and a loss of microvillus compatible structures were observed as characteristic signs of EMT. Furthermore, AFM could identify an increase in stiffness by 71% after six days of stimulation with TGF-β1. As a novel topographical phenomenon, nodular protrusions emerged at the cell-cell junctions. They occurred preferentially at sites where stress fibres cross the border. Since these nodular protrusions were sensitive to inhibitors of force generation, they can indicate intracellular tension. The results demonstrate a manifest impact of elevated tension on the cellular topography.

  9. Aberrant Expression of TNF-α and TGF-β1 mRNA in Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    Ji-fen HU; Hong-chu BAO; Feng-chuan ZHU; Cai-ling YOU

    2004-01-01

    Objective To investigate the aberrant expressions of TNF-α and TGF-β1 in peripheral blood mononuclear cells (PBMCs) and placental tissues in patients with early spontaneous abortionMethods Using the technique of semi-quantitative reverse transcript-polymerase chain reaction (RT-PCR), TNF-α mRNA and TGF-β1 mRNA in PBMCs were measured in spontaneous abortion group (30 cases), normal pregnancy group (25 cases) and nonpregnant group (25 cases). The expressive intension of TNF-α protein and TGF-β1 protein in placental tissues was also identified by immunohistochemistry.Results Both levels of TNF-α mRNA and TGF-β1 mRNA expressed in PBMCs were significantly different between the three groups respectively (P<0. 05). Levels of TNF-α in syncytiotrophoblastic and cytotrophoblastic cells of the two aborted groups were substantially higher than those of the non-pregnant group (P<0. 01), but the levels of TGF-β1 in syncytiotrophoblastic cells of the two aborted groups were markedly lower than those of the non-pregnant group (P<0. 01).Conclusion There is potential relation between TGF-β1 at the fetomaternal interface and spontaneous abortion. TGF-β1 may contribute to the maintenance of pregnancy,and low-level expression of TGF-β1 may be associated with pregnancy failure.

  10. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Vicky J Young

    Full Text Available Transforming growth factor-β (TGF-β is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas from women without disease (n = 16 and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15 and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05 and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05. The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05 in expression of genes associated with tumorigenesis (MAPK8, CDC6, epithelial-mesenchymal transition (NOTCH1, angiogenesis (ID1, ID3 and neurogenesis (CREB1 in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  11. Mechanisms of Intestinal Serotonin Transporter (SERT Upregulation by TGF-β1 Induced Non-Smad Pathways.

    Directory of Open Access Journals (Sweden)

    Saad Nazir

    Full Text Available TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT, is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min stimulated SERT activity (~2 fold, P<0.005. This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE syntaxin 3 (STX3 and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h. These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.

  12. TGF-β in pancreatic cancer initiation and progression: two sides of the same coin.

    Science.gov (United States)

    Shen, Wei; Tao, Guo-Qing; Zhang, Yu; Cai, Bing; Sun, Jian; Tian, Zhi-Qiang

    2017-01-01

    Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.

  13. TGF-β1 regulation of estrogen production in mature rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Man-Li Liu

    Full Text Available BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1 is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2 synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP, respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS: Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.

  14. Functional transforming growth factor-β receptor type II expression by CD4+ T cells in Peyer's patches is essential for oral tolerance induction.

    Directory of Open Access Journals (Sweden)

    Rebekah S Gilbert

    Full Text Available Our previous studies have shown that Peyer's patches (PPs play a key role in the induction of oral tolerance. Therefore, we hypothesized that PPs are an important site for Transforming Growth Factor (TGF-β signaling and sought to prove that this tissue is of importance in oral tolerance induction. We found that expression of TGF-β type II receptor (TGFβRII by CD4(+ T cells increases and persists in the PPs of normal C57BL/6 mice after either high- or low-dose feeding of OVA when compared to mesenteric lymph nodes (MLNs and spleen. Approximately one-third of these TGFβRII(+ CD4(+ T cells express the transcription factor Foxp3. Interestingly, the number of TGFβRII(+ CD4(+ T cells in PPs decreased when OVA-fed mice were orally challenged with OVA plus native cholera toxin (CT. In contrast, numbers of TGFβRII(+ CD4(+ T cells were increased in the intestinal lamina propria (iLP of these challenged mice. Further, these PP CD4(+ TGFβRII(+ T cells upregulated Foxp3 within 2 hours after OVA plus CT challenge. Mice fed PBS and challenged with OVA plus CT did not reveal any changes in TGFβRII expression by CD4(+ T cells. In order to test the functional property of TGFβRII in the induction of oral tolerance, CD4dnTGFβRII transgenic mice, in which TGFβRII signaling is abrogated from all CD4(+ T cells, were employed. Importantly, these mice could not develop oral tolerance to OVA. Our studies show a critical, dose-independent, role for TGFβRII expression and function by CD4(+ T cells in the gut-associated lymphoid tissues, further underlining the vital role of PPs in oral tolerance.

  15. Long-pulsed 1064-nm Nd: YAG laser ameliorates LL-37-induced rosacea-like skin lesions through promoting collagen remodeling in BALB/c mice.

    Science.gov (United States)

    Kim, Miri; Kim, Jongsic; Jeong, Seo-Won; Jo, Hyunmu; Park, Hyun Jeong

    2018-02-01

    Long-pulsed 1064-nm neodymium: yttrium-aluminum-garnet laser (LPND) effectively treats rosacea, although the underlying mechanism is unclear, to evaluate the histological effects and molecular mechanism of LPND on LL-37-induced rosacea-like skin lesions in mice. Intradermal injection of LL-37 was performed into the dorsal skin of BALB/c mice (n = 30) twice a day for 2 days. Fifteen mice were treated with LPND. After 48 h, the excised skin sample was stained for histology and type I collagen; transforming growth factor (TGF)-β, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP)-1, tumor necrosis factor (TNF)-α, and interleukin (IL)-1α mRNA levels were determined by real-time RT-PCR. Intradermal injection of LL-37 induced rosacea-like clinical features. LPND treatment significantly reduced erythema and increased dermal collagen production. Levels of Type I collagen, TGF-β, and MMP-1 mRNA were significantly higher in LPND-treated mice than in untreated mice. LPND may improve rosacea by ameliorating dermal connective tissue disorganization and elastosis through MMP-mediated dermal collagen remodeling.

  16. Serum TGF-beta2 and TGF-beta3 are increased and positively correlated to pain, functionality, and radiographic staging in osteoarthritis.

    Science.gov (United States)

    Kapetanakis, Stilianos; Drygiannakis, Ioannis; Kazakos, Kostantinos; Papanas, Nikolaos; Kolios, George; Kouroumalis, Elias; Verettas, Dionysios-Alexandros

    2010-08-11

    The goal of this study was to verify or reject the hypothesis that systematic differences exist in various profibrotic or antifibrotic factors between osteoarthritic patients and controls, as well as between different stages of osteoarthritis. The study group comprised 63 patients with knee osteoarthritis and 18 controls. Transforming growth factor-beta (TGF-beta)1, -2, -3; tissue inhibitor of metalloproteinase (TIMP)-1 protein levels; and gelatinolytic activity of matrix metalloproteinase (MMP)-1, -2, -3, -9 activities were measured by enzyme-linked immunosorbent assay and gelatin zymography, respectively. Visual analog scale scores, Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores, Lequesne clinical osteoarthritis scales, and Kellgren-Lawrence radiographic grading were recorded for each patient.Transforming growth factor-beta2 and -3 (in contrast to TGF-beta1 and TIMP-1) serum protein levels were significantly higher in osteoarthritic patients compared to controls (210%+/-14% [P<.001] and 232%+/-7% [P<10(-7)], respectively). Additionally, TGF-beta2 and -3 were strongly positively correlated to Kellgren-Lawrence radiographic grading of the disease (P<10(-5) and P<10(-7), respectively). Moreover, TGF-beta2 correlated positively with the WOMAC scale (P=.007). However, TIMP-1 decreased as osteoarthritis progressed clinically, but remained irrelevant to radiographic staging. Furthermore, activities of MMP-2 and -9, but not MMP-1+/-3, were lower in patients with osteoarthritis. Copyright 2010, SLACK Incorporated.

  17. DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway.

    Science.gov (United States)

    Wang, Daojuan; Wang, Wenqing; Liang, Qiao; He, Xuan; Xia, Yanjie; Shen, Shanmei; Wang, Hongwei; Gao, Qian; Wang, Yong

    2018-01-10

    The polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder with pathological mechanisms remain unclear. The following study investigates the ovarian hyperfibrosis forming via transforming growth factor-β (TGF-β) signaling pathway in Dehydroepiandrosterone (DHEA)- induced polycystic ovary syndrome (PCOS) rat model. We furthermore explored whether TGF-βRI inhibitor (SB431542) decreases ovarian fibrosis by counterbalancing the expression of fibrotic biomarkers. Thirty female Sprague-Dawley rats were randomly divided into Blank group (n = 6), Oil group (n = 6), and Oil + DHEA-induced model group (n = 6 + 12). The model groups were established by subcutaneous injection of DHEA for 35 consecutive days. The 12 successful model rats were additionally divided in vehicle group (n = 6) and SB431542-treated group (n = 6). Vehicle group and SB431542-treated group, served as administration group and were intraperitoneally injected with DMSO and SB431542 for additional 14 consecutive days. Ovarian morphology, fibrin and collagen localization and expression in ovaries were detected using H&E staining, immunohistochemistry and Sirius red staining. The ovarian protein and RNA were examined using Western blot and RT-PCR. In DHEA-induced ovary in rat, fibrin and collagen had significantly higher levels, while the main fibrosis markers (TGF-β, CTGF, fibronectin, a-SMA) were obviously upregulated. SB431542 significantly reduced the expression of pro-fibrotic molecules (TGF-β, Smad3, Smad2, a-SMA) and increased anti-fibrotic factor MMP2. TGF-βRI inhibitor (SB431542) inhibits the downstream signaling molecules of TGF-β and upregulates MMP2, which in turn prevent collagen deposition. Moreover, ovarian hyperfibrosis in DHEA-induced PCOS rat model could be improved by TGF-βRI inhibitor (SB431542) restraining the transcription of accelerating fibrosis genes and modulating EMT mediator.

  18. The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis

    Science.gov (United States)

    Young, Vicky J.; Brown, Jeremy K.; Saunders, Philippa T. K.; Duncan, W. Colin; Horne, Andrew W.

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pendometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation. PMID:25207642

  19. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  20. Overexpression of an orchid (Dendrobium nobile SOC1/TM3-like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression

    Directory of Open Access Journals (Sweden)

    Xiao-ru eLiu

    2016-02-01

    Full Text Available Flowering in the appropriate season is critical for successful reproduction in angiosperms. The orchid species, Dendrobium nobile, requires vernalization to achieve flowering in the spring, but the underlying regulatory network has not been identified to date. The MADS-box transcription factor DnAGL19 was previously identified in a study of low-temperature treated D. nobile buds and was suggested to regulate vernalization-induced flowering. In this study, phylogenetic analysis of DnAGL9 and the MADS-box containing proteins showed that DnAGL19 is phylogenetically closely related to the SOC1-like protein from orchid Dendrobium Chao Parya Smile, DOSOC1. The orchid clade closed to but is not included into the SOC1-1/TM3 clades associated with either eudicots or monocots, suggesting that DnAGL19 is an SOC1-1/TM3-like ortholog. DnAGL19 was found to be highly expressed in pseudobulbs, leaves, roots and axillary buds but rarely in flowers, and to be substantially upregulated in axillary buds by prolonged low-temperature treatments. Overexpression of DnAGL19 in Arabidopsis thaliana resulted in a small but significantly reduced time to bolting, suggesting that flowering time was slightly accelerated under normal growth conditions. Consistent with this, the A. thaliana APETELA1 (AP1 gene was expressed at an earlier stage in transgenic lines than in wild type plants, while the FLOWERING LOCUS T (FT gene was suppressed, suggesting that altered regulations on these transcription factors caused the weak promotion of flowering. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1 was slightly activated under the same conditions, suggesting that the HOS1-FT module may be involved in the DnAGL19-related network. Under vernalization conditions, FT expression was significantly upregulated, whereas HOS1 expression in the transgenic A. thaliana has a level similar to that in wild type. Taken together, these results suggest that DnAGL19 controls the action of the

  1. Effects of low dose radiation on kidney function and morphology of diabetic mice

    International Nuclear Information System (INIS)

    Zhang Chi; Li Xiaokun; Gong Shouliang; Meng Tao; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effect of low dose radiation (LDR) on the kidney function and morphology in C57BL/6J mice with diabetic nephropathy (DN) induced by streptozotocin (STZ) and illuminate the protective function of LDR on kidney damage caused by diabetes mellitus (DM). Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with STZ to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy X-rays every other day for 4 weeks. The changes of blood glucose level, urine index level and the morphology of glomerular were detected at 2, 4, 8, 12, 16 weeks after radiation. Results: The blood glucose levels of mice in DM and DM/LDR groups after STZ-induced DM model preparation were higher than those in LDR and control groups (P<0.05). After treated with LDR for 2 weeks, the blood glucose level in DM/LDR group was supressed and significantly lower than that in DM group (P<0.05). Moreover the the change had been kept to 16 weeks. In addition, compared with DM group, the level of urine micro albumin(MALB) in DM/LDR group was decreased and the urine creatinine (Cre) level was increased. Compared with DM group, the morphological results showed that the glomerular mesangial expansion and mesangial cell proliferation were significantly supressed in DM/LDR group (P<0.05). Conclusion: LDR can promote the decease of blood glucose level efficiently, relief the change of kidney function, supress and delay the pathological changes of DN. (authors)

  2. Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Chung, Chih-Ling; Wang, Shih-Wei; Sun, Wei-Chih; Shu, Chih-Wen; Kao, Yu-Chen; Shiao, Meng-Shin; Chen, Chun-Lin

    2018-04-18

    Sorafenib is the only FDA approved drug for the treatment of advanced hepatocellular carcinoma (HCC) and other malignancies. Studies indicate that TGF-β signalling is associated with tumour progression in HCC. Autocrine and paracrine TGF-β promotes tumour growth and malignancy by inducing epithelial-mesenchymal transition (EMT). Sorafenib is believed to antagonize tumour progression by inhibiting TGF-β-induced EMT. It improves survival of patients but HCC later develops resistance and relapses. The underlying mechanism of resistance is unknown. Understanding of the molecular mechanism of sorafenib inhibition of TGF-β-induced signalling or responses in HCC may lead to development of adjunctive effective therapy for HCC. In this study, we demonstrate that sorafenib suppresses TGF-β responsiveness in hepatoma cells, hepatocytes, and animal liver, mainly by downregulating cell-surface type II TGF-β receptors (TβRII) localized in caveolae/lipid rafts and non-lipid raft microdomains via caveolae/lipid rafts-mediated internalization and degradation. Furthermore, sorafenib-induced downregulation and degradation of cell-surface TβRII is prevented by simultaneous treatment with a caveolae disruptor or lysosomal inhibitors. On the other hand, sorafenib only downregulates cell-surface TβRII localized in caveolae/lipid rafts but not localized in non-lipid raft microdomains in hepatic stellate cells. These results suggest that sorafenib inhibits TGF-β signalling mainly by inducing caveolae/lipid raft-mediated internalization and degradation of cell-surface TβR-II in target cells. They may also imply that treatment with agents which promote formation of caveolae/lipid rafts, TGF-β receptor kinase inhibitors (e.g., LY2157299) or TGF-β peptide antagonists (by liver-targeting delivery) may be considered as effective adjunct therapy with sorafenib for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hua Lu

    2015-01-01

    Full Text Available Human and murine lymphocytes express dopamine (DA D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th17/T-regulatory (Treg cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA was prepared by intradermal injection of chicken collagen type II (CII in tail base of DBA/1 mice or Drd2−/− C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL- 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF- β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2−/− CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1−/− CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.

  4. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  5. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  6. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  7. Transforming growth factor alpha is a critical mediator of radiation lung injury.

    Science.gov (United States)

    Chung, Eun Joo; Hudak, Kathryn; Horton, Jason A; White, Ayla; Scroggins, Bradley T; Vaswani, Shiva; Citrin, Deborah

    2014-09-01

    Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α(-/-)) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Masson's trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α(-/-) mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α(-/-) mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 μg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α (-/-) mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1β, IL-4, TNF-α, TGF-β and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α(-/-) mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α(-/-) mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α(-/-) mice. Treatment of NIH-3T3 fibroblasts with TGF

  8. The role of chicken ovalbumin upstream promoter transcription factor II in the regulation of hepatic fatty acid oxidation and gluconeogenesis in newborn mice.

    Science.gov (United States)

    Planchais, Julien; Boutant, Marie; Fauveau, Véronique; Qing, Lou Dan; Sabra-Makke, Lina; Bossard, Pascale; Vasseur-Cognet, Mireille; Pégorier, Jean-Paul

    2015-05-15

    Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor involved in the control of numerous functions in various organs (organogenesis, differentiation, metabolic homeostasis, etc.). The aim of the present work was to characterize the regulation and contribution of COUP-TFII in the control of hepatic fatty acid and glucose metabolisms in newborn mice. Our data show that postnatal increase in COUP-TFII mRNA levels is enhanced by glucagon (via cAMP) and PPARα. To characterize COUP-TFII function in the liver of suckling mice, we used a functional (dominant negative form; COUP-TFII-DN) and a genetic (shRNA) approach. Adenoviral COUP-TFII-DN injection induces a profound hypoglycemia due to the inhibition of gluconeogenesis and fatty acid oxidation secondarily to reduced PEPCK, Gl-6-Pase, CPT I, and mHMG-CoA synthase gene expression. Using the crossover plot technique, we show that gluconeogenesis is inhibited at two different levels: 1) pyruvate carboxylation and 2) trioses phosphate synthesis. This could result from a decreased availability in fatty acid oxidation arising cofactors such as acetyl-CoA and reduced equivalents. Similar results are observed using the shRNA approach. Indeed, when fatty acid oxidation is rescued in response to Wy-14643-induced PPARα target genes (CPT I and mHMG-CoA synthase), blood glucose is normalized in COUP-TFII-DN mice. In conclusion, this work demonstrates that postnatal increase in hepatic COUP-TFII gene expression is involved in the regulation of liver fatty acid oxidation, which in turn sustains an active hepatic gluconeogenesis that is essential to maintain an appropriate blood glucose level required for newborn mice survival. Copyright © 2015 the American Physiological Society.

  9. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  10. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  11. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    Science.gov (United States)

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  12. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  13. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  14. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  15. Modulation of type II TGF-β receptor degradation by integrin-linked kinase.

    Science.gov (United States)

    Vi, Linda; Boo, Stellar; Sayedyahossein, Samar; Singh, Randeep K; McLean, Sarah; Di Guglielmo, Gianni M; Dagnino, Lina

    2015-03-01

    Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.

  16. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells.

    Science.gov (United States)

    Xu, Yefen; Niu, Jiaqiang; Xi, Guangying; Niu, Xuezhi; Wang, Yuheng; Guo, Ming; Yangzong, Qiangba; Yao, Yilong; Sizhu, Suo Lang; Tian, Jianhui

    2018-07-15

    To explore the expression profile of the cellular miRNAs in bovine ovarian granulosa cells responding to transforming growth factor-β1 (TGF-β1), the effect of TGF-β1 on cell proliferation was firstly investigated by CCK-8 method and the results showed that there was a significant inhibitory effect on bovine granulosa cell proliferation treated with 5/10 ng/mL human recombinant TGF-β1 for 24 h compared to the control (P cells stimulated with or without 10 ng/mL human recombinant TGF-β1. A total of 13,257,248 and 138,726,391 clean reads per library were obtained from TGF-β1 and control groups, respectively. There were 498 and 499 bovine-specific exist miRNAs (exist miRNAs), 627 and 570 conserved known miRNAs (known miRNAs), and 593 and 585 predicted novel miRNAs in TGF-β1 and control groups, respectively. A total of 78 miRNAs with significant differential expression, including 39 up-regulated miRNAs and 39 down-regulated miRNAs were identified in the TGF-β1 group compared with the control. Real-time quantitative PCR analyses of bta-miR-106a and bta-miR-1434-5p showed that their up-expressions were interrupted by SB431542, an inhibitor that blocks TGFβ1/Smad signaling, which supported the sequencing data. GO analysis showed involvement of the predicted genes of the differentially expressed miRNAs in a broad spectrum of cell biological processes, cell components, and molecular functions. KEGG pathway analysis of the predicted miRNA targets further indicated that these differentially expressed miRNAs are involved in various signaling pathways, such as Wnt, MAPK, and TGF-β signaling, which might be involved in follicular development. These results provide valuable information on the composition, expression, and function of miRNAs in bovine granulosa cells responding to TGF-β1, and will aid in understanding the molecular mechanisms of TGF-β1 in granulosa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan); Yamaguchi, Takahiro, E-mail: ty1010@bios.tohoku.ac.jp [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan)

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  18. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-β in myoblasts

    International Nuclear Information System (INIS)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-01-01

    Myostatin and TGF-β negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-β signaling remains unclear. TGF-β inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-β signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-β signaling using C2C12 myoblasts. Myostatin and TGF-β induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-β enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-β in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-β. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-β that prevents excess action in myoblasts.

  19. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  20. Utility of DN4 questionnaire in assessment of neuropathic pain and its clinical correlations in Turkish patients with diabetes mellitus.

    Science.gov (United States)

    Celik, S; Yenidunya, G; Temel, E; Purisa, S; Uzum, A Kubat; Gul, N; Cinkil, G; Dinccag, N; Satman, I

    2016-08-01

    We aimed to assess the utility of DN4 questionnaire (Douleur Neuropathique en 4 questions) to define the frequency and severity of neuropathic pain (NP) and also its clinical correlation to daily clinical practice. We included 1357 patients with diabetes (56.5% women, 90.4% type 2 diabetes) who were followed up in our diabetes outpatient clinic. Presence of NP was evaluated by performing simultaneous DN4 questionnaires and physical examination. Those who had a DN4 score ≥4 were considered to have NP. The mean age was 58.2±12.1 years, mean duration was 12.5±7.5; (min-max: 1-45) years, mean HbA1c level was 7.8±1.6% (min-max: 5-16.2%), (61.7±6.0mmol/mol; min-max: 31.1-153.6mmol/mol). Three hundred thirteen patients (23%) were diagnosed with NP using the DN4 tool. Male gender (p=0.01), receiving antihypertensive treatment (p=0.01), presence of retinopathy (pdiabetes duration (pdiabetes duration (OR: 1.02, 95% CI: 1.00-1.04, p=0.007), elevated HbA1c levels (1.11, 1.02-1.21, 0.015), presence of retinopathy (1.41, 1.20-1.64, diet only-regimens) were significantly associated with NP. Utilization of DN4 questionnaire in daily clinical practice is an effective tool in the identification of pain related with peripheral diabetic polyneuropathy. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  1. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    International Nuclear Information System (INIS)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  2. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  3. RLIM interacts with Smurf2 and promotes TGF-β induced U2OS cell migration

    International Nuclear Information System (INIS)

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-01-01

    Highlights: → RLIM directly binds to Smurf2. → RLIM enhances TGF-β responsiveness in U2OS cells. → RLIM promotes TGF-β driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-β (transforming growth factor-β), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-β responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-β-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-β signaling pathway and cell migration.

  4. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  5. TGF-b2 induction regulates invasiveness of Theileria-transformed leukocytes and disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Marie Chaussepied

    2010-11-01

    Full Text Available Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva, or tropical theileriosis (T. annulata. Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK. We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.

  6. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    International Nuclear Information System (INIS)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P.; Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H.; Delgado, P.O.; Carvalho, A.A.S.; Fonseca, F.L.A.

    2014-01-01

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle

  7. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H. [Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP (Brazil); Delgado, P.O.; Carvalho, A.A.S. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Fonseca, F.L.A. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Universidade Federal de São Paulo, Ambientais e Farmacêuticas, Instituto de Ciências Químicas, Diadema, SP (Brazil)

    2014-09-05

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.

  8. DMPD: TGF-beta signaling from receptors to the nucleus. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10611754 TGF-beta signaling from receptors to the nucleus. Roberts AB. Microbes Inf...ect. 1999 Dec;1(15):1265-73. (.png) (.svg) (.html) (.csml) Show TGF-beta signaling from receptors to the nucleus.... PubmedID 10611754 Title TGF-beta signaling from receptors to the nucleus. Authors Roberts AB. Publicat

  9. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice

    Directory of Open Access Journals (Sweden)

    Ji Dar-Der

    2008-06-01

    Full Text Available Abstract Background Because the outcomes and sequelae after different types of brain injury (BI are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs, including transforming growth factor β1 (TGF-β1, S100B, glial fibrillary acidic protein (GFAP, neurofilament light chain (NF-L, tissue transglutaminases (tTGs, β-amyloid precursor proteins (AβPP, and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT. Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. Methods BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi to 8 weeks post-infection (wpi by Western blotting and RT-PCR. Results Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Conclusion Further studies

  10. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice.

    Science.gov (United States)

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-06-24

    Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an

  11. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-01

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy

  12. Effects of Triptergium Glycosides on Expressions of MCP- 1 and ...

    African Journals Online (AJOL)

    the pathogenesis of diabetic nephropathy (DN), which is one of the chronic ..... the release of lysosomal enzymes and TGF, increase the ... important roles in the pathogenesis of this disease. Thus, MCP-1 and CTGF are potential targets for ...

  13. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  14. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  15. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  16. Downregulation of TGF-β Receptor-2 Expression and Signaling through Inhibition of Na/K-ATPase.

    Directory of Open Access Journals (Sweden)

    Jennifer La

    Full Text Available Transforming growth factor-beta (TGF-β is a multi-functional cytokine implicated in the control of cell growth and differentiation. TGF-β signals through a complex of TGF-β receptors 1 and 2 (TGFβR1 and TGFβR2 that phosphorylate and activate Smad2/3 transcription factors driving transcription of the Smad-target genes. The Na+/K+-ATPase is an integral plasma membrane protein critical for maintaining the electro-chemical gradient of Na+ and K+ in the cell. We found that inhibition of the Na+/K+ ATPase by ouabain results in a dramatic decrease in the expression of TGFβR2 in human lung fibrobalsts (HLF at the mRNA and protein levels. This was accompanied by inhibition of TGF-β-induced Smad phosphorylation and the expression of TGF-β target genes, such as fibronectin and smooth muscle alpha-actin. Inhibition of Na+/K+ ATPase by an alternative approach (removal of extracellular potassium had a similar effect in HLF. Finally, treatment of lung alveolar epithelial cells (A549 with ouabain also resulted in the downregulation of TGFβR2, the inhibition of TGF-β-induced Smad phosphorylation and of the expression of mesenchymal markers, vimentin and fibronectin. Together, these data demonstrate a critical role of Na+/K+-ATPase in the control of TGFβR2 expression, TGF-β signaling and cell responses to TGF-β.

  17. ΔNp73 enhances promoter activity of TGF-β induced genes.

    Directory of Open Access Journals (Sweden)

    Maarten Niemantsverdriet

    Full Text Available The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform ΔNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that ΔNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding but surprisingly find that ΔNp73 may also stimulate the expression of TGF-β signaling targets. Promoter-reporter analysis indicated that the presence of Smad Binding Elements (SBE in the promoter is sufficient for stimulation of gene expression by ΔNp73. TGF-β signaling was less efficient in ΔNp73 downregulated cells, whereas tetracycline induced ΔNp73 increased expression of endogenous TGF-β regulated genes PAI-1 and Col1a1. Pull-down assays with SBE DNA suggest that ΔNp73 enhances smad3/4 binding to SBEs, thereby stimulating TGF-β signaling. Chromatin immunoprecipitation assays confirmed a direct interaction between ΔNp73 and SBE. Given the role of TGF-β signaling in carcinogenesis, tumor invasion and metastasis via targets like PAI-1 and Col1a1, our data suggest a model on how this effect of ΔNp73 could be a contributing factor in cancer progression.

  18. A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-β on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shizhen Emily Wang

    2009-01-01

    Full Text Available Transforming growth factor (TGF-β is known to have properties of both a tumour suppressor and a tumour promoter. While it inhibits cell proliferation, it also increases cell motility and decreases cell–cell adhesion. Coupling mathematical modelling and experiments, we investigate the growth and motility of oncogene-expressing human mammary epithelial cells under exposure to TGF-β. We use a version of the well-known Fisher–Kolmogorov equation, and prescribe a procedure for its parametrisation. We quantify the simultaneous effects of TGF-β to increase the tendency of individual cells and cell clusters to move randomly and to decrease overall population growth. We demonstrate that in experiments with TGF-β treated cells in vitro, TGF-β increases cell motility by a factor of 2 and decreases cell proliferation by a factor of 1/2 in comparison with untreated cells.

  19. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  20. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-01-01

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  1. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  2. TGF-β's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    International Nuclear Information System (INIS)

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-01-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner

  3. Iro/IRX transcription factors negatively regulate Dpp/TGF-β pathway activity during intestinal tumorigenesis.

    Science.gov (United States)

    Martorell, Òscar; Barriga, Francisco M; Merlos-Suárez, Anna; Stephan-Otto Attolini, Camille; Casanova, Jordi; Batlle, Eduard; Sancho, Elena; Casali, Andreu

    2014-11-01

    Activating mutations in Wnt and EGFR/Ras signaling pathways are common in colorectal cancer (CRC). Remarkably, clonal co-activation of these pathways in the adult Drosophila midgut induces "tumor-like" overgrowths. Here, we show that, in these clones and in CRC cell lines, Dpp/TGF-β acts as a tumor suppressor. Moreover, we discover that the Iroquois/IRX-family-protein Mirror downregulates the transcription of core components of the Dpp pathway, reducing its tumor suppressor activity. We also show that this genetic interaction is conserved in human CRC cells, where the Iro/IRX proteins IRX3 and IRX5 diminish the response to TGF-β. IRX3 and IRX5 are upregulated in human adenomas, and their levels correlate inversely with the gene expression signature of response to TGF-β. In addition, Irx5 expression confers a growth advantage in the presence of TGF-β, but is selected against in its absence. Together, our results identify a set of Iro/IRX proteins as conserved negative regulators of Dpp/TGF-β activity. We propose that during the characteristic adenoma-to-carcinoma transition of human CRC, the activity of IRX proteins could reduce the sensitivity to the cytostatic effect of TGF-β, conferring a growth advantage to tumor cells prior to the acquisition of mutations in TGF-β pathway components. © 2014 The Authors.

  4. The Role of the TGF-β Coreceptor Endoglin in Cancer

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez-Gómez

    2010-01-01

    Full Text Available Endoglin (CD105 is an auxiliary membrane receptor of transforming growth factor beta (TGF-β that interacts with type I and type II TGF-β receptors and modulates TGF-β signaling. Endoglin is overexpressed in the tumor-associated vascular endothelium, where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. In addition, recent studies on human and experimental models of carcinogenesis point to an important tumor cell–autonomous role of endoglin by regulating proliferation, migration, invasion, and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human epithelial carcinogenesis, although it can also promote metastasis in other types of cancer. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years.

  5. Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway

    International Nuclear Information System (INIS)

    Wang, Yajun; Wu, Jun; Lin, Biyun; Li, Xv; Zhang, Haitao; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Luo, Hui

    2014-01-01

    Galangin can suppress hepatocellular carcinoma (HCC) cell proliferation. In this study, we demonstrated that galangin induced autophagy by activating the transforming growth factor (TGF)-β receptor/Smad pathway and increased TGF-β receptor I (RI), TGF-βRII, Smad1, Smad2, Smad3 and Smad4 levels but decreased Smad6 and Smad7 levels. Autophagy induced by galangin appears to depend on the TGF-β receptor/Smad signalling pathway because the down-regulation of Smad4 by siRNA or inhibition of TGF-β receptor activation by LY2109761 blocked galangin-induced autophagy. The down-regulation of Beclin1, autophagy-related gene (ATG) 16L, ATG12 and ATG3 restored HepG2 cell proliferation and prevented galangin-induced apoptosis. Our findings indicate a novel mechanism for galangin-induced autophagy via activation of the TGF-β receptor/Smad pathway. The induction of autophagy thus reflects the anti-proliferation effect of galangin on HCC cells

  6. [Effect of tranilast on wound healing and administration time on scar hyperplasia of deep partial-thickness burn in mice].

    Science.gov (United States)

    Hu, Zhenzhen; Chen, Bin; Li, Yang; Jiang, Wei; Wen, Lihong; Ji, Fukang; Yang, Xiao; Wang, Jinhuang; Liu, Dalie

    2017-04-01

    To investigate the effect of tranilast on wound healing and the mechanism of inhibiting scar hyperplasia in mice, and to study the relationship between the inhibiting ability of tranilast on scar hyperplasia and administration time. Sixty-six Kunming mice were selected to build deep II degree burn model, and were randomly divided into the control group (18 mice), the early intervention group (18 mice), the medium intervention group (18 mice), and the late intervention group (12 mice). The mice in the early intervention group, the medium-term intervention group, and the late intervention group were given tranilast 200 mg/(kg·d) by gastrogavage at immediate, 7 days, and 14 days after burn respectively, and the mice in the control group were managed with same amount of normal saline every day. The wound healing was observed regularly. At 14, 28, and 42 days in the early and medium intervention groups and at 28 and 42 days in the late intervention group, fresh tissues were taken from 6 mice to observe the shape of mast cells by toluidine blue staining, collagen content by Masson staining; the collagen type I and collagen type III content were measured to calculate the I/III collagen content ratio by immunohistochemistry method, the contents of transforming growth factor β 1 (TGF-β 1 ) and histamine were detected by ELISA; and the ultrastructure of fibroblasts was observed under transmission electron microscope. There was no significant difference in wound healing time between groups ( F =1.105, P =0.371). The mast cells number, collagen content, TGF-β 1 content, histamine content, and the I/III collagen content ratio in the early intervention group were significantly less than those in the other groups ( P 0.05). Compared with the control group, the activity of fibroblasts in the early intervention group was obviously inhibited, and the arrangement of the fibers was more regular; the fibroblast activity in the medium and late intervention groups was also inhibited

  7. Suppression of Alzheimer's disease-related phenotypes by geranylgeranylacetone in mice.

    Directory of Open Access Journals (Sweden)

    Tatsuya Hoshino

    Full Text Available Amyloid-β peptide (Aβ plays an important role in the pathogenesis of Alzheimer's disease (AD. Aβ is generated by the secretase-mediated proteolysis of β-amyloid precursor protein (APP, and cleared by enzyme-mediated degradation and phagocytosis. Transforming growth factor (TGF-β1 stimulates this phagocytosis. We recently reported that the APP23 mouse model for AD showed fewer AD-related phenotypes when these animals were crossed with transgenic mice expressing heat shock protein (HSP 70. We here examined the effect of geranylgeranylacetone, an inducer of HSP70 expression, on the AD-related phenotypes. Repeated oral administration of geranylgeranylacetone to APP23 mice for 9 months not only improved cognitive function but also decreased levels of Aβ, Aβ plaque deposition and synaptic loss. The treatment also up-regulated the expression of an Aβ-degrading enzyme and TGF-β1 but did not affect the maturation of APP and secretase activities. These outcomes were similar to those observed in APP23 mice genetically modified to overexpress HSP70. Although the repeated oral administration of geranylgeranylacetone did not increase the level of HSP70 in the brain, a single oral administration of geranylgeranylacetone significantly increased the level of HSP70 when Aβ was concomitantly injected directly into the hippocampus. Since geranylgeranylacetone has already been approved for use as an anti-ulcer drug and its safety in humans has been confirmed, we propose that this drug be considered as a candidate drug for the prevention of AD.

  8. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  9. Inhibition of Asthma in OVA Sensitized Mice Model by a Traditional Uygur Herb Nepeta bracteata Benth.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-01-01

    Full Text Available Asthma is a chronic lung inflammation which affects many people. As current therapies for asthma mainly rely on administration of glucocorticoids and have many side effects, new therapy is needed. In this study, we investigated Nepeta bracteata Benth., a traditional Uygur Herb, for its therapeutics effect in OVA induced asthmatic mice model. Treatment of OVA sensitized asthma mice with extract from Nepeta bracteata Benth. demonstrated improved lung pathology, as well as reduced infiltration of eosinophil and neutrophil. Nepeta bracteata Benth. extract also contributed to the rebalance of Th17/Treg cell via decreasing the Th17 cell and increasing the Treg, which was corresponding with the inhibited Th17 cytokine response and increased IL-10 level. Moreover, the reduced TGF-β level and Smad2/3 protein level also suggested that Nepeta bracteata Benth. extract could inhibit TGF-β mediated airway remodelling as well. Taken together, these data suggested that Nepeta bracteata Benth. may be a novel candidate for future antiasthma drug development.

  10. Immunohistochemical expression of TGF-β1 and MMP-9 in periapical lesions

    Directory of Open Access Journals (Sweden)

    Pâmella Recco ÁLVARES

    2017-07-01

    Full Text Available Abstract The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9 and transforming growth factor beta (TGF-β1 in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF-β1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher’s exact test and Spearman’s correlation test (P<0.05. Analysis of inflammatory infiltrate revealed that 78% of periapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (P<0.001. Morphological evaluation of the epithelial thickness in radicular cysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF-β1. Significant differences were confirmed between the expression scores of TGF-β1 and MMP-9 in periapical granulomas (p = 0.004 and in radicular cysts (p < 0.001. Expression of TGF-β1 was different for periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF-β1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  11. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  12. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Science.gov (United States)

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  13. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Directory of Open Access Journals (Sweden)

    Elida Yazmín Gómez-Rodríguez

    Full Text Available Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1, a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA, a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression

  14. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  15. Rational quantum integrable systems of DN type with polarized spin reversal operators

    Directory of Open Access Journals (Sweden)

    B. Basu-Mallick

    2015-09-01

    Full Text Available We study the spin Calogero model of DN type with polarized spin reversal operators, as well as its associated spin chain of Haldane–Shastry type, both in the antiferromagnetic and ferromagnetic cases. We compute the spectrum and the partition function of the former model in closed form, from which we derive an exact formula for the chain's partition function in terms of products of partition functions of Polychronakos–Frahm spin chains of type A. Using a recursion relation for the latter partition functions that we derive in the paper, we are able to numerically evaluate the partition function, and thus the spectrum, of the DN-type spin chain for relatively high values of the number of spins N. We analyze several global properties of the chain's spectrum, such as the asymptotic level density, the distribution of consecutive spacings of the unfolded spectrum, and the average degeneracy. In particular, our results suggest that this chain is invariant under a suitable Yangian group, and that its spectrum coincides with that of a Yangian-invariant vertex model with linear energy function and dispersion relation.

  16. Standardized Salvia miltiorrhiza Extract Suppresses Hepatic Stellate Cell Activation and Attenuates Steatohepatitis Induced by a Methionine-Choline Deficient Diet in Mice

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee

    2014-06-01

    Full Text Available The aim of this study was to examine the effect of standardized extract of Salvia miltiorrhiza (SME on gene and protein expression of non-alcoholic steatohepatitis (NASH-related factors in activated human hepatic stellate cells (HSC, and in mice with steatohepatitis induced by a methionine-choline deficient (MCD diet. Male C57BL/6J mice were placed on an MCD or control diet for 8 weeks and SME (0, 0.1, 0.5 and 1 mg/kg body weight was administered orally every other day for 4 or 6 weeks. HSCs from the LX-2 cell line were treated with transforming growth factor β-1 (TGF-β1 or TGF-β1 plus SME (0.1–10 μg/mL. To investigate the effect of SME on reactive oxygen species (ROS-induced condition, LX-2 cells were treated with hydrogen peroxide (H2O2 or H2O2 plus SME (0.1–100 μg/mL. MCD administration for 12 weeks increased mRNA expression of tumor necrosis factor (TNF-α, TGF-β1, interleukin-1β (IL-1β, C-reactive protein (CRP, α-smooth muscle actin (α-SMA, type I collagen, matrix metalloproteinase-2 (MMP-2 and MMP-9. TGF-β1-induced LX-2 cells exhibited similar gene expression patterns. SME treatment significantly reduced the mRNA and protein expression of NASH-related factors in the mouse model and HSCs. Histopathological liver analysis showed improved non-alcoholic fatty liver disease (NAFLD activity and fibrosis score in SME-treated mice. The in vivo studies showed that SME had a significant effect at low doses. These results suggest that SME might be a potential therapeutic candidate for NAFLD treatment.

  17. Maintaining the immunological balance in parasitic infections: a role for TGF-ß?

    DEFF Research Database (Denmark)

    Omer, F M; Kurtzhals, J A; Riley, E M

    2000-01-01

    on the one hand and prevention of immune-mediated pathology on the other. In this article, Fakhereldin Omer, Jørgen Kurtzhals and Eleanor Riley review the immunoregulatory properties of TGF-beta in the context of parasitic infections. Data from murine malaria infections suggest that TGF-beta modifies...

  18. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  19. Enhanced Dupuytren's disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-β2

    Directory of Open Access Journals (Sweden)

    Howard Jeffrey

    2004-11-01

    Full Text Available Abstract Background Dupuytren's disease (DD is a debilitating fibro-proliferative disorder of the hand characterized by the appearance of fibrotic lesions (nodules and cords leading to flexion contractures of the fingers and loss of hand function. Although the molecular mechanism of DD is unknown, it has been suggested that transforming growth factor-β2 (TGF-β2 may play an important role in the underlying patho-physiology of the disease. The purpose of this study was to further explore this hypothesis by examining the effects of TGF-β2 on primary cell cultures derived from patient-matched disease and normal palmar fascia tissue using a three-dimensional collagen contraction assay. Methods Fibroblast-populated collagen lattice (FPCL contraction assays using primary cell cultures derived from diseased and control fascia of the same DD patients were studied in response to exogenous TGF-β2 and neutralizing anti-TGF-β2 antibodies. Results Contraction of the FPCLs occurred significantly faster and to a greater extent in disease cells compared to control cells. The addition of TGF-β2 enhanced the rate and degree of collagen contraction in a dose-dependent fashion for both control and diseased cells. Neutralizing anti-TGF-β2 antibodies abolished exogenous TGF-β2 stimulated collagen contraction, but did not inhibit the enhanced basal collagen contraction activity of disease FPCL cultures. Conclusions Although exogenous TGF-β2 stimulated both disease and control FPCL contraction, neutralizing anti-TGF-β2 antibodies did not affect the elevated basal collagen contraction activity of disease FPCLs, suggesting that the differences in the collagen contraction activity of control and disease FPCL cultures are not due to differences in the levels of endogenous TGF-β2 activity.

  20. Expression of TGF-β in Fractures Fixed by Nitinol Swan-like Memory Compressive Connectors

    Science.gov (United States)

    Li, M.; Zhang, C. C.; Xu, S. G.; Fu, Q. G.

    2011-07-01

    In this article, the effect of internal fixation of a Nitinol swan-like memory compressive connector (SMC) on the temporal expression of transforming growth factor-β (TGF-β) at fracture sites is evaluated. Specimens were collected from 35 New Zealand rabbits modeled for bilateral humeral fracture fixed with either SMC or stainless dynamic compression plate (DCP). Five rabbits each were killed at day 1, 3, 7, 14, 21, 28, and 56. The local positive staining potency, positive area ratio, and positive index of TGF-β were measured using an immunohistochemistry approach (EnVision) in combination with a computerized image analysis system. TGF-β staining was seen in mesenchymal cells, osteoblasts, chondrocytes, and in the extracellular matrix of fractures fixed in both the SMC and the DCP samples without a significant difference in staining at both the early stages (days 1 and 3) and day 56. A higher TGF-β content was observed in the fractures fixed with SMC when compared to that of DCP from day 7 to 28. As a conclusion, TGF-β is highly expressed in fractures fixed with SMC during chondrogenesis stage and entochondrostosis stage. Finally, the mechanism of how SMC promoting synthesis and secretion of TGF-β in the process of fracture healing has been discussed.

  1. Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Mincione, Gabriella, E-mail: g.mincione@unich.it [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy); Tarantelli, Chiara [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Vianale, Giovina [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy); Di Marcantonio, Maria Carmela [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Cotellese, Roberto [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Francomano, Franco [Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Di Nicola, Marta; Costantini, Erica [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Cichella, Annadomenica [Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Muraro, Raffaella [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy)

    2014-09-10

    The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.

  2. Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas

    International Nuclear Information System (INIS)

    Mincione, Gabriella; Tarantelli, Chiara; Vianale, Giovina; Di Marcantonio, Maria Carmela; Cotellese, Roberto; Francomano, Franco; Di Nicola, Marta; Costantini, Erica; Cichella, Annadomenica; Muraro, Raffaella

    2014-01-01

    The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma

  3. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.

    Science.gov (United States)

    Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan

    2008-01-01

    The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.

  4. DN/DG Screening of Environmental Swipe Samples: FY2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, David C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkataraman, Ramkumar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Knowles, Justin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Delayed Neutron Delayed Gamma (DNDG) technique provides a new analytical capability to the International Atomic Energy Agency (IAEA) for detecting undeclared nuclear activities. IAEA’s Long Term R&D (LTRD) plan has a stated high urgency need to develop elemental and isotopic signatures of nuclear fuel cycle activities and processes (LTRD 2.2). The new DNDG capability is used to co-detect both uranium and plutonium as an extension of a DN only method that is already being utilized by the IAEA for the analysis of swipes to inform on undeclared nuclear activities. Analytical method involving irradiation of swipe samples potentially containing trace quantities of fissile material in a thermal neutron field, followed by the counting of delayed neutrons, is a well-known technique in the field of safeguards and nonproliferation. It is used for detecting the presence of microscopic amounts of fissile material, (typically a linear combination of 233U, 235U, 239Pu, and 241Pu)and quantifying it in terms of the equivalent mass of 235U. The delayed neutron (DN) technique is very sensitive and is been routinely employed at the High Flux Isotope Reactor (HFIR) facility at Oak Ridge National Laboratory (ORNL). Both uranium and plutonium are of high safeguards value. However, the DN technique is not well suited for distinguishing between U and Pu isotopes since the decay curves overlap closely. The delayed gamma (DG) technique will help detect the presence of 239Pu in a mixture of U and Pu. Thus the DNDG approach combines the best of both worlds; the sensitivity of DN counting and the isotopic specificity of DG counting. The present work seeks to build on the delayed neutron and delayed gamma methods that have been developed at ORNL. It is recognized that the distribution profile of heavy fission products remains fairly invariant for the fissile nuclides whereas the distribution of light fission products varies from one isotope to

  5. Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2013-01-01

    Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng +/- mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng +/+ mice). This study was aimed at investigating whether reduced tissue damage in Eng +/- mice also results in superior kidney function. Material and Methods: Kidneys of Eng +/+ and Eng +/- mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation. Results: Eng +/- mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng +/+ mice at 40 weeks after irradiation. Irradiation of Eng +/+ kidneys damaged the vascular network and led to an increase in PDGFR-β positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng +/+ kidneys, vascular perfusion and number of PDGFR-β positive cells were reduced in Eng +/- control mice; however, this did not further deteriorate after irradiation. Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng +/- compared to Eng +/+ mice

  6. Hepatic progenitor cell resistance to TGF-β1's proliferative and apoptotic effects

    International Nuclear Information System (INIS)

    Clark, J. Brian; Rice, Lisa; Sadiq, Tim; Brittain, Evan; Song, Lujun; Wang Jian; Gerber, David A.

    2005-01-01

    The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-β1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-β1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-β1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-β1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease

  7. A Specific Inhibitor of TGF-β Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers

    Directory of Open Access Journals (Sweden)

    Sunil K. Halder

    2005-05-01

    Full Text Available Small molecule inhibitors of signaling pathways have proven to be extremely useful for the development of therapeutic strategies for human cancers. Blocking the tumor-promoting effects of transforming growth factor-β (TGF-β in advanced stage carcinogenesis provides a potentially interesting drug target for therapeutic intervention. Although very few TGF-β receptor kinase inhibitors (TRKI are now emerging in preclinical studies, nothing is known about how these inhibitors might regulate the tumor-suppressive or tumor-promoting effects of TGF-β, or when these inhibitors might be useful for treatment during cancer progression. We have investigated the potential of TRKI in new therapeutic approaches in preclinical models. Here, we demonstrate that the TRKI, SB-431542, inhibits TGF-β-induced transcription, gene expression, apoptosis, and growth suppression. We have observed that SB-431542 attenuates the tumor-promoting effects of TGF-β, including TGF-β-induced EMT, cell motility, migration and invasion, and vascular endothelial growth factor secretion in human cancer cell lines. Interestingly, SB-431542 induces anchorage independent growth of cells that are growth-inhibited by TGF-β, whereas it reduces colony formation by cells that are growth-promoted by TGF-β. However, SB-431542 has no effect on a cell line that failed to respond to TGF-β. This represents a novel potential application of these inhibitors as therapeutic agents for human cancers with the goal of blocking tumor invasion, angiogenesis, and metastasis, when tumors are refractory to TGF-β-induced tumor-suppressor functions but responsive to tumor-promoting effects of TGF-β.

  8. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye; Yuan, Qingyan; Song, Liying; Liu, Mingyao; Liu, Zhihang; Yang, Yongbi; Li, Junyan; Li, Deshan, E-mail: deshanli@163.com; Ren, Guiping, E-mail: renguiping@126.com

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepatic stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.

  9. Immunohistochemical expression of TGF-β1 and MMP-9 in periapical lesions.

    Science.gov (United States)

    Álvares, Pâmella Recco; Arruda, José Alcides Almeida de; Silva, Leorik Pereira da; Nascimento, George João Ferreira do; Silveira, Maria Fonseca da; Sobral, Ana Paula Veras

    2017-07-03

    The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9) and transforming growth factor beta (TGF-β1) in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts) were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF-β1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher's exact test and Spearman's correlation test (Pperiapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (Pcysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF-β1. Significant differences were confirmed between the expression scores of TGF-β1 and MMP-9 in periapical granulomas (p = 0.004) and in radicular cysts (p periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF-β1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  10. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  11. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito, E-mail: y-ihara@wakayama-med.ac.jp

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.

  12. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    International Nuclear Information System (INIS)

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells

  13. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN

    2010-01-01

    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF-β1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF-β1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF-β1 treatment for 48 h. Conclusion TGF-β1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  14. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  15. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1.

    Science.gov (United States)

    Park, Bom; Hwang, Eunson; Seo, Seul A; Cho, Jin-Gyeong; Yang, Jung-Eun; Yi, Tae-Hoo

    2018-01-01

    UV irradiation triggers the overproduction of matrix metalloproteinases and collagen degradation, which in turn causes increased pigmentation, dryness, and deep wrinkling of the skin. These chronic symptoms are collectively referred to as photoaging. Eucalyptus globulus is an evergreen tree that is widely used in cosmetics because of its antimicrobial activity. In this study, we investigated the protective effect of 50% ethanol extracts of Eucalyptus globulus on UV-induced photoaging in vitro and in vivo. Normal human dermal fibroblasts were treated with Eucalyptus globulus at concentrations ranging from 1 to 100 μg/mL after UVB or non-UVB irradiation. We found that Eucalyptus globulus suppressed the expression of MMPs and IL-6, but increased the expression of TGF-β1 and procollagen type 1. In addition, Eucalyptus globulus inhibited activation of the AP-1 transcription factor, an inducer of MMPs. Eucalyptus globulus was also found to regulate TGF-β/Smad signaling by reversing the activity of negative Smad regulators. Lastly, in vivo studies showed that topical application of Eucalyptus globulus on UVB-irradiated hairless mice reduced wrinkle formation and dryness by down-regulating MMP-1 and up-regulating expression of elastin, TGF-β1, and procollagen type 1. Taken together, these data suggest that Eucalyptus globulus may be a useful agent in cosmetic products. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David

    2015-03-01

    Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. Copyright © 2014. Published by Elsevier B.V.

  17. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Schmal, H; Kaiser, S

    2006-01-01

    cultured in osteogenic medium after TGF-beta-mediated chondroinduction. Gene expression of col2a1, aggrecan, COMP, alkaline phosphatase (AP), and correlating protein synthesis was analyzed. After short-term stimulation with TGF-beta, MSCs maintained a chondrogenic phenotype. Chondrogenic gene expression...

  18. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Liu, Xu, E-mail: xkliuxu@yahoo.cn [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Wang, Quan-xing, E-mail: shmywqx@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Tan, Hong-wei [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Guo, Meng [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China)

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  19. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangmin Kim

    2018-01-01

    Full Text Available Background/Aims: Transforming growth factor-beta proteins (TGF-βs are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR on tumor growth and metastasis of triple negative breast cancer (TNBC cells via suppression of TGF-β1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.

  20. Role of dihydrotestosterone (DHT) on TGF-β1 signaling pathway in epithelial ovarian cancer cells.

    Science.gov (United States)

    Kohan-Ivani, Karla; Gabler, Fernando; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2016-01-01

    One of the hypotheses regarding the genesis of epithelial ovarian cancer involves the action of androgens on the proliferation of epithelial ovarian cells, as well as inclusion cysts. The purpose of the present study was to evaluate whether DHT causes changes in the TGF-β1 pathway that might modify the anti-proliferative effect of the latter. The levels of TGF-β1 protein, of its receptors (TGFBR1 and TGFBR2), of Smad2/3 (canonical signaling pathway protein) and of p21 (cell cycle protein) were assessed in ovarian tissues, epithelial ovarian cancer cell lines (A2780) and control cell lines (HOSE) through the use of immunohistochemistry and immunocytochemistry. Additionally, cell lines were treated with 100 nmol/L DHT, 10 ng/mL of TGF-β1 and DHT + TGF-β1 during 72 h in the presence and absence of a siRNA against androgen receptor. After treatment, TGFBR1 and TGFBR2 levels were detected through Western blotting and p21 was assessed through immunocytochemistry. Epithelial ovarian cancer tissues showed a decrease in TGF-β1 I receptor (p DHT, protein levels of TGF-β1 receptors (TGFBR1-TGFBR2) showed a decrease (p DHT (p < 0.001). Overall, our results indicate a defect in the canonical TGF-β signaling pathway in epithelial ovarian cancer caused by androgen action, thus suggesting eventual changes in such tissue proliferation rates.

  1. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    Science.gov (United States)

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping

  2. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    Science.gov (United States)

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our

  3. RhoC is essential for TGF-β1-induced invasive capacity of rat ascites hepatoma cells

    International Nuclear Information System (INIS)

    Mukai, M.; Endo, H.; Iwasaki, T.; Tatsuta, M.; Togawa, A.; Nakamura, H.; Inoue, M.

    2006-01-01

    Transforming growth factor-β1 (TGF-β1) is a multifunctional growth factor that plays a role in cell proliferation, differentiation, extracellular matrix production, apoptosis, and cell motility. We show here that TGF-β1 increased the invasiveness of MM1 cells, which are a highly invasive clone of rat ascites hepatoma cells. Both mRNA and protein levels of RhoC but not RhoA in TGF-β1-treated MM1 cells increased. In parallel with this increase in expression, RhoC activity was induced by TGF-β1 treatment. When RhoC was overexpressed in MM1 cells, the invasive capacity increased. The RhoC-overexpressing cells formed more nodules than did mock cells when injected into rat peritoneum. Furthermore, when RhoC expression was reduced by transfection with shRNA/RhoC, the invasiveness of MM1 cells decreased with concomitant suppression of RhoC expression. Thus, the induced expression of RhoC by TGF-β1 in MM1 cells plays a critical role in TGF-β1-induced cell migration

  4. Differences in TGF-β1 signaling and clinicopathologic characteristics of histologic subtypes of gastric cancer.

    Science.gov (United States)

    Pak, Kyung Ho; Kim, Dong Hoon; Kim, Hyunki; Lee, Do Hyung; Cheong, Jae-Ho

    2016-02-04

    Aberrant TGF-β1 signaling is suggested to be involved in gastric carcinogenesis. However, the role of TGF-β1 in intestinal-type [i-GC] and diffuse-type [d-GC] gastric cancer remains largely unknown. In this study, we evaluated the expression of TGF-β1 signaling molecules and compared the clinicopathological features of i-GC and d-GC. Patients (n=365, consecutive) who underwent curative gastrectomy for gastric adenocarcinoma in 2005 were enrolled. We performed immunohistochemical staining of TGF-β1, TGF-β1 receptor-2 (TβR2), Smad4, p-ERK1/2, TGF-activated kinase (TAK)1, and p-Akt in 68 paraffin-embedded tumor blocks (33 i-GC and 35 d-GC), scored the expression according to the extent of staining, and evaluated differences between the histologic subtypes. Patients with d-GC differed from those with i-GC as follows: younger and more likely to be female; more aggressive stage; higher recurrence rate. The expression of TGF-β1 and TβR2 was higher in i-GC (P = 0.05 and P Smad4, a representative molecule of the Smad-dependent pathway, was decreased in both subtypes. TAK1 and p-Akt, two major molecules involved in the Smad-independent pathway, were over-expressed (69 ~87% of cases stained), without a statistically significant difference between i-GC and d-GC. Of note, the expression of p-ERK1/2, a Smad-independent pathway, was significantly increased in i-GC (P = 0.008). The clinicopathological characteristics vary in different histologic gastric cancer subtypes. Although TGF-β1 signaling in gastric cancer cells appears hyper-activated in i-GC compared to d-GC, the Smad-dependent pathway seems down-regulated while the Smad-independent pathway seems up-regulated in both histologic subtypes.

  5. TGF-β Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation

    Directory of Open Access Journals (Sweden)

    Maryline Abrial

    2017-07-01

    Full Text Available The pharyngeal arch arteries (PAAs are transient embryonic blood vessels that mature into critical segments of the aortic arch and its branches. Although defects in PAA development cause life-threating congenital cardiovascular defects, the molecular mechanisms that orchestrate PAA morphogenesis remain unclear. Through small-molecule screening in zebrafish, we identified TGF-β signaling as indispensable for PAA development. Specifically, chemical inhibition of the TGF-β type I receptor ALK5 impairs PAA development because nkx2.5+ PAA progenitor cells fail to differentiate into tie1+ angioblasts. Consistent with this observation, we documented a burst of ALK5-mediated Smad3 phosphorylation within PAA progenitors that foreshadows angioblast emergence. Remarkably, premature induction of TGF-β receptor activity stimulates precocious angioblast differentiation, thereby demonstrating the sufficiency of this pathway for initiating the PAA progenitor to angioblast transition. More broadly, these data uncover TGF-β as a rare signaling pathway that is necessary and sufficient for angioblast lineage commitment.

  6. miR-466a Targeting of TGF-β2 Contributes to FoxP3+ Regulatory T Cell Differentiation in a Murine Model of Allogeneic Transplantation

    Directory of Open Access Journals (Sweden)

    William Becker

    2018-04-01

    Full Text Available The promise of inducing immunological tolerance through regulatory T cell (Treg control of effector T cell function is crucial for developing future therapeutic strategies to treat allograft rejection as well as inflammatory autoimmune diseases. In the current study, we used murine allograft rejection as a model to identify microRNA (miRNA regulation of Treg differentiation from naïve CD4 cells. We performed miRNA expression array in CD4+ T cells in the draining lymph node (dLN of mice which received syngeneic or allogeneic grafts to determine the molecular mechanisms that hinder the expansion of Tregs. We identified an increase in miRNA cluster 297-669 (C2MC after allogeneic transplantation, in CD4+ T cells, such that 10 of the 27 upregulated miRNAs were all from this cluster, with one of its members, mmu-miR-466a-3p (miR-466a-3p, targeting transforming growth factor beta 2 (TGF-β2, as identified through reporter luciferase assay. Transfection of miR-466a-3p in CD4+ T cells led to a decreased inducible FoxP3+ Treg generation while inhibiting miR-466a-3p expression through locked nucleic acid resulting in increased Tregs and a reduction in effector T cells. Furthermore, in vivo inhibition of miR-466a-3p in an allogeneic skin-graft model attenuated T cell response against the graft through an increase in TGF-β2. TGF-β2 was as effective as TGF-β1 at both inducing Tregs and through adoptive transfer, mitigating host effector T cell response against the allograft. Together, the current study demonstrates for the first time a new role for miRNA-466a-3p and TGF-β2 in the regulation of Treg differentiation and thus offers novel avenues to control inflammatory disorders.

  7. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Andreea Iren Serban

    Full Text Available AGEs accumulation in the skin affects extracellular matrix (ECM turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  8. Diagnostic value of combined determination of serum CA19-9 and TGF-β contents in patients with pancreatic cancer

    International Nuclear Information System (INIS)

    Gong Zheng

    2008-01-01

    Objective: To study the clinical diagnostic value of combined determination of serum contents of CA19-9 and TGF-β in patients with pancreatic cancer. Methods: Serum CA19-9 (with RIA) and TGF-β (with ELISA) contents were deter- mined in 30 patients with pancreatic cancer and 35 controls. Results: The serum CA19-9 and TGF-β contents in patients with pancreatic cancer were significantly higher than those in controls (P<0.01). The diagnostic sensitivity of CA19-9 for pancreatic cancer was 70.8%, lower than that of TGF-β (80.2%, P<0.05). The diagnostic specificity of CA19-9 and TGF-β was 90.2% and 93.4% respectively. Conclusion: Both determinations of serum CA19-9 and TGF-β contents would yield high specificity for diagnosis of pancreatic cancer. Sensitity of TGF-β determination was higher than that of CA19-9 determination. Combined determination of CA19-9 and TGF-β would improve the diagnostic accuracy in patients with pancreatic cancer. (authors)

  9. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Corrales, Andrea; Parisotto, Eduardo B; Vidal, Verónica; García-Cerro, Susana; Lantigua, Sara; Diego, Marian; Wilhem Filho, Danilo; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2017-09-15

    Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  11. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study

    International Nuclear Information System (INIS)

    Bacman, David; Merkel, Susanne; Croner, Roland; Papadopoulos, Thomas; Brueckl, Wolfgang; Dimmler, Arno

    2007-01-01

    Histological phenotype and clinical behaviour of malignant tumours are not only dependent on alterations in the epithelial cell compartment, but are affected by their interaction with inflammatory cells and tumour-associated stroma. Studies in animal models have shown influence of tumour-associated macrophages (TAM) on histological grade of differentiation in colon carcinoma. Disruption of transforming growth factor beta (TGF-beta) signalling in tumour cells is related to more aggressive clinical behaviour. Expression data of components of this pathway in tumour-associated stroma is limited. Tissue micro arrays of 310 colon carcinomas from curatively resected patients in UICC stage II and III were established. In a first step we quantified amount of CD68 positive TAMs and expression of components of TGF-beta signalling (TGF-beta1, TGF-beta receptors type 1 and 2, Smad 3 and 4) in tumour and associated stroma. Further we analyzed correlation to histological and clinical parameters (histological grade of differentiation (low-grade (i.e. grade 1 and 2) vs. high-grade (i.e. grade 3 and 4)), lymph node metastasis, distant metastasis, 5 year cancer related survival) using Chi-square or Fisher's exact test, when appropriate, to compare frequencies, Kaplan-Meier method to calculate 5-year rates of distant metastases and cancer-related survival and log rank test to compare the rates of distant metastases and survival. To identify independent prognostic factors Cox regression analysis including lymph node status and grading was performed. High-grade tumours and those with lymph node metastases showed higher rates of TAMs and lower expression of TGF-beta1. Loss of nuclear Smad4 expression in tumor was associated with presence of lymph node metastasis, but no influence on prognosis could be demonstrated. Decrease of both TGF-beta receptors in tumour-associated stroma was associated with increased lymph node metastasis and shorter survival. Stromal TGF-beta receptor 2

  12. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome

    Science.gov (United States)

    Hatzirodos, Nicholas; Bayne, Rosemary A.; Irving-Rodgers, Helen F.; Hummitzsch, Katja; Sabatier, Laetitia; Lee, Sam; Bonner, Wendy; Gibson, Mark A.; Rainey, William E.; Carr, Bruce R.; Mason, Helen D.; Reinhardt, Dieter P.; Anderson, Richard A.; Rodgers, Raymond J.

    2011-01-01

    Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF-β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF-β bioactivity in tissues by binding latent TGF-β binding proteins. We therefore examined expression of fibrillins 1–3, latent TGF-β binding proteins 1–4, and TGF-β 1–3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF-β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving-Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. PMID:21411746

  13. Integrin-linked kinase is required for TGF-β1 induction of dermal myofibroblast differentiation.

    Science.gov (United States)

    Vi, Linda; de Lasa, Cristina; DiGuglielmo, Gianni M; Dagnino, Lina

    2011-03-01

    Cutaneous repair after injury requires activation of resident dermal fibroblasts and their transition to myofibroblasts. The key stimuli for myofibroblast formation are activation of transforming growth factor-β (TGF-β) receptors and mechanotransduction mediated by integrins and associated proteins. We investigated the role of integrin-linked kinase (ILK) in TGF-β1 induction of dermal fibroblast transition to myofibroblasts. ILK-deficient fibroblasts treated with TGF-β1 exhibited attenuation of Smad 2 and 3 phosphorylation, accompanied by impaired transcriptional activation of Smad targets, such as α-smooth muscle actin. These alterations were not limited to Smad-associated TGF-β1 responses, as stimulation of noncanonical mitogen-activated protein kinase pathways by this growth factor was also diminished in the absence of ILK. ILK-deficient fibroblasts exhibited abnormalities in the actin cytoskeleton, and did not form supermature focal adhesions or contractile F-actin stress fibers, indicating a severe impairment in their capacity to differentiate into myofibroblasts. These defects extended to the inability of cells to contract extracellular matrices when embedded in collagen lattices. We conclude that ILK is necessary to transduce signals implicated in the transition of dermal fibroblasts to myofibroblasts originating from matrix substrates and TGF-β1.

  14. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  15. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation

  16. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  17. GSK3β attenuates TGF-β1 induced epithelial–mesenchymal transition and metabolic alterations in ARPE-19 cells

    International Nuclear Information System (INIS)

    Huang, Li; Zhang, Cheng; Su, Li; Song, Zhengyu

    2017-01-01

    While TGF-β1 is known to induce epithelial–mesenchymal transition (EMT), a major factor in the pathogenesis of proliferative vitreoretinopathy (PVR), in ARPE-19 cells. The molecular pathways involved in EMT formation have not yet to be fully characterized. In this study, we have found that TGF-β1-mediated induction of EMT in ARPE-19 cells varied in a dose- and time-dependent manner. Specifically, TGF-β1 inhibited GSK-3β by accelerating phosphorylation at ser9. GSK-3β inhibitor or knockdown of GSK-3β resulted in enhanced TGF-β1-mediated EMT, migration and collagen contraction in ARPE-19 cells, which were then abrogated by GSK-3β overexpression and PI3K/AKT inhibitor. Importantly, GSK-3β also mediated metabolic reprogramming in TGF-β1-treated cells. Our results indicate that GSK-3β plays a pivotal role in TGF-β1-mediated EMT in ARPE-19 cells. - Highlights: • GSK-3β mediates epithelial-mesenchymal transition in TGF-β1 treated ARPE-19 cells. • GSK-3β regulates cell migration and collagen contraction of ARPE-19 cells. • TGF-β1 induces extracellular metabolomic changes of ARPE-19 cells via a GSK-3β-dependent mechanism.

  18. Adverse effect of tetracycline and doxycycline on reproductive tract development of CD1 mice

    Czech Academy of Sciences Publication Activity Database

    Elzeinová, Fatima; Pěknicová, Jana; Děd, Lukáš; Dorosh, Andriy; Kubátová, Alena; Margaryan, Hasmik; Makovický, P.; Rajmon, R.

    2012-01-01

    Roč. 67, Issue Supplement s1 (2012), s. 47-48 ISSN 1046-7408. [13th International Symposium for Immunology of reproduction "From the roots to the tops of Reproductive Immunology". 22.06.2012-24.06.2012, Varna] R&D Projects: GA ČR(CZ) GA523/09/1793; GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Keywords : tetracycline * doxycycline * CD1 mice * reproduction Subject RIV: DN - Health Impact of the Environment Quality

  19. Suppressed Gastric Mucosal TGF-β1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin

    2010-01-01

    Background/Aims Loss of transforming growth factor β1 (TGF-β1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-β1 levels could be used to determine the outcome after H. pylori infection. Methods Northern blot for the TGF-β1 transcript, staining of TGF-β1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-β1 levels were performed at different times after H. pylori infection. Results The TGF-β1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-β1 levels. SNU-16 cells showing intact TGF-β signaling exhibited a marked decrease in TGF-β1 expression, whereas SNU-638 cells defective in TGF-β signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-β1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-β1 is a host defense mechanism to avoid attachment of H. pylori. Conclusions H. pylori infection was associated with depressed gastric mucosal TGF-β1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation. PMID:20479912

  20. Suppressed Gastric Mucosal TGF-beta1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response.

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin; Hahm, Ki-Baik

    2010-03-01

    Loss of transforming growth factor beta1 (TGF-beta1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-beta1 levels could be used to determine the outcome after H. pylori infection. Northern blot for the TGF-beta1 transcript, staining of TGF-beta1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-beta1 levels were performed at different times after H. pylori infection. The TGF-beta1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-beta1 levels. SNU-16 cells showing intact TGF-beta signaling exhibited a marked decrease in TGF-beta1 expression, whereas SNU-638 cells defective in TGF-beta signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-beta1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-beta1 is a host defense mechanism to avoid attachment of H. pylori. H. pylori infection was associated with depressed gastric mucosal TGF-beta1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation.

  1. Um suplemento entre dois mundos: Causas e consequências da transição papel/digital do DN Jovem

    OpenAIRE

    Freitas, Helena de Sousa

    2012-01-01

    O DN Jovem, suplemento que o Diário de Notícias começou a publicar em maio de 1983, rapidamente se tornou uma montra para novos prosadores, poetas, fotógrafos e ilustradores. Em junho de 1996, ano em que o acesso à Internet nos lares portugueses não atingia sequer um por cento, os seus conteúdos migraram do suporte impresso para o online. A transição, decidida pela Administração do DN no âmbito de uma reestruturação do jornal, anunciou a morte daquele que, segundo o escritor José Jorge Letria...

  2. Purification and Characterization of a Novel Anti-Campylobacter Bacteriocin Produced by Lactobacillus curvatus DN317.

    Science.gov (United States)

    Zommiti, Mohamed; Almohammed, Hamdan; Ferchichi, Mounir

    2016-12-01

    The lactic acid bacteria (LAB) microbiota of Saudi chicken ceca was determined. From 60 samples, 204 isolates of lactic acid bacteria were obtained. Three isolates produced antimicrobial activities against Campylobacter jejuni, Listeria monocytogenes, and Bacillus subtilis. The isolate DN317, which had the highest activity against Campylobacter jejuni ATCC 33560, was identified as Lactobacillus curvatus (GenBank accession numbers: KX353849 and KX353850). Full inhibitory activity was observed after a 2-h incubation with the supernatant at pH values between 4 and 8. Only 16% of the activity was conserved after a treatment at 121 °C for 15 min. The use of proteinase K, pepsin, chymotrypsin, trypsin, papain, and lysozyme drastically reduced the antimicrobial activity. However, lipase, catalase, and lysozyme had no effect on this activity. The active peptide produced by Lactobacillus curvatus DN317 was purified by precipitation with an 80% saturated ammonium sulfate solution, and two steps of reversed phase HPLC on a C18 column. The molecular weight of this peptide was 4448 Da as determined by MALDI-ToF. N-terminal sequence analysis using Edman degradation revealed 47 amino acid residues (UniProt Knowledgebase accession number C0HK82) revealing homology with the amino acid sequences of sakacin P and curvaticin L442. The antimicrobial activity of the bacteriocin, namely curvaticin DN317, was found to be bacteriostatic against Campylobacter jejuni ATCC 33560. The use of microbial antagonism by LAB is one of the best ways to control microorganisms safely in foods. This result constitutes a reasonable advance in the antimicrobial field because of its potential applications in food technology.

  3. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis.

    Science.gov (United States)

    Ray, Jessica L; Kopec, Anna K; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H; Williams, Kurt J; Leung, Patrick S; Gershwin, M Eric; Luyendyk, James P

    2017-04-01

    Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Nitric oxide and TGF-β1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF-β1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF-β1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF-β1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF-β1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF-β1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  5. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    Science.gov (United States)

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  6. Transforming growth factor β2 (TGF-β2 in pathogenesis of oral submucous fibrosis: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Venkatesh V Kamath

    2014-01-01

    Full Text Available Background and Objectives: Oral Submucous Fibrosis (OSF is a potentially malignant oral disorder causing fibrosis of the oral mucosa. Commonly associated with the habit of chewing areca nut in its raw or refined forms, the progressive fibrosis causes intense debility and probable malignant transformation. Arecoline, flavinoids and tannins in the areca nut may activate pro-fibrotic cytokines like transforming growth factor beta (TGF-β leading to fibrosis. TGF-β and its isoforms probably represent the major pathway in the deposition of collagen fibers in this condition. Very little is known of the role of TGF-β2, as compared withTGF-β1, in OSF. The present study aims to evaluate TGF-β2 immunohistochemically in OSF with a view to understanding its role in the pathogenesis. Materials and Methods: TGF-β2 antibody was detected immunohistochemically on archival paraffin sections of 70 cases of various grades of OSF, 10 cases of normal oral mucosa and five cases of scar tissue. The presence and distribution of the antibody was noted and a quantification of the positive areas was also done using image analyses software and correlated in proportion to the rest of the tissue. Results: Expression of TGF-β2 was more in all grades of OSF when compared with that of normal oral mucosa but less than that expressed in scar tissue. The antibody was detected in epithelium, around the blood vessels, in areas of inflammatory infiltrate, fibroblasts and in muscles. The intensity and proportion of expression paralleled increasing grades of OSF. There was increased expression of the antibody in the epithelium, which is probably the source, but no correlation to epithelial changes (hyperplasia, atrophy or dysplasia was noted. Conclusion: TGF-β2 is a prominent cytokine in the TGF-β induced pathway of fibrosis but probably plays a contributory role to the main isoform TGF-β1. Its role as a marker of malignant transformation, as seen in other systemic malignant

  7. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-11-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is also emerging as a critical factor in aggressive behaviors of cancer cells; however, the relationship between TGF-β2 and autophagy in glioma has been poorly understood. Methods U251, T98 and U87 GBM cell lines as well as GBM cells from a primary human specimen were used in vitro and in vivo to evaluate the effect of TGF-β2 on autophagy. Western blot, qPCR, immunofluorescence and transmission-electron microscope were used to detect target molecular expression. Lentivirus and siRNA vehicle were introduced to establish cell lines, as well as mitotracker and seahorse experiment to study the metabolic process in glioma. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. Results Here we demonstrated that TGF-β2 activated autophagy in human glioma cell lines and knockdown of Smad2 or inhibition of c-Jun NH2-terminal kinase, attenuated TGF-β2-induced autophagy. TGF-β2-induced autophagy is important for glioma invasion due to the alteration of epithelial-mesenchymal transition and metabolism conversion, particularly influencing mitochondria trafficking and membrane potential (△Ψm. Autopaghy also initiated a feedback on TGF-β2 in glioma by keeping its autocrine loop and affecting Smad2/3/7 expression. A xenograft model provided additional confirmation on combination of TGF-β inhibitor (Galunisertib and autophagy inhibitor (CQ to better “turn off” tumor growth. Conclusion Our findings elucidated a potential mechanism of autophagy-associated glioma invasion that TGF-β2 could initiate autophagy via Smad and non

  8. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

    Science.gov (United States)

    Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A

    2018-03-13

    Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. TGF-β1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mu Yang

    Full Text Available In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1 has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL and head kidney leukocytes (HKL. It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ and T/B cell markers [Cd4-like (Cd4l, Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5, was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5(+ leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes.

  10. The DAF-7/TGF-β signaling pathway regulates abundance of the C. elegans glutamate receptor GLR-1

    Science.gov (United States)

    McGehee, Annette M.; Moss, Benjamin J.; Juo, Peter

    2015-01-01

    Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the C. elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior. PMID:26054666

  11. The DAF-7/