WorldWideScience

Sample records for tfbs motifs based

  1. Stochastic EM-based TFBS motif discovery with MITSU.

    Science.gov (United States)

    Kilpatrick, Alastair M; Ward, Bruce; Aitken, Stuart

    2014-06-15

    The Expectation-Maximization (EM) algorithm has been successfully applied to the problem of transcription factor binding site (TFBS) motif discovery and underlies the most widely used motif discovery algorithms. In the wider field of probabilistic modelling, the stochastic EM (sEM) algorithm has been used to overcome some of the limitations of the EM algorithm; however, the application of sEM to motif discovery has not been fully explored. We present MITSU (Motif discovery by ITerative Sampling and Updating), a novel algorithm for motif discovery, which combines sEM with an improved approximation to the likelihood function, which is unconstrained with regard to the distribution of motif occurrences within the input dataset. The algorithm is evaluated quantitatively on realistic synthetic data and several collections of characterized prokaryotic TFBS motifs and shown to outperform EM and an alternative sEM-based algorithm, particularly in terms of site-level positive predictive value. Java executable available for download at http://www.sourceforge.net/p/mitsu-motif/, supported on Linux/OS X. © The Author 2014. Published by Oxford University Press.

  2. Nencki Genomics Database--Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs.

    Science.gov (United States)

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.

  3. An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.

    Science.gov (United States)

    Liu, Bingqiang; Yang, Jinyu; Li, Yang; McDermaid, Adam; Ma, Qin

    2017-03-08

    Transcription factors are proteins that bind to specific DNA sequences and play important roles in controlling the expression levels of their target genes. Hence, prediction of transcription factor binding sites (TFBSs) provides a solid foundation for inferring gene regulatory mechanisms and building regulatory networks for a genome. Chromatin immunoprecipitation sequencing (ChIP-seq) technology can generate large-scale experimental data for such protein-DNA interactions, providing an unprecedented opportunity to identify TFBSs (a.k.a. cis-regulatory motifs). The bottleneck, however, is the lack of robust mathematical models, as well as efficient computational methods for TFBS prediction to make effective use of massive ChIP-seq data sets in the public domain. The purpose of this study is to review existing motif-finding methods for ChIP-seq data from an algorithmic perspective and provide new computational insight into this field. The state-of-the-art methods were shown through summarizing eight representative motif-finding algorithms along with corresponding challenges, and introducing some important relative functions according to specific biological demands, including discriminative motif finding and cofactor motifs analysis. Finally, potential directions and plans for ChIP-seq-based motif-finding tools were showcased in support of future algorithm development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Motif Tool Manager: a web-based framework for motif discovery.

    Science.gov (United States)

    Phan, Vinhthuy; Furlotte, Nicholas A

    2008-12-15

    Motif Tool Manager is a web-based framework for comparing and combining different approaches to discover novel DNA motifs. It comes with a set of five well-known approaches to motif discovery. It provides an easy mechanism for adding new motif finding tools to the framework through a web-interface and a minimal setup of the tools on the server. Users can execute the tools through the web-based framework and compare results from such executions. The framework provides a basic mechanism for identifying the most similar motif candidates found by a majority of themotif finding tools. http://cetus.cs.memphis.edu/motif

  5. Motif-based embedding for graph clustering

    Science.gov (United States)

    Lim, Sungsu; Lee, Jae-Gil

    2016-12-01

    Community detection in complex networks is a fundamental problem that has been extensively studied owing to its wide range of applications. However, because community detection methods typically rely on the relations between vertices in networks, they may fail to discover higher-order graph substructures, called the network motifs. In this paper, we propose a novel embedding method for graph clustering that considers higher-order relationships involving multiple vertices. We show that our embedding method, which we call motif-based embedding, is more effective in detecting communities than existing graph embedding methods, spectral embedding and force-directed embedding, both theoretically and experimentally.

  6. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online.

  7. MProfiler: A Profile-Based Method for DNA Motif Discovery

    Science.gov (United States)

    Altarawy, Doaa; Ismail, Mohamed A.; Ghanem, Sahar M.

    Motif Finding is one of the most important tasks in gene regulation which is essential in understanding biological cell functions. Based on recent studies, the performance of current motif finders is not satisfactory. A number of ensemble methods have been proposed to enhance the accuracy of the results. Existing ensemble methods overall performance is better than stand-alone motif finders. A recent ensemble method, MotifVoter, significantly outperforms all existing stand-alone and ensemble methods. In this paper, we propose a method, MProfiler, to increase the accuracy of MotifVoter without increasing the run time by introducing an idea called center profiling. Our experiments show improvement in the quality of generated clusters over MotifVoter in both accuracy and cluster compactness. Using 56 datasets, the accuracy of the final results using our method achieves 80% improvement in correlation coefficient nCC, and 93% improvement in performance coefficient nPC over MotifVoter.

  8. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  9. Exploring spatially adjacent TFBS-clustered regions with Hi-C data.

    Science.gov (United States)

    Chen, Hebing; Jiang, Shuai; Zhang, Zhuo; Li, Hao; Lu, Yiming; Bo, Xiaochen

    2017-09-01

    Transcription factor binding sites (TFBSs) are clustered in the human genome, forming the TFBS-clustered regions that regulate gene transcription, which requires dynamic chromatin configurations between promoters and distal regulatory elements. Here, we propose a regulatory model called spatially adjacent TFBS-clustered regions (SATs), in which TFBS-clustered regions are connected by spatial proximity as identified by high-resolution Hi-C data. TFBS-clustered regions forming SATs appeared less frequently in gene promoters than did isolated TFBS-clustered regions, whereas SATs as a whole appeared more frequently. These observations indicate that multiple distal TFBS-clustered regions combined to form SATs to regulate genes. Further examination confirmed that a substantial portion of genes regulated by SATs were located between the paired TFBS-clustered regions instead of the downstream. We reconstructed the chromosomal conformation of the H1 human embryonic stem cell line using the ShRec3D algorithm and proposed the SAT regulatory model. ylu.phd@gmail.com or boxc@bmi.ac.cn. Supplementary data are available at Bioinformatics online.

  10. Profile-based short linear protein motif discovery

    Directory of Open Access Journals (Sweden)

    Haslam Niall J

    2012-05-01

    Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

  11. An Entropy-Based Position Projection Algorithm for Motif Discovery.

    Science.gov (United States)

    Zhang, Yipu; Wang, Ping; Yan, Maode

    2016-01-01

    Motif discovery problem is crucial for understanding the structure and function of gene expression. Over the past decades, many attempts using consensus and probability training model for motif finding are successful. However, the most existing motif discovery algorithms are still time-consuming or easily trapped in a local optimum. To overcome these shortcomings, in this paper, we propose an entropy-based position projection algorithm, called EPP, which designs a projection process to divide the dataset and explores the best local optimal solution. The experimental results on real DNA sequences, Tompa data, and ChIP-seq data show that EPP is advantageous in dealing with the motif discovery problem and outperforms current widely used algorithms.

  12. An Entropy-Based Position Projection Algorithm for Motif Discovery

    Directory of Open Access Journals (Sweden)

    Yipu Zhang

    2016-01-01

    Full Text Available Motif discovery problem is crucial for understanding the structure and function of gene expression. Over the past decades, many attempts using consensus and probability training model for motif finding are successful. However, the most existing motif discovery algorithms are still time-consuming or easily trapped in a local optimum. To overcome these shortcomings, in this paper, we propose an entropy-based position projection algorithm, called EPP, which designs a projection process to divide the dataset and explores the best local optimal solution. The experimental results on real DNA sequences, Tompa data, and ChIP-seq data show that EPP is advantageous in dealing with the motif discovery problem and outperforms current widely used algorithms.

  13. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs

    Directory of Open Access Journals (Sweden)

    Tsunoda Tatsuhiko

    2007-03-01

    Full Text Available Abstract Background A combination of multiple types of transcription factors and cis-regulatory elements is often required for gene expression in eukaryotes, and the combinatorial regulation confers specific gene expression to tissues or environments. To reveal the combinatorial regulation, computational methods are developed that efficiently infer combinations of cis-regulatory motifs that are important for gene expression as measured by DNA microarrays. One promising type of computational method is to utilize regression analysis between expression levels and scores of motifs in input sequences. This type takes full advantage of information on expression levels because it does not require that the expression level of each gene be dichotomized according to whether or not it reaches a certain threshold level. However, there is no web-based tool that employs regression methods to systematically search for motif combinations and that practically handles combinations of more than two or three motifs. Results We here introduced MotifCombinator, an online tool with a user-friendly interface, to systematically search for combinations composed of any number of motifs based on regression methods. The tool utilizes well-known regression methods (the multivariate linear regression, the multivariate adaptive regression spline or MARS, and the multivariate logistic regression method for this purpose, and uses the genetic algorithm to search for combinations composed of any desired number of motifs. The visualization systems in this tool help users to intuitively grasp the process of the combination search, and the backup system allows users to easily stop and restart calculations that are expected to require large computational time. This tool also provides preparatory steps needed for systematic combination search – i.e., selecting single motifs to constitute combinations and cutting out redundant similar motifs based on clustering analysis. Conclusion

  14. Screening of Genetic Switches Based on the Twister Ribozyme Motif.

    Science.gov (United States)

    Felletti, Michele; Klauser, Benedikt; Hartig, Jörg S

    2016-01-01

    The recent description of a new class of small endonucleolytic ribozymes termed twister opened new avenues into the development of artificial riboswitches, providing new tools for the development of artificial genetic circuits in bacteria. Here we present a method to develop new ligand-dependent riboswitches, employing the newly described catalytic motif as an expression platform in conjugation with naturally occurring or in vitro-selected aptameric domains. The twister motif is an outstandingly flexible tool for the development of highly active ribozyme-based riboswitches able to control gene expression in a ligand-dependent manner in Escherichia coli.

  15. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif.

    Science.gov (United States)

    Rao, Jingyi; Khan, Anzar

    2013-09-25

    In this study, we investigate the potential of an artificial structural motif, azobenzene, in the preparation of enzyme sensitive polymeric nanostructures. For this purpose, an azobenzene linkage is established at the copolymer junction of an amphiphilic diblock copolymer. This polymer assembles into a micellar structure in water. Treatment with the enzyme azoreductase, in the presence of coenzyme NADPH, results in the cleavage of the azo-based copolymer junction and disruption of the micellar assembly. These results suggest that azobenezene is a useful non-natural structural motif for the preparation of enzyme responsive polymer nanoparticles. Due to the presence of azoreductase in the human intestine, such nanomaterials are anticipated to find applicability in the arena of colon-specific delivery systems.

  16. DNA nanotechnology based on i-motif structures.

    Science.gov (United States)

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  17. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  18. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  19. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  20. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    Science.gov (United States)

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  1. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    OpenAIRE

    Chunxiao Sun; Hongwei Huo; Qiang Yu; Haitao Guo; Zhigang Sun

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and go...

  2. IncMD: incremental trie-based structural motif discovery algorithm.

    Science.gov (United States)

    Badr, Ghada; Al-Turaiki, Isra; Turcotte, Marcel; Mathkour, Hassan

    2014-10-01

    The discovery of common RNA secondary structure motifs is an important problem in bioinformatics. The presence of such motifs is usually associated with key biological functions. However, the identification of structural motifs is far from easy. Unlike motifs in sequences, which have conserved bases, structural motifs have common structure arrangements even if the underlying sequences are different. Over the past few years, hundreds of algorithms have been published for the discovery of sequential motifs, while less work has been done for the structural motifs case. Current structural motif discovery algorithms are limited in terms of accuracy and scalability. In this paper, we present an incremental and scalable algorithm for discovering RNA secondary structure motifs, namely IncMD. We consider the structural motif discovery as a frequent pattern mining problem and tackle it using a modified a priori algorithm. IncMD uses data structures, trie-based linked lists of prefixes (LLP), to accelerate the search and retrieval of patterns, support counting, and candidate generation. We modify the candidate generation step in order to adapt it to the RNA secondary structure representation. IncMD constructs the frequent patterns incrementally from RNA secondary structure basic elements, using nesting and joining operations. The notion of a motif group is introduced in order to simulate an alignment of motifs that only differ in the number of unpaired bases. In addition, we use a cluster beam approach to select motifs that will survive to the next iterations of the search. Results indicate that IncMD can perform better than some of the available structural motif discovery algorithms in terms of sensitivity (Sn), positive predictive value (PPV), and specificity (Sp). The empirical results also show that the algorithm is scalable and runs faster than all of the compared algorithms.

  3. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... Conserved DNA sequences are essential to investigate the regulation and expression of nearby genes. .... where, i is the genes index, k is the total number of motif type in ..... environmental degradation or food, which causes.

  4. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    Energy Technology Data Exchange (ETDEWEB)

    Leuze, Michael Rex [ORNL; Karpinets, Tatiana V [ORNL; Syed, Mustafa H [ORNL; Beliaev, Alexander S [ORNL; Uberbacher, Edward C [ORNL

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  5. A fast weak motif-finding algorithm based on community detection in graphs.

    Science.gov (United States)

    Jia, Caiyan; Carson, Matthew B; Yu, Jian

    2013-07-17

    Identification of transcription factor binding sites (also called 'motif discovery') in DNA sequences is a basic step in understanding genetic regulation. Although many successful programs have been developed, the problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of binding sites. State-of-the-art algorithms have their own constraints (e.g., high time or space complexity for finding long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif instance per sequence) which limit their scope of application. In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown that TFBSGroup is very efficient (e.g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12 mouse transcription factors involved in ES cell pluripotency and self-renewal. Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long and weak (l, d) motifs in DNA

  6. Pengembangan Motif Batik Khas Bali

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2016-04-01

    Full Text Available ABSTRAKIndustri batik berkembang pesat di Bali, namun motif-motif batiknya tidak mencerminkan identitas khas daerah. Oleh karena itu perlu diciptakan desain motif batik khas Bali yang sumber inspirasinya digali budaya dan alam Bali. Tujuan penelitian dan penciptaan seni ini adalah untuk menghasilkan motif batik yang mempunyai bentuk  unik dan karakteristik sehingga dapat mencerminkan budaya dan alam Bali. Metode yang digunakan yaitu pengumpulan data, perancangan motif, perwujudan menjadi batik, serta uji estetikanya. Dari penciptaan seni ini berhasil diciptakan 5 motif batik yaitu: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; dan (5 Motif Poleng Biru. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Jepun Alit, Motif Sekar Jagad Bali,  dan Motif Teratai Banji. Kata kunci: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif Teratai Banji, Motif Poleng Biru ABSTRACT Batik industry is growing rapidly in Bali, but its batik motifs do not reflect the typical regional identities. Therefore, it is necessary to create a distinctive design motif source of Bali excavated  from the repertoire of traditional Balinese arts and culture. The purpose of this research and its art creation is to produce batik motifs that have a unique shape and characteristics  to reflect the Balinese culture and natural surroundings. The method used by gathering and collecting data, designing motifs to  become the embodiment of batik. From the creation of this art had been created 5 motifs, namely: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; and (5 Motif Poleng Biru. Based on the results of aesthetical assessment known that the most preferred motif are  Motif Jepun Alit, Motif Sekar Jagad Bali, and Motif Teratai Banji. Key words: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif

  7. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    Conserved DNA sequences are essential to investigate the regulation and expression of nearby genes. The conserved regions can interact with certain proteins and can potentially determine the transcription speed and amount of the corresponding mRNA in gene replication process. In this paper, motifs of coexpressed ...

  8. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    Science.gov (United States)

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    Science.gov (United States)

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2017-12-10

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  10. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning.

    Science.gov (United States)

    Copp, Stacy M; Bogdanov, Petko; Debord, Mark; Singh, Ambuj; Gwinn, Elisabeth

    2014-09-03

    Discriminative base motifs within DNA templates for fluorescent silver clusters are identified using methods that combine large experimental data sets with machine learning tools for pattern recognition. Combining the discovery of certain multibase motifs important for determining fluorescence brightness with a generative algorithm, the probability of selecting DNA templates that stabilize fluorescent silver clusters is increased by a factor of >3. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An interaction-motif-based scoring function for protein-ligand docking

    Directory of Open Access Journals (Sweden)

    Xie Zhong-Ru

    2010-06-01

    Full Text Available Abstract Background A good scoring function is essential for molecular docking computations. In conventional scoring functions, energy terms modeling pairwise interactions are cumulatively summed, and the best docking solution is selected. Here, we propose to transform protein-ligand interactions into three-dimensional geometric networks, from which recurring network substructures, or network motifs, are selected and used to provide probability-ranked interaction templates with which to score docking solutions. Results A novel scoring function for protein-ligand docking, MotifScore, was developed. It is non-energy-based, and docking is, instead, scored by counting the occurrences of motifs of protein-ligand interaction networks constructed using structures of protein-ligand complexes. MotifScore has been tested on a benchmark set established by others to assess its ability to identify near-native complex conformations among a set of decoys. In this benchmark test, 84% of the highest-scored docking conformations had root-mean-square deviations (rmsds below 2.0 Å from the native conformation, which is comparable with the best of several energy-based docking scoring functions. Many of the top motifs, which comprise a multitude of chemical groups that interact simultaneously and make a highly significant contribution to MotifScore, capture recurrent interacting patterns beyond pairwise interactions. Conclusions While providing quite good docking scores, MotifScore is quite different from conventional energy-based functions. MotifScore thus represents a new, network-based approach for exploring problems associated with molecular docking.

  12. MEET: motif elements estimation toolkit.

    Science.gov (United States)

    Pairó, Erola; Maynou, Joan; Vallverdú, Montserrat; Caminal, Pere; Marco, Santiago; Perera, Alexandre

    2011-01-01

    MEET is an R package that integrates a set of algorithms for the detection of transcription factor binding sites (TFBS). The MEET R package includes five motif searching algorithms: MEME/MAST(Multiple Expectation-Maximization for Motif Elicitation), Q-residuals, MDscan (Motif Discovery scan), ITEME (Information Theory Elements for Motif Estimation) and MATCH. In addition MEET allows the user to work with different alignment algorithms: MUSCLE (Multiple Sequence Comparison by Log-Expectation), ClustalW and MEME. The package can work in two modes, training and detection. The training mode allows the user to choose the best parameters of a detector. Once the parameters are chosen, the detection mode allows to analyze a genome looking for binding sites. Both modes can combine the different alignment and detection methods, offering multiple possibilities. Combining the alignments and the detection algorithms makes possible the comparison between detection models at the same level, without having to care about the differences produced during the alignment process. The MEET R package can be downloaded from http://sisbio.recerca.upc.edu/R/MEET_1.0. tar.gz.

  13. A structure-based flexible search method for motifs in RNA.

    Science.gov (United States)

    Veksler-Lublinsky, Isana; Ziv-Ukelson, Michal; Barash, Danny; Kedem, Klara

    2007-09-01

    The discovery of non-coding RNA (ncRNA) motifs and their role in regulating gene expression has recently attracted considerable attention. The goal is to discover these motifs in a sequence database. Current RNA motif search methods start from the primary sequence and only then take into account secondary structure considerations. One can think of developing a flexible structure-based motif search method that will filter datasets based on secondary structure first, while allowing extensive primary sequence factors and additional factors such as potential pseudoknots as constraints. Since different motifs vary in structure rigidity and in local sequence constraints, there is a need for algorithms and tools that can be fine-tuned according to the searched RNA motif, but differ in their approach from the RNAMotif descriptor language. We present an RNA motif search tool called STRMS (Structural RNA Motif Search), which takes as input the secondary structure of the query, including local sequence and structure constraints, and a target sequence database. It reports all occurrences of the query in the target, ranked by their similarity to the query, and produces an html file that displays graphical images of the predicted structures for both the query and the candidate hits. Our tool is flexible and takes into account a large number of sequence options and existence of potential pseudoknots as dictated by specific queries. Our approach combines pre-folding and an O(m n) RNA pattern matching algorithm based on subtree homeomorphism for ordered, rooted trees. An O(n(2) log n) extension is described that allows the search engine to take into account the pseudoknots typical to riboswitches. We employed STRMS in search for both new and known RNA motifs (riboswitches and tRNAs) in large target databases. Our results point to a number of additional purine bacterial riboswitch candidates in newly sequenced bacteria, and demonstrate high sensitivity on known riboswitches and t

  14. A proximity-based graph clustering method for the identification and application of transcription factor clusters.

    Science.gov (United States)

    Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P

    2017-11-29

    Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.

  15. ExactSearch: a web-based plant motif search tool.

    Science.gov (United States)

    Gunasekara, Chathura; Subramanian, Avinash; Avvari, Janaki Venkata Ram Kumar; Li, Bin; Chen, Su; Wei, Hairong

    2016-01-01

    Plant biologists frequently need to examine if a sequence motif bound by a specific transcription or translation factor is present in the proximal promoters or 3' untranslated regions (3' UTR) of a set of plant genes of interest. To achieve such a task, plant biologists have to not only identify an appropriate algorithm for motif searching, but also manipulate the large volume of sequence data, making it burdensome to carry out or fulfill. In this study, we developed a web portal that enables plant molecular biologists to search for DNA motifs especially degenerate ones in custom sequences or the flanking regions of all genes in the 50 plant species whose genomes have been sequenced. A web tool like this is demanded to meet a variety of needs of plant biologists for identifying the potential gene regulatory relationships. We implemented a suffix tree algorithm to accelerate the searching process of a group of motifs in a multitude of target genes. The motifs to be searched can be in the degenerate bases in addition to adenine (A), cytosine (C), guanine (G), and thymine (T). The target sequences to be searched can be custom sequences or the selected proximal gene sequences from any one of the 50 sequenced plant species. The web portal also contains the functionality to facilitate the search of motifs that are represented by position probability matrix in above-mentioned species. Currently, the algorithm can accomplish an exhaust search of 100 motifs in 35,000 target sequences of 2 kb long in 4.2 min. However, the runtime may change in the future depending on the space availability, number of running jobs, network traffic, data loading, and output packing and delivery through electronic mailing. A web portal was developed to facilitate searching of motifs presents in custom sequences or the proximal promoters or 3' UTR of 50 plant species with the sequenced genomes. This web tool is accessible by using this URL: http://sys.bio.mtu.edu/motif/index.php.

  16. iTriplet, a rule-based nucleic acid sequence motif finder

    Directory of Open Access Journals (Sweden)

    Gunderson Samuel I

    2009-10-01

    Full Text Available Abstract Background With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing. Results We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay. Conclusion iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.

  17. Non-Watson Crick base pairs might stabilize RNA structural motifs in ...

    Indian Academy of Sciences (India)

    Unknown

    [Chandrasekhar K and Malathi R 2003 Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes – A comparative study of group-I intron structures; ... recognition sites for proteins, metal ions and small mole- cules (Jeffrey et al 1999; ..... From the sequence analysis (table 1, figure 1) we find an extreme ...

  18. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs

    DEFF Research Database (Denmark)

    van Beest, M; Dooijes, D; van De Wetering, M

    2000-01-01

    , 12, and 10 base pairs, respectively. Footprinting with a deletion mutant of Ste11 reveals a novel interaction between the 3' base pairs of the extended DNA motif and amino acids C-terminal to the HMG domain. The sequence-specific interaction of Ste11 with these 3' base pairs contributes significantly......Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment...... of promoter elements controlled by the yeast genes ste11 and Rox1 has indicated strict conservation of a larger DNA motif. By site selection, we identify a highly specific 12-base pair motif for Ste11, AGAACAAAGAAA. Similarly, we show that Tcf1, MatMc, and Sox4 bind unique, highly specific DNA motifs of 12...

  19. Discovering short linear protein motif based on selective training of profile hidden Markov models.

    Science.gov (United States)

    Song, Tao; Gu, Hong

    2015-07-21

    Short linear motifs (SLiMs) in proteins are relatively conservative sequence patterns within disordered regions of proteins, typically 3-10 amino acids in length. They play an important role in mediating protein-protein interactions. Discovering SLiMs by computational methods has attracted more and more attention, most of which were based on regular expressions and profiles. In this paper, a de novo motif discovery method was proposed based on profile hidden Markov models (HMMs), which can not only provide the emission probabilities of amino acids in the defined positions of SLiMs, but also model the undefined positions. We adopted the ordered region masking and the relative local conservation (RLC) masking to improve the signal to noise ratio of the query sequences while applying evolutionary weighting to make the important sequences in evolutionary process get more attention by the selective training of profile HMMs. The experimental results show that our method and the profile-based method returned different subsets within a SLiMs dataset, and the performance of the two approaches are equivalent on a more realistic discovery dataset. Profile HMM-based motif discovery methods complement the existing methods and provide another way for SLiMs analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. CREDO: a web-based tool for computational detection of conserved sequence motifs in noncoding sequences.

    Science.gov (United States)

    Hindemitt, Tobias; Mayer, Klaus F X

    2005-12-01

    CREDO is a user-friendly, web-based tool that integrates the analysis and results of different algorithms widely used for the computational detection of conserved sequence motifs in noncoding sequences. It enables easy comparison of the individual results. CREDO offers intuitive interfaces for easy and rapid configuration of the applied algorithms and convenient views on the results in graphical and tabular formats. http://mips.gsf.de/proj/regulomips/credo.htm.

  1. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  2. A study on the application of topic models to motif finding algorithms.

    Science.gov (United States)

    Basha Gutierrez, Josep; Nakai, Kenta

    2016-12-22

    Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.

  3. JB-UIDS: an interactive UIMS based on OSF/motif

    Science.gov (United States)

    Chen, Min; Sun, Honghui; Dong, Shihai

    1996-03-01

    This paper presents the principle, functions, features and implementation of a general graphical user interface management system based on OSF/Motif-JB-UIDS, which is a part of the integrated software engineering environment CASE (Computer Aided Software Engineering), named JB (Jade Bird). The visual and interactive UIMS can help the interface designer to generate user interface automatically and then refine it interactively. It adopts a new method of describing internal application interface based on Object-Oriented ideas to support the separation of user interface component from computational component. JB-UIDS has been implemented on SCO-ODT and has good portability and flexibility.

  4. Ab initio identification of human microRNAs based on structure motifs

    Directory of Open Access Journals (Sweden)

    Wiuf Carsten

    2007-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are short, non-coding RNA molecules that are directly involved in post-transcriptional regulation of gene expression. The mature miRNA sequence binds to more or less specific target sites on the mRNA. Both their small size and sequence specificity make the detection of completely new miRNAs a challenging task. This cannot be based on sequence information alone, but requires structure information about the miRNA precursor. Unlike comparative genomics approaches, ab initio approaches are able to discover species-specific miRNAs without known sequence homology. Results MiRPred is a novel method for ab initio prediction of miRNAs by genome scanning that only relies on (predicted secondary structure to distinguish miRNA precursors from other similar-sized segments of the human genome. We apply a machine learning technique, called linear genetic programming, to develop special classifier programs which include multiple regular expressions (motifs matched against the secondary structure sequence. Special attention is paid to scanning issues. The classifiers are trained on fixed-length sequences as these occur when shifting a window in regular steps over a genome region. Various statistical and empirical evidence is collected to validate the correctness of and increase confidence in the predicted structures. Among other things, we propose a new criterion to select miRNA candidates with a higher stability of folding that is based on the number of matching windows around their genome location. An ensemble of 16 motif-based classifiers achieves 99.9 percent specificity with sensitivity remaining on an acceptable high level when requiring all classifiers to agree on a positive decision. A low false positive rate is considered more important than a low false negative rate, when searching larger genome regions for unknown miRNAs. 117 new miRNAs have been predicted close to known miRNAs on human chromosome 19. All

  5. Bacterial regulon modeling and prediction based on systematic cis regulatory motif analyses

    Science.gov (United States)

    Liu, Bingqiang; Zhou, Chuan; Li, Guojun; Zhang, Hanyuan; Zeng, Erliang; Liu, Qi; Ma, Qin

    2016-03-01

    Regulons are the basic units of the response system in a bacterial cell, and each consists of a set of transcriptionally co-regulated operons. Regulon elucidation is the basis for studying the bacterial global transcriptional regulation network. In this study, we designed a novel co-regulation score between a pair of operons based on accurate operon identification and cis regulatory motif analyses, which can capture their co-regulation relationship much better than other scores. Taking full advantage of this discovery, we developed a new computational framework and built a novel graph model for regulon prediction. This model integrates the motif comparison and clustering and makes the regulon prediction problem substantially more solvable and accurate. To evaluate our prediction, a regulon coverage score was designed based on the documented regulons and their overlap with our prediction; and a modified Fisher Exact test was implemented to measure how well our predictions match the co-expressed modules derived from E. coli microarray gene-expression datasets collected under 466 conditions. The results indicate that our program consistently performed better than others in terms of the prediction accuracy. This suggests that our algorithms substantially improve the state-of-the-art, leading to a computational capability to reliably predict regulons for any bacteria.

  6. HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences.

    Science.gov (United States)

    Le, Thanh; Altman, Tom; Gardiner, Katheleen

    2010-02-01

    Identification of motifs in biological sequences is a challenging problem because such motifs are often short, degenerate, and may contain gaps. Most algorithms that have been developed for motif-finding use the expectation-maximization (EM) algorithm iteratively. Although EM algorithms can converge quickly, they depend strongly on initialization parameters and can converge to local sub-optimal solutions. In addition, they cannot generate gapped motifs. The effectiveness of EM algorithms in motif finding can be improved by incorporating methods that choose different sets of initial parameters to enable escape from local optima, and that allow gapped alignments within motif models. We have developed HIGEDA, an algorithm that uses the hierarchical gene-set genetic algorithm (HGA) with EM to initiate and search for the best parameters for the motif model. In addition, HIGEDA can identify gapped motifs using a position weight matrix and dynamic programming to generate an optimal gapped alignment of the motif model with sequences from the dataset. We show that HIGEDA outperforms MEME and other motif-finding algorithms on both DNA and protein sequences. Source code and test datasets are available for download at http://ouray.cudenver.edu/~tnle/, implemented in C++ and supported on Linux and MS Windows.

  7. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  8. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2016-01-01

    Full Text Available Background. Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Results. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. Conclusions. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  9. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    Science.gov (United States)

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  10. A motif extraction algorithm based on hashing and modulo-4 arithmetic.

    Science.gov (United States)

    Sheng, Huitao; Mehrotra, Kishan; Mohan, Chilukuri; Raina, Ramesh

    2008-01-01

    We develop an algorithm to identify cis-elements in promoter regions of coregulated genes. This algorithm searches for subsequences of desired length whose frequency of occurrence is relatively high, while accounting for slightly perturbed variants using hash table and modulo arithmetic. Motifs are evaluated using profile matrices and higher-order Markov background model. Simulation results show that our algorithm discovers more motifs present in the test sequences, when compared with two well-known motif-discovery tools (MDScan and AlignACE). The algorithm produces very promising results on real data set; the output of the algorithm contained many known motifs.

  11. FastMotif: spectral sequence motif discovery.

    Science.gov (United States)

    Colombo, Nicoló; Vlassis, Nikos

    2015-08-15

    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms are computationally demanding, and they may not be able to support the increasingly large datasets produced by modern high-throughput sequencing technologies. We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments. Based on spectral decompositions, our method is robust to model misspecifications and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. On HT-Selex data, FastMotif extracts motif profiles that match those computed by various state-of-the-art algorithms, but one order of magnitude faster. We provide a theoretical and numerical analysis of the algorithm's robustness and discuss its sensitivity with respect to the free parameters. The Matlab code of FastMotif is available from http://lcsb-portal.uni.lu/bioinformatics. vlassis@adobe.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Dispom: a discriminative de-novo motif discovery tool based on the jstacs library.

    Science.gov (United States)

    Grau, Jan; Keilwagen, Jens; Gohr, André; Paponov, Ivan A; Posch, Stefan; Seifert, Michael; Strickert, Marc; Grosse, Ivo

    2013-02-01

    DNA-binding proteins are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in target regions of genomic DNA. However, de-novo discovery of these binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not yet been solved satisfactorily. Here, we present a detailed description and analysis of the de-novo motif discovery tool Dispom, which has been developed for finding binding sites of DNA-binding proteins that are differentially abundant in a set of target regions compared to a set of control regions. Two additional features of Dispom are its capability of modeling positional preferences of binding sites and adjusting the length of the motif in the learning process. Dispom yields an increased prediction accuracy compared to existing tools for de-novo motif discovery, suggesting that the combination of searching for differentially abundant motifs, inferring their positional distributions, and adjusting the motif lengths is beneficial for de-novo motif discovery. When applying Dispom to promoters of auxin-responsive genes and those of ABI3 target genes from Arabidopsis thaliana, we identify relevant binding motifs with pronounced positional distributions. These results suggest that learning motifs, their positional distributions, and their lengths by a discriminative learning principle may aid motif discovery from ChIP-chip and gene expression data. We make Dispom freely available as part of Jstacs, an open-source Java library that is tailored to statistical sequence analysis. To facilitate extensions of Dispom, we describe its implementation using Jstacs in this manuscript. In addition, we provide a stand-alone application of Dispom at http://www.jstacs.de/index.php/Dispom for instant use.

  13. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach

    DEFF Research Database (Denmark)

    Pan, Xiaoyong; Shen, Hong Bin

    2017-01-01

    Deep is also able to automatically capture the interpretable binding motifs for RBPs. Large-scale experiments demonstrate that these mined binding motifs agree well with the experimentally verified results, suggesting iDeep is a promising approach in the real-world applications. Conclusion: The iDeep framework...... positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure....... The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. Results: In viewing...

  14. Accelerated materials property predictions and design using motif-based fingerprints

    Science.gov (United States)

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi

    2015-07-01

    Data-driven approaches are particularly useful for computational materials discovery and design as they can be used for rapidly screening over a very large number of materials, thus suggesting lead candidates for further in-depth investigations. A central challenge of such approaches is to develop a numerical representation, often referred to as a fingerprint, of the materials. Inspired by recent developments in cheminformatics, we propose a class of hierarchical motif-based topological fingerprints for materials composed of elements such as C, O, H, N, F, etc., whose coordination preferences are well understood. We show that these fingerprints, when representing either molecules or crystals, may be effectively mapped onto a variety of properties using a similarity-based learning model and hence can be used to predict the relevant properties of a material, given that its fingerprint can be defined. Two simple machine-learning-based procedures are introduced to demonstrate that the learning model can be inverted to identify the desired fingerprints and then to reconstruct molecules which possess a set of targeted properties.

  15. URS DataBase: universe of RNA structures and their motifs.

    Science.gov (United States)

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/. © The Author(s) 2016. Published by Oxford University Press.

  16. A redundant role of the CD3 gamma-immunoreceptor tyrosine-based activation motif in mature T cell function

    NARCIS (Netherlands)

    Haks, MC; Cordaro, TA; van den Brakel, JHN; Haanen, JBAG; de Vries, EFR; Borst, J; Krimpenfort, P; Kruisbeek, AM

    2001-01-01

    At least four different CD3 polypeptide chains are contained within the mature TCR complex, each encompassing one (CD3 gamma, CD3 delta, and CD3 epsilon) or three (CD3 zeta) immunoreceptof tyrosine-based activation motifs (ITAMs) within their cytoplasmic domains. Why so many ITAMs are required is

  17. Efficient exact motif discovery.

    Science.gov (United States)

    Marschall, Tobias; Rahmann, Sven

    2009-06-15

    The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif. We show how to solve the motif discovery problem (almost) exactly on a practically relevant space of IUPAC generalized string patterns, using the p-value with respect to an i.i.d. model or a Markov model as the measure of over-representation. In particular, (i) we use a highly accurate compound Poisson approximation for the null distribution of the number of motif occurrences. We show how to compute the exact clump size distribution using a recently introduced device called probabilistic arithmetic automaton (PAA). (ii) We define two p-value scores for over-representation, the first one based on the total number of motif occurrences, the second one based on the number of sequences in a collection with at least one occurrence. (iii) We describe an algorithm to discover the optimal pattern with respect to either of the scores. The method exploits monotonicity properties of the compound Poisson approximation and is by orders of magnitude faster than exhaustive enumeration of IUPAC strings (11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We justify the use of the proposed scores for motif discovery by showing our method to outperform other motif discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also propose new motifs on Mycobacterium tuberculosis. The method has been implemented in Java. It can be obtained from http://ls11-www.cs.tu-dortmund.de/people/marschal/paa_md/.

  18. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions.

    Science.gov (United States)

    Davey, Norman E; Cowan, Joanne L; Shields, Denis C; Gibson, Toby J; Coldwell, Mark J; Edwards, Richard J

    2012-11-01

    Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E.

  19. Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Science.gov (United States)

    Kriete, Andres; Bosl, William J.; Booker, Glenn

    2010-01-01

    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype. PMID:20585546

  20. Topological generalizations of network motifs

    Science.gov (United States)

    Kashtan, N.; Itzkovitz, S.; Milo, R.; Alon, U.

    2004-09-01

    Biological and technological networks contain patterns, termed network motifs, which occur far more often than in randomized networks. Network motifs were suggested to be elementary building blocks that carry out key functions in the network. It is of interest to understand how network motifs combine to form larger structures. To address this, we present a systematic approach to define “motif generalizations”: families of motifs of different sizes that share a common architectural theme. To define motif generalizations, we first define “roles” in a subgraph according to structural equivalence. For example, the feedforward loop triad—a motif in transcription, neuronal, and some electronic networks—has three roles: an input node, an output node, and an internal node. The roles are used to define possible generalizations of the motif. The feedforward loop can have three simple generalizations, based on replicating each of the three roles and their connections. We present algorithms for efficiently detecting motif generalizations. We find that the transcription networks of bacteria and yeast display only one of the three generalizations, the multi-output feedforward generalization. In contrast, the neuronal network of C. elegans mainly displays the multi-input generalization. Forward-logic electronic circuits display a multi-input, multi-output hybrid. Thus, networks which share a common motif can have very different generalizations of that motif. Using mathematical modeling, we describe the information processing functions of the different motif generalizations in transcription, neuronal, and electronic networks.

  1. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction.

    Science.gov (United States)

    Bayrak, Cigdem Sevim; Kim, Namhee; Schlick, Tamar

    2017-05-19

    Kink turns are widely occurring motifs in RNA, located in internal loops and associated with many biological functions including translation, regulation and splicing. The associated sequence pattern, a 3-nt bulge and G-A, A-G base-pairs, generates an angle of ∼50° along the helical axis due to A-minor interactions. The conserved sequence and distinct secondary structures of kink-turns (k-turn) suggest computational folding rules to predict k-turn-like topologies from sequence. Here, we annotate observed k-turn motifs within a non-redundant RNA dataset based on sequence signatures and geometrical features, analyze bending and torsion angles, and determine distinct knowledge-based potentials with and without k-turn motifs. We apply these scoring potentials to our RAGTOP (RNA-As-Graph-Topologies) graph sampling protocol to construct and sample coarse-grained graph representations of RNAs from a given secondary structure. We present graph-sampling results for 35 RNAs, including 12 k-turn and 23 non k-turn internal loops, and compare the results to solved structures and to RAGTOP results without special k-turn potentials. Significant improvements are observed with the updated scoring potentials compared to the k-turn-free potentials. Because k-turns represent a classic example of sequence/structure motif, our study suggests that other such motifs with sequence signatures and unique geometrical features can similarly be utilized for RNA structure prediction and design. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Design of character-based DNA barcode motif for species identification: A computational approach and its validation in fishes.

    Science.gov (United States)

    Chakraborty, Mohua; Dhar, Bishal; Ghosh, Sankar Kumar

    2017-11-01

    The DNA barcodes are generally interpreted using distance-based and character-based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance-based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character-based approach more accurately defines this using a unique set of nucleotide characters. The character-based analysis of full-length barcode has some inherent limitations, like sequencing of the full-length barcode, use of a sparse-data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154-bp fragment, from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species-specific barcode motifs for 109 species by the character-based method, which successfully identifies the correct species using a pattern-matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species-specific mini-barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini-barcode approach will greatly benefit the field-based system of rapid species identification. © 2017 John Wiley & Sons Ltd.

  3. MtHc: a motif-based hierarchical method for clustering massive 16S rRNA sequences into OTUs.

    Science.gov (United States)

    Wei, Ze-Gang; Zhang, Shao-Wu

    2015-07-01

    The recent sequencing revolution driven by high-throughput technologies has led to rapid accumulation of 16S rRNA sequences for microbial communities. Clustering short sequences into operational taxonomic units (OTUs) is an initial crucial process in analyzing metagenomic data. Although many methods have been proposed for OTU inferences, a major challenge is the balance between inference accuracy and computational efficiency. To address these challenges, we present a novel motif-based hierarchical method (namely MtHc) for clustering massive 16S rRNA sequences into OTUs with high clustering accuracy and low memory usage. Suppose all the 16S rRNA sequences can be used to construct a complete weighted network, where sequences are viewed as nodes, each pair of sequences is connected by an imaginary edge, and the distance of a pair of sequences represents the weight of the edge. MtHc consists of three main phrases. First, heuristically search the motif that is defined as n-node sub-graph (in the present study, n = 3, 4, 5), in which the distance between any two nodes is less than a threshold. Second, use the motif as a seed to form candidate clusters by computing the distances of other sequences with the motif. Finally, hierarchically merge the candidate clusters to generate the OTUs by only calculating the distances of motifs between two clusters. Compared with the existing methods on several simulated and real-life metagenomic datasets, we demonstrate that MtHc has higher clustering performance, less memory usage and robustness for setting parameters, and that it is more effective to handle the large-scale metagenomic datasets. The MtHC software can be freely download from for academic users.

  4. Supramolecular construction of vesicles based on core-substituted naphthalene diimide appended with triethyleneglycol motifs.

    OpenAIRE

    Bhosale S. V; Jani C. H.; Lalander C. H.; Langford S. J.; Nerush I.; Shapter J. G.; Villamaina D.; Vauthey E.

    2011-01-01

    The self assembly of core substituted naphthalene diimides bearing triethylene glycol motifs leads to the formation of stable vesicles in DMSO and CHCl3/MeOH (6 : 4 v/v) solvents. The vesicles were evaluated by means of UV/vis and fluorescence spectroscopy transmission electron microscopy atomic force microscopy and dynamic light scattering.

  5. Supramolecular construction of vesicles based on core-substituted naphthalene diimide appended with triethyleneglycol motifs.

    Science.gov (United States)

    Bhosale, Sheshanath V; Jani, Chintan H; Lalander, Cecilia H; Langford, Steven J; Nerush, Igor; Shapter, Joseph G; Villamaina, Diego; Vauthey, Eric

    2011-08-07

    The self-assembly of core-substituted naphthalene diimides bearing triethylene glycol motifs leads to the formation of stable vesicles in DMSO and CHCl(3)/MeOH (6 : 4, v/v) solvents. The vesicles were evaluated by means of UV/vis and fluorescence spectroscopy, transmission electron microscopy, atomic force microscopy and dynamic light scattering.

  6. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  7. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  8. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    , design motifs creation and the embodiment of batik. From the creation of this art successfully created into 6 (six motif, namely: (1 Motif Uwoh Kopi; (2 Motif Godhong Kopi; (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; and (6 Motif Wiji Mukti. Based on the results of the “Aesthetics assessment taste" has been noticed that the most widely preferred motif is a Uwoh Kopi motif and Kakao Raja motif. Keywords: Motif Uwoh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti

  9. A cluster refinement algorithm for motif discovery.

    Science.gov (United States)

    Li, Gang; Chan, Tak-Ming; Leung, Kwong-Sak; Lee, Kin-Hong

    2010-01-01

    Finding Transcription Factor Binding Sites, i.e., motif discovery, is crucial for understanding the gene regulatory relationship. Motifs are weakly conserved and motif discovery is an NP-hard problem. We propose a new approach called Cluster Refinement Algorithm for Motif Discovery (CRMD). CRMD employs a flexible statistical motif model allowing a variable number of motifs and motif instances. CRMD first uses a novel entropy-based clustering to find complete and good starting candidate motifs from the DNA sequences. CRMD then employs an effective greedy refinement to search for optimal motifs from the candidate motifs. The refinement is fast, and it changes the number of motif instances based on the adaptive thresholds. The performance of CRMD is further enhanced if the problem has one occurrence of motif instance per sequence. Using an appropriate similarity test of motifs, CRMD is also able to find multiple motifs. CRMD has been tested extensively on synthetic and real data sets. The experimental results verify that CRMD usually outperforms four other state-of-the-art algorithms in terms of the qualities of the solutions with competitive computing time. It finds a good balance between finding true motif instances and screening false motif instances, and is robust on problems of various levels of difficulty.

  10. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

    Science.gov (United States)

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe

    2014-07-15

    /physical properties, including stimuli responsiveness, self-healing, and environmental adaptation. It has been reported that macrocycle-based supramolecular polymers can respond to pH change, photoirradition, anions, cations, temperature, and solvent. Macrocycle-based supramolecular polymers have been prepared in solution, in gel, and in the solid state. Furthermore, the solvent has a very important influence on the formation of these supramolecular polymers. Crown ether- and pillararene-based supramolecular polymers have mainly formed in organic solvents, such as chloroform, acetone, and acetonitrile, while cyclodextrin- and cucurbituril-based supramolecular polymerizations have been usually observed in aqueous solutions. For calixarenes, both organic solvents and water have been used as suitable media for supramolecular polymerization. With the development of supramolecular chemistry and polymer science, various methods, such as nuclear magnetic resonance spectroscopy, X-ray techniques, electron microscopies, and theoretical calculation and computer simulation, have been applied for characterizing supramolecular polymers. The fabrication of macrocycle-based supramolecular polymers has become a currently hot research topic. In this Account, we summarize recent results in the investigation of supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. These supramolecular polymers are classified based on the different macrocycles used in them. Their monomer design, structure control, stimuli-responsiveness, and applications in various areas are discussed, and future research directions are proposed. It is expected that the development of supramolecular polymers will not only change the way we live and work but also exert significant influence on scientific research.

  11. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    Science.gov (United States)

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design, Synthesis and Qualitative Structure Activity Relationship Evaluations of Quinoline-Based Bisarylimidazoles as Antibacterial Motifs.

    Science.gov (United States)

    Al-Qawasmeh, Raed A; Huthail, Basil B; Sinnokrot, Mutasem O; Semreen, Mohammad H; Odeh, Raed A; Abu-Zarga, Musa H; Tarazi, Hamadeh; Yousef, Imad A; Al-Tel, Taleb H

    2016-01-01

    their antibacterial activity. In this respect, it was found that, hydrophobic and electron-withdrawing moieties, such as halogens, were required on each end of the isoquinoline-based bisaryl imidazole hybrid motifs to produce broad-spectrum activity against the tested strains. Thus, molecules containing halophenyl or pyridyl arms were found more potent than molecules containing thiophene and/or electron-releasing groups on the phenyl arms, which showed much less antibacterial activity against the tested strains. In summary, 4-(4,5-diphenyl-1H-imidazol-2-yl)-2-phenylquinoline systems can be assembled efficiently through the Pfitzinger ring expansion- condensation strategy. This approach appears to hold considerable synthetic utility. The particular value of such a synthetic route resides on the conciseness and efficiency through which imidazo-quinoline construction can be synthesized from structurally simple and accessible acetophenone precursors.

  13. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Directory of Open Access Journals (Sweden)

    Kathleen Busman-Sahay

    Full Text Available Following antigen recognition, B cell receptor (BCR-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2 is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs. Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  14. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Science.gov (United States)

    Busman-Sahay, Kathleen; Drake, Lisa; Sitaram, Anand; Marks, Michael; Drake, James R

    2013-01-01

    Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  15. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  16. Detecting the bipartite World Trade Web evolution across 2007: a motifs-based analysis

    CERN Document Server

    Saracco, Fabio; Gabrielli, Andrea; Squartini, Tiziano

    2015-01-01

    In the present paper we employ the theoretical tools developed in network theory, in order to shed light on the response of world wide trade to the financial crisis of 2007. In particular, we have explored the evolution of the bipartite country-product World Trade Web across the years 1995-2010, monitoring the behaviour of the system both before and after 2007. Remarkably, our results indicate that, from 2003 on, the abundances of a recently-defined class of bipartite motifs assume values progressively closer to the ones predicted by a null model which preserves only basic features of the observed structure, completely randomizing the rest. In other words, as 2007 approaches the World Trade Web becomes more and more compatible with the picture of a bipartite network where correlations between countries and products are progressively lost. Moreover, the trends characterizing the z-scores of the considered family of motifs suggest that the most evident modification in the structure of the world trade network ca...

  17. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  18. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...... that the leucine-based motif in these complexes was inactive. In contrast, the CD4/CD3gamma chimeras did not associate with TCRzeta, and the leucine-based motif in these chimeras was constitutively active resulting in a high spontaneous internalization rate and low expression of the chimeras at the cell surface...

  19. Structural alphabet motif discovery and a structural motif database.

    Science.gov (United States)

    Ku, Shih-Yen; Hu, Yuh-Jyh

    2012-01-01

    This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to these sequences to detect conserved motifs. We named the structural motif database we built the SA-Motifbase, which provides the structural information conserved at different hierarchical levels in SCOP. For each motif, SA-Motifbase presents its 3D view; alphabet letter preference; alphabet letter frequency distribution; and the significance. SA-Motifbase is available at http://bioinfo.cis.nctu.edu.tw/samotifbase/. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Biological network motif detection and evaluation.

    Science.gov (United States)

    Kim, Wooyoung; Li, Min; Wang, Jianxin; Pan, Yi

    2011-01-01

    Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks.

  1. Biological network motif detection and evaluation

    Directory of Open Access Journals (Sweden)

    Kim Wooyoung

    2011-12-01

    Full Text Available Abstract Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks.

  2. FastMotif: spectral sequence motif discovery

    National Research Council Canada - National Science Library

    Colombo, Nicoló; Vlassis, Nikos

    2015-01-01

    ... datasets produced by modern high-throughput sequencing technologies. We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments...

  3. A fluorescence glucose sensor based on pH induced conformational switch of i-motif DNA.

    Science.gov (United States)

    Ke, Qingqing; Zheng, Yu; Yang, Fan; Zhang, Hanchang; Yang, Xiurong

    2014-11-01

    A facile fluorescence biosensor for the detection of glucose is proposed based on the pH-induced conformational switch of i-motif DNA in this paper. Glucose can be oxidized by oxygen (O2) in the presence of glucose oxidase (GOD), and the generated gluconic acid can decrease the pH value of the solution and then induce the fluorophore- and quencher-labeled cytosine-rich single-stranded DNA to fold into a close-packed i-motif structure. As a result, the fluorescence quenching occurs because of the resonance energy transfer between fluorophore and quencher. Based on this working principle, the concentration of glucose can be detected by the decrease of fluorescence density. Under the optimal experimental conditions, the assay shows a linear response range of 5-100 µM for the glucose concentration with a detection limit of 4 µM. This glucose biosensor was applied to determine glucose in real samples successfully, suggesting its potential in the practical applicability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian

    2010-08-01

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  5. Large-scale investigation of human TF-miRNA relations based on coexpression profiles.

    Science.gov (United States)

    Chien, Chia-Hung; Chiang-Hsieh, Yi-Fan; Tsou, Ann-Ping; Weng, Shun-Long; Chang, Wen-Chi; Huang, Hsien-Da

    2014-01-01

    Noncoding, endogenous microRNAs (miRNAs) are fairly well known for regulating gene expression rather than protein coding. Dysregulation of miRNA gene, either upregulated or downregulated, may lead to severe diseases or oncogenesis, especially when the miRNA disorder involves significant bioreactions or pathways. Thus, how miRNA genes are transcriptionally regulated has been highlighted as well as target recognition in recent years. In this study, a large-scale investigation of novel cis- and trans-elements was undertaken to further determine TF-miRNA regulatory relations, which are necessary to unravel the transcriptional regulation of miRNA genes. Based on miRNA and annotated gene expression profiles, the term "coTFBS" was introduced to detect common transcription factors and the corresponding binding sites within the promoter regions of each miRNA and its coexpressed annotated genes. The computational pipeline was successfully established to filter redundancy due to short sequence motifs for TFBS pattern search. Eventually, we identified more convinced TF-miRNA regulatory relations for 225 human miRNAs. This valuable information is helpful in understanding miRNA functions and provides knowledge to evaluate the therapeutic potential in clinical research. Once most expression profiles of miRNAs in the latest database are completed, TF candidates of more miRNAs can be explored by this filtering approach in the future.

  6. MODIS: an audio motif discovery software

    OpenAIRE

    Catanese, Laurence; Souviraà-Labastie, Nathan; Qu, Bingqing; Campion, Sébastien; Gravier, Guillaume; Vincent, Emmanuel; Bimbot, Frédéric

    2013-01-01

    International audience; MODIS is a free speech and audio motif discovery software developed at IRISA Rennes. Motif discovery is the task of discovering and collecting occurrences of repeating patterns in the absence of prior knowledge, or training material. MODIS is based on a generic approach to mine repeating audio sequences, with tolerance to motif variability. The algorithm implementation allows to process large audio streams at a reasonable speed where motif discovery often requires huge...

  7. ISFOLD: structure prediction of base pairs in non-helical RNA motifs from isostericity signatures in their sequence alignments.

    Science.gov (United States)

    Mokdad, Ali; Frankel, Alan D

    2008-04-01

    The existence and identity of non-Watson-Crick base pairs (bps) within RNA bulges, internal loops, and hairpin loops cannot reliably be predicted by existing algorithms. We have developed the Isfold (Isosteric Folding) program as a tool to examine patterns of nucleotide substitutions from sequence alignments or mutation experiments and identify plausible bp interactions. We infer these interactions based on the observation that each non-Watson-Crick bp has a signature pattern of isosteric substitutions where mutations can be made that preserve the 3D structure. Isfold produces a dynamic representation of predicted bps within defined motifs in order of their probabilities. The software was developed under Windows XP, and is capable of running on PC and MAC with Matlab 7.1 (SP3) or higher. A PC stand-alone version that does not require Matlab also is available. This software and a user manual are freely available at www.ucsf.edu/frankel/isfold.

  8. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    . These features make Regmex well suited for a range of biological sequence analysis problems related to motif discovery, exemplified by microRNA seed enrichment, but also including enrichment problems involving complex motifs and combinations of motifs. We demonstrate a number of usage scenarios that take......Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...

  9. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  10. TCR comodulation of nonengaged TCR takes place by a protein kinase C and CD3 gamma di-leucine-based motif-dependent mechanism

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Rasmussen, B. A.; Lauritsen, J P

    2003-01-01

    of comodulation. Like internalization of engaged TCR, comodulation was dependent on protein tyrosine kinase activity. Finally, we found that in contrast to internalization of engaged TCR, comodulation was highly dependent on protein kinase C activity and the CD3 gamma di-leucine-based motif. Based...

  11. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming

    Directory of Open Access Journals (Sweden)

    Lars Matthias Voll

    2011-08-01

    Full Text Available During compatible interactions with their host plants, biotrophic plant pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism towards colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, the corn smut fungus Ustilago maydis and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment.Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. Increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during

  12. An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis.

    Science.gov (United States)

    Oliver, Stefan L; Brady, Jennifer J; Sommer, Marvin H; Reichelt, Mike; Sung, Phillip; Blau, Helen M; Arvin, Ann M

    2013-01-29

    Herpesvirus entry functions of the conserved glycoproteins gB and gH-gL have been delineated, but their role in regulating cell-cell fusion is poorly understood. Varicella-zoster virus (VZV) infection provides a valuable model for investigating cell-cell fusion because of the importance of this process for pathogenesis in human skin and sensory ganglia. The present study identifies a canonical immunoreceptor tyrosine-based inhibition motif (ITIM) in the gB cytoplasmic domain (gBcyt) and demonstrates that the gBcyt is a tyrosine kinase substrate. Orbitrap mass spectrometry confirmed that Y881, central to the ITIM, is phosphorylated. To determine whether the gBcyt ITIM regulates gB/gH-gL-induced cell-cell fusion in vitro, tyrosine residues Y881 and Y920 in the gBcyt were substituted with phenylalanine separately or together. Recombinant viruses with these substitutions were generated to establish their effects on syncytia formation in replication in vitro and in the human skin xenograft model of VZV pathogenesis. The Y881F substitution caused significantly increased cell-cell fusion despite reduced cell-surface gB. Importantly, the Y881F or Y881/920F substitutions in VZV caused aggressive syncytia formation, reducing cell-cell spread. These in vitro effects of aggressive syncytia formation translated to severely impaired skin infection in vivo. In contrast, the Y920F substitution did not affect virus replication in vitro or in vivo. These observations suggest that gB modulates cell-cell fusion via an ITIM-mediated Y881 phosphorylation-dependent mechanism, supporting a unique concept that intracellular signaling through this gBcyt motif regulates VZV syncytia formation and is essential for skin pathogenesis.

  13. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  14. Mining Conditional Phosphorylation Motifs.

    Science.gov (United States)

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/.

  15. Crystal violet as a fluorescent switch-on probe for i-motif: label-free DNA-based logic gate.

    Science.gov (United States)

    Ma, Dik-Lung; Kwan, Maria Hiu-Tung; Chan, Daniel Shiu-Hin; Lee, Paul; Yang, Hui; Ma, Victor Pui-Yan; Bai, Li-Ping; Jiang, Zhi-Hong; Leung, Chung-Hang

    2011-07-07

    The first application of crystal violet as a selective fluorescent switch-on probe for i-motif DNA has been reported. This interaction has been exploited to develop a label-free DNA-based "OR" logic gate for potassium and hydrogen ions.

  16. Non-Watson Crick base pairs might stabilize RNA structural motifs in ...

    Indian Academy of Sciences (India)

    Watson Crick base pairs, internal loops and pseudoknots have been the highlighting feature of recent structural determination of RNAs. The recent crystal structure of group-I introns has demonstrated that these might constitute RNA structural ...

  17. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  18. URS DataBase: universe of RNA structures and their motifs

    OpenAIRE

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structur...

  19. A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences

    Directory of Open Access Journals (Sweden)

    López Rodrigo

    2008-05-01

    Full Text Available Abstract Background The structure of many eukaryotic cell regulatory proteins is highly modular. They are assembled from globular domains, segments of natively disordered polypeptides and short linear motifs. The latter are involved in protein interactions and formation of regulatory complexes. The function of such proteins, which may be difficult to define, is the aggregate of the subfunctions of the modules. It is therefore desirable to efficiently predict linear motifs with some degree of accuracy, yet sequence database searches return results that are not significant. Results We have developed a method for scoring the conservation of linear motif instances. It requires only primary sequence-derived information (e.g. multiple alignment and sequence tree and takes into account the degenerate nature of linear motif patterns. On our benchmarking, the method accurately scores 86% of the known positive instances, while distinguishing them from random matches in 78% of the cases. The conservation score is implemented as a real time application designed to be integrated into other tools. It is currently accessible via a Web Service or through a graphical interface. Conclusion The conservation score improves the prediction of linear motifs, by discarding those matches that are unlikely to be functional because they have not been conserved during the evolution of the protein sequences. It is especially useful for instances in non-structured regions of the proteins, where a domain masking filtering strategy is not applicable.

  20. Fluorescent Sensor for PH Monitoring Based on an i-Motif---Switching Aptamer Containing a Tricyclic Cytosine Analogue (tC).

    Science.gov (United States)

    Bielecka, Patrycja; Juskowiak, Bernard

    2015-10-09

    There are cytosine-rich regions in the genome that bind protons with high specificity. Thus protonated C-rich sequence may undergo folding to tetraplex structures called i-motifs. Therefore, one can regard such specific C-rich oligonucleotides as aptamers that recognize protons and undergo conformational transitions. Proper labeling of the aptamer with a fluorescent tag constitutes a platform to construct a pH-sensitive aptasensor. Since the hemiprotonated C-C⁺ base pairs are responsible for the folded tetraplex structure of i-motif, we decided to substitute one of cytosines in an aptamer sequence with its fluorescent analogue, 1,3-diaza-2-oxophenothiazine (tC). In this paper we report on three tC-modified fluorescent probes that contain RET related sequences as a proton recognizing aptamer. Results of the circular dichroism (CD), UV absorption melting experiments, and steady-state fluorescence measurements of these tC-modified i-motif probes are presented and discussed. The pH-induced i-motif formation by the probes resulted in fluorescence quenching of tC fluorophore. Efficiency of quenching was related to the pH variations. Suitability of the sensor for monitoring pH changes was also demonstrated.

  1. New imidazopyridopyrimidine:naphthyridine base-pairing motif, ImN(N):NaO(O), consisting of a DAAD:ADDA hydrogen bonding pattern, markedly stabilize DNA duplexes.

    Science.gov (United States)

    Kuramoto, Kazuyuki; Tarashima, Noriko; Hirama, Yasuyuki; Kikuchi, Yusaku; Minakawa, Noriaki; Matsuda, Akira

    2011-10-14

    The new imidazopyridopyrimidine:naphthyridine base-pairing motifs, ImO(O):NaN(N) and ImN(N):NaO(O), were designed. Among the base pairs examined, DNA duplexes containing ImN(N):NaO(O) pair(s) consisting of a DAAD:ADDA hydrogen bonding pattern (D = donor, A = acceptor) were markedly stabilized thermally and thermodynamically. This journal is © The Royal Society of Chemistry 2011

  2. The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations

    Directory of Open Access Journals (Sweden)

    Hyeim Jung

    2015-09-01

    Full Text Available Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.

  3. The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations.

    Science.gov (United States)

    Jung, Hyeim; Han, Seonggyun; Kim, Sangsoo

    2015-09-01

    Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.

  4. The Study of Meanings of Motifs on Artifacts Discovered from Archeological Sites of Gilan Province and their Classification based on Dumézil’s Trifunctional Model

    OpenAIRE

    Ziba Kazempoor; Mohsen Marasi

    2017-01-01

    Gilan is one of the historical centers which has drawn the attention of archeological and art researchers due to the fact that unique artistic works have been discovered from its archeological sites. The present study seeks to review the meanings of motifs on archeological artifacts discovered from Gilan and to classify the artifacts based on Dumézil’s trifunctional model. This study aims to increase awareness of form and content of designs on historical works of Gilan and to detail historica...

  5. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  6. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.

    Science.gov (United States)

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-03-01

    Transcriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic approaches based on sequences from only one species that typically take into account intra-motif dependencies. It has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously. Here, we present an approach for de-novo motif discovery that combines phylogenetic footprinting with motif models capable of taking into account intra-motif dependencies. We study the degree of intra-motif dependencies inferred by this approach from ChIP-seq data of 35 transcription factors. We find that significant intra-motif dependencies of orders 1 and 2 are present in all 35 datasets and that intra-motif dependencies of order 2 are typically stronger than those of order 1. We also find that the presented approach improves the classification performance of phylogenetic footprinting in all 35 datasets and that incorporating intra-motif dependencies of order 2 yields a higher classification performance than incorporating such dependencies of only order 1. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies leads to an improved performance in the classification of transcription factor binding sites. This may advance our understanding of transcriptional gene regulation and its evolution.

  7. Fine-tuning of T-cell development by the CD3γ di-leucine-based TCR-sorting motif

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Boding, Lasse; Buus, Terkild B

    2015-01-01

    The CD3γ di-leucine-based (diL) receptor-sorting motif plays a central role in TCR down-regulation and in clonal expansion of virus-specific T cells. However, the role of the CD3γ diL motif in T-cell development is not known. In this study, we show that protein kinase C-induced TCR down......-regulation is abolished in thymocytes from CD3γLLAA mice with a mutated CD3γ diL motif, and that CD3γLLAA mice have reduced numbers of thymocytes compared with aged-matched wild-type mice. We found that early thymocyte development at the β-selection checkpoint is impaired resulting in reduced numbers of double negative...... (DN) 4 cells in CD3γLLAA mice. This was not caused by reduced proliferation but most probably by increased down-regulation of the antiapoptotic molecule Bcl-2 causing enhanced apoptosis during the transition from the DN3 to the DN4 stage. In contrast, proliferation of immature CD8 single positive (ISP...

  8. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  9. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    Science.gov (United States)

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  10. MEME SUITE: tools for motif discovery and searching.

    Science.gov (United States)

    Bailey, Timothy L; Boden, Mikael; Buske, Fabian A; Frith, Martin; Grant, Charles E; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W; Noble, William S

    2009-07-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm TOMTOM. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and TOMTOM), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

  11. Assessment of composite motif discovery methods

    Directory of Open Access Journals (Sweden)

    Johansen Jostein

    2008-02-01

    Full Text Available Abstract Background Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery – discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. Results We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Conclusion Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual

  12. Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay.

    Science.gov (United States)

    Liu, Wenli; Zhang, Lanwei; Yi, Huaxi; Shi, John; Xue, Chaohui; Li, Hongbo; Jiao, Yuehua; Shigwedha, Nditange; Du, Ming; Han, Xue

    2014-05-01

    In the present study, a YGNGV-motif-based assay was developed and applied. Given that there is an increasing demand for natural preservatives, we set out to obtain lactic acid bacteria (LAB) that produce bacteriocins against Gram-positive and Gram-negative bacteria. We here isolated 123 LAB strains from 5 types of traditional Chinese fermented food and screened them for the production of bacteriocins using the agar well diffusion assay (AWDA). Then, to acquire LAB producing class IIa bacteriocins, we used a YGNGV-motif-based assay that was based on 14 degenerate primers matching all class IIa bacteriocin-encoding genes currently deposited in NCBI. Eight of the LAB strains identified by AWDA could inhibit Gram-positive and Gram-negative bacteria; 5 of these were YGNGV-amplicon positive. Among these 5 isolates, amplicons from 2 strains (Y31 and Y33) matched class IIa bacteriocin genes. Strain Y31 demonstrated the highest inhibitory activity and the best match to a class IIa bacteriocin gene in NCBI, and was identified as Enterococcus faecium. The bacteriocin from Enterococcus avium Y33 was 100% identical to enterocin P. Both of these strains produced bacteriocins with strong antimicrobial activity against Listeria monocytogenes, Escherichia coli, and Bacillus subtilis, hence these bacteriocins hold promise as potential bio-preservatives in the food industry. These findings also indicated that the YGNGV-motif-based assay used in this study could identify novel class IIa bacteriocinogenic LAB, rapidly and specifically, saving time and labour by by-passing multiple separation and purification steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Genome-wide prediction of the polymorphic Ser gene family in Tetrahymena thermophila based on motif analysis.

    Science.gov (United States)

    Ponsuwanna, Patrath; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2014-01-01

    Even though antigenic variation is employed among parasitic protozoa for host immune evasion, Tetrahymena thermophila, a free-living ciliate, can also change its surface protein antigens. These cysteine-rich glycosylphosphatidylinositol (GPI)-linked surface proteins are encoded by a family of polymorphic Ser genes. Despite the availability of T. thermophila genome, a comprehensive analysis of the Ser family is limited by its high degree of polymorphism. In order to overcome this problem, a new approach was adopted by searching for Ser candidates with common motif sequences, namely length-specific repetitive cysteine pattern and GPI anchor site. The candidate genes were phylogenetically compared with the previously identified Ser genes and classified into subtypes. Ser candidates were often found to be located as tandem arrays of the same subtypes on several chromosomal scaffolds. Certain Ser candidates located in the same chromosomal arrays were transcriptionally expressed at specific T. thermophila developmental stages. These Ser candidates selected by the motif analysis approach can form the foundation for a systematic identification of the entire Ser gene family, which will contribute to the understanding of their function and the basis of T. thermophila antigenic variation.

  14. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  15. A series of lanthanide-transition metal frameworks based on 1-, 2-, and 3D metal-organic motifs linked by different 1D copper(I) halide motifs.

    Science.gov (United States)

    Cheng, Jian-Wen; Zheng, Shou-Tian; Yang, Guo-Yu

    2007-11-26

    Hydrothermal reactions of lanthanide(III) oxide and copper halide with isonicotinic acid (Hina) and pyridine-2,3-dicarboxylic acid (H2pdc) or 1,2-benzenedicarboxylic acid (H2bdc) lead to three novel lanthanide(III)-copper(I) heterometallic compounds, namely, [Ce2(ina)5(na)2(H2O)2][Cu5Br4] (1, na=nicotinic acid), [Er4(ina)8(bdc)2(OH)(H2O)5][Cu8I7] (2), and [Ce3(ina)8(bdc)(H2O)4][Cu7Br6] (3). Compound 1 is constructed from two distinct units of the Ln-organic double chains and inorganic [Cu5Br4]nn+ chains. Compound 2 consists of 2D Ln-organic layers and 1D [Cu8I7]nn+ cluster chains. Compound 3 can be viewed as a 1D [Cu6Br6]n chainlike motif inserted into the channels of a 3D Ln-Cu-organic motif. Compounds 1-3 exhibit three different 1D inorganic copper(I)-halide chains interconnected with metal-organic 1D chains, 2D layers, and 3D nets resulting in three mixed-motif non-interpenetrating heterometallic Cu-halide-lanthanide (Ln)-organic frameworks, which represent good examples and a facile method to construct such mixed-motif heterometallic compounds. Furthermore, the IR, TGA, and UV-vis spectra of 1-3 were also studied.

  16. Improved benchmarks for computational motif discovery

    Directory of Open Access Journals (Sweden)

    Walseng Vegard

    2007-06-01

    Full Text Available Abstract Background An important step in annotation of sequenced genomes is the identification of transcription factor binding sites. More than a hundred different computational methods have been proposed, and it is difficult to make an informed choice. Therefore, robust assessment of motif discovery methods becomes important, both for validation of existing tools and for identification of promising directions for future research. Results We use a machine learning perspective to analyze collections of transcription factors with known binding sites. Algorithms are presented for finding position weight matrices (PWMs, IUPAC-type motifs and mismatch motifs with optimal discrimination of binding sites from remaining sequence. We show that for many data sets in a recently proposed benchmark suite for motif discovery, none of the common motif models can accurately discriminate the binding sites from remaining sequence. This may obscure the distinction between the potential performance of the motif discovery tool itself versus the intrinsic complexity of the problem we are trying to solve. Synthetic data sets may avoid this problem, but we show on some previously proposed benchmarks that there may be a strong bias towards a presupposed motif model. We also propose a new approach to benchmark data set construction. This approach is based on collections of binding site fragments that are ranked according to the optimal level of discrimination achieved with our algorithms. This allows us to select subsets with specific properties. We present one benchmark suite with data sets that allow good discrimination between positive and negative instances with the common motif models. These data sets are suitable for evaluating algorithms for motif discovery that rely on these models. We present another benchmark suite where PWM, IUPAC and mismatch motif models are not able to discriminate reliably between positive and negative instances. This suite could be used

  17. Visibility graph motifs

    CERN Document Server

    Iacovacci, Jacopo

    2015-01-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...

  18. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  19. [Study of pH measuring based on i-motif DNA conformation switch and UV-Vis absorption spectroscopy of gold nanoparticles].

    Science.gov (United States)

    Zhong, Jian-hai; Guo, Liang-qia; Wu, Jin-mei; Chen, Jin-feng; Chen, Zhang-jie

    2012-04-01

    A fast, sensitive, colorimetric method for the detection of pH based on the differentiate effect of gold nanoparticles to the configuration of DNA was developed in this study. The UV-Vis absorption spectroscopy of the i-motif DNA-Au NPs system has been investigated, and the effect of the concentration of salt and i-motif DNA, reaction time and DNA sequence on the pH response of the system have been also optimized. Under the optimum conditions, the UV-Vis absorption spectroscopy of the Au NPs is changed regularly with pH in the range of 5.3 - 7.0, the absorbance at 520 nm is increased gradually while at 700 nm decreased. Correspondingly, the color of the Au NPs is varied from violet to red. The pH sensor is no need to modification, low cost, fast and can be carried out by naked eyes. It is promising to use in monitoring some life process which associated with pH variation.

  20. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  1. Fingerprint motifs of phytases

    African Journals Online (AJOL)

    Fan CM

    2013-03-06

    Mar 6, 2013 ... unique sequences including 131 prokaryotic and 102 eukaryotic phytase sequences covered phytases from. 190 species including 131 bacterium sequences, 70 fungus sequences, 27 plant sequences, one animal sequence and four yeast sequences. For motif analysis, 54 sequences were randomly.

  2. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  3. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment.

    Science.gov (United States)

    Dietz, Andrea N; Villinger, Clarissa; Becker, Stefan; Frick, Manfred; von Einem, Jens

    2018-01-01

    The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can

  4. ActiveMotif: Interactive motif discovery with human feedback.

    Science.gov (United States)

    Younghoon Kim; Woonghee Lee; Keonwoo Kim

    2017-07-01

    Motif detection, which is to discover short patterns involved in many important biological processes, has been recently raised as an important task in bioinformatics. The traditional algorithms to find a sequence motif have been developed using machine learning only without involving the experience and domain knowledge of human experts effectively. In this paper, we propose an interactive motif discovery system by introducing a new learning algorithm, by generalizing a well-known statistical motif model, whose inference can be shepherded by human feedback.

  5. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity...... of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users...... to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs...

  6. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  7. A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria

    Directory of Open Access Journals (Sweden)

    Axmann Ilka M

    2007-10-01

    Full Text Available Abstract Background Non-coding RNAs (ncRNA are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the Prochlorococcus/Synechococcus group of marine cyanobacteria. Results Here we show that screening available genome sequences based on an RNA motif and followed by experimental analysis works successfully in detecting this RNA in all lineages of cyanobacteria. Yfr1 is an abundant ncRNA between 54 and 69 nt in size that is ubiquitous for cyanobacteria except for two low light-adapted strains of Prochlorococcus, MIT 9211 and SS120, in which it must have been lost secondarily. Yfr1 consists of two predicted stem-loop elements separated by an unpaired sequence of 16–20 nucleotides containing the ultraconserved undecanucleotide 5'-ACUCCUCACAC-3'. Conclusion Starting with an ncRNA previously found in a narrow group of cyanobacteria only, we show here the highly specific and sensitive identification of its homologs within all lineages of cyanobacteria, whereas it was not detected within the genome sequences of E. coli and of 7 other eubacteria belonging to the alpha-proteobacteria, chlorobiaceae and spirochaete. The integration of RNA motif prediction into computational pipelines for the detection of ncRNAs in bacteria appears as a promising step to improve the quality of such predictions.

  8. Modeling gene regulatory network motifs using Statecharts.

    Science.gov (United States)

    Fioravanti, Fabio; Helmer-Citterich, Manuela; Nardelli, Enrico

    2012-03-28

    Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks.For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal.We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed.

  9. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  10. RMOD: a tool for regulatory motif detection in signaling network.

    Science.gov (United States)

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  11. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  12. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  13. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    Science.gov (United States)

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  14. Motif content comparison between monocot and dicot species.

    Science.gov (United States)

    Cserhati, Matyas

    2015-03-01

    While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome) is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5' and 3' UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3' UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  15. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  16. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  17. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    Science.gov (United States)

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  18. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    Directory of Open Access Journals (Sweden)

    Paula S Santos

    Full Text Available Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  19. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  20. Identifying novel sequence variants of RNA 3D motifs

    Science.gov (United States)

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  1. ELM: the status of the 2010 eukaryotic linear motif resource.

    Science.gov (United States)

    Gould, Cathryn M; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E; Haslam, Niall; Weatheritt, Robert J; Budd, Aidan; Hughes, Tim; Pas, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.

  2. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  3. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1

    NARCIS (Netherlands)

    Hennrich, M.L.|info:eu-repo/dai/nl/314406778; Marino, F.|info:eu-repo/dai/nl/339461799; Groenewold, V.; Kops, G.J.P.L.; Mohammed, S.|info:eu-repo/dai/nl/30483632X; Heck, A.J.R.|info:eu-repo/dai/nl/105189332

    2013-01-01

    In order to understand cellular signaling, a clear understanding of kinase–substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method

  4. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: II. Case studies and applications

    Science.gov (United States)

    Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2009-11-01

    This paper describes several case studies concerning protein function inference from its structure using our novel approach described in the accompanying paper. This approach employs family-specific motifs, i.e. three-dimensional amino acid packing patterns that are statistically prevalent within a protein family. For our case studies we have selected families from the SCOP and EC classifications and analyzed the discriminating power of the motifs in depth. We have devised several benchmarks to compare motifs mined from unweighted topological graph representations of protein structures with those from distance-labeled (weighted) representations, demonstrating the superiority of the latter for function inference in most families. We have tested the robustness of our motif library by inferring the function of new members added to SCOP families, and discriminating between several families that are structurally similar but functionally divergent. Furthermore we have applied our method to predict function for several proteins characterized in structural genomics projects, including orphan structures, and we discuss several selected predictions in depth. Some of our predictions have been corroborated by other computational methods, and some have been validated by independent experimental studies, validating our approach for protein function inference from structure.

  5. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2012-11-21

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  6. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models.

    Science.gov (United States)

    Kulakovskiy, Ivan V; Medvedeva, Yulia A; Schaefer, Ulf; Kasianov, Artem S; Vorontsov, Ilya E; Bajic, Vladimir B; Makeev, Vsevolod J

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source.

  7. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  8. Limitations and potentials of current motif discovery algorithms

    National Research Council Canada - National Science Library

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    .... Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB...

  9. A Monte Carlo EM algorithm for de novo motif discovery in biomolecular sequences.

    Science.gov (United States)

    Bi, Chengpeng

    2009-01-01

    Motif discovery methods play pivotal roles in deciphering the genetic regulatory codes (i.e., motifs) in genomes as well as in locating conserved domains in protein sequences. The Expectation Maximization (EM) algorithm is one of the most popular methods used in de novo motif discovery. Based on the position weight matrix (PWM) updating technique, this paper presents a Monte Carlo version of the EM motif-finding algorithm that carries out stochastic sampling in local alignment space to overcome the conventional EM's main drawback of being trapped in a local optimum. The newly implemented algorithm is named as Monte Carlo EM Motif Discovery Algorithm (MCEMDA). MCEMDA starts from an initial model, and then it iteratively performs Monte Carlo simulation and parameter update until convergence. A log-likelihood profiling technique together with the top-k strategy is introduced to cope with the phase shifts and multiple modal issues in motif discovery problem. A novel grouping motif alignment (GMA) algorithm is designed to select motifs by clustering a population of candidate local alignments and successfully applied to subtle motif discovery. MCEMDA compares favorably to other popular PWM-based and word enumerative motif algorithms tested using simulated (l, d)-motif cases, documented prokaryotic, and eukaryotic DNA motif sequences. Finally, MCEMDA is applied to detect large blocks of conserved domains using protein benchmarks and exhibits its excellent capacity while compared with other multiple sequence alignment methods.

  10. i-Motif DNA: structure, stability and targeting with ligands.

    Science.gov (United States)

    Day, Henry A; Pavlou, Pavlos; Waller, Zoë A E

    2014-08-15

    i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Unravelling daily human mobility motifs.

    Science.gov (United States)

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-06

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  12. DMINDA: an integrated web server for DNA motif identification and analyses

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-01-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. PMID:24753419

  13. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. DREME: motif discovery in transcription factor ChIP-seq data.

    Science.gov (United States)

    Bailey, Timothy L

    2011-06-15

    Transcription factor (TF) ChIP-seq datasets have particular characteristics that provide unique challenges and opportunities for motif discovery. Most existing motif discovery algorithms do not scale well to such large datasets, or fail to report many motifs associated with cofactors of the ChIP-ed TF. We present DREME, a motif discovery algorithm specifically designed to find the short, core DNA-binding motifs of eukaryotic TFs, and optimized to analyze very large ChIP-seq datasets in minutes. Using DREME, we discover the binding motifs of the the ChIP-ed TF and many cofactors in mouse ES cell (mESC), mouse erythrocyte and human cell line ChIP-seq datasets. For example, in mESC ChIP-seq data for the TF Esrrb, we discover the binding motifs for eight cofactor TFs important in the maintenance of pluripotency. Several other commonly used algorithms find at most two cofactor motifs in this same dataset. DREME can also perform discriminative motif discovery, and we use this feature to provide evidence that Sox2 and Oct4 do not bind in mES cells as an obligate heterodimer. DREME is much faster than many commonly used algorithms, scales linearly in dataset size, finds multiple, non-redundant motifs and reports a reliable measure of statistical significance for each motif found. DREME is available as part of the MEME Suite of motif-based sequence analysis tools (http://meme.nbcr.net).

  15. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  16. Akurasi Algoritma Density Based Spatial Clustering of Application with Noise (DBSCAN danHill Climbing Pada Accumulator Array Invariant Generalized Hough Transform Dalam Menemukan Posisi Kemunculan Motif pada Citra Batik

    Directory of Open Access Journals (Sweden)

    Uray Heri

    2015-11-01

    Full Text Available Penelitianinimembahastentangekstraksi akumulasi voting pada accumulatorarray yang dihasilkan algoritma InvariantGeneralised Hough Transform (GHT untukmenemukan posisi kemunculan motif pada citrabatik yang telah mengalami perubahan skaladan atau rotasi. Proses ekstraksi accumulatorarray dilakukan dengan 4 (empat metode yaituHillClimbingClustering,KombinasiTresholding dan Density Based SpatialClustering of Application with Noise (DBSCAN,Kombinasi Hill Climbing dan DBSCAN sertaKombinasi Tresholding, Hill Climbing danDBSCAN. Untuk setiap metode yang diusulkan,dihitung nilai Precision dan Recall. Precisiondan Recall tertinggi diperoleh oleh KombinasiTresholding, Hill Climbing dan DBSCAN, yaitusebesar 23% untuk precision dan 35% untukrecall.

  17. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  18. A novel Bayesian DNA motif comparison method for clustering and retrieval.

    Directory of Open Access Journals (Sweden)

    Naomi Habib

    2008-02-01

    Full Text Available Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.

  19. Trypanosoma cruzi I genotypes in different geographic regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced leader genes✯

    Science.gov (United States)

    Cura, Carolina I.; Mejía-Jaramillo, Ana M.; Duffy, Tomás; Burgos, Juan M.; Rodriguero, Marcela; Cardinal, Marta V.; Kjos, Sonia; Gurgel-Gonçalves, Rodrigo; Blanchet, Denis; De Pablos, Luis M.; Tomasini, Nicolás; Silva, Alex Da; Russomando, Graciela; Cuba Cuba, Cesar A.; Aznar, Christine; Abate, Teresa; Levin, Mariano J.; Osuna, Antonio; Gürtler, Ricardo E.; Diosque, Patricio; Solari, Aldo; Triana-Chávez, Omar; Schijman, Alejandro G.

    2011-01-01

    The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harboring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia + Tc Id, Tc Ia + Tc Ie and Tc Id + Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time. PMID:20670628

  20. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  1. Direct vs 2-stage approaches to structured motif finding

    Directory of Open Access Journals (Sweden)

    Federico Maria

    2012-08-01

    Full Text Available Abstract Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct

  2. The value of position-specific priors in motif discovery using MEME.

    Science.gov (United States)

    Bailey, Timothy L; Bodén, Mikael; Whitington, Tom; Machanick, Philip

    2010-04-09

    Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types-including sequence conservation, nucleosome positioning, and negative examples-can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM). We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.

  3. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures.

    Science.gov (United States)

    Bostan, Hamed; Salim, Naomie; Hussein, Zeti Azura; Klappa, Peter; Shamsir, Mohd Shahir

    2012-01-01

    Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD) is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  4. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  5. Detecting correlations among functional-sequence motifs

    Science.gov (United States)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  6. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  7. Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosines: Implications for the Effects of Halogenation on the Stability of the DNA i-Motif

    Science.gov (United States)

    Yang, Bo; Wu, R. R.; Rodgers, M. T.

    2015-09-01

    (CCG)n•(CGG)n trinucleotide repeats have been found to be associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical proton-bound dimers of cytosine (C+•C). Halogenated cytosine residues are one form of DNA damage that may be important in altering the structure and stability of DNA or DNA-protein interactions and, hence, regulate gene expression. Previously, we investigated the effects of 5-halogenation and 1-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present study, we extend our work to include proton-bound homo- and heterodimers of cytosine, 1-methyl-5-fluorocytosine, and 1-methyl-5-bromocytosine. All modifications examined here are found to produce a decrease in the BPEs. However, the BPEs of all of the proton-bound dimers examined significantly exceed those of Watson-Crick G•C, neutral C•C base pairs, and various methylated variants such that DNA i-motif conformations should still be preserved in the presence of these modifications. The proton affinities (PAs) of the halogenated cytosines are also obtained from the experimental data by competitive analysis of the primary dissociation pathways that occur in parallel for the proton-bound heterodimers. 5-Halogenation leads to a decrease in the N3 PA of cytosine, whereas 1-methylation leads to an increase in the N3 PA. Thus, the 1-methyl-5-halocytosines exhibit PAs that are intermediate.

  8. Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosines: Implications for the Effects of Halogenation on the Stability of the DNA i-Motif.

    Science.gov (United States)

    Yang, Bo; Wu, R R; Rodgers, M T

    2015-09-01

    (CCG)(n)•(CGG)(n) trinucleotide repeats have been found to be associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The (CCG)(n)•(CGG)(n) repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical proton-bound dimers of cytosine (C(+)•C). Halogenated cytosine residues are one form of DNA damage that may be important in altering the structure and stability of DNA or DNA-protein interactions and, hence, regulate gene expression. Previously, we investigated the effects of 5-halogenation and 1-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present study, we extend our work to include proton-bound homo- and heterodimers of cytosine, 1-methyl-5-fluorocytosine, and 1-methyl-5-bromocytosine. All modifications examined here are found to produce a decrease in the BPEs. However, the BPEs of all of the proton-bound dimers examined significantly exceed those of Watson-Crick G•C, neutral C•C base pairs, and various methylated variants such that DNA i-motif conformations should still be preserved in the presence of these modifications. The proton affinities (PAs) of the halogenated cytosines are also obtained from the experimental data by competitive analysis of the primary dissociation pathways that occur in parallel for the proton-bound heterodimers. 5-Halogenation leads to a decrease in the N3 PA of cytosine, whereas 1-methylation leads to an increase in the N3 PA. Thus, the 1-methyl-5-halocytosines exhibit PAs that are intermediate.

  9. Fast and accurate discovery of degenerate linear motifs in protein sequences.

    Science.gov (United States)

    Kelil, Abdellali; Dubreuil, Benjamin; Levy, Emmanuel D; Michnick, Stephen W

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or "wildcard" positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  10. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  11. An Algorithm for Motif Discovery with Iteration on Lengths of Motifs.

    Science.gov (United States)

    Fan, Yetian; Wu, Wei; Yang, Jie; Yang, Wenyu; Liu, Rongrong

    2015-01-01

    Analysis of DNA sequence motifs is becoming increasingly important in the study of gene regulation, and the identification of motif in DNA sequences is a complex problem in computational biology. Motif discovery has attracted the attention of more and more researchers, and varieties of algorithms have been proposed. Most existing motif discovery algorithms fix the motif's length as one of the input parameters. In this paper, a novel method is proposed to identify the optimal length of the motif and the optimal motif with that length, through an iteration process on increasing length numbers. For each fixed length, a modified genetic algorithm (GA) is used for finding the optimal motif with that length. Three operators are used in the modified GA: Mutation that is similar to the one used in usual GA but is modified to avoid local optimum in our case, and Addition and Deletion that are proposed by us for the problem. A criterion is given for singling out the optimal length in the increasing motif's lengths. We call this method AMDILM (an algorithm for motif discovery with iteration on lengths of motifs). The experiments on simulated data and real biological data show that AMDILM can accurately identify the optimal motif length. Meanwhile, the optimal motifs discovered by AMDILM are consistent with the real ones and are similar with the motifs obtained by the three well-known methods: Gibbs Sampler, MEME and Weeder.

  12. info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling.

    Science.gov (United States)

    Defrance, Matthieu; van Helden, Jacques

    2009-10-15

    Discovering cis-regulatory elements in genome sequence remains a challenging issue. Several methods rely on the optimization of some target scoring function. The information content (IC) or relative entropy of the motif has proven to be a good estimator of transcription factor DNA binding affinity. However, these information-based metrics are usually used as a posteriori statistics rather than during the motif search process itself. We introduce here info-gibbs, a Gibbs sampling algorithm that efficiently optimizes the IC or the log-likelihood ratio (LLR) of the motif while keeping computation time low. The method compares well with existing methods like MEME, BioProspector, Gibbs or GAME on both synthetic and biological datasets. Our study shows that motif discovery techniques can be enhanced by directly focusing the search on the motif IC or the motif LLR. http://rsat.ulb.ac.be/rsat/info-gibbs

  13. Anion induced conformational preference of CαNN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  14. cWINNOWER algorithm for finding fuzzy dna motifs

    Science.gov (United States)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  15. Combining intrinsic disorder prediction and augmented training of hidden Markov models improves discriminative motif discovery

    Science.gov (United States)

    Song, Tao; Bu, Xiaoting; Gu, Hong

    2015-08-01

    Identifying short linear motifs (SLiMs) usually suffers from lack of sufficient sequences. SLiMs with the same functional site class are typically characterized by similar motif patterns, which makes them hard to distinguish by generative motif discovery methods. A discriminative method based on maximal mutual information estimation (MMIE) of hidden Markov models (HMMs) is proposed. It masks ordered regions to improve signal to noise ratio and augments the training set to diminish the impact of the lack of sequences. Experimental results on a dataset selected from the Eukaryotic Linear Motif (ELM) resource show that the proposed method is effective and practical.

  16. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  17. Motif discovery using optimized suffix tries

    OpenAIRE

    Prado Martínez, Sergio

    2012-01-01

    Motif discovery is a challenging problem from a computational point of view [5] [6]. Binding sites are better conserved in DNA because they have a biological function and are therefore under selective pressure. Motif discovery algorithms can help us detect them. To tackle our problem we design and implement an index structure and a motif discovery algorithm. In this thesis we will investigate memory and performance optimizations. En el present article es presenta una implementació d'un ...

  18. PMS6MC: A Multicore Algorithm for Motif Discovery.

    Science.gov (United States)

    Bandyopadhyay, Shibdas; Sahni, Sartaj; Rajasekaran, Sanguthevar

    2013-11-18

    We develop an efficient multicore algorithm, PMS6MC, for the (l, d)-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. PMS6MC is based on PMS6, which is currently the fastest single-core algorithm for motif discovery in large instances. The speedup, relative to PMS6, attained by our multicore algorithm ranges from a high of 6.62 for the (17,6) challenging instances to a low of 2.75 for the (13,4) challenging instances on an Intel 6-core system. We estimate that PMS6MC is 2 to 4 times faster than other parallel algorithms for motif search on large instances.

  19. PMS6MC: A Multicore Algorithm for Motif Discovery

    Directory of Open Access Journals (Sweden)

    Shibdas Bandyopadhyay

    2013-11-01

    Full Text Available We develop an efficient multicore algorithm, PMS6MC, for the (l; d-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. PMS6MC is based on PMS6, which is currently the fastest single-core algorithm for motif discovery in large instances. The speedup, relative to PMS6, attained by our multicore algorithm ranges from a high of 6.62 for the (17,6 challenging instances to a low of 2.75 for the (13,4 challenging instances on an Intel 6-core system. We estimate that PMS6MC is 2 to 4 times faster than other parallel algorithms for motif search on large instances.

  20. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    Science.gov (United States)

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  1. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  2. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  3. PMS: a panoptic motif search tool.

    Directory of Open Access Journals (Sweden)

    Hieu Dinh

    Full Text Available Identification of DNA/Protein motifs is a crucial problem for biologists. Computational techniques could be of great help in this identification. In this direction, many computational models for motifs have been proposed in the literature.One such important model is the (l,d motif model. In this paper we describe a motif search web tool that predominantly employs this motif model. This web tool exploits the state-of-the art algorithms for solving the (l,d motif search problem.The online tool has been helping scientists identify many unknown motifs. Many of our predictions have been successfully verified as well. We hope that this paper will expose this crucial tool to many more scientists.Project name: PMS--Panoptic Motif Search Tool. Project home page: http://pms.engr.uconn.edu or http://motifsearch.com. Licence: PMS tools will be readily available to any scientist wishing to use it for non-commercial purposes, without restrictions. The online tool is freely available without login.

  4. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online.

  5. CompleteMOTIFs: DNA motif discovery platform for transcription factor binding experiments.

    Science.gov (United States)

    Kuttippurathu, Lakshmi; Hsing, Michael; Liu, Yongchao; Schmidt, Bertil; Maskell, Douglas L; Lee, Kyungjoon; He, Aibin; Pu, William T; Kong, Sek Won

    2011-03-01

    CompleteMOTIFs (cMOTIFs) is an integrated web tool developed to facilitate systematic discovery of overrepresented transcription factor binding motifs from high-throughput chromatin immunoprecipitation experiments. Comprehensive annotations and Boolean logic operations on multiple peak locations enable users to focus on genomic regions of interest for de novo motif discovery using tools such as MEME, Weeder and ChIPMunk. The pipeline incorporates a scanning tool for known motifs from TRANSFAC and JASPAR databases, and performs an enrichment test using local or precalculated background models that significantly improve the motif scanning result. Furthermore, using the cMOTIFs pipeline, we demonstrated that multiple transcription factors could cooperatively bind to the upstream of important stem cell differentiation regulators. http://cmotifs.tchlab.org.

  6. Mobile Technology for Improved Family Planning (MOTIF): the development of a mobile phone-based (mHealth) intervention to support post-abortion family planning (PAFP) in Cambodia.

    Science.gov (United States)

    Smith, Chris; Vannak, Uk; Sokhey, Ly; Ngo, Thoai D; Gold, Judy; Free, Caroline

    2016-01-05

    The objective of this paper is to outline the formative research process used to develop the MOTIF mobile phone-based (mHealth) intervention to support post-abortion family planning in Cambodia. The formative research process involved literature reviews, interviews and focus group discussions with clients, and consultation with clinicians and organisations implementing mHealth activities in Cambodia. This process led to the development of a conceptual framework and the intervention. Key findings from the formative research included identification of the main reasons for non-use of contraception and patterns of mobile phone use in Cambodia. We drew on components of existing interventions and behaviour change theory to develop a conceptual framework. A multi-faceted voice-based intervention was designed to address health concerns and other key determinants of contraception use. Formative research was essential in order to develop an appropriate mHealth intervention to support post-abortion contraception in Cambodia. Each component of the formative research contributed to the final intervention design.

  7. World Color Survey color naming reveals universal motifs and their within-language diversity.

    Science.gov (United States)

    Lindsey, Delwin T; Brown, Angela M

    2009-11-24

    We analyzed the color terms in the World Color Survey (WCS) (www.icsi.berkeley.edu/wcs/), a large color-naming database obtained from informants of mostly unwritten languages spoken in preindustrialized cultures that have had limited contact with modern, industrialized society. The color naming idiolects of 2,367 WCS informants fall into three to six "motifs," where each motif is a different color-naming system based on a subset of a universal glossary of 11 color terms. These motifs are universal in that they occur worldwide, with some individual variation, in completely unrelated languages. Strikingly, these few motifs are distributed across the WCS informants in such a way that multiple motifs occur in most languages. Thus, the culture a speaker comes from does not completely determine how he or she will use color terms. An analysis of the modern patterns of motif usage in the WCS languages, based on the assumption that they reflect historical patterns of color term evolution, suggests that color lexicons have changed over time in a complex but orderly way. The worldwide distribution of the motifs and the cooccurrence of multiple motifs within languages suggest that universal processes control the naming of colors.

  8. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites.

    Science.gov (United States)

    Jajamovich, Guido H; Wang, Xiaodong; Arkin, Adam P; Samoilov, Michael S

    2011-11-01

    Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI-a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/.

  9. MotifLab: a tools and data integration workbench for motif discovery and regulatory sequence analysis.

    Science.gov (United States)

    Klepper, Kjetil; Drabløs, Finn

    2013-01-16

    Traditional methods for computational motif discovery often suffer from poor performance. In particular, methods that search for sequence matches to known binding motifs tend to predict many non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in different cell types. However, it is not always trivial to make use of this data in combination with existing motif discovery tools, especially for researchers who are not skilled in bioinformatics programming. Here we present MotifLab, a general workbench for analysing regulatory sequence regions and discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites, ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab, including graphical presentation of the results. We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two previously published benchmark data sets for single motifs and modules, and a realistic example of genes responding to treatment with forskolin. MotifLab is freely available at http://www.motiflab.org.

  10. Prediction of virus-host protein-protein interactions mediated by short linear motifs.

    Science.gov (United States)

    Becerra, Andrés; Bucheli, Victor A; Moreno, Pedro A

    2017-03-09

    Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predicting motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1). We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2) located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D,R are united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly inferred with them - with experimental validation. The comparison is done with HIV-1 sequences and interactions from the National Institute of Allergy and Infectious Diseases (NIAID). The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D∪R and C. The ordering of the sets is descending on the probability of capturing functional interactions. With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteins mediated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions. We have developed a method for predicting protein-protein interactions mediated by linear motifs between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we will use it to explore possible viral attack mechanisms based on linear motif mimicry.

  11. Searching for non-B DNA-forming motifs using nBMST (non-B DNA Motif Search Tool)

    Science.gov (United States)

    Cer, RZ; Bruce, KH; Donohue, DE; Temiz, NA; Mudunuri, US; Yi, M; Volfovsky, N; Bacolla, A; Luke, BT; Collins; Stephens, RM

    2012-01-01

    This unit describes basic protocols on using the non-B DNA Motif Search Tool (nBMST) to search for sequence motifs predicted to form alternative DNA conformations that differ from the canonical right-handed Watson-Crick double-helix, collectively known as non-B DNA and on using the associated PolyBrowse, a GBrowse (Stein et al., 2002) based genomic browser. The nBMST is a web-based resource that allows users to submit one or more DNA sequences to search for inverted repeats (cruciform DNA), mirror repeats (triplex DNA), direct/tandem repeats (slipped/hairpin structures), G4 motifs (tetraplex, G-quadruplex DNA), alternating purine-pyrimidine tracts (left-handed Z-DNA), and Aphased repeats (static bending). Basic protocol 1 illustrates different ways of submitting sequences, the required file input format, results comprising downloadable Generic Feature Format (GFF) files, static Portable Network Graphics (PNG) images, dynamic PolyBrowse link, and accessing documentation through the Help and Frequently Asked Questions (FAQs) pages. Basic Protocol 2 illustrates a brief overview of some of the PolyBrowse functionalities, particularly with reference to possible associations between predicted non-B DNA forming motifs and disease causing effects. The nBMST is versatile, simple to use, does not require bioinformatics skills, and can be applied to any type of DNA sequences, including viral and bacterial genomes, up to 20 megabytes (MB). PMID:22470144

  12. Core signalling motif displaying multistability through multi-state enzymes.

    Science.gov (United States)

    Feng, Song; Sáez, Meritxell; Wiuf, Carsten; Feliu, Elisenda; Soyer, Orkun S

    2016-10-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology. Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number of steady states in the system. These findings reveal, to our knowledge, a new mechanism for the generation of bistability and multistability in cellular signalling systems. Further the futile cycle featuring a two-state kinase is among the smallest bistable signalling motifs. We show that multi-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural evolution and could equally be used by synthetic approaches for the generation of multistable information processing systems at the cellular level. © 2016 The Authors.

  13. Integrating Temporal and Spatial Scales: Human Structural Network Motifs Across Age and Region of Interest Size

    Science.gov (United States)

    Echtermeyer, Christoph; Han, Cheol E.; Rotarska-Jagiela, Anna; Mohr, Harald; Uhlhaas, Peter J.; Kaiser, Marcus

    2011-01-01

    Human brain networks can be characterized at different temporal or spatial scales given by the age of the subject or the spatial resolution of the neuroimaging method. Integration of data across scales can only be successful if the combined networks show a similar architecture. One way to compare networks is to look at spatial features, based on fiber length, and topological features of individual nodes where outlier nodes form single node motifs whose frequency yields a fingerprint of the network. Here, we observe how characteristic single node motifs change over age (12–23 years) and network size (414, 813, and 1615 nodes) for diffusion tensor imaging structural connectivity in healthy human subjects. First, we find the number and diversity of motifs in a network to be strongly correlated. Second, comparing different scales, the number and diversity of motifs varied across the temporal (subject age) and spatial (network resolution) scale: certain motifs might only occur at one spatial scale or for a certain age range. Third, regions of interest which show one motif at a lower resolution may show a range of motifs at a higher resolution which may or may not include the original motif at the lower resolution. Therefore, both the type and localization of motifs differ for different spatial resolutions. Our results also indicate that spatial resolution has a higher effect on topological measures whereas spatial measures, based on fiber lengths, remain more comparable between resolutions. Therefore, spatial resolution is crucial when comparing characteristic node fingerprints given by topological and spatial network features. As node motifs are based on topological and spatial properties of brain connectivity networks, these conclusions are also relevant to other studies using connectome analysis. PMID:21811454

  14. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  15. Endocytic sorting motif interactions involved in Nef-mediated downmodulation of CD4 and CD3.

    Science.gov (United States)

    Manrique, Santiago; Sauter, Daniel; Horenkamp, Florian A; Lülf, Sebastian; Yu, Hangxing; Hotter, Dominik; Anand, Kanchan; Kirchhoff, Frank; Geyer, Matthias

    2017-09-05

    Lentiviral Nefs recruit assembly polypeptide complexes and target sorting motifs in cellular receptors to induce their internalization. While Nef-mediated CD4 downmodulation is conserved, the ability to internalize CD3 was lost in HIV-1 and its precursors. Although both functions play key roles in lentiviral replication and pathogenicity, the underlying structural requirements are poorly defined. Here, we determine the structure of SIVmac239 Nef bound to the ExxxLM motif of another Nef molecule at 2.5 Å resolution. This provides a basis for a structural model, where a hydrophobic crevice in simian immunodeficiency virus (SIV) Nef targets a dileucine motif in CD4 and a tyrosine-based motif in CD3. Introducing key residues into this crevice of HIV-1 Nef enables CD3 binding but an additional N-terminal tyrosine motif is required for internalization. Our resolution of the CD4/Nef/AP2 complex and generation of HIV-1 Nefs capable of CD3 downregulation provide insights into sorting motif interactions and target discrimination of Nef.HIV and simian immunodeficiency virus (SIV) Nef proteins both stimulate the clathrin-mediated endocytosis of CD4 but differ in downmodulation of the immune receptor CD3. Here, the authors present the structure of SIV Nef bound to the ExxxLM motif of another Nef molecule, which allows them to propose a model how Nef recognizes these motifs in CD3 and CD4.

  16. GENERAL: A combined statistical model for multiple motifs search

    Science.gov (United States)

    Gao, Li-Feng; Liu, Xin; Guan, Shan

    2008-12-01

    Transcription factor binding sites (TFBS) play key roles in genebior 6.8 wavelet expression and regulation. They are short sequence segments with definite structure and can be recognized by the corresponding transcription factors correctly. From the viewpoint of statistics, the candidates of TFBS should be quite different from the segments that are randomly combined together by nucleotide. This paper proposes a combined statistical model for finding over-represented short sequence segments in different kinds of data set. While the over-represented short sequence segment is described by position weight matrix, the nucleotide distribution at most sites of the segment should be far from the background nucleotide distribution. The central idea of this approach is to search for such kind of signals. This algorithm is tested on 3 data sets, including binding sites data set of cyclic AMP receptor protein in E.coli, PlantProm DB which is a non-redundant collection of proximal promoter sequences from different species, collection of the intergenic sequences of the whole genome of E.Coli. Even though the complexity of these three data sets is quite different, the results show that this model is rather general and sensible.

  17. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  18. POWRS: position-sensitive motif discovery

    National Research Council Canada - National Science Library

    Davis, Ian W; Benninger, Christopher; Benfey, Philip N; Elich, Tedd

    2012-01-01

    .... Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set) for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms...

  19. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  20. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    Science.gov (United States)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  1. MotifHyades: expectation maximization for de novo DNA motif pair discovery on paired sequences.

    Science.gov (United States)

    Wong, Ka-Chun

    2017-10-01

    In higher eukaryotes, protein-DNA binding interactions are the central activities in gene regulation. In particular, DNA motifs such as transcription factor binding sites are the key components in gene transcription. Harnessing the recently available chromatin interaction data, computational methods are desired for identifying the coupling DNA motif pairs enriched on long-range chromatin-interacting sequence pairs (e.g. promoter-enhancer pairs) systematically. To fill the void, a novel probabilistic model (namely, MotifHyades) is proposed and developed for de novo DNA motif pair discovery on paired sequences. In particular, two expectation maximization algorithms are derived for efficient model training with linear computational complexity. Under diverse scenarios, MotifHyades is demonstrated faster and more accurate than the existing ad hoc computational pipeline. In addition, MotifHyades is applied to discover thousands of DNA motif pairs with higher gold standard motif matching ratio, higher DNase accessibility and higher evolutionary conservation than the previous ones in the human K562 cell line. Lastly, it has been run on five other human cell lines (i.e. GM12878, HeLa-S3, HUVEC, IMR90, and NHEK), revealing another thousands of novel DNA motif pairs which are characterized across a broad spectrum of genomic features on long-range promoter-enhancer pairs. The matrix-algebra-optimized versions of MotifHyades and the discovered DNA motif pairs can be found in http://bioinfo.cs.cityu.edu.hk/MotifHyades. kc.w@cityu.edu.hk. Supplementary data are available at Bioinformatics online.

  2. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  3. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  4. SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks.

    Science.gov (United States)

    Boyen, Peter; Van Dyck, Dries; Neven, Frank; van Ham, Roeland C H J; van Dijk, Aalt D J

    2011-01-01

    Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.

  5. Identifiability and inference of pathway motifs by epistasis analysis

    Science.gov (United States)

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis—in which one attempts to infer pathway relationships by determining equivalences among traits following mutations—has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference.

  6. Motif, the basics: an overview of the widget set

    Energy Technology Data Exchange (ETDEWEB)

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an object-oriented'' approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  7. Motif, the basics: an overview of the widget set

    Energy Technology Data Exchange (ETDEWEB)

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an ``object-oriented`` approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  8. CircularLogo: A lightweight web application to visualize intra-motif dependencies.

    Science.gov (United States)

    Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo

    2017-05-22

    The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.

  9. A motif for infinite metal atom wires.

    Science.gov (United States)

    Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong

    2014-12-15

    A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single promoters as regulatory network motifs

    Science.gov (United States)

    Zopf, Christopher; Maheshri, Narendra

    2012-02-01

    At eukaryotic promoters, chromatin can influence the relationship between a gene's expression and transcription factor (TF) activity. This additional complexity might allow single promoters to exhibit dynamical behavior commonly attributed to regulatory motifs involving multiple genes. We investigate the role of promoter chromatin architecture in the kinetics of gene activation using a previously described set of promoter variants based on the phosphate-regulated PHO5 promoter in S. cerevisiae. Accurate quantitative measurement of transcription activation kinetics is facilitated by a controllable and observable TF input to a promoter of interest leading to an observable expression output in single cells. We find the particular architecture of these promoters can result in a significant delay in activation, filtering of noisy TF signals, and a memory of previous activation -- dynamical behaviors reminiscent of a feed-forward loop but only requiring a single promoter. We suggest this is a consequence of chromatin transactions at the promoter, likely passing through a long-lived ``primed'' state between its inactive and competent states. Finally, we show our experimental setup can be generalized as a ``gene oscilloscope'' to probe the kinetics of heterologous promoter architectures.

  11. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    Directory of Open Access Journals (Sweden)

    Marina M-C Vidovic

    Full Text Available Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set.

  12. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    Science.gov (United States)

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set.

  13. MOTIFATOR : detection and characterization of regulatory motifs using prokaryote transcriptome data

    NARCIS (Netherlands)

    Blom, Evert-Jan; Roerdink, Jos B.T.M.; Kuipers, Oscar P.; Hijum, Sacha A.F.T. van

    2009-01-01

    Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual

  14. Sublinear Time Motif Discovery from Multiple Sequences

    Directory of Open Access Journals (Sweden)

    Yunhui Fu

    2013-10-01

    Full Text Available In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 ... gm is a string of m characters. In each background sequence is implanted a probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy b1b2 ... bm of G, every character, bi, is probabilistically generated, such that the probability for bi ≠ gi is at most α. We develop two new randomized algorithms and one new deterministic algorithm. They make advancements in the following aspects: (1 The algorithms are much faster than those before. Our algorithms can even run in sublinear time. (2 They can handle any motif pattern. (3 The restriction for the alphabet size is a lower bound of four. This gives them potential applications in practical problems, since gene sequences have an alphabet size of four. (4 All algorithms have rigorous proofs about their performances. The methods developed in this paper have been used in the software implementation. We observed some encouraging results that show improved performance for motif detection compared with other software.

  15. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  16. Factoring local sequence composition in motif significance analysis.

    Science.gov (United States)

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  17. I-motif structures formed in the human c-MYC promoter are highly dynamic--insights into sequence redundancy and I-motif stability.

    Directory of Open Access Journals (Sweden)

    Jixun Dai

    Full Text Available The GC-rich nuclease hypersensitivity element III1 (NHE III1 of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3' consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+-cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif.

  18. Defect Motifs for Constant Mean Curvature Surfaces

    Science.gov (United States)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  19. Analysis of computational approaches for motif discovery

    Directory of Open Access Journals (Sweden)

    Tompa Martin

    2006-05-01

    Full Text Available Abstract Recently, we performed an assessment of 13 popular computational tools for discovery of transcription factor binding sites (M. Tompa, N. Li, et al., "Assessing Computational Tools for the Discovery of Transcription Factor Binding Sites", Nature Biotechnology, Jan. 2005. This paper contains follow-up analysis of the assessment results, and raises and discusses some important issues concerning the state of the art in motif discovery methods: 1. We categorize the objective functions used by existing tools, and design experiments to evaluate whether any of these objective functions is the right one to optimize. 2. We examine various features of the data sets that were used in the assessment, such as sequence length and motif degeneracy, and identify which features make data sets hard for current motif discovery tools. 3. We identify an important feature that has not yet been used by existing tools and propose a new objective function that incorporates this feature.

  20. Polyrhythmic synchronization in bursting networking motifs.

    Science.gov (United States)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors. (c) 2008 American Institute of Physics.

  1. Book and library motif in Arabian Nights

    Directory of Open Access Journals (Sweden)

    Coşkun Polat

    2016-09-01

    In this book, it is aimed that using of book, library and literacy motifs and their conceptual meanings that could not be used in stories in any way have been tried to examine at Arabian Nights. As a result of the study carried out by considering the Arabian Nights, 52 nights that examine the book, reading, writing a book and writing in fiction have been determined. Thus, book, reading and library motifs are between the basic concepts given in the oeuvre. The content of the work is unique and useful for librarians and literati, historians and folklorists and all people.

  2. Towards a theoretical understanding of false positives in DNA motif finding

    Directory of Open Access Journals (Sweden)

    Zia Amin

    2012-06-01

    Full Text Available Abstract Background Detection of false-positive motifs is one of the main causes of low performance in de novo DNA motif-finding methods. Despite the substantial algorithm development effort in this area, recent comprehensive benchmark studies revealed that the performance of DNA motif-finders leaves room for improvement in realistic scenarios. Results Using large-deviations theory, we derive a remarkably simple relationship that describes the dependence of false positives on dataset size for the one-occurrence per sequence motif-finding problem. As expected, we predict that false-positives can be reduced by decreasing the sequence length or by adding more sequences to the dataset. Interestingly, we find that the false-positive strength depends more strongly on the number of sequences in the dataset than it does on the sequence length, but that the dependence on the number of sequences diminishes, after which adding more sequences does not reduce the false-positive rate significantly. We compare our theoretical predictions by applying four popular motif-finding algorithms that solve the one-occurrence-per-sequence problem (MEME, the Gibbs Sampler, Weeder, and GIMSAN to simulated data that contain no motifs. We find that the dependence of false positives detected by these softwares on the motif-finding parameters is similar to that predicted by our formula. Conclusions We quantify the relationship between the sequence search space and motif-finding false-positives. Based on the simple formula we derive, we provide a number of intuitive rules of thumb that may be used to enhance motif-finding results in practice. Our results provide a theoretical advance in an important problem in computational biology.

  3. Multitasking of neuropeptide Y through the lens of motifs.

    Science.gov (United States)

    Myslobodsky, Michael

    2009-01-01

    Networks controlling ingestion-related peptides are also known to be the targets and signals for numerous other systems. Yet, their topological properties are still ill understood. The Ingenuity Pathway Analysis (IPA) was employed to represent molecules engaged in feeding as nodes, and the interactions between them as edges. Using extracted molecules as 'seeds' for core analysis it was possible to scrutinize some of the complex relationships of sub-networks and the so-called 'motifs' well outside the neighborhoods of their classical roles. Contrary to the requirements for modular structure, the orexigenic and anorexigenic neuropeptides do not represent two types of modules. They are densely interconnected. Functional annotations showed that the same molecules are recruited ad-hoc from a larger 'repository' and assembled into dynamic networks for executing diverse physiological functions and behaviors. Some molecules clustered in motifs appear as the multipurpose entities for cell-to-cell signaling, organismal development, cellular movement, growth and proliferation, endocrine system development and tissue morphology, etc. that apparently become active in early ontogeny. Based mostly on neuropeptide Y (NPY), my arguments here will focus on the potential benefits of exploring motifs in network controlling ingestion for generating insights for polypharmacy of obesity-related targets and co-morbid disorders. Recent patents describing new NPY receptor antagonists directed to treat obesity and cardiovascular disorders were cited.

  4. MAR characteristic motifs mediate episomal vector in CHO cells.

    Science.gov (United States)

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.

    Science.gov (United States)

    Heller, David; Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa

    2017-11-02

    RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM's model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The super-n-motifs model: a novel alignment-free approach for representing and comparing RNA secondary structures.

    Science.gov (United States)

    Glouzon, Jean-Pierre Séhi; Perreault, Jean-Pierre; Wang, Shengrui

    2017-04-15

    Comparing ribonucleic acid (RNA) secondary structures of arbitrary size uncovers structural patterns that can provide a better understanding of RNA functions. However, performing fast and accurate secondary structure comparisons is challenging when we take into account the RNA configuration (i.e. linear or circular), the presence of pseudoknot and G-quadruplex (G4) motifs and the increasing number of secondary structures generated by high-throughput probing techniques. To address this challenge, we propose the super-n-motifs model based on a latent analysis of enhanced motifs comprising not only basic motifs but also adjacency relations. The super-n-motifs model computes a vector representation of secondary structures as linear combinations of these motifs. We demonstrate the accuracy of our model for comparison of secondary structures from linear and circular RNA while also considering pseudoknot and G4 motifs. We show that the super-n-motifs representation effectively captures the most important structural features of secondary structures, as compared to other representations such as ordered tree, arc-annotated and string representations. Finally, we demonstrate the time efficiency of our model, which is alignment free and capable of performing large-scale comparisons of 10 000 secondary structures with an efficiency up to 4 orders of magnitude faster than existing approaches. The super-n-motifs model was implemented in C ++. Source code and Linux binary are freely available at http://jpsglouzon.github.io/supernmotifs/ . Shengrui.Wang@Usherbrooke.ca. Supplementary data are available at Bioinformatics o nline.

  7. Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

    Directory of Open Access Journals (Sweden)

    Lim Carmay

    2007-03-01

    Full Text Available Abstract Background For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii to apply it to Mg2+-proteins sharing 2+-structural motifs are identified as recurring structural patterns. Results The structural alphabet-based motif discovery method has revealed the structural preference of Mg2+-binding sites for certain local/secondary structures: compared to all residues in the Mg2+-proteins, both first and second-shell Mg2+-ligands prefer loops to helices. Even when the Mg2+-proteins share no significant sequence homology, some of them share a similar Mg2+-binding site structure: 4 Mg2+-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg2+-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca2+-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg2+ plays an important biological role. Conclusion The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for

  8. Alternative motifs for nonlinear optics

    Indian Academy of Sciences (India)

    Administrator

    Herein we report the synthesis and characterization of Schiff base complexes having an electron-donating ferrocene centre and an electron acceptor like anthraquinone or dicyanoethylene. These complexes have interesting spectroscopic and electrochemical properties. The electrochemical properties of the complexes ...

  9. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well

  10. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  11. TrieAMD: a scalable and efficient apriori motif discovery approach.

    Science.gov (United States)

    Al-Turaiki, Isra; Badr, Ghada; Mathkour, Hassan

    2015-01-01

    Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.

  12. Discovery of protein phosphorylation motifs through exploratory data analysis.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chen

    Full Text Available BACKGROUND: The need for efficient algorithms to uncover biologically relevant phosphorylation motifs has become very important with rapid expansion of the proteomic sequence database along with a plethora of new information on phosphorylation sites. Here we present a novel unsupervised method, called Motif Finder (in short, F-Motif for identification of phosphorylation motifs. F-Motif uses clustering of sequence information represented by numerical features that exploit the statistical information hidden in some foreground data. Furthermore, these identified motifs are then filtered to find "actual" motifs with statistically significant motif scores. RESULTS AND DISCUSSION: We have applied F-Motif to several new and existing data sets and compared its performance with two well known state-of-the-art methods. In almost all cases F-Motif could identify all statistically significant motifs extracted by the state-of-the-art methods. More importantly, in addition to this, F-Motif uncovers several novel motifs. We have demonstrated using clues from the literature that most of these new motifs discovered by F-Motif are indeed novel. We have also found some interesting phenomena. For example, for CK2 kinase, the conserved sites appear only on the right side of S. However, for CDK kinase, the adjacent site on the right of S is conserved with residue P. In addition, three different encoding methods, including a novel position contrast matrix (PCM and the simplest binary coding, are used and the ability of F-motif to discover motifs remains quite robust with respect to encoding schemes. CONCLUSIONS: An iterative algorithm proposed here uses exploratory data analysis to discover motifs from phosphorylated data. The effectiveness of F-Motif has been demonstrated using several real data sets as well as using a synthetic data set. The method is quite general in nature and can be used to find other types of motifs also. We have also provided a server for F-Motif

  13. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  14. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations.

    Science.gov (United States)

    Tran, Tuan; Disney, Matthew D

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.

  15. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  16. Fast motif matching revisited: high-order PWMs, SNPs and indels.

    Science.gov (United States)

    Korhonen, Janne H; Palin, Kimmo; Taipale, Jussi; Ukkonen, Esko

    2017-02-15

    While the position weight matrix (PWM) is the most popular model for sequence motifs, there is growing evidence of the usefulness of more advanced models such as first-order Markov representations, and such models are also becoming available in well-known motif databases. There has been lots of research of how to learn these models from training data but the problem of predicting putative sites of the learned motifs by matching the model against new sequences has been given less attention. Moreover, motif site analysis is often concerned about how different variants in the sequence affect the sites. So far, though, the corresponding efficient software tools for motif matching have been lacking. We develop fast motif matching algorithms for the aforementioned tasks. First, we formalize a framework based on high-order position weight matrices for generic representation of motif models with dinucleotide or general q -mer dependencies, and adapt fast PWM matching algorithms to the high-order PWM framework. Second, we show how to incorporate different types of sequence variants , such as SNPs and indels, and their combined effects into efficient PWM matching workflows. Benchmark results show that our algorithms perform well in practice on genome-sized sequence sets and are for multiple motif search much faster than the basic sliding window algorithm. Implementations are available as a part of the MOODS software package under the GNU General Public License v3.0 and the Biopython license ( http://www.cs.helsinki.fi/group/pssmfind ). janne.h.korhonen@gmail.com.

  17. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    Science.gov (United States)

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  18. What Determines the Assembly of Transcriptional Network Motifs in Escherichia coli?

    Science.gov (United States)

    Camas, Francisco M.; Poyatos, Juan F.

    2008-01-01

    Transcriptional networks are constituted by a collection of building blocks known as network motifs. Why do motifs appear? An adaptive model of motif emergence was recently questioned in favor of neutralist scenarios. Here, we provide a new picture of motif assembly in Escherichia coli which partially clarifies these contrasting explanations. This is based on characterizing the linkage between motifs and sensing or response specificity of their constituent transcriptional factors (TFs). We find that sensing specificity influences the distribution of autoregulation, while the tendency of a TF to establish feed-forward loops (FFLs) depends on response specificity, i.e., regulon size. Analysis of the latter pattern reveals that coregulation between large regulon-size TFs is common under a network neutral model, leading to the assembly of a great number of FFLs and bifans. In addition, neutral exclusive regulation also leads to a collection of single input modules -the fourth basic motif. On the whole, and even under the conservative neutralist scenario considered, a substantial group of regulatory structures revealed adaptive. These structures visibly function as fully-fledged working units. PMID:18987754

  19. Pipeline for the Analysis of ChIP-seq Data and New Motif Ranking Procedure

    KAUST Repository

    Ashoor, Haitham

    2011-06-01

    This thesis presents a computational methodology for ab-initio identification of transcription factor binding sites based on ChIP-seq data. This method consists of three main steps, namely ChIP-seq data processing, motif discovery and models selection. A novel method for ranking the models of motifs identified in this process is proposed. This method combines multiple factors in order to rank the provided candidate motifs. It combines the model coverage of the ChIP-seq fragments that contain motifs from which that model is built, the suitable background data made up of shuffled ChIP-seq fragments, and the p-value that resulted from evaluating the model on actual and background data. Two ChIP-seq datasets retrieved from ENCODE project are used to evaluate and demonstrate the ability of the method to predict correct TFBSs with high precision. The first dataset relates to neuron-restrictive silencer factor, NRSF, while the second one corresponds to growth-associated binding protein, GABP. The pipeline system shows high precision prediction for both datasets, as in both cases the top ranked motif closely resembles the known motifs for the respective transcription factors.

  20. GPUmotif: An Ultra-Fast and Energy-Efficient Motif Analysis Program Using Graphics Processing Units

    Science.gov (United States)

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a “fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/ PMID:22662128

  1. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    Directory of Open Access Journals (Sweden)

    Bálint Gál

    2016-11-01

    Full Text Available While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.

  2. Sequential motif profile of natural visibility graphs

    Science.gov (United States)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-11-01

    The concept of sequential visibility graph motifs—subgraphs appearing with characteristic frequencies in the visibility graphs associated to time series—has been advanced recently along with a theoretical framework to compute analytically the motif profiles associated to horizontal visibility graphs (HVGs). Here we develop a theory to compute the profile of sequential visibility graph motifs in the context of natural visibility graphs (VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or stochastic processes that fulfill the Markov property and have a continuous marginal distribution. The framework also allows for a linear time numerical estimation in the case of empirical time series. A comparison between the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement noise) is also presented.

  3. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik

    2009-01-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...... is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors...

  4. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    OpenAIRE

    Bálint Gál; Cyril Bucher; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the r...

  5. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  6. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  7. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  8. Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics

    Science.gov (United States)

    Matsuura, Takafumi; Ikeguchi, Tohru

    Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.

  9. A ChIP-Seq benchmark shows that sequence conservation mainly improves detection of strong transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Tony Håndstad

    Full Text Available BACKGROUND: Transcription factors are important controllers of gene expression and mapping transcription factor binding sites (TFBS is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed that information about sequence conservation across different genomes can generally improve accuracy of motif-based predictors, but it is not clear under what circumstances use of conservation is most beneficial. RESULTS: Here we use published ChIP-seq data and an improved peak detection method to create comprehensive benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic sequences. We use this benchmark to assess the performance of five different prediction methods and find that the methods that use information about sequence conservation generally perform better than simpler motif-scanning methods. The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based methods. CONCLUSIONS: Our benchmark provides a comprehensive test that can be used to rank the relative performance of transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports, sequence conservation is better suited for predicting strong than weak transcription factor binding sites.

  10. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  11. Distinct saturable pathways for the endocytosis of different tyrosine motifs.

    Science.gov (United States)

    Warren, R A; Green, F A; Stenberg, P E; Enns, C A

    1998-07-03

    Endocytosis of surface proteins through clathrin-coated pits requires an internalization signal in the cytoplasmic domain. Two types of internalization signal have been described: one requiring a tyrosine as the critical residue (tyrosine-based motif), and the other consisting of either two consecutive leucines or an isoleucine and leucine (dileucine motif). Although it seems that these signals are necessary and sufficient for endocytic targeting, the mechanism of recognition is not well understood. To examine this question, tetracycline-repressible cell lines were used to overexpress one of several receptors bearing a tyrosine-based internalization signal. By measuring the rates of endocytosis for either the overexpressed receptor, or that of other endogenous receptors, we were able to show that the endocytosis of identical receptors could be saturated, but a complete lack of competition exists between the transferrin receptor (TfR), the low-density lipoprotein receptor, and the epidermal growth factor receptor. Overexpression of any one of these receptors resulted in its redistribution toward the cell surface, implying that entry into coated pits is limited. During high levels of TfR expression, however, a significant increase in the amount of surface Lamp1, but not low-density lipoprotein receptor, epidermal growth factor receptor, or Lamp2, is detected. This suggests that Lamp1 and TfR compete for the same endocytic sites. Together, these results support the idea that there are at least three distinct saturable components involved in clathrin-mediated endocytosis.

  12. DEKONSTRUKSI MOTIF BATIK KERATON CIREBON: PENGARUH RAGAM HIAS KERATON PADA MOTIF BATIK CIREBON

    Directory of Open Access Journals (Sweden)

    Agus Nursalim

    2015-04-01

    Full Text Available Motif batik Keraton Cirebon memiliki makna simbolik dan filosofis yang mengandung pesan moral. Ide dasar batik keraton adalah dari ragam hias Keraton Cirebon, naskah dan mushaf Al-qur’an pada Abad 20. Tekanan dan resistensi kebudayaan barat pada dekade 70-an yang bersifat progresif utopis telah mengubur berbagai tradisi dan kebudayaan etnik, identitas lokal, subculture, yang dianggap tidak sesuai dengan semangat zaman modern. Arus informasi global telah memperkaya cakrawala pengetahuan lokal yang mampu membangkitkan kesadaran lokal yaitu kesadaran ontologism diantara kebudayaan plural yang imperialis dan represif yang akan menggiring pada krisis identitas. Identitas, menurut Jonathan Rutherfort merupakan satu mata rantai masa lalu dengan hubunganhubungan sosial, kultural, dan ekonomi di dalam ruang dan waktu satu masyarakat hidup. Kini motif batik keraton telah menjadi identitas batik Cirebon. Penelitian ini bersifat diskriptif kualitatif yang mengkaji hingar bingarnya era kebangkitan kembali motif batik keraton Cirebon setelah mengalami ‘mati suri’ selama berpuluh-puluh tahun. Permasalahannya adalah: Bagaimana pola ragam hias Keraton Cirebon mengalami dekonstruksi menjadi motif batik keraton Cirebon? Apakah makna filosofis dan makna simbolik motif Batik Keraton mengalami dekonstruksi setelah berkembang pesat menjadi batik Cirebon? Teknik Pengumpulan data dilakukan dengan cara: observasi, wawancara dan dokumentasi. Sedangkan Analisis data hasil penelitian dilakukan dengan pendekatan teori ‘semiotika dekonstruktif’ dari Jaques Derida dan Ferdinand de’Sausure. Kajian terhadap bahasa dan makna (petanda simbolik dilakukan dengan teorinya Ferdinand de’Saussure. Sedangkan; penafsiran makna ‘logos’ menggunakan pendekatan teori semiotika dekonstruktif Jaques Derida. Dari hasil penelitian diperoleh informasi secara akurat dan benar mengenai proses dekonstruksi bentuk ragam hias ke dalam motif batik keraton hingga menjadi

  13. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  14. Genome wide identification of regulatory motifs in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Siggia Eric D

    2003-05-01

    Full Text Available Abstract Background To explain the vastly different phenotypes exhibited by the same organism under different conditions, it is essential that we understand how the organism's genes are coordinately regulated. While there are many excellent tools for predicting sequences encoding proteins or RNA genes, few algorithms exist to predict regulatory sequences on a genome wide scale with no prior information. Results To identify motifs involved in the control of transcription, an algorithm was developed that searches upstream of operons for improbably frequent dimers. The algorithm was applied to the B. subtilis genome, which is predicted to encode for approximately 200 DNA binding proteins. The dimers found to be over-represented could be clustered into 317 distinct groups, each thought to represent a class of motifs uniquely recognized by some transcription factor. For each cluster of dimers, a representative weight matrix was derived and scored over the regions upstream of the operons to predict the sites recognized by the cluster's factor, and a putative regulon of the operons immediately downstream of the sites was inferred. The distribution in number of operons per predicted regulon is comparable to that for well characterized transcription factors. The most highly over-represented dimers matched σA, the T-box, and σW sites. We have evidence to suggest that at least 52 of our clusters of dimers represent actual regulatory motifs, based on the groups' weight matrix matches to experimentally characterized sites, the functional similarity of the component operons of the groups' regulons, and the positional biases of the weight matrix matches. All predictions are assigned a significance value, and thresholds are set to avoid false positives. Where possible, we examine our false negatives, drawing examples from known regulatory motifs and regulons inferred from RNA expression data. Conclusions We have demonstrated that in the case of B. subtilis

  15. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  16. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal M.

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  17. Deep and wide digging for binding motifs in ChIP-Seq data.

    Science.gov (United States)

    Kulakovskiy, I V; Boeva, V A; Favorov, A V; Makeev, V J

    2010-10-15

    ChIP-Seq data are a new challenge for motif discovery. Such a data typically consists of thousands of DNA segments with base-specific coverage values. We present a new version of our DNA motif discovery software ChIPMunk adapted for ChIP-Seq data. ChIPMunk is an iterative algorithm that combines greedy optimization with bootstrapping and uses coverage profiles as motif positional preferences. ChIPMunk does not require truncation of long DNA segments and it is practical for processing up to tens of thousands of data sequences. Comparison with traditional (MEME) or ChIP-Seq-oriented (HMS) motif discovery tools shows that ChIPMunk identifies the correct motifs with the same or better quality but works dramatically faster. ChIPMunk is freely available within the ru_genetika Java package: http://line.imb.ac.ru/ChIPMunk. Web-based version is also available. ivan.kulakovskiy@gmail.com Supplementary data are available at Bioinformatics online.

  18. Dragon PolyA Spotter: predictor of poly(A) motifs within human genomic DNA sequences.

    Science.gov (United States)

    Kalkatawi, Manal; Rangkuti, Farania; Schramm, Michael; Jankovic, Boris R; Kamau, Allan; Chowdhary, Rajesh; Archer, John A C; Bajic, Vladimir B

    2012-01-01

    Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. vladimir.bajic@kaust.edu.sa Supplementary data are available at Bioinformatics online.

  19. A framework for direct locating and conformational sampling of protein structural motifs.

    Science.gov (United States)

    Yu, Jianyong; Xiang, Leijun; Zhang, Weidong

    2011-05-01

    A specific treatment of recurrent structural motifs that represent the local bias information has been proven to be an important ingredient in de novo protein structure predication. Significant majority of methods for local structure are based on building blocks, which still suffer from its inherent discrete nature. Instead of using building blocks, this work presents a new protocol framework for local structural motifs prediction based on the direct locating along protein sequence and probabilistic sampling in a continuous (φ, ψ) space. The protein sequence was first scanned by an algorithm of sliding window with variable length of 7 to 19 residues, to match local segments to one of 82 motifs patterns in the fragment library. Identified segments were then labeled and modeled as the correlations of backbone torsion angles with mixture of bivariate cosine distributions in continuous (φ, ψ) space. 3D conformations of corresponding segments were finally sampled by using a backtrack algorithm to the hidden Markov model with single output of (φ, ψ). For local motifs in 50 proteins of testing set, about 62% of eight-residue segments located with high confidence value were predicted within 1.5 Å of their native structures by the method. Majority of local structural motifs were identified and sampled, which indicates the proposed protocol may at least serve as the foundation to obtain better protein tertiary structure prediction.

  20. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  1. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  2. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  3. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  4. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.

    2015-05-12

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches yield good discriminant results, identifying dominant features of regulatory mechanisms nevertheless remains a challenge. In this work, we look at decision rules that may help identifying such features. Findings are we present a simple decision rule for classification of candidate poly (A) tail signal motifs in human genomic sequence obtained by evaluating features during the construction of gradient boosted trees. We found that values of a single feature based on the frequency of adenine in the genomic sequence surrounding candidate signal and the number of consecutive adenine molecules in a well-defined region immediately following the motif displays good discriminative potential in classification of poly (A) tail motifs for samples covered by the rule. Conclusions is the resulting simple rule can be used as an efficient filter in construction of more complex poly(A) tail motifs classification algorithms.

  5. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets.

    Science.gov (United States)

    Peng, Mao; Scholten, Arjen; Heck, Albert J R; van Breukelen, Bas

    2014-01-03

    Post-translational modifications (PTMs) play an important role in the regulation of protein function. Mass spectrometry based proteomics experiments nowadays identify tens of thousands of PTMs in a single experiment. A wealth of data has therefore become publically available. Evidently the biological function of each PTM is the key question to be addressed; however, such analyses focus primarily on single PTM events. This ignores the fact that PTMs may act in concert in the regulation of protein function, a process termed PTM crosstalk. Relatively little is known on the frequency and functional relevance of crosstalk between PTM sites. In a bioinformatics approach, we extracted PTMs occurring in proximity in the protein sequence from publically available databases. These PTMs and their flanking sequences were subjected to stringent motif searches, including a scoring for evolutionary conservation. Our unprejudiced approach was able to detect a respectable set of motifs, of which about half were described previously. Among these we could add many new proteins harboring these motifs. We extracted also several novel motifs, which through their widespread appearance and high conservation may pinpoint at previously nonannotated concerted PTM actions. By employing network analyses on these proteins, we propose putative functional roles for these novel motifs with two PTM sites in close proximity.

  6. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.

    Science.gov (United States)

    Kim, Jong Kyoung; Choi, Seungjin

    2011-01-01

    Methods for discriminative motif discovery in DNA sequences identify transcription factor binding sites (TFBSs), searching only for patterns that differentiate two sets (positive and negative sets) of sequences. On one hand, discriminative methods increase the sensitivity and specificity of motif discovery, compared to generative models. On the other hand, generative models can easily exploit unlabeled sequences to better detect functional motifs when labeled training samples are limited. In this paper, we develop a hybrid generative/discriminative model which enables us to make use of unlabeled sequences in the framework of discriminative motif discovery, leading to semisupervised discriminative motif discovery. Numerical experiments on yeast ChIP-chip data for discovering DNA motifs demonstrate that the best performance is obtained between the purely-generative and the purely-discriminative and the semisupervised learning improves the performance when labeled sequences are limited.

  7. MADMX: A Novel Strategy for Maximal Dense Motif Extraction

    Science.gov (United States)

    Grossi, Roberto; Pietracaprina, Andrea; Pisanti, Nadia; Pucci, Geppino; Upfal, Eli; Vandin, Fabio

    We develop, analyze and experiment with a new tool, called madmx, which extracts frequent motifs, possibly including don’t care characters, from biological sequences. We introduce density, a simple and flexible measure for bounding the number of don’t cares in a motif, defined as the ratio of solid (i.e., different from don’t care) characters to the total length of the motif. By extracting only maximal dense motifs, madmx reduces the output size and improves performance, while enhancing the quality of the discoveries. The efficiency of our approach relies on a newly defined combining operation, dubbed fusion, which allows for the construction of maximal dense motifs in a bottom-up fashion, while avoiding the generation of nonmaximal ones. We provide experimental evidence of the efficiency and the quality of the motifs returned by madmx.

  8. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  9. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  10. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  11. Transnationalism as a motif in family stories.

    Science.gov (United States)

    Stone, Elizabeth; Gomez, Erica; Hotzoglou, Despina; Lipnitsky, Jane Y

    2005-12-01

    Family stories have long been recognized as a vehicle for assessing components of a family's emotional and social life, including the degree to which an immigrant family has been willing to assimilate. Transnationalism, defined as living in one or more cultures and maintaining connections to both, is now increasingly common. A qualitative study of family stories in the family of those who appear completely "American" suggests that an affiliation with one's home country is nevertheless detectable in the stories via motifs such as (1) positively connotated home remedies, (2) continuing denigration of home country "enemies," (3) extensive knowledge of the home country history and politics, (4) praise of endogamy and negative assessment of exogamy, (5) superiority of home country to America, and (6) beauty of home country. Furthermore, an awareness of which model--assimilationist or transnational--governs a family's experience may help clarify a clinician's understanding of a family's strengths, vulnerabilities, and mode of framing their cultural experiences.

  12. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  13. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  14. Structure and Dynamics of Electron Injection and Charge Recombination in i-Motif DNA Conjugates.

    Science.gov (United States)

    Fujii, Taiga; K Thazhathveetil, Arun; Yildirim, Ilyas; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Lewis, Frederick D

    2017-08-31

    The dynamics of electron injection have been investigated in intramolecular i-motif conjugates possessing stilbenediether (Sd) and perylenediimide (PDI) chromophores separated by either four or six hemiprotonated cytosine C-C base pairs assembled with synthetic loops. Circular dichroism spectra are consistent with the formation of i-motif structures in the absence or presence of Sd and PDI chromophores. The fluorescence of the Sd chromophore is essentially completely quenched by neighboring C-C base pairs, consistent with their function as an electron donor and electron acceptor, respectively. However, the fluorescence of the PDI chromophore is only partially quenched. The dynamics of electron injection from singlet Sd into the i-motif and subsequent charge recombination has been determined by femtosecond transient absorption (fsTA) spectroscopy and compared with the results for electron injection and charge recombination in Sd-linked hairpins possessing cytosine-guanine (C-G) or 5-fluorouracil-adenine (F-A) base pairs. While charge injection is ultrafast (electron trap is not observed. The absence of electron transport is related to the structure of the stacked C-C base pairs in the i-motif.

  15. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    (P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...... and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid...

  16. The limits of de novo DNA motif discovery.

    Science.gov (United States)

    Simcha, David; Price, Nathan D; Geman, Donald

    2012-01-01

    A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of the LR and ALR

  17. EXTREME: an online EM algorithm for motif discovery.

    Science.gov (United States)

    Quang, Daniel; Xie, Xiaohui

    2014-06-15

    Identifying regulatory elements is a fundamental problem in the field of gene transcription. Motif discovery-the task of identifying the sequence preference of transcription factor proteins, which bind to these elements-is an important step in this challenge. MEME is a popular motif discovery algorithm. Unfortunately, MEME's running time scales poorly with the size of the dataset. Experiments such as ChIP-Seq and DNase-Seq are providing a rich amount of information on the binding preference of transcription factors. MEME cannot discover motifs in data from these experiments in a practical amount of time without a compromising strategy such as discarding a majority of the sequences. We present EXTREME, a motif discovery algorithm designed to find DNA-binding motifs in ChIP-Seq and DNase-Seq data. Unlike MEME, which uses the expectation-maximization algorithm for motif discovery, EXTREME uses the online expectation-maximization algorithm to discover motifs. EXTREME can discover motifs in large datasets in a practical amount of time without discarding any sequences. Using EXTREME on ChIP-Seq and DNase-Seq data, we discover many motifs, including some novel and infrequent motifs that can only be discovered by using the entire dataset. Conservation analysis of one of these novel infrequent motifs confirms that it is evolutionarily conserved and possibly functional. All source code is available at the Github repository http://github.com/uci-cbcl/EXTREME. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  19. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  20. Computational and experimental analysis of short peptide motifs for enzyme inhibition.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal. MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.

  1. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  2. Learning “graph-mer” Motifs that Predict Gene Expression Trajectories in Development

    Science.gov (United States)

    Li, Xuejing; Panea, Casandra; Wiggins, Chris H.; Reinke, Valerie; Leslie, Christina

    2010-01-01

    A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the promoter sequences of genes in a cluster. However, genes with similar expression profiles may be controlled by distinct regulatory programs. Moreover, if many gene expression profiles in a data set are highly correlated, as in the case of whole organism developmental time series, it may be difficult to resolve fine-grained clusters in the first place. We present a predictive framework for modeling the natural flow of information, from promoter sequence to expression, to learn cis regulatory motifs and characterize gene expression patterns in developmental time courses. We introduce a cluster-free algorithm based on a graph-regularized version of partial least squares (PLS) regression to learn sequence patterns—represented by graphs of k-mers, or “graph-mers”—that predict gene expression trajectories. Applying the approach to wildtype germline development in Caenorhabditis elegans, we found that the first and second latent PLS factors mapped to expression profiles for oocyte and sperm genes, respectively. We extracted both known and novel motifs from the graph-mers associated to these germline-specific patterns, including novel CG-rich motifs specific to oocyte genes. We found evidence supporting the functional relevance of these putative regulatory elements through analysis of positional bias, motif conservation and in situ gene expression. This study demonstrates that our regression model can learn biologically meaningful latent structure and identify potentially functional motifs from subtle developmental time course expression data. PMID:20454681

  3. Learning "graph-mer" motifs that predict gene expression trajectories in development.

    Directory of Open Access Journals (Sweden)

    Xuejing Li

    2010-04-01

    Full Text Available A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the promoter sequences of genes in a cluster. However, genes with similar expression profiles may be controlled by distinct regulatory programs. Moreover, if many gene expression profiles in a data set are highly correlated, as in the case of whole organism developmental time series, it may be difficult to resolve fine-grained clusters in the first place. We present a predictive framework for modeling the natural flow of information, from promoter sequence to expression, to learn cis regulatory motifs and characterize gene expression patterns in developmental time courses. We introduce a cluster-free algorithm based on a graph-regularized version of partial least squares (PLS regression to learn sequence patterns--represented by graphs of k-mers, or "graph-mers"--that predict gene expression trajectories. Applying the approach to wildtype germline development in Caenorhabditis elegans, we found that the first and second latent PLS factors mapped to expression profiles for oocyte and sperm genes, respectively. We extracted both known and novel motifs from the graph-mers associated to these germline-specific patterns, including novel CG-rich motifs specific to oocyte genes. We found evidence supporting the functional relevance of these putative regulatory elements through analysis of positional bias, motif conservation and in situ gene expression. This study demonstrates that our regression model can learn biologically meaningful latent structure and identify potentially functional motifs from subtle developmental time course expression data.

  4. Learning "graph-mer" motifs that predict gene expression trajectories in development.

    Science.gov (United States)

    Li, Xuejing; Panea, Casandra; Wiggins, Chris H; Reinke, Valerie; Leslie, Christina

    2010-04-29

    A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profiles and then searching for overrepresented motifs in the promoter sequences of genes in a cluster. However, genes with similar expression profiles may be controlled by distinct regulatory programs. Moreover, if many gene expression profiles in a data set are highly correlated, as in the case of whole organism developmental time series, it may be difficult to resolve fine-grained clusters in the first place. We present a predictive framework for modeling the natural flow of information, from promoter sequence to expression, to learn cis regulatory motifs and characterize gene expression patterns in developmental time courses. We introduce a cluster-free algorithm based on a graph-regularized version of partial least squares (PLS) regression to learn sequence patterns--represented by graphs of k-mers, or "graph-mers"--that predict gene expression trajectories. Applying the approach to wildtype germline development in Caenorhabditis elegans, we found that the first and second latent PLS factors mapped to expression profiles for oocyte and sperm genes, respectively. We extracted both known and novel motifs from the graph-mers associated to these germline-specific patterns, including novel CG-rich motifs specific to oocyte genes. We found evidence supporting the functional relevance of these putative regulatory elements through analysis of positional bias, motif conservation and in situ gene expression. This study demonstrates that our regression model can learn biologically meaningful latent structure and identify potentially functional motifs from subtle developmental time course expression data.

  5. The effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Tsang, K. M.; Chan, W. L.; Wong, Y. K.

    2014-04-01

    The dependence of stochastic resonance in the feed-forward-loop neuronal network motifs on the noise and time delay are studied in this paper. By computational modeling, Izhikevich neuron model with the chemical coupling is used to build the triple-neuron feed-forward-loop motifs with all possible motif types. Numerical results show that the correlation between the periodic subthreshold signal's frequency and the dynamical response of the network motifs is resonantly dependent on the intensity of additive spatiotemporal noise. Interestingly, the excitatory intermediate neuron could induce intermittent stochastic resonance, whereas the inhibitory one weakens its influence on the intermittent mode. More importantly, it is found that the increasing delays can induce the intermittent appearance of regions of stochastic resonance. Based on the effects of the time delay on the stochastic resonance, the reasons and conditions of such intermittent resonance phenomenon are analyzed.

  6. Functional diversity of CTCFs is encoded in their binding motifs.

    Science.gov (United States)

    Fang, Rongxin; Wang, Chengqi; Skogerbo, Geir; Zhang, Zhihua

    2015-08-28

    The CCCTC-binding factor (CTCF) has diverse regulatory functions. However, the definitive characteristics of the CTCF binding motif required for its functional diversity still remains elusive. Here, we describe a new motif discovery workflow by which we have identified three CTCF binding motif variations with highly divergent functionalities. Supported by transcriptomic, epigenomic and chromatin-interactomic data, we show that the functional diversity of the CTCF binding motifs is strongly associated with their GC content, CpG dinucleotide coverage and relative DNA methylation level at the 12th position of the motifs. Further analysis suggested that the co-localization of cohesin, the key factor in cohesion of sister chromatids, is negatively correlated with the CpG coverage and the relative DNA methylation level at the 12th position. Finally, we present evidences for a hypothetical model in which chromatin interactions between promoters and distal regulatory regions are likely mediated by CTCFs binding to sequences with high CpG. These results demonstrate the existence of definitive CTCF binding motifs corresponding to CTCF's diverse functions, and that the functional diversity of the motifs is strongly associated with genetic and epigenetic features at the 12th position of the motifs.

  7. The effect of orthology and coregulation on detecting regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Valerie Storms

    Full Text Available BACKGROUND: Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. METHODOLOGY: We designed datasets (real and synthetic covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. RESULTS AND CONCLUSIONS: Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE.

  8. Fingerprint motifs of phytases | Fan | African Journal of Biotechnology

    African Journals Online (AJOL)

    Among the total of potential 173 phytases gained in 11 plant genomes through MAST, PAPhys are the major phytases, and HAPhys are the minor, and other phytase groups are not found in planta. Keywords: Phytase, fingerprint motif, multiple EM for motif elicitation (MEME), MAST African Journal of Biotechnology Vol.

  9. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    , selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes...

  10. Discovering large network motifs from a complex biological network

    Science.gov (United States)

    Terada, Aika; Sese, Jun

    2009-12-01

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  11. Unmasking functional motifs within disordered regions of proteins.

    Science.gov (United States)

    Das, Rahul K; Mao, Albert H; Pappu, Rohit V

    2012-04-17

    Eukaryotic proteins often possess long stretches that fail to adopt well-defined, three-dimensional structures. These intrinsically disordered regions are associated with cell signaling through the enrichment of hub proteins of networks and as targets for posttranslational modifications. Although disordered regions are readily identified because of their distinct sequence characteristics, it is difficult to predict the functions associated with these regions. This is because disordered regions often house short (two- to five-residue) linear motifs that mediate intermolecular interactions. Predicting their function requires the ability to identify the functionally relevant motifs. If one assumes that functional motifs are highly conserved as compared to background sequence contexts, then a suitable comparative genomics approach proves to be powerful in unmasking functional motifs that are part of disordered regions. This approach has successfully identified known functional motifs and predicted a set of new motifs that might yield important insights regarding previously unknown functionalities for disordered regions. Given knowledge of highly conserved motifs, one can assess whether the rapidly changing sequence contexts are actuators of the functionalities of short linear motifs within disordered regions. This should have important implications for engineering and targeting hub proteins in signaling networks.

  12. Ancient Writers’ Motifs in Spanish Golden Age Drama

    Directory of Open Access Journals (Sweden)

    Bojana Tomc

    2016-12-01

    Full Text Available In Spanish Golden Age drama we come across all forms of the reception of ancient writers’ motifs: explicit (direct quotation of an ancient author, where the quotation may be more or less complete, or a clear allusion to it, implicit (where there is no explicit mentioning of the ancient source, however certain ancient elements are mentioned such as persons, places, historical circumstances, hidden (where there is no clear hint about a literary intervention in Antiquity or an imitation of the literary excerpt or motif, as well as direct imitation (aemulatio or adaptation (variatio. In the Renaissance and Baroque there are almost no motifs, which could not be taken over from Antiquity without a transformation or innovation. If there is a close correspondence to the ancient motif, it is generally sufficient simply to mention it or employ a side motif as an illustration of a similar situation without elaborating the motif further or weaving it more deeply into the supporting fabric of the dramatic work. The ancient authors who contribute the motifs are numerous and diverse: Vergil, the Roman elegists Propertius in Tibullus, the lyric poet Horace, the comedian Plautus, the stoic philosopher Seneca, the historian Tacitus, the novelist Apuleius, as well as Greek dramatist Aeschylus and stoic philosopher Epictetus. The genres, which are a source for the surviving ancient motifs in the Golden Age in the selected authors, include literary as well as not-literary forms: epic poetry, lyric, dramatics, philosophy and historiography.

  13. Classification and assessment tools for structural motif discovery algorithms.

    Science.gov (United States)

    Badr, Ghada; Al-Turaiki, Isra; Mathkour, Hassan

    2013-01-01

    Motif discovery is the problem of finding recurring patterns in biological data. Patterns can be sequential, mainly when discovered in DNA sequences. They can also be structural (e.g. when discovering RNA motifs). Finding common structural patterns helps to gain a better understanding of the mechanism of action (e.g. post-transcriptional regulation). Unlike DNA motifs, which are sequentially conserved, RNA motifs exhibit conservation in structure, which may be common even if the sequences are different. Over the past few years, hundreds of algorithms have been developed to solve the sequential motif discovery problem, while less work has been done for the structural case. In this paper, we survey, classify, and compare different algorithms that solve the structural motif discovery problem, where the underlying sequences may be different. We highlight their strengths and weaknesses. We start by proposing a benchmark dataset and a measurement tool that can be used to evaluate different motif discovery approaches. Then, we proceed by proposing our experimental setup. Finally, results are obtained using the proposed benchmark to compare available tools. To the best of our knowledge, this is the first attempt to compare tools solely designed for structural motif discovery. Results show that the accuracy of discovered motifs is relatively low. The results also suggest a complementary behavior among tools where some tools perform well on simple structures, while other tools are better for complex structures. We have classified and evaluated the performance of available structural motif discovery tools. In addition, we have proposed a benchmark dataset with tools that can be used to evaluate newly developed tools.

  14. Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    2012-01-01

    Full Text Available Position weight matrix (PWM is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery, present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.

  15. Using machine learning to predict gene expression and discover sequence motifs

    Science.gov (United States)

    Li, Xuejing

    Recently, large amounts of experimental data for complex biological systems have become available. We use tools and algorithms from machine learning to build data-driven predictive models. We first present a novel algorithm to discover gene sequence motifs associated with temporal expression patterns of genes. Our algorithm, which is based on partial least squares (PLS) regression, is able to directly model the flow of information, from gene sequence to gene expression, to learn cis regulatory motifs and characterize associated gene expression patterns. Our algorithm outperforms traditional computational methods e.g. clustering in motif discovery. We then present a study of extending a machine learning model for transcriptional regulation predictive of genetic regulatory response to Caenorhabditis elegans. We show meaningful results both in terms of prediction accuracy on the test experiments and biological information extracted from the regulatory program. The model discovers DNA binding sites ab initio. We also present a case study where we detect a signal of lineage-specific regulation. Finally we present a comparative study on learning predictive models for motif discovery, based on different boosting algorithms: Adaptive Boosting (AdaBoost), Linear Programming Boosting (LPBoost) and Totally Corrective Boosting (TotalBoost). We evaluate and compare the performance of the three boosting algorithms via both statistical and biological validation, for hypoxia response in Saccharomyces cerevisiae.

  16. Tripartite motif 32 prevents pathological cardiac hypertrophy.

    Science.gov (United States)

    Chen, Lijuan; Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan; Li, Hongliang

    2016-05-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. © 2016 The Author(s).

  17. Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration.

    Directory of Open Access Journals (Sweden)

    Sergio eTofanelli

    2014-11-01

    Full Text Available Several authors have proposed haplotype motifs based on site variants at the mitochondrial genome (mtDNA and the non-recombining portion of the Y chromosome (NRY to trace the genealogies of Jewish people. Here, we analyzed their main approaches and test the feasibility of adopting motifs as ancestry markers through construction of a large database of mtDNA and NRY haplotypes from public genetic genealogical repositories. We verified the reliability of Jewish ancestry prediction based on the Cohen and Levite Modal Haplotypes in their classical 6 STR marker format or in the extended 12 STR format, as well as four founder mtDNA lineages (HVS-I segments accounting for about 40% of the current population of Ashkenazi Jews. For this purpose we compared haplotype composition in individuals of self-reported Jewish ancestry with the rest of European, African or Middle Eastern samples, to test for non-random association of ethno-geographic groups and haplotypes. Overall, NRY and mtDNA based motifs, previously reported to differentiate between groups, were found to be more represented in Jewish compared to non-Jewish groups. However, this seems to stem from common ancestors of Jewish lineages being rather recent respect to ancestors of non-Jewish lineages with the same haplotype signatures. Moreover, the polyphyly of haplotypes which contain the proposed motifs and the misuse of constant mutation rates heavily affected previous attempts to correctly dating the origin of common ancestries. Accordingly, our results stress the limitations of using the above haplotype motifs as reliable Jewish ancestry predictors and show its inadequacy for forensic or genealogical purposes.

  18. Identifying topological motif patterns of human brain functional networks.

    Science.gov (United States)

    Wei, Yongbin; Liao, Xuhong; Yan, Chaogan; He, Yong; Xia, Mingrui

    2017-05-01

    Recent imaging connectome studies demonstrated that the human functional brain network follows an efficient small-world topology with cohesive functional modules and highly connected hubs. However, the functional motif patterns that represent the underlying information flow remain largely unknown. Here, we investigated motif patterns within directed human functional brain networks, which were derived from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic latencies. We found several significantly recurring motifs within the network, including the two-node reciprocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns to support intra- and inter-module functional connectivity, which also promoted integration and segregation in network organization. Moreover, the significant participation of several functional hubs in the recurring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic architecture governing brain network organization and provide insight into the information flow mechanism underlying intrinsic brain activities. Hum Brain Mapp 38:2734-2750, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  20. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  1. EAR motif-mediated transcriptional repression in plants

    Science.gov (United States)

    Kagale, Sateesh

    2011-01-01

    Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLN xxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TO PLESS (TPL) and AtSA P18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA 19, co-complex formation between TPL-related 1 (TPR1) and AtHDA 19, as well as direct physical interaction between AtSA P18 and AtHDA 19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR -mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors. PMID:20935498

  2. Triadic motifs in the dependence networks of virtual societies.

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  3. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.

    KAUST Repository

    Sayadi, Ahmed

    2011-07-20

    The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length of the motifs and their variable degree of conservation makes their identification hard since it is difficult to correctly estimate the statistical significance of their occurrence. Consequently, only a small fraction of them have been discovered so far. We describe here an approach for the discovery of SLiMs based on their occurrence in evolutionarily unrelated proteins belonging to the same biological, signalling or metabolic pathway and give specific examples of its effectiveness in both rediscovering known motifs and in discovering novel ones. An automatic implementation of the procedure, available for download, allows significant motifs to be identified, automatically annotated with functional, evolutionary and structural information and organized in a database that can be inspected and queried. An instance of the database populated with pre-computed data on seven organisms is accessible through a publicly available server and we believe it constitutes by itself a useful resource for the life sciences (http://www.biocomputing.it/modipath).

  4. Identification of DNA Motifs Implicated in Maintenance of Bacterial Core Genomes by Predictive Modeling

    Science.gov (United States)

    Halpern, David; Chiapello, Hélène; Schbath, Sophie; Robin, Stéphane; Hennequet-Antier, Christelle; Gruss, Alexandra; El Karoui, Meriem

    2007-01-01

    Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the “crossover hotspot instigator,” or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions. PMID:17941709

  5. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Science.gov (United States)

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  6. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Directory of Open Access Journals (Sweden)

    Itzell Euridice Hernández-Sánchez

    2015-09-01

    Full Text Available The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  7. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling.

    Directory of Open Access Journals (Sweden)

    David Halpern

    2007-09-01

    Full Text Available Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the "crossover hotspot instigator," or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions.

  8. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  9. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling.

    Science.gov (United States)

    Halpern, David; Chiapello, Hélène; Schbath, Sophie; Robin, Stéphane; Hennequet-Antier, Christelle; Gruss, Alexandra; El Karoui, Meriem

    2007-09-01

    Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the "crossover hotspot instigator," or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions.

  10. Discovering sequence motifs in quantitative and qualitative pepetide data

    DEFF Research Database (Denmark)

    Andreatta, Massimo

    where the three-dimensional aspect of the interaction is prevalent, protein-peptide interactions can normally be represented simply by a linear binding motif. Phage display and peptide microarray technologies allow generating large libraries of peptide sequences and the parallel detection of thousands...... molecules, two classes of HLA molecules with recognized importance in immune response but poorly characterized sequence motifs. The sequence logos of 5 HLADP and 6 HLA-DQ molecules provide a characterization of their binding motifs at an unprecedented level of detail. The third paper in this thesis deals...

  11. GRISOTTO: A greedy approach to improve combinatorial algorithms for motif discovery with prior knowledge

    Directory of Open Access Journals (Sweden)

    Oliveira Arlindo L

    2011-04-01

    Full Text Available Abstract Background Position-specific priors (PSP have been used with success to boost EM and Gibbs sampler-based motif discovery algorithms. PSP information has been computed from different sources, including orthologous conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the gain of combining priors from different sources has not yet been studied. Results We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a greedy procedure that uses prior information. PSP's from different sources are combined into a scoring criterion that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the state-of-the-art approaches for the same task. We also show that PSP's improve GRISOTTO ability to retrieve motifs from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different technology and for a higher eukaryote. Conclusions The conclusions of this work are twofold. First, post-processing the output of combinatorial algorithms by incorporating prior information leads to a very efficient and effective motif discovery method. Second, combining priors from different sources is even more beneficial than considering them separately.

  12. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  13. Conformational flexibility may explain multiple cellular roles of PEST motifs.

    Science.gov (United States)

    Sandhu, Kuljeet Singh; Dash, Debasis

    2006-06-01

    PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures. For this purpose, crystallographic temperature factors, structural alignment of multiple NMR models, and dihedral angle order parameters have been used in this study. The study has revealed the hypermobility of PEST motifs as compared to other regions of the protein. Conformational flexibility may allow them to participate in number of molecular interactions under different conditions. This analysis may explain the role of protein backbone flexibility in bringing about multiple cellular roles of PEST motifs. 2006 Wiley-Liss, Inc.

  14. POWRS: Position-Sensitive Motif Discovery: e40373

    National Research Council Canada - National Science Library

    Ian W Davis; Christopher Benninger; Philip N Benfey; Tedd Elich

    2012-01-01

    .... Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set) for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms...

  15. The origin of motif families in food webs

    OpenAIRE

    Klaise, Janis; Johnson, Samuel

    2017-01-01

    Food webs have been found to exhibit remarkable “motif profiles”, patterns in the relative prevalences of all possible three-species subgraphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks—trophic coherence. We find that troph...

  16. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F

    2008-01-01

    bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2), phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14-3-3]. The atlas reveals new aspects of signaling...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  17. No tradeoff between versatility and robustness in gene circuit motifs

    OpenAIRE

    Payne Joshua L.

    2016-01-01

    Circuit motifs are small directed subgraphs that appear in real world networks significantly more often than in randomized networks. In the Boolean model of gene circuits most motifs are realized by multiple circuit genotypes. Each of a motif’s constituent circuit genotypes may have one or more functions which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three gene circuit genotypes rev...

  18. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  19. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  20. BEAM web server: A tool for structural RNA motif discovery.

    Science.gov (United States)

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2017-10-31

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it.

  1. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  2. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery.

    Science.gov (United States)

    Yen, Ian E H; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems.

  3. Assessing the effects of symmetry on motif discovery and modeling.

    Directory of Open Access Journals (Sweden)

    Lala M Motlhabi

    Full Text Available BACKGROUND: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in the specificity models is the assumption of asymmetry for symmetric models. METHODOLOGY/PRINCIPAL FINDINGS: Using simulation studies, so that the correct binding site model is known and various parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use of appropriate measures of statistical significance. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the most commonly used motif-finding approaches usually model symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors. Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any experimental dataset.

  4. Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    Science.gov (United States)

    Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael

    2014-01-01

    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382

  5. Ab initio coordination chemistry for nickel chelation motifs.

    Science.gov (United States)

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  6. Ab initio coordination chemistry for nickel chelation motifs.

    Directory of Open Access Journals (Sweden)

    R Jesu Jaya Sudan

    Full Text Available Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  7. DNA mutation motifs in the genes associated with inherited diseases.

    Science.gov (United States)

    Růžička, Michal; Kulhánek, Petr; Radová, Lenka; Čechová, Andrea; Špačková, Naďa; Fajkusová, Lenka; Réblová, Kamila

    2017-01-01

    Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  8. Automatic generation of 3D motifs for classification of protein binding sites

    Directory of Open Access Journals (Sweden)

    Herzyk Pawel

    2007-08-01

    Full Text Available Abstract Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that

  9. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons.

    Science.gov (United States)

    Diaz de Arce, Alexander J; Noderer, William L; Wang, Clifford L

    2018-01-25

    The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Fernandez, M M; Steen, H

    2000-01-01

    In an effort to clone novel tyrosine-phosphorylated substrates of the epidermal growth factor receptor, we have initiated an approach coupling affinity purification using anti-phosphotyrosine antibodies to mass spectrometry-based identification. Here, we report the identification of a signaling m...

  11. Fitting a mixture model by expectation maximization to discover motifs in biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T.L.; Elkan, C. [Univ. of California, La Jolla, CA (United States)

    1994-12-31

    The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expectation maximization to fit a two-component finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model to the data, probabilistically erasing the occurrences of the motif thus found, and repeating the process to find successive motifs. The algorithm requires only a set of unaligned sequences and a number specifying the width of the motifs as input. It returns a model of each motif and a threshold which together can be used as a Bayes-optimal classifier for searching for occurrences of the motif in other databases. The algorithm estimates how many times each motif occurs in each sequence in the dataset and outputs an alignment of the occurrences of the motif. The algorithm is capable of discovering several different motifs with differing numbers of occurrences in a single dataset.

  12. Discovering motifs in ranked lists of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Eran Eden

    2007-03-01

    Full Text Available Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray measurements. Several major challenges in sequence motif discovery still require consideration: (i the need for a principled approach to partitioning the data into target and background sets; (ii the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii the need for an appropriate framework for accounting for motif multiplicity; (iv the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs, which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP-chip and CpG methylation data and obtained the following results. (i Identification of 50 novel putative transcription factor (TF binding sites in yeast ChIP-chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked

  13. BayesMD: flexible biological modeling for motif discovery.

    Science.gov (United States)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-12-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on transcription factor (TF) databases in order to extract the typical properties of TF binding sites. In a similar fashion we train organism-specific priors for the background sequences. Lastly, we use a prior over the position of binding sites. This prior represents information complementary to the motif and background priors coming from conservation, local sequence complexity, nucleosome occupancy, etc. and assumptions about the number of occurrences. The Bayesian inference is carried out using a combination of exact marginalization (multinomial parameters) and sampling (over the position of sites). Robust sampling results are achieved using the advanced sampling method parallel tempering. In a post-analysis step candidate motifs with high marginal probability are found by searching among those motifs that contain sites that occur frequently. Thereby, maximum a posteriori inference for the motifs is avoided and the marginal probabilities can be used directly to assess the significance of the findings. The framework is benchmarked against other methods on a number of real and artificial data sets. The accompanying prediction server, documentation, software, models and data are available from http://bayesmd.binf.ku.dk/.

  14. Periodic distribution of a putative nucleosome positioning motif in human, nonhuman primates, and archaea: mutual information analysis.

    Science.gov (United States)

    Sosa, Daniela; Miramontes, Pedro; Li, Wentian; Mireles, Víctor; Bobadilla, Juan R; José, Marco V

    2013-01-01

    Recently, Trifonov's group proposed a 10-mer DNA motif YYYYYRRRRR as a solution of the long-standing problem of sequence-based nucleosome positioning. To test whether this generic decamer represents a biological meaningful signal, we compare the distribution of this motif in primates and Archaea, which are known to contain nucleosomes, and in Eubacteria, which do not possess nucleosomes. The distribution of the motif is analyzed by the mutual information function (MIF) with a shifted version of itself (MIF profile). We found common features in the patterns of this generic decamer on MIF profiles among primate species, and interestingly we found conspicuous but dissimilar MIF profiles for each Archaea tested. The overall MIF profiles for each chromosome in each primate species also follow a similar pattern. Trifonov's generic decamer may be a highly conserved motif for the nucleosome positioning, but we argue that this is not the only motif. The distribution of this generic decamer exhibits previously unidentified periodicities, which are associated to highly repetitive sequences in the genome. Alu repetitive elements contribute to the most fundamental structure of nucleosome positioning in higher Eukaryotes. In some regions of primate chromosomes, the distribution of the decamer shows symmetrical patterns including inverted repeats.

  15. Periodic Distribution of a Putative Nucleosome Positioning Motif in Human, Nonhuman Primates, and Archaea: Mutual Information Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Sosa

    2013-01-01

    Full Text Available Recently, Trifonov's group proposed a 10-mer DNA motif YYYYYRRRRR as a solution of the long-standing problem of sequence-based nucleosome positioning. To test whether this generic decamer represents a biological meaningful signal, we compare the distribution of this motif in primates and Archaea, which are known to contain nucleosomes, and in Eubacteria, which do not possess nucleosomes. The distribution of the motif is analyzed by the mutual information function (MIF with a shifted version of itself (MIF profile. We found common features in the patterns of this generic decamer on MIF profiles among primate species, and interestingly we found conspicuous but dissimilar MIF profiles for each Archaea tested. The overall MIF profiles for each chromosome in each primate species also follow a similar pattern. Trifonov’s generic decamer may be a highly conserved motif for the nucleosome positioning, but we argue that this is not the only motif. The distribution of this generic decamer exhibits previously unidentified periodicities, which are associated to highly repetitive sequences in the genome. Alu repetitive elements contribute to the most fundamental structure of nucleosome positioning in higher Eukaryotes. In some regions of primate chromosomes, the distribution of the decamer shows symmetrical patterns including inverted repeats.

  16. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Cristóbal Almendros

    Full Text Available Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR and CRISPR associated (cas genes conform the CRISPR-Cas systems of various bacteria and archaea and produce degradation of invading nucleic acids containing sequences (protospacers that are complementary to repeat intervening spacers. It has been demonstrated that the base sequence identity of a protospacer with the cognate spacer and the presence of a protospacer adjacent motif (PAM influence CRISPR-mediated interference efficiency. By using an original transformation assay with plasmids targeted by a resident spacer here we show that natural CRISPR-mediated immunity against invading DNA occurs in wild type Escherichia coli. Unexpectedly, the strongest activity is observed with protospacer adjoining nucleotides (interference motifs that differ from the PAM both in sequence and location. Hence, our results document for the first time native CRISPR activity in E. coli and demonstrate that positions next to the PAM in invading DNA influence their recognition and degradation by these prokaryotic immune systems.

  17. Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation

    CERN Document Server

    Singh, Raghvendra Pratap; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual stacked C*C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression and bending deformation with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young's and bending moduli of the nanowire, as wel as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to...

  18. De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  19. Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism

    Science.gov (United States)

    Baskerville, Kim; Paczuski, Maya

    2006-11-01

    A heuristic based on vertex invariants is developed to rapidly distinguish nonisomorphic graphs to a desired level of accuracy. The method is applied to sample subgraphs from an Escherichia coli protein interaction network, and as a probe for discovery of extended motifs. The network’s structure is described using statistical properties of its N -node subgraphs for N⩽14 . The Zipf plots for subgraph occurrences are robust power laws that do not change when rewiring the network while fixing the degree sequence—although many specific subgraphs exchange rank. The exponent for the Zipf law depends on N . Studying larger subgraphs highlights some striking patterns for various N . Motifs, or connected pieces that are overabundant in the ensemble of subgraphs, have more edges, for a given number of nodes, than antimotifs and generally display a bipartite structure or tend toward a complete graph. In contrast, antimotifs, which are underabundant connected pieces, are mostly trees or contain at most a single, small loop.

  20. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    Science.gov (United States)

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  1. An examination of binding motifs associated with inter-particle interactions between facetted nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods.

    Science.gov (United States)

    Hammond, R B; Jeck, S; Ma, C Y; Pencheva, K; Roberts, K J; Auffret, T

    2009-12-01

    Grid-based intermolecular search methods using atom-atom force fields are used to assess the structural nature of potential crystal-crystal interfacial binding associated with the examination of representative pharmaceutical formulation components, viz acetylsalicylic acid (aspirin) and ascorbic acid (vitamin C). Molecular models of nano-sized molecular clusters for these two compounds, shaped in accordance with an attachment energy model of the respective particle morphologies, are constructed and used together with a grid-based search method to model the likely inter-particle interactions. The most-stable, mutual alignments of the respective nano-clusters based on their interaction energies are identified in the expectation that these are indicative of the most likely inter-particle binding configurations. The stable inter-particle binding configurations identified reveal that the number of interfacial hydrogen bonds formed between the binding particles is, potentially, an important factor in terms of the stability of inter-particle cohesion. All preferred inter-particle alignments are found to involve either the (1 0 0) or the (1 1 0) face of aspirin crystals interacting with a number of the growth forms of ascorbic acid. Four main types of interfacial hydrogen bonds are found to be associated with inter-particle binding and involve acceptor-donor interactions between hydroxyl, carbonyl, ester and lactone acceptor groups and hydroxyl donor groups. This hydrogen bonding network is found to be consistent with the surface chemistry of the interacting habit faces with, in general, the number of hydrogen bonds increasing for the more stable alignments. The likely usefulness of this approach for predicting solid-state formulation properties is reviewed. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  2. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  3. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  4. Metal-Free Motifs for Solar Fuel Applications

    Science.gov (United States)

    Ilic, Stefan; Zoric, Marija R.; Kadel, Usha Pandey; Huang, Yunjing; Glusac, Ksenija D.

    2017-05-01

    Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

  5. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number....... Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee...... of steady states in the system. These findings reveal, to our knowledge, a new mechanism for the generation of bistability and multistability in cellular signalling systems. Further the futile cycle featuring a two-state kinase is among the smallest bistable signalling motifs. We show that multi-state...

  6. NORMAL INCIDENCE SOUND ABSORPTION COEFFICIENT OF DIRECT PIERCING CARVED WOOD PANEL WITH DAUN SIREH MOTIF USING BOUNDARY ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Mohd Zamri Jusoh

    2013-06-01

    Full Text Available The Direct Piercing Carved Wood Panel (DPCWP installed in Masjid Abidin, Kuala Terengganu, is one example that carries much aesthetic and artistic value. The use of DPCWP in earlier mosques was envisaged to improve the intelligibility of indoor speech because the perforated panels allow some of the sound energy to pass through. In this paper, the normal incidence sound absorption coefficient of DPCWP with Daun Sireh motif, which is a form of floral pattern, is discussed. The Daun Sireh motif was chosen and investigated for 30%, 35%, 40%, and 45% perforation ratios. The simulations were conducted using BEASY Acoustic Software based on the boundary element method. The simulation results were compared with measurements obtained by using the sound intensity technique. An accompanying discussion on both the numerical and the measurement tendencies of the sound absorption characteristics of the DPCWP is provided. The results show that the DPCWP with Daun Sireh motif can act as a good sound absorber.

  7. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  8. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  9. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    Granovetter, M. (1983), “The strength of weak ties: A network theory revisited,” Sociological Theory 1 pp. 201-233. [4] Lancichinetti, A., Fortunato, S...AFRL-AFOSR-UK-TR-2015-0025 Detecting Statistically Signicant Communities of Triangle Motifs in Undirected Networks Marcus Perry IMPERIAL COLLEGE OF...triangle motifs in undirected networks 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0019 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Marcus Perry

  10. New potent and selective αvβ3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation.

    Science.gov (United States)

    Wu, Zhimeng; Cheng, Xiaozhong; Hong, Haofei; Zhao, Xinrui; Zhou, Zhifang

    2017-05-01

    Three 14-mer macrocyclic peptides 1-3 containing mono-, di- and tri-RGD structure motif were designed and synthesized by sortase A-mediated ligation in good yields. The results of in intro cell-based biological assays indicated that linear peptide 5 and macrocyclic peptide 1, containing di-RGD and mono-RGD motif respectively, showed remarkable potency and selectivity to αvβ3 integrin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. G-Quadruplex and i-Motif Are Mutually Exclusive in ILPR Double-Stranded DNA

    Science.gov (United States)

    Dhakal, Soma; Yu, Zhongbo; Konik, Ryan; Cui, Yunxi; Koirala, Deepak; Mao, Hanbin

    2012-01-01

    G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA (ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found in the insulin-linked polymorphic region (ILPR), 5′-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with 100 mM K+, and an i-motif at pH 5.5 with 100 mM Li+. Surprisingly, under a condition that favors the formation of both G-quadruplex and i-motif (pH 5.5, 100 mM K+), a unique determination of change in the free energy of unfolding (ΔGunfold) by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condition, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities (rupture force ≥ 17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could justify a regulatory mechanism for tetraplex structures in the expression of human insulin. PMID:22713573

  12. CpG Motifs in Porphyromonas gingivalis DNA Stimulate Interleukin-6 Expression in Human Gingival Fibroblasts

    Science.gov (United States)

    Takeshita, Akira; Imai, Kenichi; Hanazawa, Shigemasa

    1999-01-01

    We suggest here that Porphyromonas gingivalis DNA may function as a virulence factor in periodontal disease through expression of inflammatory cytokine. The bacterial DNA markedly stimulated in a dose-dependent manner interleukin-6 (IL-6) production by human gingival fibroblasts. The stimulatory action was eliminated by treatment with DNase but not RNase. The stimulatory effect was not observed in the fibroblasts treated with eucaryotic DNAs. The bacterial DNA also stimulated in dose- and treatment time-dependent manners the expression of the IL-6 gene in the cells. In addition, the stimulatory effect was eliminated when the DNA was methylated with CpG motif methylase. Interestingly, a 30-base synthetic oligonucleotide containing the palindromic motif GACGTC could stimulate expression of the IL-6 gene and production of its protein in the cells. Furthermore, the synthetic oligonucleotide-induced expression of this cytokine gene was blocked by pyrrolidine dithiocarbamate and N-acetyl-l-cystine, potent inhibitors of transcriptional factor NF-κB. Gel mobility shift assay showed increased binding of NF-κB to its consensus sequence in the synthetic oligonucleotide-treated cells. Also, using specific antibody against p50 and p65, which compose NF-κB, we showed the consensus sequence-binding proteins to be NF-κB. These results are the first to demonstrate that the internal CpG motifs in P. gingivalis DNA stimulate IL-6 expression in human gingival fibroblasts via stimulation of NF-κB. PMID:10456872

  13. Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation

    Science.gov (United States)

    Singh, Raghvendra Pratap; Blossey, Ralf; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties. PMID:24359754

  14. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    Science.gov (United States)

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers.

  15. Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction.

    Directory of Open Access Journals (Sweden)

    Tianquan Jin

    2009-12-01

    Full Text Available Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i in a compaction of protein matrix subunit dimensions, (ii reduced conformational variability, (iii an increase in polyproline II helices, and (iv promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem

  16. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation

    Directory of Open Access Journals (Sweden)

    Lecharny Alain

    2010-03-01

    Full Text Available Abstract Background The TATA-box and TATA-variants are regulatory elements involved in the formation of a transcription initiation complex. Both have been conserved throughout evolution in a restricted region close to the Transcription Start Site (TSS. However, less than half of the genes in model organisms studied so far have been found to contain either one of these elements. Indeed different core-promoter elements are involved in the recruitment of the TATA-box-binding protein. Here we assessed the possibility of identifying novel functional motifs in plant genes, sharing the TATA-box topological constraints. Results We developed an ab-initio approach considering the preferential location of motifs relative to the TSS. We identified motifs observed at the TATA-box expected location and conserved in both Arabidopsis thaliana and Oryza sativa promoters. We identified TC-elements within non-TA-rich promoters 30 bases upstream of the TSS. As with the TATA-box and TATA-variant sequences, it was possible to construct a unique distance graph with the TC-element sequences. The structural and functional features of TC-element-containing genes were distinct from those of TATA-box- or TATA-variant-containing genes. Arabidopsis thaliana transcriptome analysis revealed that TATA-box-containing genes were generally those showing relatively high levels of expression and that TC-element-containing genes were generally those expressed in specific conditions. Conclusions Our observations suggest that the TC-elements might constitute a class of novel regulatory elements participating towards the complex modulation of gene expression in plants.

  17. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  18. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2 predicts novel potential therapeutic epitopes.

    Directory of Open Access Journals (Sweden)

    Xiaohong Deng

    Full Text Available Overexpression of human epidermal growth factor receptor 2 (HER2 is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2 contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  19. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes.

    Science.gov (United States)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming; Moreira, José Manuel Afonso; Brünner, Nils; Christensen, Henrik

    2014-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2) contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  20. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  1. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    Science.gov (United States)

    Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F.

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this paper we present a new method that integrates sequence, motif and protein interaction data to model how proteins are sorted through these targeting pathways. We use a hidden Markov model (HMM) to represent protein targeting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms.

  2. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans...

  3. Type 2 diabetes mellitus: phylogenetic motifs for predicting protein ...

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... Diabetes mellitus, commonly referred to as diabetes, is a medical condition associated with abnormally high levels of glucose (or sugar) in the blood. Keeping this view, we demonstrate the phylogenetic motifs (PMs) identification in type 2 diabetes mellitus very likely corresponding to protein functional sites.

  4. Glycation ligand binding motif in lactoferrin. Implications in diabetic infection.

    Science.gov (United States)

    Li, Y M

    1998-01-01

    Lactoferrin and lysozyme are two important, naturally occurring antibacterial proteins found in saliva, nasal secretions, milk, mucus, serum and in the lysosomes of neutrophils and macrophages. Both proteins bind specifically to glucose-modified proteins bearing advanced glycation endproducts (AGEs). Exposure to AGE-modified proteins blocks the bacterial agglutination and bacterial killing activities of lactoferrin and also inhibits the bactericidal and enzymatic activity of lysozyme. Peptide mapping by AGE ligand blot revealed two AGE-binding domains in lactoferrin, and a single AGE-binding domain in lysozyme. None of these AGE-binding domains displayed any significant homology in their primary sequences; however, a common 17-18 amino acid cysteine loop motif (CX15-16C) was identified among them, which we named an ABCD motif (AGE-Binding Cysteine-bounded Domain). Similar domains are also present in other antimicrobial proteins such as defesins. Hydrophilicity analysis indicated that each of these ABCD loops is markedly hydrophilic. Synthetic peptides, corresponding to these motifs in lactoferrin and lysozyme, exhibited AGE-binding activity. Since diabetes is associated with abnormally high levels of tissue and serum AGEs, the elevated AGEs may inhibit endogenous antibacterial proteins by binding to the conserved ABCD motif, thereby increasing susceptibility to bacterial infections in diabetic individuals. These results may provide a basis for the development of new approaches to prevent diabetic infections.

  5. Perceptions of Seshoeshoe fabric, naming and meanings of motifs ...

    African Journals Online (AJOL)

    Responses of participants showed that both the dress and fabric are popularly known as seshoeshoe. It was further found that the choice of the fabric has increased in the market due to the wide variety of motifs and colours although the quality of fabric has not improved. There are still problems encountered by dressmakers ...

  6. Biomarker Motif Discovery by Integrating Mass Spectrometry and PPI Network

    Science.gov (United States)

    Zhou, Xiaobo; Wang, Yuan; Wang, Honghui; Pham, Tuan D.; Li, King

    2011-06-01

    Traditional mass spectrometry biomarker discovery studies which focus on single biomarkers or a panel of biomarkers have shown their limitations with low reproducibility. In this paper, we propose a novel biomarker motif discovery approach by integrating both mass spectrometry data and protein interaction network information together to identify biomarkers. A novel Bayesian score method is developed to score the protein subnetwork both from the expression of protein and from the protein interaction network structure. Compared with the previous biomarker discovery method, our biomarker motif identification method not only models the expression of each protein, but also the relationship of proteins affected by the protein-protein interaction network. The experiment results show that our proposed biomarker discovery method has a higher sensitivity and lower false discovery rates than previously used methods. When applying our biomarker motifs discovery approach to the real stroke mass spectrometry data, we can identify several biomarker motifs for ischemic stroke which can achieve a higher classification performance with high biological significance.

  7. 333 An Examination of the Festival Motif in Femi Osofisan's ...

    African Journals Online (AJOL)

    a vintage and delightful play, which is very aesthetic and scintillating, yet possesses a strong and radical socialist message. Keywords: Festival motif, Morountodun, Dance, Music,. Traditional theatre, Femi Osofisan. Introduction. Ruth Finnegan describes drama as the enactment or representation through actors who imitate ...

  8. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta t...

  9. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... analysis of ChIP-seq data. BMC Bioinformatics, 10: p. 299. Wang C, Wang H, Luo J, Hu Y, Wei L, Duan M, He H (2009). Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol. 10: p. 55. Zamdborg L, Ma P (2009). Discovery of ...

  10. Predicting conserved protein motifs with Sub-HMMs

    Directory of Open Access Journals (Sweden)

    Girke Thomas

    2010-04-01

    Full Text Available Abstract Background Profile HMMs (hidden Markov models provide effective methods for modeling the conserved regions of protein families. A limitation of the resulting domain models is the difficulty to pinpoint their much shorter functional sub-features, such as catalytically relevant sequence motifs in enzymes or ligand binding signatures of receptor proteins. Results To identify these conserved motifs efficiently, we propose a method for extracting the most information-rich regions in protein families from their profile HMMs. The method was used here to predict a comprehensive set of sub-HMMs from the Pfam domain database. Cross-validations with the PROSITE and CSA databases confirmed the efficiency of the method in predicting most of the known functionally relevant motifs and residues. At the same time, 46,768 novel conserved regions could be predicted. The data set also allowed us to link at least 461 Pfam domains of known and unknown function by their common sub-HMMs. Finally, the sub-HMM method showed very promising results as an alternative search method for identifying proteins that share only short sequence similarities. Conclusions Sub-HMMs extend the application spectrum of profile HMMs to motif discovery. Their most interesting utility is the identification of the functionally relevant residues in proteins of known and unknown function. Additionally, sub-HMMs can be used for highly localized sequence similarity searches that focus on shorter conserved features rather than entire domains or global similarities. The motif data generated by this study is a valuable knowledge resource for characterizing protein functions in the future.

  11. Identification of novel motif patterns to decipher the promoter architecture of co-expressed genes in Arabidopsis thaliana.

    Science.gov (United States)

    López, Yosvany; Patil, Ashwini; Nakai, Kenta

    2013-10-16

    The understanding of the mechanisms of transcriptional regulation remains a challenge for molecular biologists in the post-genome era. It is hypothesized that the regulatory regions of genes expressed in the same tissue or cell type share a similar structure. Though several studies have analyzed the promoters of genes expressed in specific metazoan tissues or cells, little research has been done in plants. Hence finding specific patterns of motifs to explain the promoter architecture of co-expressed genes in plants could shed light on their transcription mechanism. We identified novel patterns of sets of motifs in promoters of genes co-expressed in four different plant structures (PSs) and in the entire plant in Arabidopsis thaliana. Sets of genes expressed in four PSs (flower, seed, root, shoot) and housekeeping genes expressed in the entire plant were taken from a database of co-expressed genes in A. thaliana. PS-specific motifs were predicted using three motif-discovery algorithms, 8 of which are novel, to the best of our knowledge. A support vector machine was trained using the average upstream distance of the identified motifs from the translation start site on both strands of binding sites. The correctly classified promoters per PS were used to construct specific patterns of sets of motifs to describe the promoter architecture of those co-expressed genes. The discovered PS-specific patterns were tested in the entire A. thaliana genome, correctly identifying 77.8%, 81.2%, 70.8% and 53.7% genes expressed in petal differentiation, synergid cells, root hair and trichome, as well as 88.4% housekeeping genes. We present five patterns of sets of motifs which describe the promoter architecture of co-expressed genes in five PSs with the ability to predict them from the entire A. thaliana genome. Based on these findings, we conclude that the positioning and orientation of transcription factor binding sites at specific distances from the translation start site is a

  12. Motivated proteins: a web application for studying small three-dimensional protein motifs.

    Science.gov (United States)

    Leader, David P; Milner-White, E James

    2009-02-11

    Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.

  13. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    Directory of Open Access Journals (Sweden)

    Milner-White E James

    2009-02-01

    Full Text Available Abstract Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (XHTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.

  14. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    Directory of Open Access Journals (Sweden)

    Liu Jun S

    2004-10-01

    Full Text Available Abstract Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM, an algebraic system, and Markov chain Monte Carlo (MCMC sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97 AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can

  15. A functional EXXEK motif is essential for proton coupling and active glucosinolate transport by NPF2.11

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Geiger, Dietmar

    2015-01-01

    The proton-dependent oligopeptide transporter (POT/PTR) family shares a highly conserved E1X1X2E2RFXYY (E1X1X2E2R) motif across all kingdoms of life. This motif is suggested to have a role in proton coupling and active transport in bacterial homologs. For the plant POT/PTR family, also known......K motif variant in a plant NPF transporter. Using liquid chromatography-mass spectrometry (LC-MS)-based uptake assays and two-electrode voltage clamp (TEVC) electrophysiology, we demonstrate an essential role for the E1X1X2E2K motif for accumulation of substrate by NPF2.11. Our data suggest...... that the highly conserved E1, E2 and K residues are involved in translocation of protons, as has been proposed for the E1X1X2E2R motif in bacteria. Furthermore, we show that the two residues X1 and X2 in the E1X1X2E2[K/R] motif are conserved as uncharged amino acids in POT/PTRs from bacteria to mammals...

  16. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  17. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  18. The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Lyngsø, Rune B.; Gorodkin, Jan

    2005-01-01

    FOLDALIGN is a Sankoff-based algorithm for making structural alignments of RNA sequences. Here, we present a web server for making pairwise alignments between two RNA sequences, using the recently updated version of FOLDALIGN. The server can be used to scan two sequences for a common structural RNA...... motif of limited size, or the entire sequences can be aligned locally or globally. The web server offers a graphical interface, which makes it simple to make alignments and manually browse the results. the web server can be accessed at http://foldalign.kvl.dk...

  19. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    Science.gov (United States)

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  20. Triadic motifs in the dependence networks of virtual societies

    OpenAIRE

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs...

  1. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  2. Neoanalysis, Orality, and Intertextuality: An Examination of Homeric Motif Transference

    Directory of Open Access Journals (Sweden)

    Jonathan Burgess

    2006-03-01

    Full Text Available In Homeric studies scholars have speculated on the influence of (non-surviving preHomeric material on the Iliad. This article expands this line of argument from an oralist perspective, with reference to modern intertextual theory. It concludes that preHomeric and nonHomeric motifs from oral traditions were transferred into the epic poem, creating an intertextually allusive poetics that would have been recognizable to an early Greek audience informed of mythological traditions.

  3. Motif Subscriber Menonton Channel YouTube Raditya Dika

    OpenAIRE

    Mellyaningsih, Adinda

    2016-01-01

    Penelitian ini dilakukan untuk mengetahui motif para subscriber dalam menonton channelYouTube Raditya Dika. Raditya Dika merupakan YouTuber Indonesia dengan jumlah subscriber terbanyak dan merupakan orang pertama di Indonesia yang mendapatkan penghargaan Certifies Award oleh YouTube. Peneliti menggunakan teori Uses and Gratification dengan empat indikator, yaitu hiburan dan relaksasi, hubungan antar pribadi, mencari informasi, dan persahabatan. Metode dalam penelitian ini adalah online survei...

  4. Event Networks and the Identification of Crime Pattern Motifs.

    Directory of Open Access Journals (Sweden)

    Toby Davies

    Full Text Available In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible.

  5. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  6. Global mapping of transcription factor motifs in human aging.

    Science.gov (United States)

    Alfego, David; Rodeck, Ulrich; Kriete, Andres

    2018-01-01

    Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established a global mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remarkably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a minimalistic protein-protein network allowed to probe for connectivity to distinct stress sensors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to transcriptional patterns characteristic of many aged tissues and distinct from cumulative DNA damage associated with senescence.

  7. Maximum likelihood density modification by pattern recognition of structural motifs

    Science.gov (United States)

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  8. Interlinking motifs and entropy landscapes of statistically interacting particles

    Directory of Open Access Journals (Sweden)

    P. Lu

    2012-03-01

    Full Text Available The s=1/2 Ising chain with uniform nearest-neighbor and next-nearest-neighbor coupling is used to construct a system of floating particles characterized by motifs of up to six consecutive local spins. The spin couplings cause the assembly of particles which, in turn, remain free of interaction energies even at high density. All microstates are configurations of particles from one of three different sets, excited from pseudo-vacua associated with ground states of periodicities one, two, and four. The motifs of particles and elements of pseudo-vacuum interlink in two shared site variables. The statistical interaction between particles is encoded in a generalized Pauli principle, describing how the placement of one particle modifies the options for placing further particles. In the statistical mechanical analysis arbitrary energies can be assigned to all particle species. The entropy is a function of the particle populations. The statistical interaction specifications are transparently built into that expression. The energies and structures of the particles alone govern the ordering at low temperature. Under special circumstances the particles can be replaced by more fundamental particles with shorter motifs that interlink in only one shared site variable. Structures emerge from interactions on two levels: particles with shapes from coupled spins and long-range ordering tendencies from statistically interacting particles with shapes.

  9. ROMANIAN TRADITIONAL MOTIF ELEMENT OF MODERNITY IN CLOTHING

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius Darius

    2017-05-01

    Full Text Available In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the T-shirt for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the University of Oradea and traditional motif was selected from a collection comprising a number of Romanian traditional motifs from different parts of the country and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. The embroidery was done using BERNINA Embroidery Software Designer Plus Software. This software allows you to export the model to any domestic or industrial embroidery machine regardless of brand. Finally we observed the resistance of the printed and embroided model to various: elasticity, resistance to abrasion and a sensory analysis on the preservation of color. After testing we noticed the imprint resistance applied to the fabric, resulting in a quality that makes possible to keep the Romanian traditional motif from generation to generation.

  10. Motif structure and cooperation in real-world complex networks

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  11. Event Networks and the Identification of Crime Pattern Motifs

    Science.gov (United States)

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  12. An update on cell surface proteins containing extensin-motifs.

    Science.gov (United States)

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach.

    Science.gov (United States)

    Cheng, Feixiong; Liu, Chuang; Shen, Bairong; Zhao, Zhongming

    2016-08-26

    Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture. Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy. In this study, we developed a network-based framework to quantitatively examine cellular network heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas (TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In addition, we provided potential network-level evidence that smoking might increase cancer cellular network heterogeneity and

  14. Strategies for the Analysis of Bam Recognition Motifs in Outer Membrane Proteins.

    Science.gov (United States)

    Paramasivam, Nagarajan; Linke, Dirk

    2015-01-01

    Well-structured proteins interact with other proteins through surface-surface interactions. In such cases, the residues that form the interacting surface are not necessarily neighboring residues on the level of protein sequence. In contrast, unfolded or partially unfolded proteins can interact with other proteins through defined linear motifs. In the case of the β-barrel assembly machinery (BAM) in the outer membrane of Gram-negative bacteria, unfolded β-barrel proteins are recognized through a C-terminal linear motif, and are inserted into the membrane. While the exact mechanism of recognition is still under investigation, it has been shown that mutations in the recognition motif can partially or completely abolish membrane insertion. In this chapter, we demonstrate the workflow for motif discovery, motif extraction, and motif visualization on the example of the C-terminal motifs in transmembrane β-barrel proteins.

  15. Pierced Lasso Bundles are a new class of knot-like motifs.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    2014-06-01

    Full Text Available A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins. We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB and the knot-like threaded structural motif a Pierced Lasso (PL. In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets.

  16. Identification of novel conserved functional motifs across most Influenza A viral strains

    Directory of Open Access Journals (Sweden)

    El-Azab Iman

    2011-01-01

    Full Text Available Abstract Background Influenza A virus poses a continuous threat to global public health. Design of novel universal drugs and vaccine requires a careful analysis of different strains of Influenza A viral genome from diverse hosts and subtypes. We performed a systematic in silico analysis of Influenza A viral segments of all available Influenza A viral strains and subtypes and grouped them based on host, subtype, and years isolated, and through multiple sequence alignments we extrapolated conserved regions, motifs, and accessible regions for functional mapping and annotation. Results Across all species and strains 87 highly conserved regions (conservation percentage > = 90% and 19 functional motifs (conservation percentage = 100% were found in PB2, PB1, PA, NP, M, and NS segments. The conservation percentage of these segments ranged between 94 - 98% in human strains (the most conserved, 85 - 93% in swine strains (the most variable, and 91 - 94% in avian strains. The most conserved segment was different in each host (PB1 for human strains, NS for avian strains, and M for swine strains. Target accessibility prediction yielded 324 accessible regions, with a single stranded probability > 0.5, of which 78 coincided with conserved regions. Some of the interesting annotations in these regions included sites for protein-protein interactions, the RNA binding groove, and the proton ion channel. Conclusions The influenza virus has evolved to adapt to its host through variations in the GC content and conservation percentage of the conserved regions. Nineteen universal conserved functional motifs were discovered, of which some were accessible regions with interesting biological functions. These regions will serve as a foundation for universal drug targets as well as universal vaccine design.

  17. Faster exact Markovian probability functions for motif occurrences: a DFA-only approach.

    Science.gov (United States)

    Ribeca, Paolo; Raineri, Emanuele

    2008-12-15

    The computation of the statistical properties of motif occurrences has an obviously relevant application: patterns that are significantly over- or under-represented in genomes or proteins are interesting candidates for biological roles. However, the problem is computationally hard; as a result, virtually all the existing motif finders use fast but approximate scoring functions, in spite of the fact that they have been shown to produce systematically incorrect results. A few interesting exact approaches are known, but they are very slow and hence not practical in the case of realistic sequences. We give an exact solution, solely based on deterministic finite-state automata (DFA), to the problem of finding the whole relevant part of the probability distribution function of a simple-word motif in a homogeneous (biological) sequence. Out of that, the z-value can always be computed, while the P-value can be obtained either when it is not too extreme with respect to the number of floating-point digits available in the implementation, or when the number of pattern occurrences is moderately low. In particular, the time complexity of the algorithms for Markov models of moderate order (0 DFA are a standard tool of computer science for the study of patterns; previous works in biology propose algorithms involving automata, but there they are used, respectively, as a first step to write a generating function, or to build a finite Markov-chain imbedding (FMCI). In contrast, we directly rely on DFA to perform the calculations; thus we manage to obtain an algorithm which is both easily interpretable and efficient. This approach can be used for exact statistical studies of very long genomes and protein sequences, as we illustrate with some examples on the scale of the human genome.

  18. Canonical Bcl-2 Motifs of the Na+/K+ Pump Revealed by the BH3 Mimetic Chelerythrine: Early Signal Transducers of Apoptosis?

    Directory of Open Access Journals (Sweden)

    Peter K. Lauf

    2013-02-01

    Full Text Available Background/Aims: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss in human lens epithelial cells [LECs]. Methods: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. Results: CET inhibited NKP and NKCC by >90% (IC50 values ∼35 and ∼15 µM, respectively without significant KCC activity change, and stimulated K+ loss by ∼35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Conclusion: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet

  19. Substitution of Cytosine with Guanylurea Decreases the Stability of i-Motif DNA.

    Science.gov (United States)

    Wright, Elisé P; Lamparska, Katarzyna; Smith, Steven S; Waller, Zoë A E

    2017-09-12

    Both 5-aza-2'-deoxycytidine (decitabine) and its primary breakdown product, 2'-deoxyriboguanylurea (GuaUre-dR), have been shown to act as mutagens and epimutagens that cause replication stress and alter both DNA methylation and gene expression patterns. As cytosine analogues, both are expected to be preferentially incorporated into regions of GC skew where runs of cytosine residues are sequestered on one strand and guanine residues on the other. Given that such regions have been identified as sites with the potential for effects on gene expression and replication stress linked to formation of alternative DNA secondary structures, it is of interest to determine the influence that these base analogues might have on the stability of structures of this kind. Here we report that incorporation of GuaUre-dR into an i-motif-forming sequence decreases both the thermal and pH stability of an i-motif despite the apparent ability of GuaUre-dR to base pair with cytosine.

  20. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  1. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  2. Motif Discovery in Speech: Application to Monitoring Alzheimer's Disease.

    Science.gov (United States)

    Garrard, Peter; Nemes, Vanda; Nikolic, Dragana; Barney, Anna

    2017-01-01

    Perseveration - repetition of words, phrases or questions in speech - is commonly described in Alzheimer's disease (AD). Measuring perseveration is difficult, but may index cognitive performance, aiding diagnosis and disease monitoring. Continuous recording of speech would produce a large quantity of data requiring painstaking manual analysis, and risk violating patients' and others' privacy. A secure record and an automated approach to analysis are required. To record bone-conducted acoustic energy fluctuations from a subject's vocal apparatus using an accelerometer, to describe the recording and analysis stages in detail, and demonstrate that the approach is feasible in AD. Speech-related vibration was captured by an accelerometer, affixed above the temporomandibular joint. Healthy subjects read a script with embedded repetitions. Features were extracted from recorded signals and combined using Principal Component Analysis to obtain a one-dimensional representation of the feature vector. Motif discovery techniques were used to detect repeated segments. The equipment was tested in AD patients to determine device acceptability and recording quality. Comparison with the known location of embedded motifs suggests that, with appropriate parameter tuning, the motif discovery method can detect repetitions. The device was acceptable to patients and produced adequate signal quality in their home environments. We established that continuously recording bone-conducted speech and detecting perseverative patterns were both possible. In future studies we plan to associate the frequency of verbal repetitions with stage, progression and type of dementia. It is possible that the method could contribute to the assessment of disease-modifying treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Kostsin, Dzmitry G. [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Academicheskaya Str. 27, Minsk 220072 (Belarus); Kashiwayama, Yoshinori [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takanashi, Kojiro; Yazaki, Kazufumi [Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoko University, Uji, Kyoto 611-0011 (Japan); Imanaka, Tsuneo, E-mail: imanaka@pha.u-toyama.ac.jp [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Morita, Masashi [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  4. Indonesian Traditional Toys and the Development of Batik Motifs

    Directory of Open Access Journals (Sweden)

    Bagus Indrayana

    2016-06-01

    Full Text Available There is a wide array of traditional toys in Indonesia. In the past, traditional toys played an important role for skill and creativity development of children. Today, the position of traditional toys in the society is displaced by toys from large-scale manufacturers. Given the critical role of traditional toys for children’s motoric and social development, there is a need to develop media that can be used to promote these traditional products and strengthen their position in the public. We propose to use Batik as a way to effectively disseminate and promote traditional toys to the general public. Apart from this, using traditional toys to create new Batik motifs can have an economic value for the producers of Batik, promote Indonesian products and enrich the Indonesian Batik. This study aims to explore the variety of traditional toys, mainly from Klaten and Magelang, in the Central Java province of Indonesia, and use them as the basis for the development of Batik motif creation. This study used Trilogi Keseimbangan (or Harmony Trilogy aesthetic theory analytical approach that explains the creation of craft consists of the following phases: exploration, design, and materialization. The creation method in this study adopts Tiga Tahap Enam Langkah (Three Phases, Six Steps method offered in the theory. The finding in the field found that the traditional toys material used in Klaten and Magelang, mostly made from waste wood, plywood, and zinc. The manufacturing process is done manually by two or three craftsmen using a simple technology. The traditional toys are designed by the artisans mostly, although there may be designs from the clients. In addition, we also found that the traditional toys have never been used as a Batik motif. The traditional toys Batik motif presented in this work is researcher’s design. For the purposes of this study, we first research the variety of traditional toys available in the market today in Indonesia. We look

  5. Dimensionality of social networks using motifs and eigenvalues.

    Directory of Open Access Journals (Sweden)

    Anthony Bonato

    Full Text Available We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.

  6. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    Science.gov (United States)

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  7. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  8. SLiMScape: a protein short linear motif analysis plugin for Cytoscape.

    Science.gov (United States)

    O'Brien, Kevin T; Haslam, Niall J; Shields, Denis C

    2013-07-15

    Computational protein short linear motif discovery can use protein interaction information to search for motifs among proteins which share a common interactor. Cytoscape provides a visual interface for protein networks but there is no streamlined way to rapidly visualize motifs in a network of proteins, or to integrate computational discovery with such visualizations. We present SLiMScape, a Cytoscape plugin, which enables both de novo motif discovery and searches for instances of known motifs. Data is presented using Cytoscape's visualization features thus providing an intuitive interface for interpreting results. The distribution of discovered or user-defined motifs may be selectively displayed and the distribution of protein domains may be viewed simultaneously. To facilitate this SLiMScape automatically retrieves domains for each protein. SLiMScape provides a platform for performing short linear motif analyses of protein interaction networks by integrating motif discovery and search tools in a network visualization environment. This significantly aids in the discovery of novel short linear motifs and in visualizing the distribution of known motifs.

  9. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  10. New Group IV chemical motifs for improved dielectric permittivity of polyethylene.

    Science.gov (United States)

    Pilania, G; Wang, C C; Wu, K; Sukumar, N; Breneman, C; Sotzing, G; Ramprasad, R

    2013-04-22

    An enhanced dielectric permittivity of polyethylene and related polymers, while not overly sacrificing their excellent insulating properties, is highly desirable for various electrical energy storage applications. In this computational study, we use density functional theory (DFT) in combination with modified group additivity based high throughput techniques to identify promising chemical motifs that can increase the dielectric permittivity of polyethylene. We consider isolated polyethylene chains and allow the CH2 units in the backbone to be replaced by a number of Group IV halides (viz., SiF2, SiCl2, GeF2, GeCl2, SnF2, or SnCl2 units) in a systematic, progressive, and exhaustive manner. The dielectric permittivity of the chemically modified polyethylene chains is determined by employing DFT computations in combination with the effective medium theory for a limited set of compositions and configurations. The underlying chemical trends in the DFT data are first rationalized in terms of various tabulated atomic properties of the constituent atoms. Next, by parametrizing a modified group contribution expansion using the DFT data set, we are able to predict the dielectric permittivity and bandgap of nearly 30,000 systems spanning a much larger part of the configurational and compositional space. Promising motifs which lead to simultaneously large dielectric constant and band gap in the modified polyethylene chains have been identified. Our theoretical work is expected to serve as a possible motivation for future experimental efforts.

  11. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs.

    Science.gov (United States)

    Kim, Byul G; Chalikian, Tigran V

    2016-09-01

    We describe the pH-induced folding/unfolding transitions of i-motifs by a linkage thermodynamics-based formalism in terms of three pKa's of cytosines, namely, an apparent pKa in the unfolded conformation, pKau, and two apparent pKa's in the folded state, pKaf1 and pKaf2. For the 5'-TTACCCACCCTACCCACCCTCA-3' sequence from the human c-MYC oncogene promoter region, the values of pKau, pKaf1, and pKaf2 are 4.8, 6.0, and 3.6, respectively. With these pKa's, we calculate the differential number of protons bound to the folded and unfolded states as a function of pH. Analysis along these lines offers an alternative interpretation to the experimentally observed shift in the pH-induced unfolded-to-i-motif transitions to neutral pH in the presence of cosolvents and crowders. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Conserved DNA motifs in the type II-A CRISPR leader region.

    Science.gov (United States)

    Van Orden, Mason J; Klein, Peter; Babu, Kesavan; Najar, Fares Z; Rajan, Rakhi

    2017-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3' end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3' leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3' leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.

  13. PMS6: a fast algorithm for motif discovery.

    Science.gov (United States)

    Bandyopadhyay, Shibdas; Sahni, Sartaj; Rajasekaran, Sanguthevar

    2014-01-01

    We propose a new algorithm, PMS6, for the (l,d)-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. The run time ratio PMS5/PMS6, where PMS5 is the fastest previously known algorithm for motif discovery in large instances, ranges from a high of 2.20 for the (21,8) challenge instances to a low of 1.69 for the (17,6) challenge instances. Both PMS5 and PMS6 require some amount of pre-processing. The pre-processing time for PMS6 is 34 times faster than that for PMS5 for (23,9) instances. When pre-processing time is factored in, the run time ratio PMS5/PMS6 is as high as 2.75 for (13,4) instances and as low as 1.95 for (17,6) instances.

  14. Graph animals, subgraph sampling and motif search in large networks

    CERN Document Server

    Baskerville, Kim; Paczuski, Maya

    2007-01-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for `graph animals', i.e. connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan et al., Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of super-exponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the TAP high throughput method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs (Z-scores >10) or anti-motifs (Z-scores <-10) when the null model is the...

  15. Prevalent RNA recognition motif duplication in the human genome.

    Science.gov (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.

  16. Proline Rich Motifs as Drug Targets in Immune Mediated Disorders

    Directory of Open Access Journals (Sweden)

    Mythily Srinivasan

    2012-01-01

    Full Text Available The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.

  17. Romanian traditional motif - element of modernity in clothing

    Science.gov (United States)

    Doble, L.; Stan, O.; Suteu, M. D.; Albu, A.; Bohm, G.; Tsatsarou-Michalaki, A.; Gialinou, E.

    2017-10-01

    In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the jacket respectively, with a straight cut for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the Ethnographic Museum of Transylvania from Cluj Napoca where more traditional motifs were selected specific to Transylvania etnographic region and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. In the patterns design phase Gemini CAD software was used and for the modeling and model development Optitex software was used. The part for garnishing the model was performed using Embrodery machine software reproducing the stylized motif identically. In order to obtain a significantly improved aesthetic look and an added artistic value the pattern chosen for the jacket was done using a combination of modern textile technologies. This has allowed the realization of a particular texture on the surface of the designed product, demonstrating that traditional patterns can be reintepreted in modern clothing

  18. Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors.

    Directory of Open Access Journals (Sweden)

    Konstantin Denessiouk

    Full Text Available Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer's, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1 calcium sensors, which function to translate the signal to various responses; and (2 calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1 Open static; (2 Closed static; (3 Local dynamic; (4 Dynamic; and (5 Local static EF-hand domains.

  19. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.

    Science.gov (United States)

    Castro-Mondragon, Jaime A; Rioualen, Claire; Contreras-Moreira, Bruno; van Helden, Jacques

    2016-01-01

    In this protocol, we explain how to run ab initio motif discovery in order to gather putative transcription factor binding motifs (TFBMs) from sets of genomic regions returned by ChIP-seq experiments. The protocol starts from a set of peak coordinates (genomic regions) which can be either downloaded from ChIP-seq databases, or produced by a peak-calling software tool. We provide a concise description of the successive steps to discover motifs, cluster the motifs returned by different motif discovery algorithms, and compare them with reference motif databases. The protocol is documented with detailed notes explaining the rationale underlying the choice of options. The interpretation of the results is illustrated with an example from the model plant Arabidopsis thaliana.

  20. Simple Shared Motifs (SSM in conserved region of promoters: a new approach to identify co-regulation patterns

    Directory of Open Access Journals (Sweden)

    Théret Nathalie

    2011-09-01

    Full Text Available Abstract Background Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Results Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM, groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Conclusions Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.

  1. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding.

    Science.gov (United States)

    Poznanović, Svetlana; Heitsch, Christine E

    2014-12-01

    We analyze the distribution of RNA secondary structures given by the Knudsen-Hein stochastic context-free grammar used in the prediction program Pfold. Our main theorem gives relations between the expected number of these motifs--independent of the grammar probabilities. These relations are a consequence of proving that the distribution of base pairs, of helices, and of different types of loops is asymptotically Gaussian in this model of RNA folding. Proof techniques use singularity analysis of probability generating functions. We also demonstrate that these asymptotic results capture well the expected number of RNA base pairs in native ribosomal structures, and certain other aspects of their predicted secondary structures. In particular, we find that the predicted structures largely satisfy the expected relations, although the native structures do not.

  2. Coordinated Action of Two Double-Stranded RNA Binding Motifs and an RGG Motif Enables Nuclear Factor 90 To Flexibly Target Different RNA Substrates.

    Science.gov (United States)

    Schmidt, Tobias; Knick, Paul; Lilie, Hauke; Friedrich, Susann; Golbik, Ralph Peter; Behrens, Sven-Erik

    2016-02-16

    The mechanisms of how RNA binding proteins (RBP) bind to and distinguish different RNA molecules are yet uncertain. Here, we performed a comprehensive analysis of the RNA binding properties of multidomain RBP nuclear factor 90 (NF90) by investigating specifically the functional activities of two double-stranded RNA binding motifs (dsRBM) and an RGG motif in the protein's unstructured C-terminus. By comparison of the RNA binding affinities of several NF90 variants and their modes of binding to a set of defined RNA molecules, the activities of the motifs turned out to be very different. While dsRBM1 contributes little to RNA binding, dsRBM2 is essential for effective binding of double-stranded RNA. The protein's immediate C-terminus, including the RGG motif, is indispensable for interactions of the protein with single-stranded RNA, and the RGG motif decisively contributes to NF90's overall RNA binding properties. Conformational studies, which compared wild-type NF90 with a variant that contains a pseudophosphorylated residue in the RGG motif, suggest that the NF90 C-terminus is involved in conformational changes in the protein after RNA binding, with the RGG motif acting as a central regulatory element. In summary, our data propose a concerted action of all RNA binding motifs within the frame of the full-length protein, which may be controlled by regulation of the activity of the RGG motif, e.g., by phosphorylation. This multidomain interplay enables the RBP NF90 to discriminate RNA features by dynamic and adaptable interactions.

  3. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia

    Science.gov (United States)

    Hudson, Andrew J.; Moore, Ashley N.; Elniski, David; Joseph, Joella; Yee, Janet; Russell, Anthony G.

    2012-01-01

    Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3′ end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3′ end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA–snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs. PMID:23019220

  4. NestedMICA as an ab initio protein motif discovery tool

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2008-01-01

    Full Text Available Abstract Background Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length. Results Generally NestedMICA recovered most of the short (3–9 amino acid long test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME. Conclusion NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences. Availability NestedMICA is available under the Lesser GPL open-source license from: http://www.sanger.ac.uk/Software/analysis/nmica/

  5. Vampirism today : the change of the vampire motif from the gothic novel to today's fantasy literature

    OpenAIRE

    Resch, Tina

    2009-01-01

    This thesis examins the change of the vampire motif throughout time. How have vampires and their clichés changed and why? Starting with a brief examination of the 'classical' litarary vampire, I mainly focus on contemporary fantasy literature by discussing recent works of vampire fiction. The adaptation of the vampire motif in role-playing games will as well be discussed as the effects the vampire film had on the motif.

  6. AMD, an Automated Motif Discovery Tool Using Stepwise Refinement of Gapped Consensuses

    OpenAIRE

    Shi, Jiantao; Yang, Wentao; Chen, Mingjie; Du, Yanzhi; Zhang, Ji; Wang, Kankan

    2011-01-01

    Motif discovery is essential for deciphering regulatory codes from high throughput genomic data, such as those from ChIP-chip/seq experiments. However, there remains a lack of effective and efficient methods for the identification of long and gapped motifs in many relevant tools reported to date. We describe here an automated tool that allows for de novo discovery of transcription factor binding sites, regardless of whether the motifs are long or short, gapped or contiguous.

  7. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of Western-type Helicobacter pylori strains.

    Directory of Open Access Journals (Sweden)

    Judith Lind

    Full Text Available The clinical outcome of Helicobacter pylori infections is determined by multiple host-pathogen interactions that may develop to chronic gastritis, and sometimes peptic ulcers or gastric cancer. Highly virulent strains encode a type IV secretion system (T4SS that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation at EPIYA-sequence motifs, called A, B and C in Western-type strains, by members of the oncogenic Src and Abl host kinases. Phosphorylated EPIYA-motifs mediate interactions of CagA with host signaling factors--in particular various SH2-domain containing human proteins--thereby hijacking multiple downstream signaling cascades. Observations of tyrosine-phosphorylated CagA are mainly based on the use of commercial phosphotyrosine antibodies, which originally were selected to detect phosphotyrosines in mammalian proteins. Systematic studies of phosphorylated EPIYA-motif detection by the different antibodies would be very useful, but are not yet available. To address this issue, we synthesized phospho- and non-phosphopeptides representing each predominant Western CagA EPIYA-motif, and determined the recognition patterns of seven different phosphotyrosine antibodies in Western blots, and also performed infection studies with diverse representative Western H. pylori strains. Our results show that a total of 9-11 amino acids containing the phosphorylated EPIYA-motifs are necessary and sufficient for specific detection by these antibodies, but revealed great variability in sequence recognition. Three of the antibodies recognized phosphorylated EPIYA-motifs A, B and C similarly well; whereas preferential binding to phosphorylated motif A and motifs A and C was found with two and one antibodies, respectively, and the seventh anti-phosphotyrosine antibody did not recognize any phosphorylated EPIYA-motif. Controls showed that none of the antibodies recognized the corresponding non

  8. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    Science.gov (United States)

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.

    Directory of Open Access Journals (Sweden)

    Sergio Iadevaia

    Full Text Available Cellular networks are highly dynamic in their function, yet evolutionarily conserved in their core network motifs or topologies. Understanding functional tunability and robustness of network motifs to small perturbations in function and structure is vital to our ability to synthesize controllable circuits. In establishing core sets of network motifs, we selected topologies that are overrepresented in mammalian networks, including the linear, feedback, feed-forward, and bifan circuits. Static and dynamic tunability of network motifs were defined as the motif ability to respectively attain steady-state or transient outputs in response to pre-defined input stimuli. Detailed computational analysis suggested that static tunability is insensitive to the circuit topology, since all of the motifs displayed similar ability to attain predefined steady-state outputs in response to constant inputs. Dynamic tunability, in contrast, was tightly dependent on circuit topology, with some motifs performing superiorly in achieving observed time-course outputs. Finally, we mapped dynamic tunability onto motif topologies to determine robustness of motif structures to changes in topology and identify design principles for the rational assembly of robust synthetic networks.

  10. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Valentina eBoeva

    2016-02-01

    Full Text Available Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation.

  11. A general approach for discriminative de novo motif discovery from high-throughput data.

    Science.gov (United States)

    Grau, Jan; Posch, Stefan; Grosse, Ivo; Keilwagen, Jens

    2013-11-01

    De novo motif discovery has been an important challenge of bioinformatics for the past two decades. Since the emergence of high-throughput techniques like ChIP-seq, ChIP-exo and protein-binding microarrays (PBMs), the focus of de novo motif discovery has shifted to runtime and accuracy on large data sets. For this purpose, specialized algorithms have been designed for discovering motifs in ChIP-seq or PBM data. However, none of the existing approaches work perfectly for all three high-throughput techniques. In this article, we propose Dimont, a general approach for fast and accurate de novo motif discovery from high-throughput data. We demonstrate that Dimont yields a higher number of correct motifs from ChIP-seq data than any of the specialized approaches and achieves a higher accuracy for predicting PBM intensities from probe sequence than any of the approaches specifically designed for that purpose. Dimont also reports the expected motifs for several ChIP-exo data sets. Investigating differences between in vitro and in vivo binding, we find that for most transcription factors, the motifs discovered by Dimont are in good accordance between techniques, but we also find notable exceptions. We also observe that modeling intra-motif dependencies may increase accuracy, which indicates that more complex motif models are a worthwhile field of research.

  12. A review on models and algorithms for motif discovery in protein-protein interaction networks.

    Science.gov (United States)

    Ciriello, Giovanni; Guerra, Concettina

    2008-03-01

    Several algorithms have been recently designed to identify motifs in biological networks, particularly in protein-protein interaction networks. Motifs correspond to repeated modules in the network that may be of biological interest. The approaches proposed in the literature often differ in the definition of a motif, the way the occurrences of a motif are counted and the way their statistical significance is assessed. This has strong implications on the computational complexity of the discovery process and on the type of results that can be expected. This review presents in a systematic way the different computational settings outlining their main features and limitations.

  13. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  14. Study on online community user motif using web usage mining

    Science.gov (United States)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  15. Lifetimes and lengthscales of structural motifs in a model glassformer.

    Science.gov (United States)

    Malins, Alex; Eggers, Jens; Tanaka, Hajime; Royall, C Patrick

    2013-01-01

    We use a newly-developed method to identify local structural motifs in a popular model glassformer, the Kob-Andersen binary Lennard-Jones mixture. By measuring the lifetimes of a zoo of clusters, we find that 11-membered bicapped square antiprisms, denoted as 11A, have longer lifetimes on average than other structures considered. Other long-lived clusters are similar in structure to the 11A cluster. These clusters group into ramified networks that are correlated with slow particles and act to retard the motion of neighbouring particles. The structural lengthscale associated with these networks does not grow as fast as the dynamical lengthscale xi(4) as the system is cooled, in the range of temperatures our molecular dynamics simulations access. Thus we find a strong, but indirect, correlation between static structural ordering and slow dynamics.

  16. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Cameron R Stewart

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (siRNAs in chicken cells (i mode of synthesis and (ii nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257 tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.

  17. BIMBINGAN KELUARGA DALAM MEMBANTU ANAK AUTIS (KEHEBATAN MOTIF KEIBUAN

    Directory of Open Access Journals (Sweden)

    Farida Farida

    2015-01-01

    Full Text Available Tulisan ini menjelaskan tentang pola bimbingan yang dilakukan oleh keluarga.  karena tidak bisa dipungkiri anak-anak kenal pertama kali dengan kedua orang tuanya dan mengalami tumbuh kembang dalam lingkungan  keluarga. Keluarga  adalah tempat pertama dan utama untuk tumbuh dan kembang anak (baik anak normal maupun anak berkebutuhan khusus, misalnya autis. Ciri utama anak autis adalah mengalami gangguan komunikasi dan interaksi sosial. Hasilnya upaya orang tua, khususnya ibu (dengan motif keibuan yang dimiliki dalam memberikan bimbingan pada anak autis dengan pembiasaan perilaku baik sampai pemahaman perilaku, penyesuaian perilaku secara keumuman/kelaziman  dan dukungan keluarga akan membantu anak autis untuk tumbuh secara optimal, bahkan meraih prestasi yang sama atau bahkan melebihi anak-anak normal,   seperti  yang  dialami Stephen Wiltshire.   Kata Kunci: Bimbingan Keluarga, Anak Autis, Motif Keibuan. FAMILY     COUNSELLING   IN    HELPING   CHILDREN AUTIS (THE     EXCELLENCE   OF     THE    MOTIF     OF MOTHERHOOD.The first time children know with both parents and experiencing growth and development in a family environment. The family is first and foremost a place for growth and development of children (both normal children and children with special needs, such as autism. The main characteristic of children with autism  is impaired  social interaction  and communication. So that the efforts of parents, especially mothers (the motherhood of motive owned in providing guidance in autistic children by habituation good behavior to understanding  behavior, behavioral  adjustment  in generality  / prevalence  and family  support  will help autistic children to grow optimally, even achievements, equal or even exceed normal kids, like that of Stephen Wiltshire.   Keywords:  Family Guidance, Autistic, Motherhood Motive.

  18. HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons.

    Science.gov (United States)

    Prytuliak, Roman; Volkmer, Michael; Meier, Markus; Habermann, Bianca H

    2017-04-29

    Short linear motifs (SLiMs) in proteins are self-sufficient functional sequences that specify interaction sites for other molecules and thus mediate a multitude of functions. Computational, as well as experimental biological research would significantly benefit, if SLiMs in proteins could be correctly predicted de novo with high sensitivity. However, de novo SLiM prediction is a difficult computational task. When considering recall and precision, the performances of published methods indicate remaining challenges in SLiM discovery. We have developed HH-MOTiF, a web-based method for SLiM discovery in sets of mainly unrelated proteins. HH-MOTiF makes use of evolutionary information by creating Hidden Markov Models (HMMs) for each input sequence and its closely related orthologs. HMMs are compared against each other to retrieve short stretches of homology that represent potential SLiMs. These are transformed to hierarchical structures, which we refer to as motif trees, for further processing and evaluation. Our approach allows us to identify degenerate SLiMs, while still maintaining a reasonably high precision. When considering a balanced measure for recall and precision, HH-MOTiF performs better on test data compared to other SLiM discovery methods. HH-MOTiF is freely available as a web-server at http://hh-motif.biochem.mpg.de. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences

    Directory of Open Access Journals (Sweden)

    Guido W. Grimm

    2006-01-01

    Full Text Available The multi-copy internal transcribed spacer (ITS region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation instead of the full (partly redundant original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly.

  20. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  1. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  2. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G......-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression....

  3. Novel Strategy for Discrimination of Transcription Factor Binding Motifs Employing Mathematical Neural Network

    Science.gov (United States)

    Sugimoto, Asuka; Sumi, Takuya; Kang, Jiyoung; Tateno, Masaru

    2017-07-01

    Recognition in biological macromolecular systems, such as DNA-protein recognition, is one of the most crucial problems to solve toward understanding the fundamental mechanisms of various biological processes. Since specific base sequences of genome DNA are discriminated by proteins, such as transcription factors (TFs), finding TF binding motifs (TFBMs) in whole genome DNA sequences is currently a central issue in interdisciplinary biophysical and information sciences. In the present study, a novel strategy to create a discriminant function for discrimination of TFBMs by constituting mathematical neural networks (NNs) is proposed, together with a method to determine the boundary of signals (TFBMs) and noise in the NN-score (output) space. This analysis also leads to the mathematical limitation of discrimination in the recognition of features representing TFBMs, in an information geometrical manifold. Thus, the present strategy enables the identification of the whole space of TFBMs, right up to the noise boundary.

  4. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  5. SLIDER: A Generic Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks

    NARCIS (Netherlands)

    Boyen, P.; Dyck, van D.; Neven, F.; Ham, van R.C.H.J.; Dijk, van A.D.J.

    2011-01-01

    Correlated motif mining (CMM) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for CMM thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a

  6. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  7. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli.

    Science.gov (United States)

    Yang, Chi; Chang, Chuan-Hsiung

    2015-11-23

    Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence.

  8. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets.

    Science.gov (United States)

    Yu, Qiang; Huo, Hongwei; Vitter, Jeffrey Scott; Huan, Jun; Nekrich, Yakov

    2015-01-01

    In recent years, there has been an increasing interest in planted (l, d) motif search (PMS) with applications to discovering significant segments in biological sequences. However, there has been little discussion about PMS over large alphabets. This paper focuses on motif stem search (MSS), which is recently introduced to search motifs on large-alphabet inputs. A motif stem is an l-length string with some wildcards. The goal of the MSS problem is to find a set of stems that represents a superset of all (l , d) motifs present in the input sequences, and the superset is expected to be as small as possible. The three main contributions of this paper are as follows: (1) We build motif stem representation more precisely by using regular expressions. (2) We give a method for generating all possible motif stems without redundant wildcards. (3) We propose an efficient exact algorithm, called StemFinder, for solving the MSS problem. Compared with the previous MSS algorithms, StemFinder runs much faster and reports fewer stems which represent a smaller superset of all (l, d) motifs. StemFinder is freely available at http://sites.google.com/site/feqond/stemfinder.

  9. Design of Fashion Accessories Using Akwa-Ocha Motifs and Symbols

    African Journals Online (AJOL)

    The exploration of Akwa-Ocha motifs and symbols for the design of fashion accessories for obvious reasons include creating an identity, checking the emphasis already placed on foreign fashion accessories, creating awareness and projecting one of Nigeria's rich cultural heritages. Key Words: Akwa-Ocha, motifs, symbols, ...

  10. MOMFER: A Search Engine of Thompson's Motif-Index of Folk Literature

    NARCIS (Netherlands)

    Karsdorp, F.B.; van der Meulen, Marten; Meder, Theo; van den Bosch, Antal

    2015-01-01

    More than fifty years after the first edition of Thompson's seminal Motif-Indexof Folk Literature, we present an online search engine tailored to fully disclose the index digitally. This search engine, called MOMFER, greatly enhances the searchability of the Motif-Index and provides exciting new

  11. Observed and predicted hydrogen bond motifs in crystal structures of hydantoins, dihydrouracils and uracils

    NARCIS (Netherlands)

    Cruz-Cabeza, A.J.; Schwalbe, C.H.

    2012-01-01

    A survey of crystal structures containing hydantoin, dihydrouracil and uracil derivatives in the Cambridge Structural Database revealed four main types of hydrogen bond motifs when derivatives with extra substituents able to interfere with the main motif are excluded. All these molecules contain two

  12. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    Science.gov (United States)

    Disney, Matthew D. (Inventor); Childs-Disney, Jessica L. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  13. Use of BONSAI decision trees for the identification of potential MHC class I peptide epitope motifs.

    Science.gov (United States)

    Savoie, C J; Kamikawaji, N; Sasazuki, T; Kuhara, S

    1999-01-01

    Recognition of short peptides of 8 to 10 mer bound to MHC class I molecules by cytotoxic T lymphocytes forms the basis of cellular immunity. While the sequence motifs necessary for binding of intracellular peptides to MHC have been well studied, little is known about sequence motifs that may cause preferential affinity to the T cell receptor and/or preferential recognition and response by T cells. Here we demonstrate that computational learning systems can be useful to elucidate sequence motifs that affect T cell activation. Knowledge of T cell activation motifs could be useful for targeted vaccine design or immunotherapy. With the BONSAI computational learning algorithm, using a database of previously reported MHC bound peptides that had positive or negative T cell responses, we were able to identify sequence motif rules that explain 70% of positive T cell responses and 84% of negative T cell responses.

  14. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase

    DEFF Research Database (Denmark)

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E

    2016-01-01

    -exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues......Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface...... within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides...

  15. Stochastic and coherence resonance in feed-forward-loop neuronal network motifs

    Science.gov (United States)

    Guo, Daqing; Li, Chunguang

    2009-05-01

    The relationships between noise and complex dynamic behaviors of neuronal ensembles are key questions in computational neuroscience, particularly in understanding some basic signal transmission mechanisms of the brain. Here we systemically investigate both the stochastic resonance (SR) and coherence resonance (CR) in the triple-neuron feed-forward-loop (FFL) network motifs by computational modeling. We use the Izhikevich neuron model as well as the chemical coupling to build the FFL motifs, and consider all possible motif types. The simulation results demonstrate that these motifs can exploit noise to enrich its dynamic performance. With a proper choice of noise intensities, both the SR and CR can be exhibited in many types of the FFLs. On the other hand, our results also indicate that the coupling strength serves as a control parameter, which has great impacts on the stochastic dynamics of the FFL motifs. Additionally, biological implications of presented results in the field of neuroscience are outlined.

  16. MotifMap-RNA: a genome-wide map of RBP binding sites.

    Science.gov (United States)

    Liu, Yu; Sun, Sha; Bredy, Timothy; Wood, Marcelo; Spitale, Robert C; Baldi, Pierre

    2017-07-01

    RNA plays a critical role in gene expression and its regulation. RNA binding proteins (RBPs), in turn, are important regulators of RNA. Thanks to the availability of large scale data for RBP binding motifs and in vivo binding sites results in the form of eCLIP experiments, it is now possible to computationally predict RBP binding sites across the whole genome. We describe MotifMap-RNA, an extension of MotifMap which predicts binding sites for RBP motifs across human and mouse genomes and allows large scale querying of predicted binding sites. The data and corresponding web server are available from: http://motifmap-rna.ics.uci.edu/ as part of the MotifMap web portal. rspitale@uci.edu or pfbaldi@uci.edu. Supplementary data are available at Bioinformatics online.

  17. RSAT::Plants: Motif Discovery Within Clusters of Upstream Sequences in Plant Genomes.

    Science.gov (United States)

    Contreras-Moreira, Bruno; Castro-Mondragon, Jaime A; Rioualen, Claire; Cantalapiedra, Carlos P; van Helden, Jacques

    2016-01-01

    The plant-dedicated mirror of the Regulatory Sequence Analysis Tools (RSAT, http://plants.rsat.eu ) offers specialized options for researchers dealing with plant transcriptional regulation. The website contains whole-sequenced genomes from species regularly updated from Ensembl Plants and other sources (currently 40), and supports an array of tasks frequently required for the analysis of regulatory sequences, such as retrieving upstream sequences, motif discovery, motif comparison, and pattern matching. RSAT::Plants also integrates the footprintDB collection of DNA motifs. This protocol explains step-by-step how to discover DNA motifs in regulatory regions of clusters of co-expressed genes in plants. It also explains how to empirically control the significance of the result, and how to associate the discovered motifs with putative binding factors.

  18. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available Cytochrome P450 monooxygenases (P450s are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research.

  19. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs

    Science.gov (United States)

    Apte, Advait A; Cain, John W; Bonchev, Danail G; Fong, Stephen S

    2008-01-01

    Background Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems. Results Feed-forward motif dynamics were studied using cellular automata and compared with differential equation modeling. The number of cellular automata iterations needed for a 100% conversion of a substrate into a target product was used as an inverse measure of the transformation rate. Several basic topological patterns were identified that order the specific feed-forward constructions according to the rate of dynamics they enable. At the same number of network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher network efficacy than single feed-forward motifs. Additionally, a topological property of isodynamicity was identified for feed-forward motifs where different network architectures resulted in the same overall rate of the target production. Conclusion It was shown for classes of structural motifs with feed-forward architecture that network topology affects the overall rate of a process in a quantitatively predictable manner. These fundamental results can be used as a basis for simulating larger networks as combinations of smaller network modules with implications on studying synthetic gene circuits, small regulatory systems, and eventually dynamic whole-cell models

  20. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Conserved DNA motifs in the type II-A CRISPR leader region

    Science.gov (United States)

    Babu, Kesavan; Najar, Fares Z.

    2017-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci. PMID:28392985

  2. Conserved DNA motifs in the type II-A CRISPR leader region

    Directory of Open Access Journals (Sweden)

    Mason J. Van Orden

    2017-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710 and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.

  3. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    Science.gov (United States)

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs. Copyright © 2014. Published by Elsevier B.V.

  4. Regulation of GPCR Anterograde Trafficking by Molecular Chaperones and Motifs.

    Science.gov (United States)

    Young, Brent; Wertman, Jaime; Dupré, Denis J

    2015-01-01

    G protein-coupled receptors (GPCRs) make up a superfamily of integral membrane proteins that respond to a wide variety of extracellular stimuli, giving them an important role in cell function and survival. They have also proven to be valuable targets in the fight against various diseases. As such, GPCR signal regulation has received considerable attention over the last few decades. With the amplitude of signaling being determined in large part by receptor density at the plasma membrane, several endogenous mechanisms for modulating GPCR expression at the cell surface have come to light. It has been shown that cell surface expression is determined by both exocytic and endocytic processes. However, the body of knowledge surrounding GPCR trafficking from the endoplasmic reticulum to the plasma membrane, commonly known as anterograde trafficking, has considerable room for growth. We focus here on the current paradigms of anterograde GPCR trafficking. We will discuss the regulatory role of both the general and "nonclassical private" chaperone systems in GPCR trafficking as well as conserved motifs that serve as modulators of GPCR export from the endoplasmic reticulum and Golgi apparatus. Together, these topics summarize some of the known mechanisms by which the cell regulates anterograde GPCR trafficking. © 2015 Elsevier Inc. All rights reserved.

  5. Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis.

    Science.gov (United States)

    Hogeboom, Charissa

    2015-12-01

    Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    Science.gov (United States)

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  7. Perkembangan Motif Sineas Film Indie dalam Menghadapi Industri Film Mainstream

    Directory of Open Access Journals (Sweden)

    Yoppy Ardiyono

    2016-03-01

    Full Text Available The research aims to review to review determine the effect and its impact raised by motive - a motive the ada in the hearts period travel time history of film short against cinematographer-filmmaker as principal especially filmmakers left path (indie. The used platform theory research hearts singer adopts from theory commodification media vincent mosco. Singer helped shift theory understanding the motive filmmakers working hearts differences fundamental basis of political pressure economic happens under with demands regime. The method used is descriptive qualitative research methods. Data collection techniques through observation of the environment of an independent film live and in-depth interviews with speakers including mr. Yang prayer orangutan direct contact 'with realm of research. Coupled with study to review the literature references adding insight research. And that was concluded change appears motif among indie film cinematographer it is true the situation is closely linked to the mainstream industry, konstilasi politics, and the orientation of capitalism. Necessary their one thing is clear and systematic regulation from the government to the future movement of currents sidestream (indie more with good operates professionally arranged, the air so that the contribution of indie cinema film land for progress can feels good to yourself indie filmmakers as well as those of its main industries.

  8. Motif mediated protein-protein interactions as drug targets.

    Science.gov (United States)

    Corbi-Verge, Carles; Kim, Philip M

    2016-03-02

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery.

  9. Switch-like Transitions Insulate Network Motifs to Modularize Biological Networks.

    Science.gov (United States)

    Atay, Oguzhan; Doncic, Andreas; Skotheim, Jan M

    2016-08-01

    Cellular decisions are made by complex networks that are difficult to analyze. Although it is common to analyze smaller sub-networks known as network motifs, it is unclear whether this is valid, because these motifs are embedded in complex larger networks. Here, we address the general question of modularity by examining the S. cerevisiae pheromone response. We demonstrate that the feedforward motif controlling the cell-cycle inhibitor Far1 is insulated from cell-cycle dynamics by the positive feedback switch that drives reentry to the cell cycle. Before cells switch on positive feedback, the feedforward motif model predicts the behavior of the larger network. Conversely, after the switch, the feedforward motif is dismantled and has no discernable effect on the cell cycle. When insulation is broken, the feedforward motif no longer predicts network behavior. This work illustrates how, despite the interconnectivity of networks, the activity of motifs can be insulated by switches that generate well-defined cellular states. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    Science.gov (United States)

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields. © 2013, The Society of Analytical Psychology.

  11. Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Baek, Kwangryul; Lee, Yew; Nam, Onyou; Park, Seunghye; Sim, Sang Jun; Jin, EonSeon

    2016-03-01

    Promoter of the light-inducible protein gene (LIP) of Dunaliella was recently isolated in our laboratory. The aim of this work is to find the light-inducible motif in the Dunaliella LIP promoter and verify its regulatory motif with a Gaussia luciferase reporter gene transformed in Chlamydomonas reinhardtii. 400 bp upstream to the translational start site of the Dunaliella LIP gene was gradually truncated and analyzed for the luciferase expression. Furthermore, this promoter comprising duplicated or triplicated light-responsive motifs was tested for its augmentation of light response. Two putative light-responsive motifs, GT-1 binding motif and sequences over-represented in light-repressed promoters (SORLIP) located in the 200 bp LIP promoter fragment were analyzed for their light responsibility. It is turned out that SORLIP was responsible for the light-inducible activity. With the copy number of SORLIP up to three showed stronger high light response compared with the native LIP promoter fragment. Therefore, we found a light-responsive DNA motif operating in Chlamydomonas and confirm a synthetic promoter including this motif displayed light inducibility in heterologously transformed green algae for the first time. This light-inducible expression system will be applied to various area of algal research including algal biotechnology. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  13. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    Science.gov (United States)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  14. WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data.

    Science.gov (United States)

    Zhang, Hongbo; Zhu, Lin; Huang, De-Shuang

    2017-06-12

    Although discriminative motif discovery (DMD) methods are promising for eliciting motifs from high-throughput experimental data, due to consideration of computational expense, most of existing DMD methods have to choose approximate schemes that greatly restrict the search space, leading to significant loss of predictive accuracy. In this paper, we propose Weakly-Supervised Motif Discovery (WSMD) to discover motifs from ChIP-seq datasets. In contrast to the learning strategies adopted by previous DMD methods, WSMD allows a "global" optimization scheme of the motif parameters in continuous space, thereby reducing the information loss of model representation and improving the quality of resultant motifs. Meanwhile, by exploiting the connection between DMD framework and existing weakly supervised learning (WSL) technologies, we also present highly scalable learning strategies for the proposed method. The experimental results on both real ChIP-seq datasets and synthetic datasets show that WSMD substantially outperforms former DMD methods (including DREME, HOMER, XXmotif, motifRG and DECOD) in terms of predictive accuracy, while also achieving a competitive computational speed.

  15. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum [Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-Do (Korea, Republic of); Uhm, Sang-Jun [Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju, Gwangwon-Do (Korea, Republic of); Song, Hyuk [Department of Animal and Food Bioscience, College of Natural Science, Konkuk University, ChungJu, Chungbuk (Korea, Republic of); Kim, Nam-Hyung [Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk (Korea, Republic of); Kim, Jae-Hwan, E-mail: jaehwan_k@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-Do (Korea, Republic of)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We found the putative nuclear export signal motif within human NANOG homeodomain. Black-Right-Pointing-Pointer Leucine-rich residues are important for human NANOG homeodomain nuclear export. Black-Right-Pointing-Pointer CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ({sup 125}MQELSNILNL{sup 134}) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-{Delta}NLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  16. Colored motifs reveal computational building blocks in the C. elegans brain.

    Directory of Open Access Journals (Sweden)

    Jifeng Qian

    Full Text Available BACKGROUND: Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network. METHODOLOGY/PRINCIPAL FINDINGS: Here, we combine structural information derived from the topology of the neuronal network of the nematode C. elegans with information about the biological function of these nodes, thus coloring nodes by function. We discover that particular colorations of motifs are significantly more abundant in the worm brain than expected by chance, and have particular computational functions that emphasize the feed-forward structure of information processing in the network, while evading feedback loops. Interneurons are strongly over-represented among the common motifs, supporting the notion that these motifs process and transduce the information from the sensor neurons towards the muscles. Some of the most common motifs identified in the search for significant colored motifs play a crucial role in the system of neurons controlling the worm's locomotion. CONCLUSIONS/SIGNIFICANCE: The analysis of complex networks in terms of colored motifs combines two independent data sets to generate insight about these networks that cannot be obtained with either data set alone. The method is general and should allow a decomposition of any complex networks into its functional (rather than topological motifs as long as both wiring and functional information is available.

  17. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats.

    Science.gov (United States)

    Krenn, Veronica; Overlack, Katharina; Primorac, Ivana; van Gerwen, Suzan; Musacchio, Andrea

    2014-01-06

    The KMN network, a ten-subunit protein complex, mediates the interaction of kinetochores with spindle microtubules and recruits spindle assembly checkpoint (SAC) constituents to halt cells in mitosis until attainment of sister chromatid biorientation. Two types of motifs in the KMN subunit Knl1 interact with SAC proteins. Lys-Ile (KI) motifs, found in vertebrates, interact with the TPR motifs of Bub1 and BubR1. Met-Glu-Leu-Thr (MELT) repeats, ubiquitous in evolution, recruit the Bub3/Bub1 complex in a phosphorylation-dependent manner. The exact contributions of KI and MELT motifs to SAC signaling and chromosome alignment are unclear. We report here that KI motifs cooperate strongly with the neighboring single MELT motif in the N-terminal 250 residues (Knl1(1-250)) of human Knl1 to seed a comprehensive assembly of SAC proteins. In cells depleted of endogenous Knl1, kinetochore-targeted Knl1(1-250) suffices to restore SAC and chromosome alignment. Individual MELT repeats outside of Knl1(1-250), which lack flanking KI motifs, establish qualitatively similar sets of interactions, but less efficiently. MELT sequences on Knl1 emerge from our analysis as the platforms on which SAC complexes become assembled. Our results show that KI motifs are enhancers of MELT function in assembling SAC signaling complexes, and that they might have evolved to limit the expansion of MELT motifs by providing a more robust mechanism of SAC signaling around a single MELT. We shed light on the mechanism of Bub1 and BubR1 recruitment and identify crucial questions for future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    Directory of Open Access Journals (Sweden)

    Bonnie L Barrilleaux

    Full Text Available The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the