Ergodicity of polygonal slap maps
International Nuclear Information System (INIS)
Del Magno, Gianluigi; Pedro Gaivão, José; Lopes Dias, João; Duarte, Pedro
2014-01-01
Polygonal slap maps are piecewise affine expanding maps of the interval obtained by projecting the sides of a polygon along their normals onto the perimeter of the polygon. These maps arise in the study of polygonal billiards with non-specular reflection laws. We study the absolutely continuous invariant probabilities (acips) of the slap maps for several polygons, including regular polygons and triangles. We also present a general method for constructing polygons with slap maps with more than one ergodic acip. (paper)
Directory of Open Access Journals (Sweden)
D. Frommholz
2016-06-01
Full Text Available This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for fac¸ade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the fac¸ades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM. The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA tool running a custom rule set to identify windows on the contained fac¸ade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric
Computer Texture Mapping for Laser Texturing of Injection Mold
Directory of Open Access Journals (Sweden)
Yongquan Zhou
2014-04-01
Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.
Filtering Color Mapped Textures and Surfaces
Heitz , Eric; Nowrouzezahrai , Derek; Poulin , Pierre; Neyret , Fabrice
2013-01-01
International audience; Color map textures applied directly to surfaces, to geometric microsurface details, or to procedural functions (such as noise), are commonly used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient color map filt...
International Nuclear Information System (INIS)
Mediavilla, E.; Lopez, P.; Mediavilla, T.; Ariza, O.; Muñoz, J. A.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-01-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N –3/4 dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
FEMA DFIRM Panel Scheme Polygons
Minnesota Department of Natural Resources — This layer contains information about the Flood Insurance Rate Map (FIRM) panel areas. The spatial entities representing FIRM panels are polygons. The polygon for...
AUTOMATIC TEXTURE MAPPING OF ARCHITECTURAL AND ARCHAEOLOGICAL 3D MODELS
Directory of Open Access Journals (Sweden)
T. P. Kersten
2012-07-01
Full Text Available Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Automatic Texture Mapping of Architectural and Archaeological 3d Models
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Polygonal-path approximation on the path spaces of quantum mechanical systems: extended Feynman maps
International Nuclear Information System (INIS)
Exner, R.; Kolerov, G.I.
1981-01-01
Various types of polygonal-path approximations appearing in the functional-integration theory are discussed. The uniform approximation is applied to extend the definition of the Feynman maps from our previous paper and to prove consistency of this extension. Relations of the extended Fsub(-i)-map to the Wiener integral are given. In particular, the basic theorem about the sequential Wiener integral by Cameron is improved [ru
Texture memory and strain-texture mapping in a NiTi shape memory alloy
International Nuclear Information System (INIS)
Ye, B.; Majumdar, B. S.; Dutta, I.
2007-01-01
The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations
A recognition method research based on the heart sound texture map
Directory of Open Access Journals (Sweden)
Huizhong Cheng
2016-06-01
Full Text Available In order to improve the Heart Sound recognition rate and reduce the recognition time, in this paper, we introduces a new method for Heart Sound pattern recognition by using Heart Sound Texture Map. Based on the Heart Sound model, we give the Heart Sound time-frequency diagram and the Heart Sound Texture Map definition, we study the structure of the Heart Sound Window Function principle and realization method, and then discusses how to use the Heart Sound Window Function and the Short-time Fourier Transform to obtain two-dimensional Heart Sound time-frequency diagram, propose corner correlation recognition algorithm based on the Heart Sound Texture Map according to the characteristics of Heart Sound. The simulation results show that the Heart Sound Window Function compared with the traditional window function makes the first (S1 and the second (S2 Heart Sound texture clearer. And the corner correlation recognition algorithm based on the Heart Sound Texture Map can significantly improve the recognition rate and reduce the expense, which is an effective Heart Sound recognition method.
Image segmentation by hierarchial agglomeration of polygons using ecological statistics
Prasad, Lakshman; Swaminarayan, Sriram
2013-04-23
A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.
U.S. Environmental Protection Agency — This feature class contains the 64 tax map key polygons across the state of Hawaii that have been inspected by US EPA Pacific Southwest Enforcement Division as of...
Zernike-like systems in polygons and polygonal facets.
Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez
2015-07-20
Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit disk. In [Opt. Lett.32, 74 (2007)10.1364/OL.32.000074OPLEDP0146-9592] we introduced a new Zernike basis for elliptic and annular optical apertures based on an appropriate diffeomorphism between the unit disk and the ellipse and the annulus. Here, we present a generalization of this Zernike basis for a variety of important optical apertures, paying special attention to polygons and the polygonal facets present in segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on the Gram-Smith orthonormalization method, here we consider a piecewise diffeomorphism that transforms the unit disk into the polygon under consideration. We use this mapping to define a Zernike-like orthonormal system over the polygon. We also consider ensembles of polygonal facets that are essential in the design of segmented mirror telescopes. This generalization, based on in-plane warping of the basis functions, provides a unique solution, and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both the general form and the explicit expressions for a typical example of telescope optical aperture are provided.
Texture evolution maps for upset deformation of body-centered cubic metals
International Nuclear Information System (INIS)
Lee, Myoung-Gyu; Wang, Jue; Anderson, Peter M.
2007-01-01
Texture evolution maps are used as a tool to visualize texture development during upset deformation in body-centered cubic metals. These maps reveal initial grain orientations that tend toward normal direction (ND)|| versus ND|| . To produce these maps, a finite element analysis (FEA) with a rate-dependent crystal plasticity constitutive relation for tantalum is used. A reference case having zero workpiece/die friction shows that ∼64% of randomly oriented grains rotate toward ND|| and ∼36% rotate toward ND|| . The maps show well-established trends that increasing strain rate sensitivity and decreasing latent-to-self hardening ratio reduce both and percentages, leading to more diffuse textures. Reducing operative slip systems from both {1 1 0}/ and {1 1 2}/ to just {1 1 0}/ has a mixed effect: it increases the percentage but decreases the percentage. Reducing the number of slip systems and increasing the number of FEA integration points per grain strengthen - texture bands that are observed experimentally
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1981-01-01
Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru
Parcels and Land Ownership - Volusia County Parcels (Polygons)
NSGIC Local Govt | GIS Inventory — Parcel Ownership Polygon Layer: Polygons showing property ownership created from the "master" subdivision base map for Volusia County. Multiple lots and parcels...
Texture mapping in a distributed environment
Nicolae, Goga; Racovita, Zoea; Telea, Alexandru
2003-01-01
This paper presents a tool for texture mapping in a distributed environment. A parallelization method based on the master-slave model is described. The purpose of this work is to lower the image generation time in the complex 3D scenes synthesis process. The experimental results concerning the
Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion
Directory of Open Access Journals (Sweden)
Ling Lu
2017-07-01
Full Text Available Mapping soil texture in a river basin is critically important for eco-hydrological studies and water resource management at the watershed scale. However, due to the scarcity of in situ observation of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods. Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil texture measurement data, environmental factors, a previous soil texture map, and other thematic maps. Considering the different landscape characteristics over the whole Heihe River basin, different mapping schemes have been used to extract the soil texture in the upstream, middle, and downstream areas of the Heihe River basin, respectively. The validation results indicate that the soil texture map achieved an accuracy of 69% for test data from the midstream area of the Heihe River basin, which represents a much higher accuracy than that of another existing soil map in the Heihe River basin. In addition, compared with the time-consuming and expensive traditional soil mapping method, this new method could ensure greater efficiency and a better representation of the explicitly spatial distribution of soil texture and can, therefore, satisfy the requirements of regional modeling.
Hawaii ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries...
Pure Surface Texture Mapping Technology and it's Application for Mirror Image
Directory of Open Access Journals (Sweden)
Wei Feng Wang
2013-02-01
Full Text Available Based on the study of pure surface texture mapping technology, pure texture surface rendering method is proposed. The method is combined pure surface texture rendering and view mirror, real-time rendering has an index of refraction, reflection, and the flow of water ripple effect. Through the experimental verification of the validity of the algorithm.
Texture mapping via optimal mass transport.
Dominitz, Ayelet; Tannenbaum, Allen
2010-01-01
In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.
Wavelet and Blend maps for texture synthesis
Du Jin-Lian; Wang Song; Meng Xianhai
2011-01-01
blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...
UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis
Directory of Open Access Journals (Sweden)
Quanlong Feng
2015-01-01
Full Text Available Unmanned aerial vehicle (UAV remote sensing has great potential for vegetation mapping in complex urban landscapes due to the ultra-high resolution imagery acquired at low altitudes. Because of payload capacity restrictions, off-the-shelf digital cameras are widely used on medium and small sized UAVs. The limitation of low spectral resolution in digital cameras for vegetation mapping can be reduced by incorporating texture features and robust classifiers. Random Forest has been widely used in satellite remote sensing applications, but its usage in UAV image classification has not been well documented. The objectives of this paper were to propose a hybrid method using Random Forest and texture analysis to accurately differentiate land covers of urban vegetated areas, and analyze how classification accuracy changes with texture window size. Six least correlated second-order texture measures were calculated at nine different window sizes and added to original Red-Green-Blue (RGB images as ancillary data. A Random Forest classifier consisting of 200 decision trees was used for classification in the spectral-textural feature space. Results indicated the following: (1 Random Forest outperformed traditional Maximum Likelihood classifier and showed similar performance to object-based image analysis in urban vegetation classification; (2 the inclusion of texture features improved classification accuracy significantly; (3 classification accuracy followed an inverted U relationship with texture window size. The results demonstrate that UAV provides an efficient and ideal platform for urban vegetation mapping. The hybrid method proposed in this paper shows good performance in differentiating urban vegetation mapping. The drawbacks of off-the-shelf digital cameras can be reduced by adopting Random Forest and texture analysis at the same time.
Soils - Volusia County Soils (Polygons)
NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...
Head Tracking via Robust Registration in Texture Map Images
National Research Council Canada - National Science Library
LaCascia, Marco
1998-01-01
.... The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking...
Directory of Open Access Journals (Sweden)
Alex Okiemute Onojeghuo
2016-02-01
Full Text Available Reedbeds across the UK are amongst the most important habitats for rare and endangered birds, wildlife and organisms. However, over the past century, this valued wetland habitat has experienced a drastic reduction in quality and spatial coverage due to pressures from human related activities. To this end, conservation organisations across the UK have been charged with the task of conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture measures and spectral information contained in high resolution QuickBird satellite imagery. The key objectives were to determine the most effective single-date (autumn or summer and multi-seasonal QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness of combining multi-seasonal texture measures and spectral information for reedbed mapping using a variety of combinations; and to evaluate the most suitable classification technique for reedbed mapping from three selected classification techniques, namely maximum likelihood classifier, spectral angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural measures (entropy and angular second moment, a series of experiments were conducted using varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results indicate the multi-seasonal pansharpened multispectral bands (eight layers combined with all eight grey level co-occurrence matrix texture measures (entropy and angular second moment computed using windows 3 × 3 and 7 × 7 produced the optimal reedbed (76.5% and overall classification (78.1% accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed area of 9.8 hectares was successfully mapped over the
International Nuclear Information System (INIS)
2000-01-01
In Russian, ''The Polygon'' stands for a nuclear test site of 19.000 square kilometers in Kazakhstan, used by the former Soviet Union for hundreds of nuclear tests from 1947 to 1991. This film looks at the legacy of what was once a top secret area, now abandoned, but still sparsely populated, and at the work to be done to detect and map the areas of elevated radiation levels
Land use/land cover mapping using multi-scale texture processing of high resolution data
Wong, S. N.; Sarker, M. L. R.
2014-02-01
Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.
Land use/land cover mapping using multi-scale texture processing of high resolution data
International Nuclear Information System (INIS)
Wong, S N; Sarker, M L R
2014-01-01
Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road
Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.
Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J
2017-10-20
This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.
Extending ultra-short pulse laser texturing over large area
Energy Technology Data Exchange (ETDEWEB)
Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.
2016-11-15
Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.
System and method for the adaptive mapping of matrix data to sets of polygons
Burdon, David (Inventor)
2003-01-01
A system and method for converting bitmapped data, for example, weather data or thermal imaging data, to polygons is disclosed. The conversion of the data into polygons creates smaller data files. The invention is adaptive in that it allows for a variable degree of fidelity of the polygons. Matrix data is obtained. A color value is obtained. The color value is a variable used in the creation of the polygons. A list of cells to check is determined based on the color value. The list of cells to check is examined in order to determine a boundary list. The boundary list is then examined to determine vertices. The determination of the vertices is based on a prescribed maximum distance. When drawn, the ordered list of vertices create polygons which depict the cell data. The data files which include the vertices for the polygons are much smaller than the corresponding cell data files. The fidelity of the polygon representation can be adjusted by repeating the logic with varying fidelity values to achieve a given maximum file size or a maximum number of vertices per polygon.
Western Alaska ESI: BIOINDEX (Biological Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the 1:250,000 map boundaries used in the creation of the Environmental Sensitivity Index (ESI)...
Atmospheres of polygons and knotted polygons
International Nuclear Information System (INIS)
Janse Rensburg, E J Janse; Rechnitzer, A
2008-01-01
In this paper we define two statistics a + (ω) and a - (ω), the positive and negative atmospheres of a lattice polygon ω of fixed length n. These statistics have the property that (a + (ω))/(a - (ω)) = p n+2 /p n , where p n is the number of polygons of length n, counted modulo translations. We use the pivot algorithm to sample polygons and to compute the corresponding average atmospheres. Using these data, we directly estimate the growth constants of polygons in two and three dimensions. We find that μ=2.63805±0.00012 in two dimensions and μ=4.683980±0.000042±0.000067 in three dimensions, where the error bars are 67% confidence intervals, and the second error bar in the three-dimensional estimate of μ is an estimated systematic error. We also compute atmospheres of polygons of fixed knot type K sampled by the BFACF algorithm. We discuss the implications of our results and show that different knot types have atmospheres which behave dramatically differently at small values of n
Probability mapping of scarred myocardium using texture and intensity features in CMR images
2013-01-01
Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280
Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool
Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.
2015-03-01
Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.
High-Resolution 3-D Mapping of Soil Texture in Denmark
DEFF Research Database (Denmark)
Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev
2013-01-01
Soil texture which is spatially variable in nature, is an important soil physical property that governs most physical, chemical, biological, and hydrological processes in soils. Detailed information on soil texture variability both in vertical and lateral dimensions is crucial for proper crop...... and land management and environmental studies, especially in Denmark where mechanized agriculture covers two thirds of the land area. We modeled the continuous depth function of texture distribution from 1958 Danish soil profiles (up to a 2-m depth) using equal-area quadratic splines and predicted clay......, silt, fine sand, and coarse sand content at six standard soil depths of GlobalSoilMap project (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) via regression rules using the Cubist data mining tool. Seventeen environmental variables were used as predictors and their strength of prediction was also...
Wild boar mapping using population-density statistics: From polygons to high resolution raster maps.
Pittiglio, Claudia; Khomenko, Sergei; Beltran-Alcrudo, Daniel
2018-01-01
The wild boar is an important crop raider as well as a reservoir and agent of spread of swine diseases. Due to increasing densities and expanding ranges worldwide, the related economic losses in livestock and agricultural sectors are significant and on the rise. Its management and control would strongly benefit from accurate and detailed spatial information on species distribution and abundance, which are often available only for small areas. Data are commonly available at aggregated administrative units with little or no information about the distribution of the species within the unit. In this paper, a four-step geostatistical downscaling approach is presented and used to disaggregate wild boar population density statistics from administrative units of different shape and size (polygons) to 5 km resolution raster maps by incorporating auxiliary fine scale environmental variables. 1) First a stratification method was used to define homogeneous bioclimatic regions for the analysis; 2) Under a geostatistical framework, the wild boar densities at administrative units, i.e. subnational areas, were decomposed into trend and residual components for each bioclimatic region. Quantitative relationships between wild boar data and environmental variables were estimated through multiple regression and used to derive trend components at 5 km spatial resolution. Next, the residual components (i.e., the differences between the trend components and the original wild boar data at administrative units) were downscaled at 5 km resolution using area-to-point kriging. The trend and residual components obtained at 5 km resolution were finally added to generate fine scale wild boar estimates for each bioclimatic region. 3) These maps were then mosaicked to produce a final output map of predicted wild boar densities across most of Eurasia. 4) Model accuracy was assessed at each different step using input as well as independent data. We discuss advantages and limits of the method and its
Ge, Shaokui; Carruthers, Raymond; Gong, Peng; Herrera, Angelica
2006-03-01
Natural color photographs were used to detect the coverage of saltcedar, Tamarix parviflora, along a 40 km portion of Cache Creek near Woodland, California. Historical aerial photographs from 2001 were retrospectively evaluated and compared with actual ground-based information to assess accuracy of the assessment process. The color aerial photos were sequentially digitized, georeferenced, classified using color and texture methods, and mosaiced into maps for field use. Eight types of ground cover (Tamarix, agricultural crops, roads, rocks, water bodies, evergreen trees, non-evergreen trees and shrubs (excluding Tamarix)) were selected from the digitized photos for separability analysis and supervised classification. Due to color similarities among the eight cover types, the average separability, based originally only on color, was very low. The separability was improved significantly through the inclusion of texture analysis. Six types of texture measures with various window sizes were evaluated. The best texture was used as an additional feature along with the color, for identifying Tamarix. A total of 29 color photographs were processed to detect Tamarix infestations using a combination of the original digital images and optimal texture features. It was found that the saltcedar covered a total of 3.96 km(2) (396 hectares) within the study area. For the accuracy assessment, 95 classified samples from the resulting map were checked in the field with a global position system (GPS) unit to verify Tamarix presence. The producer's accuracy was 77.89%. In addition, 157 independently located ground sites containing saltcedar were compared with the classified maps, producing a user's accuracy of 71.33%.
LARGE SCALE TEXTURED MESH RECONSTRUCTION FROM MOBILE MAPPING IMAGES AND LIDAR SCANS
Directory of Open Access Journals (Sweden)
M. Boussaha
2018-05-01
Full Text Available The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS. First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points and photometry (images. Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014 is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.
Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans
Boussaha, M.; Vallet, B.; Rives, P.
2018-05-01
The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
Longhi, Sara; Moretto, Marco; Viola, Roberto; Velasco, Riccardo; Costa, Fabrizio
2012-02-01
Fruit ripening is a complex physiological process in plants whereby cell wall programmed changes occur mainly to promote seed dispersal. Cell wall modification also directly regulates the textural properties, a fundamental aspect of fruit quality. In this study, two full-sib populations of apple, with 'Fuji' as the common maternal parent, crossed with 'Delearly' and 'Pink Lady', were used to understand the control of fruit texture by QTL mapping and in silico gene mining. Texture was dissected with a novel high resolution phenomics strategy, simultaneously profiling both mechanical and acoustic fruit texture components. In 'Fuji × Delearly' nine linkage groups were associated with QTLs accounting from 15.6% to 49% of the total variance, and a highly significant QTL cluster for both textural components was mapped on chromosome 10 and co-located with Md-PG1, a polygalacturonase gene that, in apple, is known to be involved in cell wall metabolism processes. In addition, other candidate genes related to Md-NOR and Md-RIN transcription factors, Md-Pel (pectate lyase), and Md-ACS1 were mapped within statistical intervals. In 'Fuji × Pink Lady', a smaller set of linkage groups associated with the QTLs identified for fruit texture (15.9-34.6% variance) was observed. The analysis of the phenotypic variance over a two-dimensional PCA plot highlighted a transgressive segregation for this progeny, revealing two QTL sets distinctively related to both mechanical and acoustic texture components. The mining of the apple genome allowed the discovery of the gene inventory underlying each QTL, and functional profile assessment unravelled specific gene expression patterns of these candidate genes.
Shinarump Channel Polygons, North Central AUM Region, 1964, USDOE
U.S. Environmental Protection Agency — This is a polygon shapefile that provides Shinarump channels compiled and mapped by Young and Malan (1964) in the Monument Valley District, San Juan County, Utah,...
Extending backward polygon beam tracing to glossy scattering surfaces
CSIR Research Space (South Africa)
Duvenhage, B
2011-05-01
Full Text Available to render caustics that could not otherwise be sim- ulated efficiently using the high fidelity forward raytracing and radiosity rendering techniques of the time. Similar to what Heckbert and Hanrahan proposed, Watt [Wat90] used backward polygon beam....: Adaptive radiosity textures for bidi- rectional ray tracing. In SIGGRAPH ?90: Proceedings of the 17th Annual Conference on Computer graphics and Interactive Techniques (New York, NY, USA, 1990), ACM Press, New York, pp. 145?154. [HH84] HECKBERT P. S...
Rhode Island, Connecticut, New York, and New Jersey ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries...
Colleu , Thomas; Morin , Luce; Pateux , Stéphane; Labit , Claude
2011-01-01
International audience; This paper presents a new representation called floating polygon soup for applications like 3DTV and FTV (Free Viewpoint Television). This representation is based on 3D polygons and takes as input MVD data. It extends the previously proposed polygon soup representation which is appropriate for both compression, transmission and rendering stages. The floating polygon soup conserves these advantages while also taking into account misalignments at the view synthesis stage...
Non-convex polygons clustering algorithm
Directory of Open Access Journals (Sweden)
Kruglikov Alexey
2016-01-01
Full Text Available A clustering algorithm is proposed, to be used as a preliminary step in motion planning. It is tightly coupled to the applied problem statement, i.e. uses parameters meaningful only with respect to it. Use of geometrical properties for polygons clustering allows for a better calculation time as opposed to general-purpose algorithms. A special form of map optimized for quick motion planning is constructed as a result.
Aichholzer, Oswin; Aurenhammer, Franz; Hurtado Díaz, Fernando Alfredo; Ramos, Pedro A.; Urrutia, J.
2009-01-01
We introduce a notion of k-convexity and explore some properties of polygons that have this property. In particular, 2-convex polygons can be recognized in O(n log n) time, and k-convex polygons can be triangulated in O(kn) time.
Tomographic image reconstruction and rendering with texture-mapping hardware
International Nuclear Information System (INIS)
Azevedo, S.G.; Cabral, B.K.; Foran, J.
1994-07-01
The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties
SEMI-AUTOMATIC BUILDING MODELS AND FAÇADE TEXTURE MAPPING FROM MOBILE PHONE IMAGES
Directory of Open Access Journals (Sweden)
J. Jeong
2016-06-01
Full Text Available Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.
Reciprocal-space mapping for simultaneous determination of texture and stress in thin films
Czech Academy of Sciences Publication Activity Database
Šimek, Daniel; Kužel, R.; Rafaja, D.
2006-01-01
Roč. 39, č. 4 (2006), s. 487-501 ISSN 0021-8898 Institutional support: RVO:68378271 Keywords : texture * stress * X-ray diffraction * reciprocal space mapping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.495, year: 2006
Stephenson, Paul
2009-01-01
In order to find its circumference, Archimedes famously boxed the circle between two polygons. Ending the first of a series of articles (MT179) with an aside, Francis Lopez-Real reverses the situation to ask: Which polygons can be boxed between two circles? (The official term for such polygons is "bicentric".) The sides of these polygons are…
Measured Hydrologic Storage Characteristics of Three Major Ice Wedge Polygon Types, Barrow, Alaska
Chamberlain, A. J.; Liljedahl, A.; Wilson, C. J.; Cable, W.; Romanovsky, V. E.
2014-12-01
Model simulations have suggested that the hydrologic fluxes and stores of Arctic wetlands are constrained by the micro-topographical features of ice wedge polygons, which are abundant in lowland tundra landscapes. Recently observed changes in ice wedge polygon landscapes - in particular, ice wedge degradation and trough formation - emphasize the need to better understand how differing ice wedge polygon morphologies affect the larger hydrologic system. Here we present three seasons of measured end-of-winter snow accumulation, continuous soil moisture and water table elevations, and repeated frost table mapping. Together, these describe the hydrologic characteristics of three main ice wedge polygon types: low centered polygons with limited trough development (representative of a ~500 year old vegetated drained thaw lake basin), and low- and high-centered polygons with well-defined troughs. Dramatic spatiotemporal variability exists both between polygon types and between the features of an individual polygon (e.g. troughs, centers, rims). Landscape-scale end-of-winter snow water equivalent is similar between polygon types, while the sub-polygon scale distribution of the surface water differs, both as snow and as ponded water. Some sub-polygon features appear buffered against large variations in water levels, while others display periods of prolonged recessions and large responses to rain events. Frost table elevations in general mimic the ground surface topography, but with spatiotemporal variability in thaw rate. The studied thaw seasons represented above long-term average rainfall, and in 2014, record high June precipitation. Differing ice wedge polygon types express dramatically different local hydrology, despite nearly identical climate forcing and landscape-scale snow accumulation, making ice wedge polygons an important component when describing the Arctic water, nutrient and energy system.
Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo
2018-04-01
Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found between cellular proliferation index and those features. Textural features of DCE-MRI parameter maps displayed a good ability in glioma grading. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1099-1111. © 2017 International Society for Magnetic Resonance in Medicine.
Digital soil mapping: strategy for data pre-processing
Directory of Open Access Journals (Sweden)
Alexandre ten Caten
2012-08-01
Full Text Available The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM. Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
Maldeghem, Hendrik
1998-01-01
This book is intended to be an introduction to the fascinating theory ofgeneralized polygons for both the graduate student and the specialized researcher in the field. It gathers together a lot of basic properties (some of which are usually referred to in research papers as belonging to folklore) and very recent and sometimes deep results. I have chosen a fairly strict geometrical approach, which requires some knowledge of basic projective geometry. Yet, it enables one to prove some typically group-theoretical results such as the determination of the automorphism groups of certain Moufang polygons. As such, some basic group-theoretical knowledge is required of the reader. The notion of a generalized polygon is a relatively recent one. But it is one of the most important concepts in incidence geometry. Generalized polygons are the building bricks of Tits buildings. They are the prototypes and precursors of more general geometries such as partial geometries, partial quadrangles, semi-partial ge ometries, near...
Van Maldeghem, Hendrik
1998-01-01
Generalized Polygons is the first book to cover, in a coherent manner, the theory of polygons from scratch. In particular, it fills elementary gaps in the literature and gives an up-to-date account of current research in this area, including most proofs, which are often unified and streamlined in comparison to the versions generally known. Generalized Polygons will be welcomed both by the student seeking an introduction to the subject as well as the researcher who will value the work as a reference. In particular, it will be of great value for specialists working in the field of generalized polygons (which are, incidentally, the rank 2 Tits-buildings) or in fields directly related to Tits-buildings, incidence geometry and finite geometry. The approach taken in the book is of geometric nature, but algebraic results are included and proven (in a geometric way!). A noteworthy feature is that the book unifies and generalizes notions, definitions and results that exist for quadrangles, hexagons, octagons - in the ...
Macander, M. J.; Frost, G. V., Jr.
2015-12-01
Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.
Origin of giant Martian polygons
Mcgill, George E.; Hills, L. S.
1992-01-01
Extensive areas of the Martian northern plains in Utopia and Acidalia planitiae are characterized by 'polygonal terrane'. Polygonal terrane consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on earth. However, the Martian polygons are orders of magnitude larger than these potential earth analogues, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Plate-bending and finite element models indicate that shrinkage of desiccating sediment or cooling volcanics accompanied by differential compaction over buried topography can account for the stresses responsible for polygon troughs as well as the large size of the polygons. Although trough widths and depths relate primarily to shrinkage, the large scale of the polygonl pattern relates to the spacing between topographic elevations on the surface buried beneath polygonal terrane material. Geological relationships favor a sedimentary origin for polygonal terrane material, but our model is not dependent on the specific genesis. Our analysis also suggests that the polygons must have formed at a geologically rapid rate.
Directory of Open Access Journals (Sweden)
F. Deng
2012-07-01
Full Text Available Today high resolution panoramic images with competitive quality have been widely used for rendering in some commercial systems. However the potential applications such as mapping, augmented reality and modelling which need accurate orientation information are still poorly studied. Urban models can be quickly obtained from aerial images or LIDAR, however with limited quality or efficiency due to low resolution textures and manual texture mapping work flow. We combine an Extended Kalman Filter (EKF with the traditional Structure from Motion (SFM method without any prior information based on a general camera model which can handle various kinds of omnidirectional and other kind of single perspective image sequences even with unconnected or weakly connected frames. The orientation results is then applied to mapping the textures from panoramas to the existing building models obtained from aerial photogrammetry. It turns out to largely improve the quality of the models and the efficiency of the modelling procedure.
2005-01-01
26 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygonal patterned ground on a south high-latitude plain. The outlines of the polygons, like the craters and hills in this region, are somewhat enhanced by the presence of bright frost left over from the previous winter. On Earth, polygons at high latitudes would usually be attributed to the seasonal freezing and thawing cycles of ground ice. The origin of similar polygons on Mars is less certain, but might also be an indicator of ground ice. Location near: 75.3oS, 113.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring
Knotting in stretched polygons
International Nuclear Information System (INIS)
Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G
2008-01-01
The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force
Schwartz, Richard Evan
2017-01-01
This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar N-gon and produces a new N-gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.
International Nuclear Information System (INIS)
Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S
2015-01-01
Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General
Energy Technology Data Exchange (ETDEWEB)
Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S [The University of Chicago, Chicago, IL (United States)
2015-06-15
Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General
LENUS (Irish Health Repository)
DiFranco, Matthew D
2011-01-01
We present a tile-based approach for producing clinically relevant probability maps of prostatic carcinoma in histological sections from radical prostatectomy. Our methodology incorporates ensemble learning for feature selection and classification on expert-annotated images. Random forest feature selection performed over varying training sets provides a subset of generalized CIEL*a*b* co-occurrence texture features, while sample selection strategies with minimal constraints reduce training data requirements to achieve reliable results. Ensembles of classifiers are built using expert-annotated tiles from training images, and scores for the probability of cancer presence are calculated from the responses of each classifier in the ensemble. Spatial filtering of tile-based texture features prior to classification results in increased heat-map coherence as well as AUC values of 95% using ensembles of either random forests or support vector machines. Our approach is designed for adaptation to different imaging modalities, image features, and histological decision domains.
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
2004-01-01
16 January 2004 Looking somewhat like a roadmap, this 3 km (1.9 mi) wide view of a cratered plain in the martian south polar region shows a plethora of cracks that form polygonal patterns. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is located near 78.9oS, 357.3oW. Polygons such as these, where they are found on Earth, would be indicators of the presence of subsurface ice. Whether the same is true for Mars is uncertain. What is certain is that modern, seasonal frost on the surface enhances the appearance of the polygons as the frost persists longer in the cracks than on adjacent plains. This southern springtime image is illuminated by sunlight from the upper left.
A QUALITY ASSESSMENT METHOD FOR 3D ROAD POLYGON OBJECTS
Directory of Open Access Journals (Sweden)
L. Gao
2015-08-01
Full Text Available With the development of the economy, the fast and accurate extraction of the city road is significant for GIS data collection and update, remote sensing images interpretation, mapping and spatial database updating etc. 3D GIS has attracted more and more attentions from academics, industries and governments with the increase of requirements for interoperability and integration of different sources of data. The quality of 3D geographic objects is very important for spatial analysis and decision-making. This paper presents a method for the quality assessment of the 3D road polygon objects which is created by integrating 2D Road Polygon data with LiDAR point cloud and other height information such as Spot Height data in Hong Kong Island. The quality of the created 3D road polygon data set is evaluated by the vertical accuracy, geometric and attribute accuracy, connectivity error, undulation error and completeness error and the final results are presented.
Lucchitta, B. K.
1984-01-01
Polygonal-fracture patterns on the martian surface were discovered on Viking Orbiter images. The polygons are 2-20 km in diameter, much larger than those of known patterned ground on Earth. New observations show, however, that polygons exist on Mars that have diameters similar to those of ice-wedge polygons on Earth (generally a few meters to more than 100 m). Various explanations for the origin of these crustal features are examined; seasonal desiccation and thermal-contraction cracking in ice-rich ground. It is difficult to ascertain whether the polygons are forming today or are relics from the past. The crispness of some crack suggests a recent origin. On the other hand the absence of upturned edges (indicating actively forming ice wedges), the locally disintegrating ground, and a few possible superposed rayed craters indicate that the polygons are not forming at the present.
Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?
Oehler, Dorothy Z; Allen, Carlton C
2012-06-01
This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this
Invariant polygons in systems with grazing-sliding.
Szalai, R; Osinga, H M
2008-06-01
The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.
Rotating Polygons on a Fluid Surface
DEFF Research Database (Denmark)
Bohr, Tomas; Jansson, Thomas; Haspang, Martin
spontaneously and the surface can take the shape of a rigidly rotating polygon. With water we have observed polygons with up to 6 corners. The rotation speed of the polygons does not coincide with that of the plate, but it is often mode-locked, such that the polygon rotates by one corner for each complete...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small....
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Wildlife Refuges in the Aleutian Islands, Alaska. Vector polygons in this data set represent management...
2005-01-01
18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring
Bas-relief map using texture analysis with application to live enhancement of ultrasound images.
Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-05-01
For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Stretched polygons in a lattice tube
Energy Technology Data Exchange (ETDEWEB)
Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca
2009-08-14
We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)
Stretched polygons in a lattice tube
International Nuclear Information System (INIS)
Atapour, M; Soteros, C E; Whittington, S G
2009-01-01
We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)
2003-01-01
MGS MOC Release No. MOC2-564, 4 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground, arranged in the form of polygons, on the undulating plains associated with ejecta from the Lyot impact crater on the martian northern plains. This picture was acquired in October 2003 and shows that the polygon margins are ridges with large boulders--shown here as dark dots--on them. On Earth, polygon patterns like this are created in arctic and antarctic regions where there is ice in the ground. The seasonal and longer-term cycles of freezing and thawing of the ice-rich ground cause these features to form over time. Whether the same is true for Mars is unknown. The polygons are located near 54.6oN, 326.6oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.
Tensor Product of Polygonal Cell Complexes
Chien, Yu-Yen
2017-01-01
We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.
Homotopic Polygonal Line Simplification
DEFF Research Database (Denmark)
Deleuran, Lasse Kosetski
This thesis presents three contributions to the area of polygonal line simplification, or simply line simplification. A polygonal path, or simply a path is a list of points with line segments between the points. A path can be simplified by morphing it in order to minimize some objective function...
2003-01-01
MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.
Perceptually stable regions for arbitrary polygons.
Rocha, J
2003-01-01
Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.
Random packing of regular polygons and star polygons on a flat two-dimensional surface.
Cieśla, Michał; Barbasz, Jakub
2014-08-01
Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.
Approximation algorithms for guarding holey polygons ...
African Journals Online (AJOL)
Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...
Random walks and polygons in tight confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Ziegler, U
2014-01-01
We discuss the effect of confinement on the topology and geometry of tightly confined random walks and polygons. Here the walks and polygons are confined in a sphere of radius R ≥ 1/2 and the polygons are equilateral with n edges of unit length. We illustrate numerically that for a fixed length of random polygons the knotting probability increases to one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the curvature increases to πn (π(n – 1)) as the radius approaches 1/2 and that the torsion decreases to ≈ πn/3 (≈ π(n – 1)/3). In addition we show the effect of length and confinement on the average crossing number of a random polygon
2002-01-01
[figure removed for brevity, see original site] This jumble of eroded ridges and mesas occurs within Ares Vallis, one of the largest catastrophic outflow channels on the planet. Floods raged through this channel, portions of which are up to 25 km wide, pouring out into the Chryse Basin to the north. Close inspection of the THEMIS image reveals polygonal shapes on the floor of the channel system. Polygonal terrain on Mars is fairly common although the variety of forms and scales of the polygons suggests multiple modes of origin. Those in Ares Vallis resemble giant desiccation polygons that form in soils on Earth when a moist layer at depth drys out. While polygons can form in icy soils (permafrost) and even lava flows, their presence in a channel thought to have been carved by flowing water is at least consistent with a mode of origin that involved liquid water.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Directory of Open Access Journals (Sweden)
Adina Racoviteanu
2012-10-01
Full Text Available In this study we use visible, short-wave infrared and thermal Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER data validated with high-resolution Quickbird (QB and Worldview2 (WV2 for mapping debris cover in the eastern Himalaya using two independent approaches: (a a decision tree algorithm, and (b texture analysis. The decision tree algorithm was based on multi-spectral and topographic variables, such as band ratios, surface reflectance, kinetic temperature from ASTER bands 10 and 12, slope angle, and elevation. The decision tree algorithm resulted in 64 km2 classified as debris-covered ice, which represents 11% of the glacierized area. Overall, for ten glacier tongues in the Kangchenjunga area, there was an area difference of 16.2 km2 (25% between the ASTER and the QB areas, with mapping errors mainly due to clouds and shadows. Texture analysis techniques included co-occurrence measures, geostatistics and filtering in spatial/frequency domain. Debris cover had the highest variance of all terrain classes, highest entropy and lowest homogeneity compared to the other classes, for example a mean variance of 15.27 compared to 0 for clouds and 0.06 for clean ice. Results of the texture image for debris-covered areas were comparable with those from the decision tree algorithm, with 8% area difference between the two techniques.
Friedman, Alinda; Montello, Daniel R; Burte, Heather
2012-09-01
We conducted 3 experiments to examine the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in circumstances in which the category boundaries were irregular schematized polygons made from outlines of maps. For the first time, accuracy was tested when only perceptual and/or existing long-term memory information about identical locations was cued. Participants from Alberta, Canada and California received 1 of 3 conditions: dots-only, in which a dot appeared within the polygon, and after a 4-s dynamic mask the empty polygon appeared and the participant indicated where the dot had been; dots-and-names, in which participants were told that the first polygon represented Alberta/California and that each dot was in the correct location for the city whose name appeared outside the polygon; and names-only, in which there was no first polygon, and participants clicked on the city locations from extant memory alone. Location recall in the dots-only and dots-and-names conditions did not differ from each other and had small but significant directional errors that pointed away from the centroids of the polygons. In contrast, the names-only condition had large and significant directional errors that pointed toward the centroids. Experiments 2 and 3 eliminated the distribution of stimuli and overall screen position as causal factors. The data suggest that in the "classic" category adjustment paradigm, it is difficult to determine a priori when Bayesian cue combination is applicable, making Bayesian analysis less useful as a theoretical approach to location estimation. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie
2014-01-01
Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151
Soil texture derived from topography in North-eastern Amazonia
Laurent, François; Poccard-Chapuis, René; Plassin, Sophie; Pimentel Martinez, Gustavo
2017-01-01
We present a 1:100,000 scale soil texture map of Paragominas county (Pará, Brazil), covering 19,330 km2. The method allows rapid production of a soil texture map of a large area where the strength of a duricrust controls the relief. It is based on an easily accessible explanatory variable, topography, which is represented using a Digital Elevation Model. The method makes it possible to map the spatial distribution of the texture of the topsoil layer. Modelling was complemented by field observ...
Near polygons and Fischer spaces
Brouwer, A.E.; Cohen, A.M.; Hall, J.I.; Wilbrink, H.A.
1994-01-01
In this paper we exploit the relations between near polygons with lines of size 3 and Fischer spaces to classify near hexagons with quads and with lines of size three. We also construct some infinite families of near polygons.
Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene
2015-04-01
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low
Lara, Mark J.; McGuire, A. David; Euskirchen, Eugénie S.; Tweedie, Craig E.; Hinkel, Kenneth M.; Skurikhin, Alexei N.; Romanovsky, Vladimir E.; Grosse, Guido; Bolton, W. Robert; Genet, Helene
2015-01-01
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 106gC-CO2 day−1(uncertainty using 95% CI is between −438.3 and −1366 106gC-CO2 day−1) and CH4 flux at 28.9 106gC-CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC-CH4 day−1), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2uptake (−166.9 106gC-CO2 day−1) and CH4 flux (2.8 106gC-CH4 day−1) with geomorphic change from
Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets
Energy Technology Data Exchange (ETDEWEB)
Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)
2011-02-15
A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.
PolyRES: A polygon-based Richards equation solver
International Nuclear Information System (INIS)
Hills, R.G.
1995-12-01
This document describes the theory, implementation, and use of a software package designed to solve the transient, two-dimensional, Richards equation for water flow in unsaturated-saturated soils. This package was specifically designed to model complex geometries with minimal input from the user and to simulate groundwater flow related to assessment of low-level radioactive waste disposal sites and engineered facilities. The spatial variation of the hydraulic properties can be defined across individual polygon-shaped subdomains, called objects. These objects combine to form a polygon-shaped model domain. Each object can have its own distribution of hydraulic parameters. The resulting model domain and polygon-shaped internal objects are mapped onto a rectangular, finite-volume, computational grid by a preprocessor. This allows the user to specify model geometry independently of the underlying grid and greatly simplifies user input for complex geometries. In addition, this approach significantly reduces the computational requirements since complex geometries are actually modeled on a rectangular grid. This results in well-structured, finite difference-like systems of equations that require minimal storage and are very efficient to solve. The documentation for this software package includes a user's manual, a detailed description of the underlying theory, and a detailed discussion of program flow. Several example problems are presented that show the use and features of the software package. The water flow predictions for several of these example problems are compared to those of another algorithm to test for prediction equivalency
Wenrich, M. L.; Christensen, P. R.
1993-01-01
The mechanism for the genesis of the polygonal terrains in Acidalia and Utopia Planitia has long been sought: however, no completely satisfying model was put forth that characterizes the evolution of these complexly patterned terrains. The polygons are roughly hexagonal but some are not entirely enclosed by fractures. These polygonal features range in widths from approximately 5 to 20 km. Several origins were proposed that describe the polygon borders as desiccation cracks, columnar jointing in a cooled lava, or frost-wedge features. These tension-induced cracking hypotheses were addressed by Pechmann, who convincingly disputes these mechanisms of formation based on scale magnitude difficulties and morphology. Pechmann suggests instead that the cracks delineating the 5-20-km-wide polygons on the northern plains of Mars are graben resulting from deep-seated, uniform, horizontal tension. The difficulty with this hypothesis is that no analogous polygonal forms are known to have originated by tectonism on Earth. McGill and Hills propose that the polygonal terrains on Mars resulted from either rapid desiccation of sediments or cooling of volcanics coupled with differential compaction of the material over a buried irregular topographic surface. They suggest that fracturing was enhanced over the areas of positive relief and was suppressed above the topographic lows. McGill and Hills suggest that the spacing of the topographic highs primarily controls the size of the Martian polygons and the physics of the shrinkage process is a secondary concern. Ray et. al. conducted a terrestrial study of patterned ground in periglacial areas of the U.S. to determine the process responsible for polygonal ground formation. They developed a model for polygon formation in which convection of seasonal melt water above a permafrost layer, driven by an unstable density stratification, differentially melts the permafrost interface, causing it to become undulatory.
Model for polygonal hydraulic jumps
DEFF Research Database (Denmark)
Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas
2012-01-01
We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...
2005-01-01
3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Self-avoiding polygons and walks in slits
International Nuclear Information System (INIS)
Alvarez, J; Whittington, S G; Rensburg, E J Janse van; Soteros, C E
2008-01-01
A polymer in a confined geometry may be modeled by a self-avoiding walk or a self-avoiding polygon confined between two parallel walls. In two dimensions, this model involves self-avoiding walks or self-avoiding polygons in the square lattice between two parallel confining lines. Interactions of the polymer with the confining walls are introduced by energy terms associated with edges in the walk or polygon which are at or near the confining lines. We use transfer-matrix methods to investigate the forces between the walk or polygon and the confining lines, as well as to investigate the effects of the confining slit's width and of the energy terms on the thermodynamic properties of the walks or polygons in several models. The phase diagram found for the self-avoiding walk models is qualitatively similar to the phase diagram of a directed walk model confined between two parallel lines, as was previously conjectured. However, the phase diagram of one of our polygon models is found to be significantly different and we present numerical data to support this. For that particular model we prove that, for any finite values of the energy terms, there are an infinite number of slit widths where a polygon will induce a steric repulsion between the confining lines
Kink-free deformations of polygons
Vegter, Gert
1989-01-01
We consider a discrete version of the Whitney-Graustein theorem concerning regular equivalence of closed curves. Two regular polygons P and P’, i.e. polygons without overlapping adjacent edges, are called regularly equivalent if there is a continuous one-parameter family Ps, 0 ≤ s ≤ 1, of regular
New techniques in 3D scalar and vector field visualization
Energy Technology Data Exchange (ETDEWEB)
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
New techniques in 3D scalar and vector field visualization
International Nuclear Information System (INIS)
Max, N.; Crawfis, R.; Becker, B.
1993-01-01
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ''splatting'' scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ''flow volume'' of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity
Dilation-optimal edge deletion in polygonal cycles
Ahn, H.K.; Farshi, M.; Knauer, C.; Smid, M.H.M.; Wang, Y.; Tokuyama, T.
2007-01-01
Let C be a polygonal cycle on n vertices in the plane. A randomized algorithm is presented which computes in O(n log3 n) expected time, the edge of C whose removal results in a polygonal path of smallest possible dilation. It is also shown that the edge whose removal gives a polygonal path of
AUTOMATIC TEXTURE RECONSTRUCTION OF 3D CITY MODEL FROM OBLIQUE IMAGES
Directory of Open Access Journals (Sweden)
J. Kang
2016-06-01
Full Text Available In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.
Generating random walks and polygons with stiffness in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Saarinen, S; Ziegler, U
2015-01-01
The purpose of this paper is to explore ways to generate random walks and polygons in confinement with a bias toward stiffness. Here the stiffness refers to the curvature angle between two consecutive edges along the random walk or polygon. The stiffer the walk (polygon), the smaller this angle on average. Thus random walks and polygons with an elevated stiffness have lower than expected curvatures. The authors introduced and studied several generation algorithms with a stiffness parameter s>0 that regulates the expected curvature angle at a given vertex in which the random walks and polygons are generated one edge at a time using conditional probability density functions. Our generating algorithms also allow the generation of unconfined random walks and polygons with any desired mean curvature angle. In the case of random walks and polygons confined in a sphere of fixed radius, we observe that, as expected, stiff random walks or polygons are more likely to be close to the confinement boundary. The methods developed here require that the random walks and random polygons be rooted at the center of the confinement sphere. (paper)
Feature-aware natural texture synthesis
Wu, Fuzhang
2014-12-04
This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis quality can be affected adversely if the texture elements in an example display spatially varied patterns, such as perspective distortion, the composition of different sub-textures, and variations in global color pattern as a result of complex illumination. This issue is common in natural textures and is a fundamental challenge for previously developed methods. Thus, we address it from a feature point of view and propose a feature-aware approach to synthesize natural textures. The synthesis process is guided by a feature map that represents the visual characteristics of the input texture. Moreover, we present a novel adaptive initialization algorithm that can effectively avoid the repeat and verbatim copying artifacts. Our approach improves texture synthesis in many images that cannot be handled effectively with traditional technologies.
Automatically repairing invalid polygons with a constrained triangulation
Ledoux, H.; Arroyo Ohori, K.; Meijers, M.
2012-01-01
Although the validation of single polygons has received considerable attention, the automatic repair of invalid polygons has not. Automated repair methods can be considered as interpreting ambiguous or ill-defined polygons and giving a coherent and clearly defined output. At this moment, automatic
Generating equilateral random polygons in confinement II
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2012-01-01
In this paper we continue an earlier study (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202) on the generation algorithms of random equilateral polygons confined in a sphere. Here, the equilateral random polygons are rooted at the center of the confining sphere and the confining sphere behaves like an absorbing boundary. One way to generate such a random polygon is the accept/reject method in which an unconditioned equilateral random polygon rooted at origin is generated. The polygon is accepted if it is within the confining sphere, otherwise it is rejected and the process is repeated. The algorithm proposed in this paper offers an alternative to the accept/reject method, yielding a faster generation process when the confining sphere is small. In order to use this algorithm effectively, a large, reusable data set needs to be pre-computed only once. We derive the theoretical distribution of the given random polygon model and demonstrate, with strong numerical evidence, that our implementation of the algorithm follows this distribution. A run time analysis and a numerical error estimate are given at the end of the paper. (paper)
Does a point lie inside a polygon
International Nuclear Information System (INIS)
Milgram, M.S.
1988-01-01
A superficially simple problem in computational geometry is that of determining whether a query point P lies in the interior of a polygon if it lies in the polygon's plane. Answering this question is often required when tracking particles in a Monte Carlo program; it is asked frequently and an efficient algorithm is crucial. Littlefield has recently rediscovered Shimrat's algorithm, while in separate works, Wooff, Preparata and Shamos and Mehlhorn, as well as Yamaguchi, give other algorithms. A practical algorithm answering this question when the polygon's plane is skewed in space is not immediately evident from most of these methods. Additionally, all but one fails when two sides extend to infinity (open polygons). In this paper the author review the above methods and present a new, efficient algorithm, valid for all convex polygons, open or closed, and topologically connected in n-dimensional space (n ≥ 2)
SHAPE FROM TEXTURE USING LOCALLY SCALED POINT PROCESSES
Directory of Open Access Journals (Sweden)
Eva-Maria Didden
2015-09-01
Full Text Available Shape from texture refers to the extraction of 3D information from 2D images with irregular texture. This paper introduces a statistical framework to learn shape from texture where convex texture elements in a 2D image are represented through a point process. In a first step, the 2D image is preprocessed to generate a probability map corresponding to an estimate of the unnormalized intensity of the latent point process underlying the texture elements. The latent point process is subsequently inferred from the probability map in a non-parametric, model free manner. Finally, the 3D information is extracted from the point pattern by applying a locally scaled point process model where the local scaling function represents the deformation caused by the projection of a 3D surface onto a 2D image.
Federal Geographic Data Committee — The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The...
Casimir effect in hyperbolic polygons
International Nuclear Information System (INIS)
Ahmedov, H
2007-01-01
Using the point splitting regularization method and the trace formula for the spectra of quantum-mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two-dimensional hyperboloid we calculate the Casimir energy for massless scalar fields in hyperbolic polygons. The dependence of the vacuum energy on the number of vertices is established
Linking of uniform random polygons in confined spaces
International Nuclear Information System (INIS)
Arsuaga, J; Blackstone, T; Diao, Y; Karadayi, E; Saito, M
2007-01-01
In this paper, we study the topological entanglement of uniform random polygons in a confined space. We derive the formula for the mean squared linking number of such polygons. For a fixed simple closed curve in the confined space, we rigorously show that the linking probability between this curve and a uniform random polygon of n vertices is at least 1-O(1/√n). Our numerical study also indicates that the linking probability between two uniform random polygons (in a confined space), of m and n vertices respectively, is bounded below by 1-O(1/√(mn)). In particular, the linking probability between two uniform random polygons, both of n vertices, is bounded below by 1-O(1/n)
From Newton's bucket to rotating polygons
DEFF Research Database (Denmark)
Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard
2014-01-01
We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...
Texturing of continuous LOD meshes with the hierarchical texture atlas
Birkholz, Hermann
2006-02-01
For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.
Polygons on a rotating fluid surface
DEFF Research Database (Denmark)
Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.
2006-01-01
We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...
Generating equilateral random polygons in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2011-01-01
One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon. (paper)
Darmadji, Armandarius; --, Liliana
2013-01-01
Origamic architecture (OA) merupakan papercraft yang dapat mereplika struktur arsitektural, pola geometri, dan objek tiga dimensi (3D) lainnya dalam bentuk pop-up hanya dengan melipat dan menggunting satu buah kertas. Rancangan image 2-dimensi yang dapat direalisasikan menjadi OA disebut OA plan. Pemberian texture pada OA plan dapat digunakan untuk menampilkan detail visual pada OA yang dihasilkan. Akan tetapi, desain OA plan cenderung memiliki bentuk geometri yang berbeda dengan objek asliny...
Linking of uniform random polygons in confined spaces
Arsuaga, J.; Blackstone, T.; Diao, Y.; Karadayi, E.; Saito, M.
2007-03-01
In this paper, we study the topological entanglement of uniform random polygons in a confined space. We derive the formula for the mean squared linking number of such polygons. For a fixed simple closed curve in the confined space, we rigorously show that the linking probability between this curve and a uniform random polygon of n vertices is at least 1-O\\big(\\frac{1}{\\sqrt{n}}\\big) . Our numerical study also indicates that the linking probability between two uniform random polygons (in a confined space), of m and n vertices respectively, is bounded below by 1-O\\big(\\frac{1}{\\sqrt{mn}}\\big) . In particular, the linking probability between two uniform random polygons, both of n vertices, is bounded below by 1-O\\big(\\frac{1}{n}\\big) .
Convergence of Wachspress coordinates: from polygons to curved domains
Kosinka, Jiří
2014-08-08
Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.
Convergence of Wachspress coordinates: from polygons to curved domains
Kosinka, Jiří
2014-01-01
Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.
Probing convex polygons with X-rays
International Nuclear Information System (INIS)
Edelsbrunner, H.; Skiena, S.S.
1988-01-01
An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known
Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes.
Pelloni, Stefano; Lazzeretti, Paolo
2018-01-05
Assuming that graphene is an "infinite alternant" polycyclic aromatic hydrocarbon resulting from tessellation of a surface by only six-membered carbon rings, planar fragments of various size and shape (hexagon, triangle, rectangle, and rhombus) have been considered to investigate their response to a magnetic field applied perpendicularly. Allowing for simple polygonal current models, the diatropicity of a series of polycyclic textures has been reliably determined by comparing quantitative indicators, the π-electron contribution to I B , the magnetic field-induced current susceptibility of the peripheral circuit, to ξ∥ and to σ∥(CM)=-NICS∥(CM), respectively the out-of-plane components of the magnetizability tensor and of the magnetic shielding tensor at the center of mass. Extended numerical tests and the analysis based on the polygonal model demonstrate that (i) ξ∥ and σ∥(CM) yield inadequate and sometimes erroneous measures of diatropicity, as they are heavily flawed by spurious geometrical factors, (ii) I B values computed by simple polygonal models are valid quantitative indicators of aromaticity on the magnetic criterion, preferable to others presently available, whenever current susceptibility cannot be calculated ab initio as a flux integral, (iii) the hexagonal shape is the most effective to maximize the strength of π-electron currents over the molecular perimeter, (iv) the edge current strength of triangular and rhombic graphene fragments is usually much smaller than that of hexagonal ones, (v) doping by boron and nitrogen nuclei can regulate and even inhibit peripheral ring currents, (vi) only for very large rectangular fragments can substantial current strengths be expected. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Comic image understanding based on polygon detection
Li, Luyuan; Wang, Yongtao; Tang, Zhi; Liu, Dong
2013-01-01
Comic image understanding aims to automatically decompose scanned comic page images into storyboards and then identify the reading order of them, which is the key technique to produce digital comic documents that are suitable for reading on mobile devices. In this paper, we propose a novel comic image understanding method based on polygon detection. First, we segment a comic page images into storyboards by finding the polygonal enclosing box of each storyboard. Then, each storyboard can be represented by a polygon, and the reading order of them is determined by analyzing the relative geometric relationship between each pair of polygons. The proposed method is tested on 2000 comic images from ten printed comic series, and the experimental results demonstrate that it works well on different types of comic images.
Minimal knotted polygons in cubic lattices
International Nuclear Information System (INIS)
Van Rensburg, E J Janse; Rechnitzer, A
2011-01-01
In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length
Computing nonsimple polygons of minimum perimeter
Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.
2018-01-01
We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman
Water polygons in high-resolution protein crystal structures.
Lee, Jonas; Kim, Sung-Hou
2009-07-01
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.
Some solvable, and as yet unsolvable, polygon and walk models
International Nuclear Information System (INIS)
Guttmann, Anthony J
2006-01-01
One partly solvable and two solvable models of polygons are discussed. Using a simple transfer matrix approach Iwan Jensen has derived very long series expansions for the perimeter generating function of both three-choice polygons and punctured staircase polygons. In both cases it is found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We report on an analysis of the properties of the differential equations. Recently Enrica Duchi has discussed the problem of so-called prudent self-avoiding walks. We discuss the polygon analogue of this problem, and argue that the generating function for prudent polygons is unlikely to be differentiably finite, though a restricted version of the problem, called prudent polygons of the second type, is likely to be differentiably finite. The exact generating function for prudent polygons of the first type is also found
Neigh, C. S. R.; Carroll, M.; Wooten, M.; McCarty, J. L.; Powell, B.; Husak, G. J.; Enenkel, M.; Hain, C.
2017-12-01
Global food production in the developing world occurs within sub-hectare fields that are difficult to identify with moderate resolution satellite imagery. Knowledge about the distribution of these fields is critical in food security programs. We developed a semi-automated image segmentation approach using wall-to-wall sub-meter imagery with high-end computing (HEC) to map crop area (CA) throughout Tigray, Ethiopia that encompasses over 41,000 km2. Our approach tested multiple HEC processing streams to reduce processing time and minimize mapping error. We applied multiple resolution smoothing kernels to capture differences in land surface texture associated to CA. Typically, very-small fields (mean big-data methodology to extract wall-to-wall CA for other regions of the world that have very-small agriculture fields with similar image texture.
International Nuclear Information System (INIS)
Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel
2014-01-01
Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r s ) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI SPORT ) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r s values
Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan
2018-03-01
A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.
Decomposition of orthogonal polygons in a set of rectanglеs
Shestakov, E.; Voronov, A.
2009-01-01
Algorithm for covering orthogonal integrated circuit layout objects is considered. Objects of the research are special single-connected orthogonal polygons which are generated during decomposition of any multiply connected polygon in a set of single-connected orthogonal polygons. Developed algorithm for covering polygons based on the mathematical techinque of logic matrix transformation. Results described in this paper, can be applied in computer geometry and image analysis.
The magnetic field generated by a rotating charged polygon
International Nuclear Information System (INIS)
Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A
2014-01-01
The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)
NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...
Entanglement complexity of semiflexible lattice polygons
International Nuclear Information System (INIS)
Orlandini, E; Tesi, M C; Whittington, S G
2005-01-01
We use Monte Carlo methods to study knotting in polygons on the simple cubic lattice with a stiffness fugacity. We investigate how the knot probability depends on stiffness and how the relative frequency of trefoils and figure eight knots changes as the stiffness changes. In addition, we examine the effect of stiffness on the writhe of the polygons. (letter to the editor)
Generating equilateral random polygons in confinement III
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2012-01-01
In this paper we continue our earlier studies (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202, Diao et al J. Phys. A: Math. Theor. 45 275203) on the generation methods of random equilateral polygons confined in a sphere. The first half of this paper is concerned with the generation of confined equilateral random walks. We show that if the selection of a vertex is uniform subject to the position of its previous vertex and the confining condition, then the distributions of the vertices are not uniform, although there exists a distribution such that if the initial vertex is selected following this distribution, then all vertices of the random walk follow this same distribution. Thus in order to generate a confined equilateral random walk, the selection of a vertex cannot be uniform subject to the position of its previous vertex and the confining condition. We provide a simple algorithm capable of generating confined equilateral random walks whose vertex distribution is almost uniform in the confinement sphere. In the second half of this paper we show that any process generating confined equilateral random walks can be turned into a process generating confined equilateral random polygons with the property that the vertex distribution of the polygons approaches the vertex distribution of the walks as the polygons get longer and longer. In our earlier studies, the starting point of the confined polygon is fixed at the center of the sphere. The new approach here allows us to move the starting point of the confined polygon off the center of the sphere. (paper)
Inscribed polygons and Heron polynomials
International Nuclear Information System (INIS)
Varfolomeev, V V
2003-01-01
Heron's well-known formula expressing the area of a triangle in terms of the lengths of its sides is generalized in the following sense to polygons inscribed in a circle: it is proved that the area is an algebraic function of the lengths of the edges of the polygon. Similar results are proved for the diagonals and the radius of the circumscribed circle. The resulting algebraic equations are studied and elementary geometric applications of the algebraic results obtained are presented
M-HinTS: Mimicking Humans in Texture Sorting
van den Broek, Egon; Rogowitz, Bernice E.; van Rikxoort, Eva M.; Pappas, Thrasyvoulos N.; Kok, Thijs; Daly, Scott J.; Schouten, Theo E.
2006-01-01
Various texture analysis algorithms have been developed the last decades. However, no computational model has arisen that mimics human texture perception adequately. In 2000, Payne, Hepplewhite, and Stoneham and in 2005, Van Rikxoort, Van den Broek, and Schouten achieved mappings between humans and
Natural texture retrieval based on perceptual similarity measurement
Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun
2018-04-01
A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.
2008-01-01
This image shows a small-scale polygonal pattern in the ground near NASA's Phoenix Mars Lander. This pattern is similar in appearance to polygonal structures in icy ground in the arctic regions of Earth. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired by the Surface Stereo Imager shortly after landing. On the Phoenix mission calendar, landing day is known as Sol 0, the first Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
A fast ergodic algorithm for generating ensembles of equilateral random polygons
Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y.
2009-03-01
Knotted structures are commonly found in circular DNA and along the backbone of certain proteins. In order to properly estimate properties of these three-dimensional structures it is often necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons are called equilateral random polygons). However finding efficient algorithms that properly sample the space of equilateral random polygons is a difficult problem. Currently there are no proven algorithms that generate equilateral random polygons with its theoretical distribution. In this paper we propose a method that generates equilateral random polygons in a 'step-wise uniform' way. We prove that this method is ergodic in the sense that any given equilateral random polygon can be generated by this method and we show that the time needed to generate an equilateral random polygon of length n is linear in terms of n. These two properties make this algorithm a big improvement over the existing generating methods. Detailed numerical comparisons of our algorithm with other widely used algorithms are provided.
Steady state of tapped granular polygons
International Nuclear Information System (INIS)
Carlevaro, Carlos M; Pugnaloni, Luis A
2011-01-01
The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares
Morphometric analysis of the arteries of Willis Polygon
Directory of Open Access Journals (Sweden)
Canaz Huseyin
2018-03-01
Full Text Available Objective: Willis polygon forms the basis of the arterial circulation of the cerebrum. Willis polygon is a vascular structure whom variations are not rare. Knowledge of the anatomy and preservation of its integrity is crucial for performing neurovascular surgery and intracranial tumour surgery. Because of the important vascular and neurological structures, approaches to this region are considered extremely risky. One of the main variations in-person basis is the diameter differences of the arteries, which forms Willis polygon, between the left and right hemispheres. About structure and variations, studies of Rhoton and Yasargil had formed the touchstone. Our aim is to contribute to the literature and clinical studies, to be done in the future, by comparing our results with previous studies about variations and morphometric features of Willis polygon.
DEFF Research Database (Denmark)
Greve, Mogens H.; Greve, Mette B.; Bøcher, Peder K.
2007-01-01
The Danish environmental authorities have posed a soil type dependent restriction on the application of nitrogen. The official Danish soil map is a choropleth topsoil map classifying the agricultural land into eight classes. The use of the soil map has shown that the maps have serious...... classification flaws. The objective of this work is to compile a continuous national topsoil texture map to replace the old topsoil map. Approximately 45,000 point samples were interpolated using ordinary kriging in 250 m x 250 m cells. To reduce variability and to obtain more homogeneous strata, the samples...... were stratified according to landscape types. Five new soil texture maps were compiled; one for each of the five textural classes, and a new categorical soil type map was compiled using the old classification system. Both the old choropleth map and the new continuous soil maps were compared to 354...
NSGIC State | GIS Inventory — SILURIAN_REEF_POLYGONS_MM54_IN is a polygon shapefile that shows the general locations of Silurian rock reef bank formations in Indiana. These data include two major...
Energy Technology Data Exchange (ETDEWEB)
Park, So-Yeon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Il Han [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744, (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); Carlson, Joel [Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); and others
2014-11-01
Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r
Two generalizations of column-convex polygons
International Nuclear Information System (INIS)
Feretic, Svjetlan; Guttmann, Anthony J
2009-01-01
Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.
Agüera, Francisco; Aguilar, Fernando J.; Aguilar, Manuel A.
The area occupied by plastic-covered greenhouses has undergone rapid growth in recent years, currently exceeding 500,000 ha worldwide. Due to the vast amount of input (water, fertilisers, fuel, etc.) required, and output of different agricultural wastes (vegetable, plastic, chemical, etc.), the environmental impact of this type of production system can be serious if not accompanied by sound and sustainable territorial planning. For this, the new generation of satellites which provide very high resolution imagery, such as QuickBird and IKONOS can be useful. In this study, one QuickBird and one IKONOS satellite image have been used to cover the same area under similar circumstances. The aim of this work was an exhaustive comparison of QuickBird vs. IKONOS images in land-cover detection. In terms of plastic greenhouse mapping, comparative tests were designed and implemented, each with separate objectives. Firstly, the Maximum Likelihood Classification (MLC) was applied using five different approaches combining R, G, B, NIR, and panchromatic bands. The combinations of the bands used, significantly influenced some of the indexes used to classify quality in this work. Furthermore, the quality classification of the QuickBird image was higher in all cases than that of the IKONOS image. Secondly, texture features derived from the panchromatic images at different window sizes and with different grey levels were added as a fifth band to the R, G, B, NIR images to carry out the MLC. The inclusion of texture information in the classification did not improve the classification quality. For classifications with texture information, the best accuracies were found in both images for mean and angular second moment texture parameters. The optimum window size in these texture parameters was 3×3 for IK images, while for QB images it depended on the quality index studied, but the optimum window size was around 15×15. With regard to the grey level, the optimum was 128. Thus, the
Exact generating function for 2-convex polygons
International Nuclear Information System (INIS)
James, W R G; Jensen, I; Guttmann, A J
2008-01-01
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their 'concavity index', m. Such polygons are called m-convex polygons and are characterized by having up to m indentations in their perimeter. We first describe how we conjectured the (isotropic) generating function for the case m = 2 using a numerical procedure based on series expansions. We then proceed to prove this result for the more general case of the full anisotropic generating function, in which steps in the x and y directions are distinguished. In doing so, we develop tools that would allow for the case m > 2 to be studied
Building a 3-D Appearance Model of the Human Face
DEFF Research Database (Denmark)
Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian
2003-01-01
This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points...
Accelerating Generalized Polygon Beams and Their Propagation
International Nuclear Information System (INIS)
Zhang Yun-Tian; Zhang Zhi-Gang; Cheng Teng; Zhang Qing-Chuan; Wu Xiao-Ping
2015-01-01
Accelerating beams with intensity cusps and exotic topological properties are drawing increasing attention as they have extensive uses in many intriguing fields. We investigate the structural features of accelerating polygon beams, show their generalized mathematical form theoretically, and discuss the even-numbered polygon beams. Furthermore, we also carry out the experiment and observe the intensity evolution during their propagation
Liu, Jun; Dong, Junyu; Cai, Xiaoxu; Qi, Lin; Chantler, Mike
2015-01-01
Procedural models are widely used in computer graphics for generating realistic, natural-looking textures. However, these mathematical models are not perceptually meaningful, whereas the users, such as artists and designers, would prefer to make descriptions using intuitive and perceptual characteristics like "repetitive," "directional," "structured," and so on. To make up for this gap, we investigated the perceptual dimensions of textures generated by a collection of procedural models. Two psychophysical experiments were conducted: free-grouping and rating. We applied Hierarchical Cluster Analysis (HCA) and Singular Value Decomposition (SVD) to discover the perceptual features used by the observers in grouping similar textures. The results suggested that existing dimensions in literature cannot accommodate random textures. We therefore utilized isometric feature mapping (Isomap) to establish a three-dimensional perceptual texture space which better explains the features used by humans in texture similarity judgment. Finally, we proposed computational models to map perceptual features to the perceptual texture space, which can suggest a procedural model to produce textures according to user-defined perceptual scales.
Directory of Open Access Journals (Sweden)
Jun Liu
Full Text Available Procedural models are widely used in computer graphics for generating realistic, natural-looking textures. However, these mathematical models are not perceptually meaningful, whereas the users, such as artists and designers, would prefer to make descriptions using intuitive and perceptual characteristics like "repetitive," "directional," "structured," and so on. To make up for this gap, we investigated the perceptual dimensions of textures generated by a collection of procedural models. Two psychophysical experiments were conducted: free-grouping and rating. We applied Hierarchical Cluster Analysis (HCA and Singular Value Decomposition (SVD to discover the perceptual features used by the observers in grouping similar textures. The results suggested that existing dimensions in literature cannot accommodate random textures. We therefore utilized isometric feature mapping (Isomap to establish a three-dimensional perceptual texture space which better explains the features used by humans in texture similarity judgment. Finally, we proposed computational models to map perceptual features to the perceptual texture space, which can suggest a procedural model to produce textures according to user-defined perceptual scales.
The average inter-crossing number of equilateral random walks and polygons
International Nuclear Information System (INIS)
Diao, Y; Dobay, A; Stasiak, A
2005-01-01
In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = 3ln2/8 ∼ 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance ρ apart and ρ is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of ρ. Our simulation result shows that the model in fact works very well for the entire range of ρ. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well
The unusual asymptotics of three-sided prudent polygons
International Nuclear Information System (INIS)
Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe
2010-01-01
We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)
Liu, Zhi; Zhou, Baotong; Zhang, Changnian
2017-03-01
Vehicle-mounted panoramic system is important safety assistant equipment for driving. However, traditional systems only render fixed top-down perspective view of limited view field, which may have potential safety hazard. In this paper, a texture mapping algorithm for 3D vehicle-mounted panoramic system is introduced, and an implementation of the algorithm utilizing OpenGL ES library based on Android smart platform is presented. Initial experiment results show that the proposed algorithm can render a good 3D panorama, and has the ability to change view point freely.
Calculating the Areas of Polygons with a Smartphone Light Sensor
Kapucu, Serkan; Simsek, Mertkan; Öçal, Mehmet Fatih
2017-01-01
This study explores finding the areas of polygons with a smartphone light sensor. A square and an irregular pentagon were chosen as our polygons. During the activity, the LED light was placed at the vertices of our polygons, and the illuminance values of this LED light were detected by the smartphone light sensor. The smartphone was placed on a…
Average size of random polygons with fixed knot topology.
Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo
2003-07-01
We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.
Vigorous convection as the explanation for Pluto's polygonal terrain.
Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M
2016-06-02
Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.
Polygons on a rotating fluid surface.
Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas
2006-05-05
We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.
Directory of Open Access Journals (Sweden)
Tian Gao
2015-02-01
Full Text Available The knowledge about spatial distribution of plantation forests is critical for forest management, monitoring programs and functional assessment. This study demonstrates the potential of multi-seasonal (spring, summer, autumn and winter Landsat-8 Operational Land Imager imageries with random forests (RF modeling to map larch plantations (LP in a typical plantation forest landscape in North China. The spectral bands and two types of textures were applied for creating 675 input variables of RF. An accuracy of 92.7% for LP, with a Kappa coefficient of 0.834, was attained using the RF model. A RF-based importance assessment reveals that the spectral bands and bivariate textural features calculated by pseudo-cross variogram (PC strongly promoted forest class-separability, whereas the univariate textural features influenced weakly. A feature selection strategy eliminated 93% of variables, and then a subset of the 47 most essential variables was generated. In this subset, PC texture derived from summer and winter appeared the most frequently, suggesting that this variability in growing peak season and non-growing season can effectively enhance forest class-separability. A RF classifier applied to the subset led to 91.9% accuracy for LP, with a Kappa coefficient of 0.829. This study provides an insight into approaches for discriminating plantation forests with phenological behaviors.
Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen
2017-12-01
Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.
Automatic Texture Optimization for 3D Urban Reconstruction
Directory of Open Access Journals (Sweden)
LI Ming
2017-03-01
Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.
A Polygon and Point-Based Approach to Matching Geospatial Features
Directory of Open Access Journals (Sweden)
Juan J. Ruiz-Lendínez
2017-12-01
Full Text Available A methodology for matching bidimensional entities is presented in this paper. The matching is proposed for both area and point features extracted from geographical databases. The procedure used to obtain homologous entities is achieved in a two-step process: The first matching, polygon to polygon matching (inter-element matching, is obtained by means of a genetic algorithm that allows the classifying of area features from two geographical databases. After this, we apply a point to point matching (intra-element matching based on the comparison of changes in their turning functions. This study shows that genetic algorithms are suitable for matching polygon features even if these features are quite different. Our results show up to 40% of matched polygons with differences in geometrical attributes. With regards to point matching, the vertex from homologous polygons, the function and threshold values proposed in this paper show a useful method for obtaining precise vertex matching.
Engaging student expeditionary units to land work at aerospace polygons
Directory of Open Access Journals (Sweden)
Ирина Жемерова
2016-10-01
Full Text Available To organize the aerospace polygon it is necessary to conduct a large number of measurement and descriptive works. First and foremost is working with the fund and cartographic material. The map of the landfill shows the most important objects and phenomena: quarries, sinkholes, deep ravines, industrial, residential and protected areas. Organization of the aerospace polygon operation involves large labour costs. To train professionals on the ground research of the earth’s cover remote sensing, we have organized a permanent student expedition. Prior to the start of work, students listen to a series of introductory lectures on remote sensing, principles of ground work, methods of statistical evaluation, basic methods of data collection and processing. This article covers one direction of work - collecting and processing of phytometric data of crops and steppe vegetation in the Streletskaya steppe in the Central Chernozem nature reserve. The work is carried out on the test area of Kursk aerospace polygon, organized on the basis of Kursk biospheric station of the Institute of Geography RAS. A generally accepted method of test platforms is used on the routes. The results of measurements and observations are recorded in a field book. Species diversity, plant height, projective cover and crops density are determined on the sample area by the instrumental and visual methods. The rest phytometric indexes are calculated in laboratory conditions. The students can use the resulting material when writing articles, course and degree works. At the site, students acquire skills of working in field conditions with natural objects, collecting and processing of information by various methods, expanding understanding of the need and importance of the earth surface study by remote sensing methods.
A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders
DEFF Research Database (Denmark)
Arslanagic, Samel; Breinbjerg, Olav
2009-01-01
The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Mohammad, E-mail: Mohammad@alu.ufc.br; Herculano, Luis Flavio Gaspar; Ferreira Gomes de Abreu, Hamilton
2015-07-15
This work studies the influence of different thermomechanical paths on the microstructure and crystallographic texture across the thickness of API 5L X70 pipeline steel manufactured via hot rolling using X-ray diffraction (XRD), scanning electron microscope (SEM), and electron backscattered diffraction (EBSD). The starting materials were controlled hot-rolled at 1000 °C to 44% and 67% reductions and subsequently heat treated with such processes as annealing, water quenching and quench tempering at three different temperatures to evaluate the microstructure and crystallographic texture changes across the thickness. The banded ferrite-pearlite microstructure of the initial material was changed to acicular ferrite, quasi-polygonal ferrite, granular bainite, martensite and retained austenite via different heat treatments. Moreover, different thermomechanical paths induced crystallographic texture variations across the thickness, e.g., {112}//ND, {111}//ND (γ fibre), and {011}//ND fibres dominated on the surface plane in contact with the rolls, whereas {001}//ND and particularly the (001)[1 1 0] texture component developed in the centre plane on which shear deformation has a zero value in this region. In this study, a simple interpretation of texture evolution was analyzed by comparison with the orientation changes that occurred during different rolling schedules and post-treatment processes.
Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.
Zhao, Liang; Northrop, Brian H; Stang, Peter J
2008-09-10
Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.
PolyFit: Polygonal Surface Reconstruction from Point Clouds
Nan, Liangliang; Wonka, Peter
2017-01-01
We propose a novel framework for reconstructing lightweight polygonal surfaces from point clouds. Unlike traditional methods that focus on either extracting good geometric primitives or obtaining proper arrangements of primitives, the emphasis of this work lies in intersecting the primitives (planes only) and seeking for an appropriate combination of them to obtain a manifold polygonal surface model without boundary.,We show that reconstruction from point clouds can be cast as a binary labeling problem. Our method is based on a hypothesizing and selection strategy. We first generate a reasonably large set of face candidates by intersecting the extracted planar primitives. Then an optimal subset of the candidate faces is selected through optimization. Our optimization is based on a binary linear programming formulation under hard constraints that enforce the final polygonal surface model to be manifold and watertight. Experiments on point clouds from various sources demonstrate that our method can generate lightweight polygonal surface models of arbitrary piecewise planar objects. Besides, our method is capable of recovering sharp features and is robust to noise, outliers, and missing data.
PolyFit: Polygonal Surface Reconstruction from Point Clouds
Nan, Liangliang
2017-12-25
We propose a novel framework for reconstructing lightweight polygonal surfaces from point clouds. Unlike traditional methods that focus on either extracting good geometric primitives or obtaining proper arrangements of primitives, the emphasis of this work lies in intersecting the primitives (planes only) and seeking for an appropriate combination of them to obtain a manifold polygonal surface model without boundary.,We show that reconstruction from point clouds can be cast as a binary labeling problem. Our method is based on a hypothesizing and selection strategy. We first generate a reasonably large set of face candidates by intersecting the extracted planar primitives. Then an optimal subset of the candidate faces is selected through optimization. Our optimization is based on a binary linear programming formulation under hard constraints that enforce the final polygonal surface model to be manifold and watertight. Experiments on point clouds from various sources demonstrate that our method can generate lightweight polygonal surface models of arbitrary piecewise planar objects. Besides, our method is capable of recovering sharp features and is robust to noise, outliers, and missing data.
Aberdeen polygons: computer displays of physiological profiles for intensive care.
Green, C A; Logie, R H; Gilhooly, K J; Ross, D G; Ronald, A
1996-03-01
The clinician in an intensive therapy unit is presented regularly with a range of information about the current physiological state of the patients under care. This information typically comes from a variety of sources and in a variety of formats. A more integrated form of display incorporating several physiological parameters may be helpful therefore. Three experiments are reported that explored the potential use of analogue, polygon diagrams to display physiological data from patients undergoing intensive therapy. Experiment 1 demonstrated that information can be extracted readily from such diagrams comprising 8- or 10-sided polygons, but with an advantage for simpler polygons and for information displayed at the top of the diagram. Experiment 2 showed that colour coding removed these biases for simpler polygons and the top of the diagram, together with speeding the processing time. Experiment 3 used polygons displaying patterns of physiological data that were consistent with typical conditions observed in the intensive care unit. It was found that physicians can readily learn to recognize these patterns and to diagnose both the nature and severity of the patient's physiological state. These polygon diagrams appear to have some considerable potential for use in providing on-line summary information of a patient's physiological state.
Mapcurves: a quantitative method for comparing categorical maps.
William W. Hargrove; M. Hoffman Forrest; Paul F. Hessburg
2006-01-01
We present Mapcurves, a quantitative goodness-of-fit (GOF) method that unambiguously shows the degree of spatial concordance between two or more categorical maps. Mapcurves graphically and quantitatively evaluate the degree of fit among any number of maps and quantify a GOF for each polygon, as well as the entire map. The Mapcurve method indicates a perfect fit even if...
A polygon soup representation for free viewpoint video
Colleu, T.; Pateux, S.; Morin, L.; Labit, C.
2010-02-01
This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Polygons, Stars, and Clusters; an Investigation of Polygon Displays
1988-01-01
variables were chosen, nine in each case , to give reasonably complex polygons without being too complex. I have seen no reported studies of the relation...Pont. Catalina C Datsun 210, Toyota Corolla, Dodge Colt, Honda Civic, Mazda GLC, Subaru, Ford Fiesta, Plym. Champ Figure 6. Clusters on the basis of...Merc. Marquis, Pont. Catalina, Pont. Grand Prix C Datsun 210, Toyota Corolla, Dodge Colt, Honda Civic, Mazda GLC, Subaru, Ford Fiesta, Plym. Champ
Intro to Google Maps and Google Earth
Directory of Open Access Journals (Sweden)
Jim Clifford
2013-12-01
Full Text Available Google My Maps and Google Earth provide an easy way to start creating digital maps. With a Google Account you can create and edit personal maps by clicking on My Places. In My Maps you can choose between several different base maps (including the standard satellite, terrain, or standard maps and add points, lines and polygons. It is also possible to import data from a spreadsheet, if you have columns with geographical information (i.e. longitudes and latitudes or place names. This automates a formerly complex task known as geocoding. Not only is this one of the easiest ways to begin plotting your historical data on a map, but it also has the power of Google’s search engine. As you read about unfamiliar places in historical documents, journal articles or books, you can search for them using Google Maps. It is then possible to mark numerous locations and explore how they relate to each other geographically. Your personal maps are saved by Google (in their cloud, meaning you can access them from any computer with an internet connection. You can keep them private or embed them in your website or blog. Finally, you can export your points, lines, and polygons as KML files and open them in Google Earth or Quantum GIS.
Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.
2018-03-01
Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became
Structural characterization of the packings of granular regular polygons.
Wang, Chuncheng; Dong, Kejun; Yu, Aibing
2015-12-01
By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.
Sequential and Parallel Algorithms for Finding a Maximum Convex Polygon
DEFF Research Database (Denmark)
Fischer, Paul
1997-01-01
This paper investigates the problem where one is given a finite set of n points in the plane each of which is labeled either ?positive? or ?negative?. We consider bounded convex polygons, the vertices of which are positive points and which do not contain any negative point. It is shown how...... such a polygon which is maximal with respect to area can be found in time O(n³ log n). With the same running time one can also find such a polygon which contains a maximum number of positive points. If, in addition, the number of vertices of the polygon is restricted to be at most M, then the running time...... becomes O(M n³ log n). It is also shown how to find a maximum convex polygon which contains a given point in time O(n³ log n). Two parallel algorithms for the basic problem are also presented. The first one runs in time O(n log n) using O(n²) processors, the second one has polylogarithmic time but needs O...
On the mean and variance of the writhe of random polygons
International Nuclear Information System (INIS)
Portillo, J; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y
2011-01-01
We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an 'ideal' conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n) behaves as a linear function of the length of the equilateral random polygon.
On the mean and variance of the writhe of random polygons.
Portillo, J; Diao, Y; Scharein, R; Arsuaga, J; Vazquez, M
We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an "ideal" conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n ) behaves as a linear function of the length of the equilateral random polygon.
Self-Assembly of Flux-Closure Polygons from Magnetite Nanocubes.
Szyndler, Megan W; Corn, Robert M
2012-09-06
Well-defined nanoscale flux-closure polygons (nanogons) have been fabricated on hydrophilic surfaces from the face-to-face self-assembly of magnetite nanocubes. Uniform ferrimagnetic magnetite nanocubes (∼86 nm) were synthesized and characterized with a combination of electron microscopy, diffraction, and magnetization measurements. The nanocubes were subsequently cast onto hydrophilic substrates, wherein the cubes lined up face-to-face and formed a variety of polygons due to magnetostatic and hydrophobic interactions. The generated surfaces consist primarily of three- and four-sided nanogons; polygons ranging from two to six sides were also observed. Further examination of the nanogons showed that the constraints of the face-to-face assembly of nanocubes often led to bowed sides, strained cube geometries, and mismatches at the acute angle vertices. Additionally, extra nanocubes were often present at the vertices, suggesting the presence of external magnetostatic fields at the polygon corners. These nanogons are inimitable nanoscale magnetic structures with potential applications in the areas of magnetic memory storage and high-frequency magnetics.
Virginia ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all hardcopy cartographic products produced as part of the Environmental Sensitivity Index...
Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak
International Nuclear Information System (INIS)
Wu Qun; Zhang Kuang; Meng Fanyi; Li Lewei
2009-01-01
Arbitrary N-sided regular polygonal cylindrical cloaks are proposed and designed based on the coordinate transformation theory. First, the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks are derived, then there are some full-wave simulations of the cloaks that are composed of inhomogeneous and anisotropic metamaterials, which will bend incoming electromagnetic waves and guide them to propagate around the inner region; such electromagnetic waves will return to their original propagation directions without distorting the waves outside the polygonal cloak. The results of full-wave simulations validate the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks we derived.
Convex lattice polygons of fixed area with perimeter-dependent weights.
Rajesh, R; Dhar, Deepak
2005-01-01
We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a critical exponent which does not change with t. Using heuristic arguments, we find that theta(conv) is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected nonuniversality of theta(conv) is traced to existence of sharp corners in the asymptotic shape of these polygons.
Small-Scale Polygons and the History of Ground Ice on Mars
Mellon, Michael T.
2000-01-01
This research has laid a foundation for continued study of permafrost polygons on Mars using the models and understanding discussed here. Further study of polygonal patterns on Mars is proceeding (under new funding) which is expected to reveal more results about the origin of observed martian polygons and what information they contain regarding the recent history of tile martian climate and of water ice on Mars.
Beam envelope profile of non-centrosymmetric polygonal phase space
International Nuclear Information System (INIS)
Chen Yinbao; Xie Xi
1984-01-01
The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory
Maryland ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Maryland. Vector polygons in this data...
Alabama ESI: INVERT (Invertebrate Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in Alabama. Vector polygons in this data set represent...
Virginia ESI: INVERT (Invertebrate Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and rare invertebrate species in Virginia. Vector polygons in this data set...
Louisiana ESI: BIRDS (Bird Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for waterfowl species and shorebirds in coastal Louisiana. Vector polygons in this data set represent...
Virginia ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and brackishwater fish species in Virginia. Vector polygons in this data...
Louisiana ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for freshwater (inland) fish species in coastal Louisiana. Vector polygons represent water-bodies and other...
A simple algorithm for computing positively weighted straight skeletons of monotone polygons.
Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter
2015-02-01
We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.
Development of polygon elements based on the scaled boundary finite element method
International Nuclear Information System (INIS)
Chiong, Irene; Song Chongmin
2010-01-01
We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.
Nanopatterning by molecular polygons.
Jester, Stefan-S; Sigmund, Eva; Höger, Sigurd
2011-07-27
Molecular polygons with three to six sides and binary mixtures thereof form long-range ordered patterns at the TCB/HOPG interface. This includes also the 2D crystallization of pentagons. The results provide an insight into how the symmetry of molecules is translated into periodic structures.
Metric inequalities for polygons
Directory of Open Access Journals (Sweden)
Adrian Dumitrescu
2013-07-01
Full Text Available Let A1,A2,…,An be the vertices of a polygon with unit perimeter, that is Σi |Ai Ai+1|=1. We derive various tight estimates on the minimum and maximum values of the sum of pairwise distances, and respectively sum of pairwise squared distances among its vertices. In most cases such estimates on these sums in the literature were known only for convex polygons.In the second part, we turn to a problem of Braß regarding the maximum perimeter of a simplen-gon (n odd contained in a disk of unit radius. The problem was recently solved by Audet et al. 2009, who gave an exact formula. Here we present an alternative simpler proof of this formula. We then examine what happens if the simplicity condition is dropped, and obtain an exact formula for the maximum perimeter in this case as well.
Comparing the performance of various digital soil mapping approaches to map physical soil properties
Laborczi, Annamária; Takács, Katalin; Pásztor, László
2015-04-01
Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different
Alabama ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and freshwater fish species in Alabama. Vector polygons in this data set represent...
Direct Monte Carlo dose calculation using polygon-surface computational human model
International Nuclear Information System (INIS)
Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo
2011-01-01
In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)
Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization
Directory of Open Access Journals (Sweden)
Wesley Pacheco Calixto
2010-01-01
Full Text Available Having the property to modify only the geometry of a polygonal structure, preserving its physical magnitudes, the Conformal Mapping is an exceptional tool to solve electromagnetism problems with known boundary conditions. This work aims to introduce a new developed mathematical operator, based on polynomial extrapolation. This operator has the capacity to accelerate an optimization method applied in conformal mappings, to determinate the equipotential lines, the field lines, the capacitance, and the permeance of some polygonal geometry electrical devices with an inner dielectric of permittivity ε. The results obtained in this work are compared with other simulations performed by the software of finite elements method, Flux 2D.
Hawaii ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reef, marine, estuarine, and native stream fish species in coastal Hawaii. Vector polygons in this data...
Alabama ESI: REPTILES (Reptile Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered and rare reptiles in Alabama. Vector polygons in this data set represent the rare...
Conformal array design on arbitrary polygon surface with transformation optics
Energy Technology Data Exchange (ETDEWEB)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Conformal array design on arbitrary polygon surface with transformation optics
International Nuclear Information System (INIS)
Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle
2016-01-01
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Co-evolution of polygonal and scalloped terrains, southwestern Utopia Planitia, Mars
Haltigin, T. W.; Pollard, W. H.; Dutilleul, P.; Osinski, G. R.; Koponen, L.
2014-02-01
Thermal contraction crack polygons and scalloped depressions, two of the most common landforms found in Utopia Planitia, Mars, have previously been linked to the presence of ice-rich deposits in the subsurface. Although the formation and evolution of these features individually are relatively well understood, little to no effort has been directed towards elucidating possible interactions that occur between them during their development. Thus, the overarching goal of this research was to investigate if there is an evolutionary link between polygonal and scalloped terrains by correlating metrics representing polygon and scallop maturity. A variety of statistical analyses were performed using HiRISE and MOLA datasets to quantify interactions between four sets of polygonal and scalloped terrains. Our results demonstrate the existence of a negative relationship between polygonal subdivision and surface elevation, indicating that polygon networks become more ‘evolved’ as the surface subsides. These results suggest that the permafrost landscape in Utopia Planitia may once have been extremely ice-rich, and that multiple geomorphic processes may be responsible for its evolution. Ultimately, this work demonstrates that landscape reconstruction is more complete when a system approach is followed, quantifying interactions between landforms as opposed to examining an individual landform in isolation.
Control Point Generated PLS - polygons
Minnesota Department of Natural Resources — The Control Point Generated PLS layer contains line and polygon features to the 1/4 of 1/4 PLS section (approximately 40 acres) and government lot level. The layer...
Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape
Decompositions, partitions, and coverings with convex polygons and pseudo-triangles
Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.
2007-01-01
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex
Statistical Texture Model for mass Detection in Mammography
Directory of Open Access Journals (Sweden)
Nicolás Gallego-Ortiz
2013-12-01
Full Text Available In the context of image processing algorithms for mass detection in mammography, texture is a key feature to be used to distinguish abnormal tissue from normal tissue. Recently, a texture model based on a multivariate Gaussian mixture was proposed, of which the parameters are learned in an unsupervised way from the pixel intensities of images. The model produces images that are probabilistic maps of texture normality and it was proposed as a visualization aid for diagnostic by clinical experts. In this paper, the usability of the model is studied for automatic mass detection. A segmentation strategy is proposed and evaluated using 79 mammography cases.
137Cs in Research Polygon 'Sumbar'
International Nuclear Information System (INIS)
Skoko, B.; Marovic, G.; Babic, D.; Vickovic, I.
2011-01-01
In 2009, Radiation Protection Unit of the Institute for Medical Reseach and Occupational Health started a radioactivity measurement programme in research polygon ''Sumbar''. The purpose of these investigations is to collect as many data as possible about the contamination of the polygon that is mainly covered by a forest of English oak (Quercus robur) and hornbeam (Carpinus betulus). Once contaminated, forests represent long-term sources of radiation exposure to specific population groups which are using them as a source of foodstuffs. After the Chernobyl accident, researchers have shown that there has been more variability in radionuclide activity concentration in forests than in agricultural ecosystems. In order to carry out a radioactivity screening of the polygon, we randomly chosed three sampling sites for collecting soil, grass and moss samples. Different species of mushrooms were collected over the whole polygon area. The average activity concentration of 137Cs in soil for two sampling sites is (123 @ 9) Bq kg -1 , while the result for the third site is lower by an order of magnitude ((16.1@0.5) Bq kg -1 ). The activity concentration of 137Cs in grass samples ranges from (0.43 @ 0.03) Bq kg -1 to (13.2 @ 0.1) Bq kg -1 , and in moss samples from (8.7 @ 0.2) Bq kg -1 to (57.8 @ 0.3) Bq kg - 1. In five collected mushroom species, the activity of 137Cs is in the range between (4.1 @ 0.5) Bq kg -1 and (610 @ 5) Bq kg -1 , the lowest and the highest values referreing to Clitocybe nebularis and Gymnopus dryophilus, respectively. Parasitic mushrooms exhibit activity below the minimum detection level. Our preliminary results show and confirm variability of the activity concentration of 137Cs in different parts of this ecosystem. (author)
Structural control of polygonal cracks in La Pedriza del Manzanares (Madrid)
International Nuclear Information System (INIS)
Garcia-Rodriguez, M.; Aroztegui, J.; Lopez Portillo, H.
2015-01-01
Polygonal cracks represent a common way of modeling granite whose origin and evolution continues under study not even existing a systematization of these diverse structures. Some authors explain their origin by internal geo dynamic processes relating to movements of fracture planes in later stages of magmatic consolidation. Other authors attribute their formation and development to external factors related to climate regime. The great variety of polygonal cracks requires the use of a greater number of variables to define their different origins, the possible interrelations between external and internal factors, to explain the evolution of these structures and advance the classification of specific patterns. This work aims to contribute to systematize the mechanisms involved in the development of polygonal cracks. For that only polygonal cracks formed on flat vertical or sub vertical fractures are studied. In particular relations are established between the presence of polygonal cracks with: the fracturing network, height of appearance, angle and tilt of the wall, plaque morphology and depth of incision of the perimeter cracks. Moreover it establishes relationships between internal geo dynamic processes and external weathering processes. (Author)
Equipartitioning and balancing points of polygons
Directory of Open Access Journals (Sweden)
Shunmugam Pillay
2010-07-01
Full Text Available The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.
Self-assembly of chiral molecular polygons.
Jiang, Hua; Lin, Wenbin
2003-07-09
Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.
International Nuclear Information System (INIS)
Chenal, C.
1996-01-01
Semipalatinsk in Kazakhstan was one of the nuclear weapons polygon for atmospheric, excavation and underground tests. After a description of the actual state of the polygon, a dosimetric approach inside and outside the polygon is presented from 1949 to 1989. (A.B.). 5 refs., 3 figs., 5 tabs
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
Energy Technology Data Exchange (ETDEWEB)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.
Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.
2017-12-01
There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each
Polygon formation and surface flow on a rotating fluid surface
DEFF Research Database (Denmark)
Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.
2011-01-01
We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...
The packing of two species of polygons on the square lattice
International Nuclear Information System (INIS)
Dei Cont, David; Nienhuis, Bernard
2004-01-01
We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24-vertex model which is known in the literature as the fully packed double loop model (FPL 2 ). In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular, we find the free energy of the four-colouring model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to 2 the model undergoes an infinite-order phase transition
2005-01-01
14 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view of polygon-cracked and pitted surfaces unique to western Utopia Planitia. No other place on Mars has this appearance. Some Mars scientists have speculated that ground ice may be responsible for these landforms. Location near: 42.3oN, 275.6oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer
Slow relaxation in weakly open rational polygons.
Kokshenev, Valery B; Vicentini, Eduardo
2003-07-01
The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2013-08-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.
Measuring Historical Coastal Change using GIS and the Change Polygon Approach
Smith, M.J.; Cromley, R.G.
2012-01-01
This study compares two automated approaches, the transect-from-baseline technique and a new change polygon method, for quantifying historical coastal change over time. The study shows that the transect-from-baseline technique is complicated by choice of a proper baseline as well as generating transects that intersect with each other rather than with the nearest shoreline. The change polygon method captures the full spatial difference between the positions of the two shorelines and average coastal change is the defined as the ratio of the net area divided by the shoreline length. Although then change polygon method is sensitive to the definition and measurement of shoreline length, the results are more invariant to parameter changes than the transect-from-baseline method, suggesting that the change polygon technique may be a more robust coastal change method. ?? 2012 Blackwell Publishing Ltd.
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
Western Alaska ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...
Columbia River ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Columbia River. Vector polygons in this...
Polygons of global undersea features for geographic searches
Hartwell, Stephen R.; Wingfield, Dana K.; Allwardt, Alan O.; Lightsom, Frances L.; Wong, Florence L.
2018-01-01
A shapefile of 311 undersea features from all major oceans and seas has been created as an aid for retrieving georeferenced information resources. Geospatial information systems with the capability to search user-defined, polygonal geographic areas will be able to utilize this shapefile or secondary products derived from it, such as linked data based on well-known text representations of the individual polygons within the shapefile. Version 1.1 of this report also includes a linked data representation of 299 of these features and their spatial extents.
Spatio-temporal map generalizations with the hierarchical Voronoi data structure
DEFF Research Database (Denmark)
Mioc, Darka; Anton, François; Gold, Christopher M.
implemented in commercial GIS systems. In this research, we used the Voronoi spatial data model for map generalizations. We were able to demonstrate that the map generalization does not affect only spatial objects (points, lines or polygons), but also the events corresponding to the creation and modification...... their spatio-temporal characteristics and their dynamic behaviour....
2003-01-01
MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.
Columbia River ESI: INVERT (Invertebrate Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for clams, oysters, crabs, and other invertebrate species in Columbia River. Vector polygons in this data...
Southeast Alaska ESI: BIRDS (Bird Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...
Western Alaska ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Western Alaska. Vector polygons in this data set...
Bastin, Jean-François; Barbier, Nicolas; Couteron, Pierre; Adams, Benoît; Shapiro, Aurélie; Bogaert, Jan; De Cannière, Charles
In the context of the reduction of greenhouse gas emissions caused by deforestation and forest degradation (the REDD+ program), optical very high resolution (VHR) satellite images provide an opportunity to characterize forest canopy structure and to quantify aboveground biomass (AGB) at less expense than methods based on airborne remote sensing data. Among the methods for processing these VHR images, Fourier textural ordination (FOTO) presents a good method to detect forest canopy structural heterogeneity and therefore to predict AGB variations. Notably, the method does not saturate at intermediate AGB values as do pixelwise processing of available space borne optical and radar signals. However, a regional-scale application requires overcoming two difficulties: (1) instrumental effects due to variations in sun–scene–sensor geometry or sensor-specific responses that preclude the use of wide arrays of images acquired under heterogeneous conditions and (2) forest structural diversity including monodominant or open canopy forests, which are of particular importance in Central Africa. In this study, we demonstrate the feasibility of a rigorous regional study of canopy texture by harmonizing FOTO indices of images acquired from two different sensors (Geoeye-1 and QuickBird-2) and different sun–scene–sensor geometries and by calibrating a piecewise biomass inversion model using 26 inventory plots (1 ha) sampled across very heterogeneous forest types. A good agreement was found between observed and predicted AGB (residual standard error [RSE] = 15%; R2 = 0.85; P biomass map (100-m pixels) was produced for a 400-km2 area, and predictions obtained from both imagery sources were consistent with each other (r = 0.86; slope = 1.03; intercept = 12.01 Mg/ha). These results highlight the horizontal structure of forest canopy as a powerful descriptor of the entire forest stand structure and heterogeneity. In particular, we show that quantitative metrics resulting from such
Finding the Maximal Area of Bounded Polygons in a Circle
Rokach, Arie
2005-01-01
The article deals with the area of polygons that are inscribed in a given circle. Naturally, the following question arises: Among all n-polygons that are inscribed in a given circle, which one has the biggest area? Intuitively, it may be guessed that is suitable for secondary students, and without any use id calculus, but only using very…
Western Alaska ESI: LAKES (Lake Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...
Virginia ESI: MGT (Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for management areas, national parks, state and local parks, and wildlife refuges in Virginia. Vector polygons in this data set...
Louisiana ESI: MGT (Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for managed lands in coastal Louisiana. Vector polygons in this data set represent the management areas. Location-specific type and...
Southeast Alaska ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations of...
Long-term repetition priming with symmetrical polygons and words.
Kersteen-Tucker, Z
1991-01-01
In two different tasks, subjects were asked to make lexical decisions (word or nonword) and symmetry judgments (symmetrical or nonsymmetrical) about two-dimensional polygons. In both tasks, every stimulus was repeated at one of four lags (0, 1, 4, or 8 items interposed between the first and second stimulus presentations). This paradigm, known as repetition priming, revealed comparable short-term priming (Lag 0) and long-term priming (Lags 1, 4, and 8) both for symmetrical polygons and for words. A shorter term component (Lags 0 and 1) of priming was observed for nonwords, and only very short-term priming (Lag 0) was observed for nonsymmetrical polygons. These results indicate that response facilitation accruing from repeated exposure can be observed for stimuli that have no preexisting memory representations and suggest that perceptual factors contribute to repetition-priming effects.
Intermediate statistics in quantum maps
Energy Technology Data Exchange (ETDEWEB)
Giraud, Olivier [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Marklof, Jens [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom); O' Keefe, Stephen [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)
2004-07-16
We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths. (letter to the editor)
Rotating polygon instability of a swirling free surface flow
DEFF Research Database (Denmark)
Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.
2013-01-01
We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....
International Nuclear Information System (INIS)
Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu
2013-01-01
To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)
Triangulating and guarding realistic polygons
Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.
2014-01-01
We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating
Uehara, Erica; Deguchi, Tetsuo
2017-12-07
We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.
A cache-friendly sampling strategy for texture-based volume rendering on GPU
Directory of Open Access Journals (Sweden)
Junpeng Wang
2017-06-01
Full Text Available The texture-based volume rendering is a memory-intensive algorithm. Its performance relies heavily on the performance of the texture cache. However, most existing texture-based volume rendering methods blindly map computational resources to texture memory and result in incoherent memory access patterns, causing low cache hit rates in certain cases. The distance between samples taken by threads of an atomic scheduling unit (e.g. a warp of 32 threads in CUDA of the GPU is a crucial factor that affects the texture cache performance. Based on this fact, we present a new sampling strategy, called Warp Marching, for the ray-casting algorithm of texture-based volume rendering. The effects of different sample organizations and different thread-pixel mappings in the ray-casting algorithm are thoroughly analyzed. Also, a pipeline manner color blending approach is introduced and the power of warp-level GPU operations is leveraged to improve the efficiency of parallel executions on the GPU. In addition, the rendering performance of the Warp Marching is view-independent, and it outperforms existing empty space skipping techniques in scenarios that need to render large dynamic volumes in a low resolution image. Through a series of micro-benchmarking and real-life data experiments, we rigorously analyze our sampling strategies and demonstrate significant performance enhancements over existing sampling methods.
Directory of Open Access Journals (Sweden)
R. Devadas
2012-07-01
Full Text Available Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM. For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010–2011 cropping season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural parameters and ten spectral parameters of the objects. We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that higher overall classification accuracy (95% was observed in the object-based SVM compared with that of traditional pixel-based classification (89% using maximum likelihood classifier (MLC. Object-based classification also resulted speckle-free images. Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The influence of
Fast incorporation of optical flow into active polygons.
Unal, Gozde; Krim, Hamid; Yezzi, Anthony
2005-06-01
In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.
Triangulating and guarding realistic polygons
Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.
2008-01-01
We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes
Speetjens, M.F.M.; Meleshko, V.V.; Heijst, van G.J.F.
2014-01-01
The present study addresses the classical problem of the dynamics and stability of a cluster of N point vortices of equal strength arranged in a polygonal configuration ("N-vortex polygons"). In unbounded domains, such N-vortex polygons are unconditionally stable for N
The generation algorithm of arbitrary polygon animation based on dynamic correction
Directory of Open Access Journals (Sweden)
Hou Ya Wei
2016-01-01
Full Text Available This paper, based on the key-frame polygon sequence, proposes a method that makes use of dynamic correction to develop continuous animation. Firstly we use quadratic Bezier curve to interpolate the corresponding sides vector of polygon sequence consecutive frame and realize the continuity of animation sequences. And then, according to Bezier curve characteristic, we conduct dynamic regulation to interpolation parameters and implement the changing smoothness. Meanwhile, we take use of Lagrange Multiplier Method to correct the polygon and close it. Finally, we provide the concrete algorithm flow and present numerical experiment results. The experiment results show that the algorithm acquires excellent effect.
Global regularizing flows with topology preservation for active contours and polygons.
Sundaramoorthi, Ganesh; Yezzi, Anthony
2007-03-01
Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.
Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels
Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong
2018-06-01
Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.
Mapping buried holocene landscapes. Past lowland environments, palaeoDEMs and preservation in GIS
Cohen, K.M.; Dambrink, R.M.; Bruijn, R. de; Marges, V.C.; Erkens, G.; Pierik, H.J.; Koster, K.; Stafleu, J.; Schokker, J.; Hijma, M.P.
2017-01-01
In a geological GIS-data recombination project, a digital map was produced that contains information on the Netherlands’ former coastal and delta plain landscapes over the last 14,000 years: the Holocene and the very end of the Pleistocene. The polygon map product is accompanied by a set of
Clustering document fragments using background color and texture information
Chanda, Sukalpa; Franke, Katrin; Pal, Umapada
2012-01-01
Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.
Hardbottom Complexity from Unified Florida Reef Tract Map (NODC Accession 0123059)
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Reef Map, specifically representing those areas classified as Coral Reef and Hardbottom. The polygons have been attributed...
Microtopographic control on the ground thermal regime in ice wedge polygons
Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.
2018-06-01
The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.
Total curvature and total torsion of knotted random polygons in confinement
Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta
2018-04-01
Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
Energy Technology Data Exchange (ETDEWEB)
Janse van Rensburg, E J [Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3 (Canada); Rechnitzer, A, E-mail: rensburg@yorku.ca, E-mail: andrewr@math.ubc.ca [Department of Mathematics, The University of British Columbia, Vancouver V6T 1Z2, British Columbia (Canada)
2011-04-22
In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
Janse van Rensburg, E. J.; Rechnitzer, A.
2011-04-01
In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
International Nuclear Information System (INIS)
Janse van Rensburg, E J; Rechnitzer, A
2011-01-01
In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
Characterization and properties of batch-processed melt-textured YBCO
Energy Technology Data Exchange (ETDEWEB)
Kaiser, A.W.; Adam, M.; Bornemann, H.J. [INFP, Forschungszentrum Karlsruhe GmbH, PO Box 3640, 76021 Karlsruhe (Germany)
1998-01-01
High-temperature superconductor bulk parts are batch processed using a semi-automated processing technique based on the melt-texturation process. Levitation properties under static and dynamic load levels were analysed using a test bench with a three-dimensional force sensor unit. Measurements of levitation force give no detailed suggestions on texture, secondary domains or cracks. Therefore other measurements to control homogeneity of the bulk were performed. Texture on full-size pellets (FWHM < 5 deg., {delta}{sub {chi}} < 3 deg.) was verified by elastic neutron scattering. To study the influence of local texture on properties a pellet was divided into nine segments. Preliminary results indicate that a correlation between neutron data and levitation force needs further investigations. Flux maps of samples magnetized by permanent magnets or by a pulsed magnetization unit were used to verify the homogeneity and domain structure of the material and to evaluate macroscopic critical currents. (author)
Louisiana ESI: REPTILES (Reptile and Amphibian Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reptiles and amphibians in coastal Louisiana. Vector polygons represent reptile and amphibian habitats,...
Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...
A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas
Wu, Chun-Hsien; Chung, Yeh-Ching
2009-01-01
The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159
Modeling of chromosome intermingling by partially overlapping uniform random polygons.
Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J
2011-03-01
During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.
Properties of regular polygons of coupled microring resonators.
Chremmos, Ioannis; Uzunoglu, Nikolaos
2007-11-01
The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.
Ion-beam texturing of uniaxially textured Ni films
International Nuclear Information System (INIS)
Park, S.J.; Norton, D.P.; Selvamanickam, Venkat
2005-01-01
The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth
Western Alaska ESI: HYDRO (Land Mass Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal hydrography that defines the primary land masses used in the creation of the Environmental Sensitivity...
Louisiana ESI: LG_INDEX (Large Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...
Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko
Auger, A.-T.; Groussin, O.; Jorda, L.; El-Maarry, M. R.; Bouley, S.; Séjourné, A.; Gaskell, R.; Capanna, C.; Davidsson, B.; Marchi, S.; Höfner, S.; Lamy, P. L.; Sierks, H.; Barbieri, C.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Oklay, N.; Pommerol, A.; Sabau, L.; Thomas, N.; Tubiana, C.; Vincent, J.-B.; Wenzel, K.-P.
2018-02-01
We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 - 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets.
In-gap corner states in core-shell polygonal quantum rings.
Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei
2017-01-10
We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.
In-gap corner states in core-shell polygonal quantum rings
Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei
2017-01-01
We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.
Knot probability of polygons subjected to a force: a Monte Carlo study
International Nuclear Information System (INIS)
Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G
2008-01-01
We use Monte Carlo methods to study the knot probability of lattice polygons on the cubic lattice in the presence of an external force f. The force is coupled to the span of the polygons along a lattice direction, say the z-direction. If the force is negative polygons are squeezed (the compressive regime), while positive forces tend to stretch the polygons along the z-direction (the tensile regime). For sufficiently large positive forces we verify that the Pincus scaling law in the force-extension curve holds. At a fixed number of edges n the knot probability is a decreasing function of the force. For a fixed force the knot probability approaches unity as 1 - exp(-α 0 (f)n + o(n)), where α 0 (f) is positive and a decreasing function of f. We also examine the average of the absolute value of the writhe and we verify the square root growth law (known for f = 0) for all values of f
Alabama ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees in Alabama. Vector polygons in this data set represent marine mammal distribution...
Virginia ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphin, seals, whales, and porpoise in Virginia. Vector polygons in this data set represent marine...
Southeast Alaska ESI: MGT (Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...
Hawaii ESI: REPTILES (Reptile and Amphibian Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered sea turtles in coastal Hawaii. Vector polygons in this data set represent sea...
Maryland ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, porpoise, and dolphin in Maryland. Vector polygons in this data set represent marine...
Louisiana ESI: PARISH (Parish Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for parishes in coastal Louisiana. Vector polygons in this data set represent parish management areas. Location-specific type and...
Virginia ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Virginia. The...
International Nuclear Information System (INIS)
Anaya A, Jesus A; Duque L, Rosa A; Valencia H, German M
2008-01-01
The relationship between texture calculated from an Ikonos image with diversity and structure was evaluated along a corridor with 43 field plots in the Colombian Andes. Diversity indexes were calculated at the 43 plots and Land Use maps were used as an approach to vegetation structure. Texture was obtained from an Ikonos image using Gray Level Co-occurrence Matrix GLCM and Gray Level Difference Vector GLDV. Traditionally, texture has been interpreted from a qualitatively point of view from smooth to rough, however our approach using a matrix allows for a quantitative measurement. Texture was related to field information at two different detail levels: first with diversity measurements (Shannon Index and Richness) established at forest plots and second, with classes of a land use map (primary forest, secondary forests, forest plantation, crops and pastures) considered to be representative of vegetation structure. Results are based on relations between structure diversity,texture diversity and texture structure. Ikonos texture presents a large potential to classify forests at different successional stages however, the relation between diversity and data gathered with remote sensing is still weak. Landsat images are mentioned throughout the text as a reference or comparison with Ikonos images.
A fast direct sampling algorithm for equilateral closed polygons
International Nuclear Information System (INIS)
Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica
2016-01-01
Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral. (paper)
Texture of lipid bilayer domains
DEFF Research Database (Denmark)
Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov
2009-01-01
We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...
Three dimensional range geometry and texture data compression with space-filling curves.
Chen, Xia; Zhang, Song
2017-10-16
This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.
Western Alaska ESI: MGT (Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for Designated Critical Habitats, Wildlife Refuges, Wild and Scenic Rivers, and State Parks. Vector polygons in this data...
Exploring Nonconvex, Crossed and Degenerate Polygons
Contreras, Jose N.
2004-01-01
An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…
Lu, Yanyan; Lien, Jyh-Ming; Ghosh, Mukulika; Amato, Nancy M.
2012-01-01
Decomposing a shape into visually meaningful parts comes naturally to humans, but recreating this fundamental operation in computers has been shown to be difficult. Similar challenges have puzzled researchers in shape reconstruction for decades. In this paper, we recognize the strong connection between shape reconstruction and shape decomposition at a fundamental level and propose a method called α-decomposition. The α-decomposition generates a space of decompositions parameterized by α, the diameter of a circle convolved with the input polygon. As we vary the value of α, some structural features appear and disappear quickly while others persist. Therefore, by analyzing the persistence of the features, we can determine better decompositions that are more robust to both geometrical and topological noises. © 2012 Elsevier Ltd. All rights reserved.
Lu, Yanyan
2012-08-01
Decomposing a shape into visually meaningful parts comes naturally to humans, but recreating this fundamental operation in computers has been shown to be difficult. Similar challenges have puzzled researchers in shape reconstruction for decades. In this paper, we recognize the strong connection between shape reconstruction and shape decomposition at a fundamental level and propose a method called α-decomposition. The α-decomposition generates a space of decompositions parameterized by α, the diameter of a circle convolved with the input polygon. As we vary the value of α, some structural features appear and disappear quickly while others persist. Therefore, by analyzing the persistence of the features, we can determine better decompositions that are more robust to both geometrical and topological noises. © 2012 Elsevier Ltd. All rights reserved.
Alabama ESI: T_MAMMAL (Terrestrial Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for Alabama and Perdido Key beach mice in Alabama. Vector polygons in this data set represent the rare...
Curvature of random walks and random polygons in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2013-01-01
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)
Electronic properties of carbon nanotubes with polygonized cross sections
International Nuclear Information System (INIS)
Charlier, J.; Lambin, P.; Ebbesen, T.
1996-01-01
The electronic properties of carbon nanotubes having polygonized cross sections instead of purely circular ones, such as recently observed using transmission electron microscopy, are investigated with plane-wave ab initio pseudopotential local-density-functional calculations and simple tight-binding models. Strong σ * -π * hybridization effects occur in zigzag nanotubes due to the high curvature located near the edges of the polygonal cross-section prism. These effects, combined with a lowering of symmetry, dramatically affect the electronic properties of the nanotubes. It is found that modified low-lying conduction-band states are introduced either into the bandgap of insulating nanotubes, or below the degenerate states that form the top of the valence band of metallic nanotubes, leading the corresponding nanostructures to be metals, semimetals, or at least very-small-gap semiconductors. The degree of the polygon representing the cross section of the tube, and the sharpness of the edge angles, are found to be major factors in the hybridization effect, and consequently govern the electronic behavior at the Fermi level. copyright 1996 The American Physical Society
Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996
National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...
Columbia River ESI: MGT (Management Area Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for Wildlife Refuges, National Forests, and State Parks for the Columbia River area. Vector polygons in this data set...
HIERARCHICAL REGULARIZATION OF POLYGONS FOR PHOTOGRAMMETRIC POINT CLOUDS OF OBLIQUE IMAGES
Directory of Open Access Journals (Sweden)
L. Xie
2017-05-01
Full Text Available Despite the success of multi-view stereo (MVS reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.
Realistic roofs over a rectilinear polygon
Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.
2013-01-01
Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces
Generation of oculomotor images during tasks requiring visual recognition of polygons.
Olivier, G; de Mendoza, J L
2001-06-01
This paper concerns the contribution of mentally simulated ocular exploration to generation of a visual mental image. In Exp. 1, repeated exploration of the outlines of an irregular decagon allowed an incidental learning of the shape. Analyses showed subjects memorized their ocular movements rather than the polygon. In Exp. 2, exploration of a reversible figure such as a Necker cube varied in opposite directions. Then, both perspective possibilities are presented. The perspective the subjects recognized depended on the way they explored the ambiguous figure. In both experiments, during recognition the subjects recalled a visual mental image of the polygon they compared with the different polygons proposed for recognition. To interpret the data, hypotheses concerning common processes underlying both motor intention of ocular movements and generation of a visual image are suggested.
Infinite genus surfaces and irrational polygonal billiards
Valdez, Ferrán
2009-01-01
We prove that the natural invariant surface associated with the billiard game on an irrational polygonal table is homeomorphic to the Loch Ness monster, that is, the only orientable infinite genus topological real surface with exactly one end.
International Nuclear Information System (INIS)
Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu
2016-01-01
This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)
Simulating 3D deformation using connected polygons
Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.
2018-03-01
In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.
Hoarau, Charlotte; Christophe, Sidonie
2017-05-01
Graphic interfaces of geoportals allow visualizing and overlaying various (visually) heterogeneous geographical data, often by image blending: vector data, maps, aerial imagery, Digital Terrain Model, etc. Map design and geo-visualization may benefit from methods and tools to hybrid, i.e. visually integrate, heterogeneous geographical data and cartographic representations. In this paper, we aim at designing continuous hybrid visualizations between ortho-imagery and symbolized vector data, in order to control a particular visual property, i.e. the photo-realism perception. The natural appearance (colors, textures) and various texture effects are used to drive the control the photo-realism level of the visualization: color and texture interpolation blocks have been developed. We present a global design method that allows to manipulate the behavior of those interpolation blocks on each type of geographical layer, in various ways, in order to provide various cartographic continua.
Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao
2018-01-01
For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.
A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images
Directory of Open Access Journals (Sweden)
Yi Wang
2016-11-01
Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.
A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin
Blaschek, Michael; Duttmann, Rainer
2015-04-01
ESRI software (ArcGIS) extended by Hawth's Tools and later on its replacement the Geospatial Modelling Environment (GME). 88% of all desired points could actually be reached in the field and have been successfully sampled. Our results indicate that the sampled calibration and validation sets are representative for each other and could be successfully used as interpolation data for spatial prediction purposes. With respect to soil textural fractions, for instance, equal multivariate means and variance homogeneity were found for the two datasets as evidenced by significant (P > 0.05) Hotelling T²-test (2.3 with df1 = 3, df2 = 193) and Bartlett's test statistics (6.4 with df = 6). The multivariate prediction of clay, silt and sand content using a neural network residual cokriging approach reached an explained variance level of 56%, 47% and 63%. Thus, the presented case study is a successful example of considering readily available continuous information on soil forming factors such as geology and relief as stratifying variables for designing sampling schemes in digital soil mapping projects.
Effects of Rashba spin–orbit coupling and a magnetic field on a polygonal quantum ring
International Nuclear Information System (INIS)
Tang, Han-Zhao; Zhai, Li-Xue; Shen, Man; Liu, Jian-Jun
2014-01-01
Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain. - Highlights: • Spin conductance of polygon with RSOC and magnetic field is calculated analytically. • We show how the RSOC and a magnetic field control the phase of electron in polygon. • The AB oscillation and shape-dependent conductance are studied in a polygonal ring. • Our model can provide spin filtering simply by interchanging the source and drain
Conversion of ICRP male reference phantom to polygon-surface phantom
International Nuclear Information System (INIS)
Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi
2013-01-01
The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom
Polygonal approximation and scale-space analysis of closed digital curves
Ray, Kumar S
2013-01-01
This book covers the most important topics in the area of pattern recognition, object recognition, computer vision, robot vision, medical computing, computational geometry, and bioinformatics systems. Students and researchers will find a comprehensive treatment of polygonal approximation and its real life applications. The book not only explains the theoretical aspects but also presents applications with detailed design parameters. The systematic development of the concept of polygonal approximation of digital curves and its scale-space analysis are useful and attractive to scholars in many fi
Origin of the Polygons and Underground Structures in Western Utopia Planitia on Mars
Yoshikawa, K.
2002-01-01
The area of lower albedo (Hvm) has a higher density of polygonal patterns. These patterns potentially suggest that 1) the polygonal pattern is caused primarily by ground heaving and collapsing, 2) lower albedo materials had higher tensile strength. Additional information is contained in the original extended abstract.
Columbia River ESI: NWI (National Wetlands Inventory - Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the wetlands of Columbia River classified according to the Environmental Sensitivity Index (ESI) classification...
The linking number and the writhe of uniform random walks and polygons in confined spaces
International Nuclear Information System (INIS)
Panagiotou, E; Lambropoulou, S; Millett, K C
2010-01-01
Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2 ). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n). Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length.
Filter and Filter Bank Design for Image Texture Recognition
Energy Technology Data Exchange (ETDEWEB)
Randen, Trygve
1997-12-31
The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.
Deformations of polyhedra and polygons by the unitary group
Energy Technology Data Exchange (ETDEWEB)
Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)
2013-12-15
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in
Fat polygonal partitions with applications to visualization and embeddings
Directory of Open Access Journals (Sweden)
Mark de Berg
2013-12-01
Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover
Ranson, K. J.; Montesano, P. M.; Nelson, R.
2011-01-01
The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.
Model of Random Polygon Particles for Concrete and Mesh Automatic Subdivision
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.
International Nuclear Information System (INIS)
Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.
2006-01-01
We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique
A Novel Polygonal Finite Element Method: Virtual Node Method
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
A model of anelastic relaxation associated with polygonization boundary
International Nuclear Information System (INIS)
Yan, S.C.
1990-01-01
A model of anelastic relaxation associated with polygonization boundary is proposed in order to explain internal friction peaks and other experimental phenomena observed recently. The model, which is referred to as vacancy-thermal jog model, shows that under conditions of high temperature and low applied stress with lower frequencies of vibration, thermal jog pairs are generated on dislocation segments of the boundaries. These jogs are in saturation with vacancies in the vicinity of them, and the vacancy current due to the concentration gradient of vacancy drifts among the boundaries. As a result, a diffusional creep is produced and a part of energy is dissipated. For vacancy drift, it is required that the thermal jogs emit (absorb) vacancies, which brings climbing bow of segments into operation, and another part of energy is dissipated so that there are two parts of energy dissipated in the strain process connected with polygonization boundary. Based on this point of view, the mathematical expressions of internal friction and modulus defect associated with polygonization boundary were subsequently derived and found to be in satisfactory agreement with experiments. (author). 13 refs, 6 figs
International Nuclear Information System (INIS)
Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong
2013-01-01
Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom
International Nuclear Information System (INIS)
Li, B; Yu, H; Jara, H; Soto, J; Anderson, S
2016-01-01
Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PD maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in
Energy Technology Data Exchange (ETDEWEB)
Li, B; Yu, H; Jara, H; Soto, J; Anderson, S [Boston University Medical Center, Boston, MA (United States)
2016-06-15
Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PD maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in
On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement
International Nuclear Information System (INIS)
Ikehata, M; Itou, H
2011-01-01
In this paper we consider a reconstruction problem of an unknown polygonal cavity in a linearized elastic body. For this problem, an extraction formula of the convex hull of the unknown polygonal cavity is established by means of the enclosure method introduced by Ikehata. The advantages of our method are that it needs only a single set of boundary data and we do not require any a priori assumptions for the unknown polygonal cavity and any constraints on boundary data. The theoretical formula may have possibility of application in nondestructive evaluation.
Ibáñez, J J; Pérez-Gómez, R; Brevik, Eric C; Cerdà, A
2016-12-15
Many maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research indicates that comparing results of related maps (e.g., soil and geology maps) may aid in identifying mapping deficiencies. Therefore, this study was undertaken in Almeria Province, Spain to (i) compare the underlying map structures of soil and vegetation maps and (ii) investigate if a vegetation map can provide useful soil information that was not shown on a soil map. Soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis, and results then exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence: (i) climatophilous (ii) lithologic-climate; and (iii) edaphophylous. The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophilous units were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity that are threatened by anthropogenic activity in the region. Therefore, this study revealed areas that need to be revisited and studied pedologically. The vegetation mapped in these areas and the soils that support it are key components of the earth's critical zone that must be studied, understood, and preserved. Copyright Â© 2016
Coastal Resources Atlas: Long Island: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for Long Island, New York. Vector polygons...
Bristol Bay, Alaska Subarea ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries of all the hardcopy cartographic products produced as part of the Environmental Sensitivity Index...
Columbia River ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Columbia...
Spectral segmentation of polygonized images with normalized cuts
Energy Technology Data Exchange (ETDEWEB)
Matsekh, Anna [Los Alamos National Laboratory; Skurikhin, Alexei [Los Alamos National Laboratory; Rosten, Edward [UNIV OF CAMBRIDGE
2009-01-01
We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.
Conversion of ICRP male reference phantom to polygon-surface phantom
Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi
2013-10-01
The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating
2003-01-01
MGS MOC Release No. MOC2-428, 21 July 2003This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.
Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin
2011-01-01
The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.
Southeast Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for brown bears in Southeast Alaska. Vector polygons in this data set represent locations of bear concentrations....
Western Alaska ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, walruses, and Steller sea lions in Western Alaska. Vector polygons in this...
American Samoa ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales and dolphins in American Samoa. Vector polygons in this data set represent marine mammal...
Coastal Resources Atlas: Long Island: INVERT (Invertebrate Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for coastal, estuarine, and marine invertebrate species for Long Island, New York. Vector polygons in this...
American Samoa ESI: REPTILES (Reptile and Amphibian Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles in American Samoa. Vector polygons in this data set represent sea turtle nesting and...
Columbia River ESI: REPTILES (Reptile and Amphibian Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for western pond turtles and western painted turtles in Columbia River. Vector polygons in this data set...
Columbia River ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for Steller sea lions, harbor seals, and California sea lions in Columbia River. Vector polygons in this...
North Slope, Alaska ESI: BIOINDEX (Biological Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the quad boundaries of the 1:250,000 USGS topographic quadrangles. These boundaries represent the extent of the...
Quasi regular polygons and their duals with Coxeter symmetries Dn represented by complex numbers
International Nuclear Information System (INIS)
Koca, M; Koca, N O
2011-01-01
This paper deals with tiling of the plane by quasi regular polygons and their duals. The problem is motivated from the fact that the graphene, infinite number of carbon molecules forming a honeycomb lattice, may have states with two bond lengths and equal bond angles or one bond length and different bond angles. We prove that the Euclidean plane can be tiled with two tiles consisting of quasi regular hexagons with two different lengths (isogonal hexagons) and regular hexagons. The dual lattice is constructed with the isotoxal hexagons (equal edges but two different interior angles) and regular hexagons. We also give similar tilings of the plane with the quasi regular polygons along with the regular polygons possessing the Coxeter symmetries D n , n=2,3,4,5. The group elements as well as the vertices of the polygons are represented by the complex numbers.
Exact moduli space metrics for hyperbolic vortex polygons
International Nuclear Information System (INIS)
Krusch, S.; Speight, J. M.
2010-01-01
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.
Knotting probabilities after a local strand passage in unknotted self-avoiding polygons
International Nuclear Information System (INIS)
Szafron, M L; Soteros, C E
2011-01-01
We investigate, both theoretically and numerically, the knotting probabilities after a local strand passage is performed in an unknotted self-avoiding polygon (SAP) on the simple cubic lattice. In the polygons studied, it is assumed that two polygon segments have already been brought close together for the purpose of performing a strand passage. This restricts the polygons considered to those that contain a specific pattern called Θ at a fixed location; an unknotted polygon containing Θ is called a Θ-SAP. It is proved that the number of n-edge Θ-SAPs grows exponentially (with n) at the same rate as the total number of n-edge unknotted SAPs (those with no prespecified strand passage structure). Furthermore, it is proved that the same holds for subsets of n-edge Θ-SAPs that yield a specific after-strand-passage knot-type. Thus, the probability of a given after-strand-passage knot-type does not grow (or decay) exponentially with n. Instead, it is conjectured that these after-strand-passage knot probabilities approach, as n goes to infinity, knot-type dependent amplitude ratios lying strictly between 0 and 1. This conjecture is supported by numerical evidence from Monte Carlo data generated using a composite (aka multiple) Markov chain Monte Carlo BFACF algorithm developed to study Θ-SAPs. A new maximum likelihood method is used to estimate the critical exponents relevant to this conjecture. We also obtain strong numerical evidence that the after-strand-passage knotting probability depends on the local structure around the strand-passage site. If the local structure and the crossing sign at the strand-passage site are considered, then we observe that the more 'compact' the local structure, the less likely the after-strand-passage polygon is to be knotted. This trend for compactness versus knotting probability is consistent with results obtained for other strand-passage models; however, we are the first to note the influence of the crossing-sign information. We
Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.
2017-12-01
Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons
The polygonal model: A simple representation of biomolecules as a tool for teaching metabolism.
Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo
2018-01-01
Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student. In this report, we describe the "polygonal model" as a new means of graphically representing biomolecules. This model is based on the use of geometric figures such as open triangles, squares, and circles to represent hydroxyl, carbonyl, and carboxyl groups, respectively. The usefulness of the polygonal model was assessed by undergraduate students in a classroom activity that consisted of "transforming" molecules from Fischer models to polygonal models and vice and versa. The survey was applied to 135 undergraduate Biology and Nursing students. Students found the model easy to use and we noted that it allowed identification of students' misconceptions in basic concepts of organic chemistry, such as in stereochemistry and organic groups that could then be corrected. The students considered the polygonal model easier and faster for representing molecules than Fischer representations, without loss of information. These findings indicate that the polygonal model can facilitate the teaching of metabolism when the structures of biomolecules are discussed. Overall, the polygonal model promoted contact with chemical structures, e.g. through drawing activities, and encouraged student-student dialog, thereby facilitating biochemical learning. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):66-75, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders
2017-06-22
In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
United States National Grid for New Mexico, UTM 12, (1000m X 1000m polygons )
Earth Data Analysis Center, University of New Mexico — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...
United States National Grid for New Mexico, UTM 13, (1000m X 1000m polygons )
Earth Data Analysis Center, University of New Mexico — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...
Logarithmic solution to the line-polygon intersection problem. 127
International Nuclear Information System (INIS)
Siddon, R.L.; Barth, N.H.
1987-01-01
Algorithmic solution for a special case of the line - polygon intersection problem has been developed. The special case involves repeated solution to the problem where one point on the line is held fixed and the other allowed to vary. In addition, the fixed point on the line must lie outside the rectangle defined by the extrema of the polygon and varying point. In radiotherapy applications, the fixed point corresponds to the source of radiation, whereas the varying points refer to the grid of multiple calculation points. For smooth contours of 100-200 vertices, it is found that the new algorithm results in a CPU savings of approximately a factor of 3-5. 3 refs.; 4 figs
Analysis of the Misconceptions of 7th Grade Students on Polygons and Specific Quadrilaterals
Ozkan, Mustafa; Bal, Ayten Pinar
2017-01-01
Purpose: This study will find out student misconceptions about geometrical figures, particularly polygons and quadrilaterals. Thus, it will offer insights into teaching these concepts. The objective of this study, the question of "What are the misconceptions of seventh grade students on polygons and quadrilaterals?" constitutes the…
Sub-wavelength resonances in polygonal metamaterial cylinders
DEFF Research Database (Denmark)
Arslanagic, Samel; Breinbjerg, Olav
2008-01-01
It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...
Generating realistic roofs over a rectilinear polygon
Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.
2011-01-01
Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing
3D Polygon Mesh Compression with Multi Layer Feed Forward Neural Networks
Directory of Open Access Journals (Sweden)
Emmanouil Piperakis
2003-06-01
Full Text Available In this paper, an experiment is conducted which proves that multi layer feed forward neural networks are capable of compressing 3D polygon meshes. Our compression method not only preserves the initial accuracy of the represented object but also enhances it. The neural network employed includes the vertex coordinates, the connectivity and normal information in one compact form, converting the discrete and surface polygon representation into an analytic, solid colloquial. Furthermore, the 3D object in its compressed neural form can be directly - without decompression - used for rendering. The neural compression - representation is viable to 3D transformations without the need of any anti-aliasing techniques - transformations do not disrupt the accuracy of the geometry. Our method does not su.er any scaling problem and was tested with objects of 300 to 107 polygons - such as the David of Michelangelo - achieving in all cases an order of O(b3 less bits for the representation than any other commonly known compression method. The simplicity of our algorithm and the established mathematical background of neural networks combined with their aptness for hardware implementation can establish this method as a good solution for polygon compression and if further investigated, a novel approach for 3D collision, animation and morphing.
The average crossing number of equilateral random polygons
International Nuclear Information System (INIS)
Diao, Y; Dobay, A; Kusner, R B; Millett, K; Stasiak, A
2003-01-01
In this paper, we study the average crossing number of equilateral random walks and polygons. We show that the mean average crossing number ACN of all equilateral random walks of length n is of the form (3/16)n ln n + O(n). A similar result holds for equilateral random polygons. These results are confirmed by our numerical studies. Furthermore, our numerical studies indicate that when random polygons of length n are divided into individual knot types, the for each knot type K can be described by a function of the form = a(n-n 0 )ln(n-n 0 ) + b(n-n 0 ) + c where a, b and c are constants depending on K and n 0 is the minimal number of segments required to form K. The profiles diverge from each other, with more complex knots showing higher than less complex knots. Moreover, the profiles intersect with the profile of all closed walks. These points of intersection define the equilibrium length of K, i.e., the chain length n e (K) at which a statistical ensemble of configurations with given knot type K-upon cutting, equilibration and reclosure to a new knot type K'-does not show a tendency to increase or decrease . This concept of equilibrium length seems to be universal, and applies also to other length-dependent observables for random knots, such as the mean radius of gyration g >
LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION
Directory of Open Access Journals (Sweden)
R. Reena Rose
2014-02-01
Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.
Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space
International Nuclear Information System (INIS)
Alday, Luis F.; Maldacena, Juan
2009-01-01
We consider minimal surfaces in three dimensional anti-de-Sitter space that end at the AdS boundary on a polygon given by a sequence of null segments. The problem can be reduced to a certain generalized Sinh-Gordon equation and to SU(2) Hitchin equations. We describe in detail the mathematical problem that needs to be solved. This problem is mathematically the same as the one studied by Gaiotto, Moore and Neitzke in the context of the moduli space of certain supersymmetric theories. Using their results we can find the explicit answer for the area of a surface that ends on an eight-sided polygon. Via the gauge/gravity duality this can also be interpreted as a certain eight-gluon scattering amplitude at strong coupling. In addition, we give fairly explicit solutions for regular polygons.
Analytical approach of laser beam propagation in the hollow polygonal light pipe.
Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong
2013-08-10
An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.
Very fast road database verification using textured 3D city models obtained from airborne imagery
Bulatov, Dimitri; Ziems, Marcel; Rottensteiner, Franz; Pohl, Melanie
2014-10-01
Road databases are known to be an important part of any geodata infrastructure, e.g. as the basis for urban planning or emergency services. Updating road databases for crisis events must be performed quickly and with the highest possible degree of automation. We present a semi-automatic algorithm for road verification using textured 3D city models, starting from aerial or even UAV-images. This algorithm contains two processes, which exchange input and output, but basically run independently from each other. These processes are textured urban terrain reconstruction and road verification. The first process contains a dense photogrammetric reconstruction of 3D geometry of the scene using depth maps. The second process is our core procedure, since it contains various methods for road verification. Each method represents a unique road model and a specific strategy, and thus is able to deal with a specific type of roads. Each method is designed to provide two probability distributions, where the first describes the state of a road object (correct, incorrect), and the second describes the state of its underlying road model (applicable, not applicable). Based on the Dempster-Shafer Theory, both distributions are mapped to a single distribution that refers to three states: correct, incorrect, and unknown. With respect to the interaction of both processes, the normalized elevation map and the digital orthophoto generated during 3D reconstruction are the necessary input - together with initial road database entries - for the road verification process. If the entries of the database are too obsolete or not available at all, sensor data evaluation enables classification of the road pixels of the elevation map followed by road map extraction by means of vectorization and filtering of the geometrically and topologically inconsistent objects. Depending on the time issue and availability of a geo-database for buildings, the urban terrain reconstruction procedure has semantic models
Farda, N. M.
2017-12-01
Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.
The structure of near polygons with quads
Brouwer, A.E.; Wilbrink, H.A.
1983-01-01
We develop a structure theory for near polygons with quads. Main results are the existence of sub 2j-gons for 2jd and the nonexistence of regular sporadic 2d-gons for d4 with s>1 and t 2>1 and t 3t 2(t 2+1).
Inline inspection of textured plastics surfaces
Michaeli, Walter; Berdel, Klaus
2011-02-01
This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.
Multifrequency Piezoelectric Energy Harvester Based on Polygon-Shaped Cantilever Array
Directory of Open Access Journals (Sweden)
Dalius Mažeika
2018-01-01
Full Text Available This paper focuses on numerical and experimental investigations of a novel design piezoelectric energy harvester. Investigated harvester is based on polygon-shaped cantilever array and employs multifrequency operating principle. It consists of eight cantilevers with irregular design of cross-sectional area. Cantilevers are connected to each other by specific angle to form polygon-shaped structure. Moreover, seven seismic masses with additional lever arms are added in order to create additional rotation moment. Numerical investigation showed that piezoelectric polygon-shaped energy harvester has five natural frequencies in the frequency range from 10 Hz to 240 Hz, where the first and the second bending modes of the cantilevers are dominating. Maximum output voltage density and energy density equal to 50.03 mV/mm3 and 604 μJ/mm3, respectively, were obtained during numerical simulation. Prototype of piezoelectric harvester was made and experimental investigation was performed. Experimental measurements of the electrical characteristics showed that maximum output voltage density, energy density, and output power are 37.5 mV/mm3, 815.16 μJ/mm3, and 65.24 μW, respectively.
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
PNW River Reach Files -- 1:100k Waterbodies (polygons)
Pacific States Marine Fisheries Commission — This feature class includes the POLYGON waterbody features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes...
Hudson, W. R.
1977-01-01
A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.
International Nuclear Information System (INIS)
Noorlaila Ahmad; Asmeda Rajab; Norziah Mohd Hani
2016-01-01
Three different grinding techniques (dry, semi-wet, and wet) were employed in rice flour production. Investigation on the effects of the grinding techniques on starch damage percentage, particle size distribution, pasting profiles, morphological and textural properties of rice flours produced were evaluated. Wet grinding resulted in significantly (p<0.05) has lower percentage of damaged starch (3.24 %) than other grinding methods. Morphological studies (microscopy and particle size analysis) have reflected significant differences among rice flours granule shapes. The granules displaying different shapes of polygonal, round and angular forms, with some as an individual granule while others tend to attached together. Wet grinding technique also yielded flour that exhibit significantly (p<0.05) with higher gel hardness (16.62 g). Pasting profiles showed that pasting temperature for rice flour produce using these three grinding methods varied between 80.15 - 80.42 degree Celcius. Results revealed that the three grinding techniques clearly affected the physicochemical properties of rice flour. The results from this study play an important role in the selection criteria of rice flour with desirable pasting and textural properties for manufacturing rice-based product. (author)
International Nuclear Information System (INIS)
Mori, N.; Kobayashi, K.
1996-01-01
A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)
Finding the Most Uniform Changes in Vowel Polygon Caused by Psychological Stress
Directory of Open Access Journals (Sweden)
M. Stanek
2015-06-01
Full Text Available Using vowel polygons, exactly their parameters, is chosen as the criterion for achievement of differences between normal state of speaker and relevant speech under real psychological stress. All results were experimentally obtained by created software for vowel polygon analysis applied on ExamStress database. Selected 6 methods based on cross-correlation of different features were classified by the coefficient of variation and for each individual vowel polygon, the efficiency coefficient marking the most significant and uniform differences between stressed and normal speech were calculated. As the best method for observing generated differences resulted method considered mean of cross correlation values received for difference area value with vector length and angle parameter couples. Generally, best results for stress detection are achieved by vowel triangles created by /i/-/o/-/u/ and /a/-/i/-/o/ vowel triangles in formant planes containing the fifth formant F5 combined with other formants.
Digital geologic map database of the Nevada Test Site area, Nevada
Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.
1997-01-01
Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.
The brass-type texture and its deviation from the copper-type texture
DEFF Research Database (Denmark)
Leffers, Torben; Ray, R.K.
2009-01-01
Our basic aim with the present review is to address the classical problem of the “fcc rolling texture transition” – the fact that fcc materials may, depending on material parameters and rolling conditions, develop two different types of rolling textures, the copper-type texture and the brass...... the subject and sketch our approach for dealing with it. We then recapitulate the decisive progress made during the nineteen sixties in the empirical description of the fcc rolling texture transition and in lining up a number of possible explanations. Then follows a section about experimental investigations...... of the brass-type texture after the nineteen sixties covering texture measurements and microstructural investigations. The main observations are: (1) The brass-type texture deviates from the copper-type texture from an early stage of texture development. (2) Deformation twinning has a decisive effect...
North Slope, Alaska ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the North...
Evaluation of the effect of initial texture on the development of deformation texture
DEFF Research Database (Denmark)
Leffers, Torben; Juul Jensen, Dorte
1986-01-01
The authors describe a computer procedure which allows them to introduce experimental initial textures as starting conditions for texture simulation (instead of a theoretical random texture). They apply the procedure on two batches of copper with weak initial textures and on fine-grained and coarse......-grained aluminium with moderately strong initial textures. In copper the initial texture turns out to be too weak to have any significant effect. In aluminium the initial texture has a very significant effect on the simulated textures-similar to the effect it has on the experimental textures. However......, there are differences between the simulated and the experimental aluminium textures that can only be explained as a grain-size effect. Possible future applications of the procedure are discussed...
2004-01-01
8 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime scene in the south polar region of the red planet. A patch of bright frost--possibly water ice--is seen in the lower third of the image. Polygon patterns that have developed in the ice as it sublimes away can be seen; these are not evident in the defrosted surfaces, so they are thought to have formed in the frost. This image is located near 82.6oS, 352.5oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.
North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...
Combining fine texture and coarse color features for color texture classification
Wang, Junmin; Fan, Yangyu; Li, Ning
2017-11-01
Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.
Fair partitions of polygons: An elementary introduction
Indian Academy of Sciences (India)
In this paper we discuss only convex polygonal regions with finite number of sides. But we think this property holds ... trivial interest and have updated [9] into the present paper. 2. Proof of the conjecture N = .... surface have a proper intersection if they cut through each other either at a point or after being coincident in a finite ...
A characteristic based multiple balance approach for SN on arbitrary polygonal meshes
International Nuclear Information System (INIS)
Grove, R.E.; Pevey, R.E.
1995-01-01
The authors introduce a new approach for characteristic based S n transport on arbitrary polygonal meshes in XY geometry. They approximate a general surface as an arbitrary polygon and rotate to a coordinate system aligned with the direction of particle travel. They use exact moment balance equations on whole cells and subregions called slices and close the system by analytically solving the characteristic equation. The authors assume spatial functions for boundary conditions and cell sources and formulate analogous functions for outgoing edge and cell angular fluxes which exactly preserve spatial moments of the analytic solution. In principle, their approach provides the framework to extend characteristic methods formulated on rectangular grids to arbitrary polygonal meshes. The authors derive schemes based on step and linear spatial approximations. Their step characteristic scheme is mathematically equivalent to the Extended Step Characteristic (ESC) method but their approach and scheme differ in the geometry rotation and in the solution form. Their solutions are simple and permit edge-based transport sweep ordering
North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...
International Nuclear Information System (INIS)
Phan Thanh An
2008-06-01
The convex rope problem, posed by Peshkin and Sanderson in IEEE J. Robotics Automat, 2 (1986) pp. 53-58, is to find the counterclockwise and clockwise convex ropes starting at the vertex a and ending at the vertex b of a simple polygon, where a is on the boundary of the convex hull of the polygon and b is visible from infinity. In this paper, we present a linear time algorithm for solving this problem without resorting to a linear-time triangulation algorithm and without resorting to a convex hull algorithm for the polygon. The counterclockwise (clockwise, respectively) convex rope consists of two polylines obtained in a basic incremental strategy described in convex hull algorithms for the polylines forming the polygon from a to b. (author)
Energy Technology Data Exchange (ETDEWEB)
Wibmer, Andreas; Hricak, Hedvig; Sala, Evis; Vargas, Hebert Alberto [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York City, NY (United States); Gondo, Tatsuo; Matsumoto, Kazuhiro; Eastham, James [Memorial Sloan Kettering Cancer Center, Department of Urology, New York City, NY (United States); Veeraraghavan, Harini; Fehr, Duc [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York City, NY (United States); Zheng, Junting; Goldman, Debra; Moskowitz, Chaya [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York City, NY (United States); Fine, Samson W.; Reuter, Victor E. [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York City, NY (United States)
2015-10-15
To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS). One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers ≥0.5 ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations. PZ cancers (n = 143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n = 43) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p = 0.041) and Inertia (p = 0.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p = 0.0225; 6 vs. >7: p = 0.0069) and lower Energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039). ADC map Energy (p = 0.0102) and Entropy (p = 0.0019) were significantly different in GS ≤3 + 4 versus ≥4 + 3 cancers; ADC map Entropy remained significant after controlling for the median ADC (p = 0.0291). Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment. (orig.)
International Nuclear Information System (INIS)
Wibmer, Andreas; Hricak, Hedvig; Sala, Evis; Vargas, Hebert Alberto; Gondo, Tatsuo; Matsumoto, Kazuhiro; Eastham, James; Veeraraghavan, Harini; Fehr, Duc; Zheng, Junting; Goldman, Debra; Moskowitz, Chaya; Fine, Samson W.; Reuter, Victor E.
2015-01-01
To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS). One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers ≥0.5 ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations. PZ cancers (n = 143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n = 43) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p = 0.041) and Inertia (p = 0.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p = 0.0225; 6 vs. >7: p = 0.0069) and lower Energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039). ADC map Energy (p = 0.0102) and Entropy (p = 0.0019) were significantly different in GS ≤3 + 4 versus ≥4 + 3 cancers; ADC map Entropy remained significant after controlling for the median ADC (p = 0.0291). Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment. (orig.)
International Nuclear Information System (INIS)
Gontard, Lionel C.; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E.
2016-01-01
We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.
Energy Technology Data Exchange (ETDEWEB)
Gontard, Lionel C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); Faico PCT Cartuja. Edif. TI Marie Curie, C/ Leonardo da Vinci 18, 4a Planta, 41092 Sevilla (Spain); Schierholz, Roland; Yu, Shicheng [Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Cintas, Jesús [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2016-10-15
We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.
International Nuclear Information System (INIS)
Speetjens, M F M; Meleshko, V V; Van Heijst, G J F
2014-01-01
The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)
Counting convex polygons in planar point sets
Mitchell, J.S.B.; Rote, G.; Sundaram, Gopalakrishnan; Woeginger, G.J.
1995-01-01
Given a set S of n points in the plane, we compute in time O(n3) the total number of convex polygons whose vertices are a subset of S. We give an O(m · n3) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,…, m; previously known bounds were exponential
Directory of Open Access Journals (Sweden)
Hynek Lauschmann
2011-05-01
Full Text Available The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR. The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x. Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.
Directory of Open Access Journals (Sweden)
Luís F Seoane
2015-04-01
Full Text Available We provide a proof of concept for an EEG-based reconstruction of a visual image which is on a user's mind. Our approach is based on the Rapid Serial Visual Presentation (RSVP of polygon primitives and Brain-Computer Interface (BCI technology. In an experimental setup, subjects were presented bursts of polygons: some of them contributed to building a target image (because they matched the shape and/or color of the target while some of them did not. The presentation of the contributing polygons triggered attention-related EEG patterns. These Event Related Potentials (ERPs could be determined using BCI classification and could be matched to the stimuli that elicited them. These stimuli (i.e. the ERP-correlated polygons were accumulated in the display until a satisfactory reconstruction of the target image was reached. As more polygons were accumulated, finer visual details were attained resulting in more challenging classification tasks. In our experiments, we observe an average classification accuracy of around 75%. An in-depth investigation suggests that many of the misclassifications were not misinterpretations of the BCI concerning the users' intent, but rather caused by ambiguous polygons that could contribute to reconstruct several different images. When we put our BCI-image reconstruction in perspective with other RSVP BCI paradigms, there is large room for improvement both in speed and accuracy. These results invite us to be optimistic. They open a plethora of possibilities to explore non-invasive BCIs for image reconstruction both in healthy and impaired subjects and, accordingly, suggest interesting recreational and clinical applications.
"Textural analysis of multiparametric MRI detects transition zone prostate cancer".
Sidhu, Harbir S; Benigno, Salvatore; Ganeshan, Balaji; Dikaios, Nikos; Johnston, Edward W; Allen, Clare; Kirkham, Alex; Groves, Ashley M; Ahmed, Hashim U; Emberton, Mark; Taylor, Stuart A; Halligan, Steve; Punwani, Shonit
2017-06-01
To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. ADC kurtosis was significantly lower (p Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. • MR textural features of prostate transition zone may discriminate significant prostatic cancer. • Transition zone (TZ) containing significant tumour demonstrates a less peaked ADC histogram. • TZ containing significant tumour reveals higher post-contrast T1-weighted homogeneity. • The utility of MR texture analysis in prostate cancer merits further investigation.
SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera
Energy Technology Data Exchange (ETDEWEB)
Cardan, R; Popple, R [Univ Alabama Birmingham, Birmingham, AL (United States)
2015-06-15
Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh for collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.
Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes.
Lin, Z X; Holtzer, S; Schultheiss, T; Murray, J; Masaki, T; Fischman, D A; Holtzer, H
1989-06-01
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating
A Teaching Polygon Makes Learning a Community Enterprise
Colgan, Mark; DeLong, Matt
2015-01-01
In order to strengthen departmental collegiality and improve teaching, our mathematics department instituted a Teaching Polygon. Building on the faculty development idea of Teaching Squares, each member of our department visited one class taught by every other department member in a round-robin fashion during the school year. The visits were…
Vegetation classification and distribution mapping report Mesa Verde National Park
Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne
2009-01-01
The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted
Hamiltonian evolutions of twisted polygons in RPn
International Nuclear Information System (INIS)
Beffa, Gloria Marì; Wang, Jing Ping
2013-01-01
In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N-gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N-gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N-gons—what we call a projective realization—and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple. (paper)
Multi Voxel Descriptor for 3D Texture Retrieval
Directory of Open Access Journals (Sweden)
Hero Yudo Martono
2016-08-01
Full Text Available In this paper, we present a new feature descriptors which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways. First, we build biner voxel histogram and color voxel histogram. Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space. For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014 and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method is more accurate when compared with some methods of state-of-the-art.
Texture Segmentation Based on Wavelet and Kohonen Network for Remotely Sensed Images
Chen, Z.; Feng, T.J.; Feng, T.J.; Houkes, Z.
1999-01-01
In this paper, an approach based on wavelet decomposition and Kohonen's self-organizing map is developed for image segmentation. After performing the 2D wavelet transform of image, some features are extracted for texture segmentation, and the Kohonen neural network is used to accomplish feature
Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia
2014-07-21
A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.
Directory of Open Access Journals (Sweden)
Minerva Singh
2015-04-01
Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.
Directory of Open Access Journals (Sweden)
Kalidass Suresh
2017-12-01
Full Text Available The occurrence of dynamic recrystallization (DRX and its effect on the evolution of texture during uniaxial compression of a creep-resistant cast Mg-4Al-2Ba-2Ca alloy in the temperature range of 260–500 °C and strain rate range of 0.0003–10 s−1 has been studied using transmission electron microscopy and electron backscatter diffraction techniques with a view to understand its mechanism. For this purpose, a processing map has been developed for this alloy, which revealed two domains of DRX in the temperature and strain rate ranges of: (1 300–390 °C/0.0003–0.001 s−1 and (2 400–500 °C/0.0003–0.5 s−1. In Domain 1, DRX occurs by basal slip and recovery by dislocation climb, as indicated by the presence of planar slip bands and high dislocation density leading to tilt boundary formation and a low-intensity basal texture. On the other hand, DRX in Domain 2 occurs by second order pyramidal slip and recovery by cross-slip since the microstructure revealed tangled dislocation structure with twist boundaries and randomized texture. The high volume content of intermetallic phases Mg21Al3Ba2 and (Al,Mg2Ca eutectic phase is considered to be responsible for the observed hot deformation behavior.
Real-time photorealistic stereoscopic rendering of fire
Rose, Benjamin M.; McAllister, David F.
2007-02-01
We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.
Directory of Open Access Journals (Sweden)
Muhammad Kamal
2011-10-01
Full Text Available Visual image interpretation and digital image classification have been used to map and monitor mangrove extent and composition for decades. The presence of a high-spatial resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove species. However, little research has explored the use of pixel-based and object-based approaches on high-spatial hyperspectral datasets for this purpose. This study assessed the ability of CASI-2 data for mangrove species mapping using pixel-based and object-based approaches at the mouth of the Brisbane River area, southeast Queensland, Australia. Three mapping techniques used in this study: spectral angle mapper (SAM and linear spectral unmixing (LSU for the pixel-based approaches, and multi-scale segmentation for the object-based image analysis (OBIA. The endmembers for the pixel-based approach were collected based on existing vegetation community map. Nine targeted classes were mapped in the study area from each approach, including three mangrove species: Avicennia marina, Rhizophora stylosa, and Ceriops australis. The mapping results showed that SAM produced accurate class polygons with only few unclassified pixels (overall accuracy 69%, Kappa 0.57, the LSU resulted in a patchy polygon pattern with many unclassified pixels (overall accuracy 56%, Kappa 0.41, and the object-based mapping produced the most accurate results (overall accuracy 76%, Kappa 0.67. Our results demonstrated that the object-based approach, which combined a rule-based and nearest-neighbor classification method, was the best classifier to map mangrove species and its adjacent environments.
Determination of wave direction from linear and polygonal arrays
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A; Gouveia, A; Nagarajan, R.
documentation of Borgman (1974) in case of linear arrays; and the second issue being the failure of Esteva (1976, 1977) to correctly determine wave directions over the design range 25 to 7 sec of his polygonal array. This paper presents requisite documentation...
Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...
Coastal Resources Atlas: Long Island: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Long Island,...
Bristol Bay, Alaska Subarea ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Bristol...
Selection of industrial robots using the Polygons area method
Directory of Open Access Journals (Sweden)
Mortaza Honarmande Azimi
2014-08-01
Full Text Available Selection of robots from the several proposed alternatives is a very important and tedious task. Decision makers are not limited to one method and several methods have been proposed for solving this problem. This study presents Polygons Area Method (PAM as a multi attribute decision making method for robot selection problem. In this method, the maximum polygons area obtained from the attributes of an alternative robot on the radar chart is introduced as a decision-making criterion. The results of this method are compared with other typical multiple attribute decision-making methods (SAW, WPM, TOPSIS, and VIKOR by giving two examples. To find similarity in ranking given by different methods, Spearman’s rank correlation coefficients are obtained for different pairs of MADM methods. It was observed that the introduced method is in good agreement with other well-known MADM methods in the robot selection problem.
Heil, Martin; Jansen-Osmann, Petra
2008-05-01
Sex differences in mental rotation were investigated as a function of stimulus complexity with a sample size of N = 72. Replicating earlier findings with polygons, mental rotation was faster for males than for females, and reaction time increased with more complex polygons. Additionally, sex differences increased for complex polygons. Most importantly, however, mental rotation speed decreased with increasing complexity for women but did not change for men. Thus, the sex effects reflect a difference in strategy, with women mentally rotating the polygons in an analytic, piecemeal fashion and men using a holistic mode of mental rotation.
Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra
Zheng, J.
2016-12-01
Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.
Coastal Resources Atlas: Long Island: REPTILES (Reptile and Amphibian Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine turtles, and amphibians for Long Island, New York. Vector polygons in this data...
Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...
Coastal Resources Atlas: Long Island: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, and porpoises for Long Island, New York. Vector polygons in this data set represent...
International Nuclear Information System (INIS)
Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.
1984-01-01
The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure
Directory of Open Access Journals (Sweden)
Rajeev Kumar Verma
Full Text Available OBJECTIVE: Texture analysis is an alternative method to quantitatively assess MR-images. In this study, we introduce dynamic texture parameter analysis (DTPA, a novel technique to investigate the temporal evolution of texture parameters using dynamic susceptibility contrast enhanced (DSCE imaging. Here, we aim to introduce the method and its application on enhancing lesions (EL, non-enhancing lesions (NEL and normal appearing white matter (NAWM in multiple sclerosis (MS. METHODS: We investigated 18 patients with MS and clinical isolated syndrome (CIS, according to the 2010 McDonald's criteria using DSCE imaging at different field strengths (1.5 and 3 Tesla. Tissues of interest (TOIs were defined within 27 EL, 29 NEL and 37 NAWM areas after normalization and eight histogram-based texture parameter maps (TPMs were computed. TPMs quantify the heterogeneity of the TOI. For every TOI, the average, variance, skewness, kurtosis and variance-of-the-variance statistical parameters were calculated. These TOI parameters were further analyzed using one-way ANOVA followed by multiple Wilcoxon sum rank testing corrected for multiple comparisons. RESULTS: Tissue- and time-dependent differences were observed in the dynamics of computed texture parameters. Sixteen parameters discriminated between EL, NEL and NAWM (pAVG = 0.0005. Significant differences in the DTPA texture maps were found during inflow (52 parameters, outflow (40 parameters and reperfusion (62 parameters. The strongest discriminators among the TPMs were observed in the variance-related parameters, while skewness and kurtosis TPMs were in general less sensitive to detect differences between the tissues. CONCLUSION: DTPA of DSCE image time series revealed characteristic time responses for ELs, NELs and NAWM. This may be further used for a refined quantitative grading of MS lesions during their evolution from acute to chronic state. DTPA discriminates lesions beyond features of enhancement or T2
Directory of Open Access Journals (Sweden)
Hyun Su Kim
Full Text Available The objective of this study was to examine the tumor spatial heterogeneity in myxoid-containing soft-tissue tumors (STTs using texture analysis of diffusion-weighted imaging (DWI. A total of 40 patients with myxoid-containing STTs (23 benign and 17 malignant were included in this study. The region of interest (ROI was manually drawn on the apparent diffusion coefficient (ADC map. For texture analysis, the global (mean, standard deviation, skewness, and kurtosis, regional (intensity variability and size-zone variability, and local features (energy, entropy, correlation, contrast, homogeneity, variance, and maximum probability were extracted from the ADC map. Student's t-test was used to test the difference between group means. Analysis of covariance (ANCOVA was performed with adjustments for age, sex, and tumor volume. The receiver operating characteristic (ROC analysis was performed to compare diagnostic performances. Malignant myxoid-containing STTs had significantly higher kurtosis (P = 0.040, energy (P = 0.034, correlation (P<0.001, and homogeneity (P = 0.003, but significantly lower contrast (P<0.001 and variance (P = 0.001 compared with benign myxoid-containing STTs. Contrast showed the highest area under the curve (AUC = 0.923, P<0.001, sensitivity (94.12%, and specificity (86.96%. Our results reveal the potential utility of texture analysis of ADC maps for differentiating benign and malignant myxoid-containing STTs.
Polygonal patterned peatlands of the White Sea islands
Kutenkov, S. A.; Kozhin, M. N.; Golovina, E. O.; Kopeina, E. I.; Stoikina, N. V.
2018-03-01
The summits and slopes of some islands along the northeastern and northern coasts of the White Sea are covered with dried out peatlands. The thickness of the peat deposit is 30–80 cm and it is separated by troughs into gently sloping polygonal peat blocks up to 20 m2 in size. On some northern islands the peat blocks have permafrost cores. The main components of the dried out peatlands vegetation are dwarf shrubs and lichens. The peat stratigraphy reveals two stages of peatland development. On the first stage, the islands were covered with wet cottongrass carpets, which repeated the convex relief shape. On the second stage, they were occupied by the xeromorphic vegetation. We suggest that these polygonal patterned peatlands are the remnants of blanket bogs, the formation of which assumes the conditions of a much more humid climate in the historical past. The time of their active development was calculated according to the White Sea level changes and radiocarbon dates from 1000–4000 BP.
Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo
2017-04-10
We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.
Energy Technology Data Exchange (ETDEWEB)
Yun, Bo La; Cho, Nariya; Li, Mulun; Song, In Chan; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jang, Min Hye; Park, So Yeon; Kim, Bo Young [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Kang, Ho Chul [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of)
2014-10-15
To investigate whether there is a relationship between texture analysis parameters of apparent diffusion coefficient (ADC) maps and histopathologic features of MCF-7 and MDA-MB-231 xenograft models. MCF-7 estradiol (+), MCF-7 estradiol (-), and MDA-MB-231 xenograft models were made with approval of the animal care committee. Twelve tumors of MCF-7 estradiol (+), 9 tumors of MCF-7 estradiol (-), and 6 tumors in MDA-MB-231 were included. Diffusion-weighted MR images were obtained on a 9.4-T system. An analysis of the first and second order texture analysis of ADC maps was performed. The texture analysis parameters and histopathologic features were compared among these groups by the analysis of variance test. Correlations between texture parameters and histopathologic features were analyzed. We also evaluated the intraobserver agreement in assessing the texture parameters. MCF-7 estradiol (+) showed a higher standard deviation, maximum, skewness, and kurtosis of ADC values than MCF-7 estradiol (-) and MDA-MB-231 (p < 0.01 for all). The contrast of the MCF-7 groups was higher than that of the MDA-MB-231 (p 0.004). The correlation (COR) of the texture analysis of MCF-7 groups was lower than that of MDA-MB-231 (p < 0.001). The histopathologic analysis showed that Ki-67mean and Ki-67diff of MCF-7 estradiol (+) were higher than that of MCF-7 estradiol (-) or MDA-MB-231 (p < 0.05). The microvessel density (MVD)mean and MVDdiff of MDA-MB-231 were higher than those of MCF-7 groups (p < 0.001). A diffuse-multifocal necrosis was more frequently found in MDA-MB-231 (p < 0.001). The proportion of necrosis moderately correlated with the contrast (r = -0.438, p = 0.022) and strongly with COR (r = 0.540, p 0.004). Standard deviation (r = 0.622, r = 0.437), skewness (r = 0.404, r 0.484), and kurtosis (r = 0.408, r = 0.452) correlated with Ki-67 mean and Ki-67diff (p < 0.05 for all). COR moderately correlated with Ki-67diff (r -0.388, p = 0.045). Skewness (r = -0.643, r = -0
Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...
Coastal Resources Atlas: Long Island: T_MAMMAL (Terrestrial Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for northern river otter, mink, muskrat, and beaver for Long Island, New York. Vector polygons in this data...
Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot
2015-05-01
Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (αtexture features.
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
Subsatellite polygon for studying hydrophysical processes in the Black Sea shelf-slope zone
Zatsepin, A. G.; Ostrovskii, A. G.; Kremenetskiy, V. V.; Nizov, S. S.; Piotukh, V. B.; Soloviev, V. A.; Shvoev, D. A.; Tsibul'sky, A. L.; Kuklev, S. B.; Kukleva, O. N.; Moskalenko, L. V.; Podymov, O. I.; Baranov, V. I.; Kondrashov, A. A.; Korzh, A. O.; Kubryakov, A. A.; Soloviev, D. M.; Stanichny, S. V.
2014-01-01
The first data on the creation of the subsatellite polygon on the Black Sea shelf and continental slope in the Gelendzhik area (designed in order to permanently monitor the state of the aquatic environment and biota) and the plans for maintaining and developing this polygon are presented. The autonomous measuring systems of the polygon in the composition of bottom stations with acoustic Doppler current profilers (ADCP), Aqualog robotic profilers, and thermo-chains on moored buoy stations should make it possible to regularly obtain hydrophysical, hydrochemical, and bio-optical data with a high spatial-time resolution and transmit these data to the coastal center on a real-time basis. These field data should be used to study the characteristics and formation mechanisms of the marine environment and biota variability, as well as the water-exchange processes in the shelf-deep basin system, ocean-atmosphere coupling, and many other processes. These data are used to calibrate the satellite measurements and verify the water circulation numerical simulation. It is assumed to use these data in order to warn about the hazardous natural phenomena and control the marine environment state and its variation under the action of anthropogenic and natural factors, including climatic trends. It is planned to use the polygon subsatellite monitoring methods and equipment in other coastal areas, including other Black Sea sectors, in order to create a unified system for monitoring the Black Sea shelf-slope zone.
The growth of the mean average crossing number of equilateral polygons in confinement
International Nuclear Information System (INIS)
Arsuaga, J; Borgo, B; Scharein, R; Diao, Y
2009-01-01
The physical and biological properties of collapsed long polymer chains as well as of highly condensed biopolymers (such as DNA in all organisms) are known to be determined, at least in part, by their topological and geometrical properties. With this purpose of characterizing the topological properties of such condensed systems equilateral random polygons restricted to confined volumes are often used. However, very few analytical results are known. In this paper, we investigate the effect of volume confinement on the mean average crossing number (ACN) of equilateral random polygons. The mean ACN of knots and links under confinement provides a simple alternative measurement for the topological complexity of knots and links in the statistical sense. For an equilateral random polygon of n segments without any volume confinement constrain, it is known that its mean ACN (ACN) is of the order 3/16 n log n + O(n). Here we model the confining volume as a simple sphere of radius R. We provide an analytical argument which shows that (ACN) of an equilateral random polygon of n segments under extreme confinement (meaning R 2 ). We propose to model the growth of (ACN) as a(R)n 2 + b(R)nln(n) under a less-extreme confinement condition, where a(R) and b(R) are functions of R with R being the radius of the confining sphere. Computer simulations performed show a fairly good fit using this model.
About normal distribution on SO(3) group in texture analysis
Savyolova, T. I.; Filatov, S. V.
2017-12-01
This article studies and compares different normal distributions (NDs) on SO(3) group, which are used in texture analysis. Those NDs are: Fisher normal distribution (FND), Bunge normal distribution (BND), central normal distribution (CND) and wrapped normal distribution (WND). All of the previously mentioned NDs are central functions on SO(3) group. CND is a subcase for normal CLT-motivated distributions on SO(3) (CLT here is Parthasarathy’s central limit theorem). WND is motivated by CLT in R 3 and mapped to SO(3) group. A Monte Carlo method for modeling normally distributed values was studied for both CND and WND. All of the NDs mentioned above are used for modeling different components of crystallites orientation distribution function in texture analysis.
Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns
Dekker, H.
2009-01-01
The well-known phenomenon of ripples on roads has its modern counterpart in ripple patterns on railroads and polygonization of wheels on state-of-the-art lightrail streetcars. Here we study an idealized mechanical suspension model for the vibrational frequency response of a buggy with a nonrigid
design chart procedures for polygonal concrete-filled steel columns
African Journals Online (AJOL)
ADMIN
hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...
On the areas of various bodies in the Euclidean space: The case of irregular convex polygons
International Nuclear Information System (INIS)
Ozoemena, P.C.
1988-11-01
A theorem is proposed for the areas of n-sided irregular convex polygons, of given length of sides. The theorem is illustrated as a simple but powerful one in estimating the areas of irregular polygons, being dependent only on the number of sides n (and not on any of the explicit angles) of the irregular polygon. Finally, because of the global symmetry shown by equilateral triangles, squares and circles under group (gauge) theory, the relationships governing their areas, when they are inscribed or escribed in one another are discussed as riders, and some areas of their applications in graph theory, ratios and maxima and minima problems of differential calculus briefly mentioned. (author). 11 refs, 6 figs, 1 tab
Aharon, S; Robb, R A
1997-01-01
Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.
Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.
2017-12-01
Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.
Electron localization and optical absorption of polygonal quantum rings
Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei
2015-06-01
We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.
Origami tubes with reconfigurable polygonal cross-sections.
Filipov, E T; Paulino, G H; Tachi, T
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings.
Origami tubes with reconfigurable polygonal cross-sections
Filipov, E. T.; Paulino, G. H.; Tachi, T.
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings. PMID:26997894
Analytical algorithm for the generation of polygonal projection data for tomographic reconstruction
International Nuclear Information System (INIS)
Davis, G.R.
1996-01-01
Tomographic reconstruction algorithms and filters can be tested using a mathematical phantom, that is, a computer program which takes numerical data as its input and outputs derived projection data. The input data is usually in the form of pixel ''densities'' over a regular grid, or position and dimensions of simple, geometrical objects. The former technique allows a greater variety of objects to be simulated, but is less suitable in the case when very small (relative to the ray-spacing) features are to be simulated. The second technique is normally used to simulate biological specimens, typically a human skull, modelled as a number of ellipses. This is not suitable for simulating non-biological specimens with features such as straight edges and fine cracks. We have therefore devised an algorithm for simulating objects described as a series of polygons. These polygons, or parts of them, may be smaller than the ray-spacing and there is no limit, except that imposed by computing resources, on the complexity, number or superposition of polygons. A simple test of such a phantom, reconstructed using the filtered back-projection method, revealed reconstruction artefacts not normally seen with ''biological'' phantoms. (orig.)
Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.
2018-05-01
An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.
Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.
2014-12-01
Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 flux measurements were recorded from a site approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static flux chambers that were located within a single low-centered ice-wedge polygon. Three flux chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation measured on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas measurements were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. Measured cumulative methane fluxes were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in flux was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 fluxes were greater than methane fluxes and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The
A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element
Directory of Open Access Journals (Sweden)
Pei-Lei Zhou
2015-01-01
Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.
Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Distribution
Directory of Open Access Journals (Sweden)
YU Li
2015-10-01
Full Text Available Considering the complexity and discontinuity of spatial data distribution, a clustering algorithm of points was proposed. To accurately identify and express the spatial correlation among points,lines and polygons, a Voronoi diagram that is generated by all spatial features is introduced. According to the distribution characteristics of point's position, an area threshold used to control clustering granularity was calculated. Meanwhile, judging scale convergence by constant area threshold, the algorithm classifies spatial features based on multi-scale, with an O(n log n running time.Results indicate that spatial scale converges self-adaptively according with distribution of points.Without the custom parameters, the algorithm capable to discover arbitrary shape clusters which be bound by lines and polygons, and is robust for outliers.
Virginia ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Virginia, classified according to the Environmental Sensitivity...
Maryland ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Maryland, classified according to the Environmental Sensitivity...
Semantic attributes based texture generation
Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa
2018-04-01
Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.
Behavior of the polygonal HEPA filter exposed to water droplets carried by the offgas flow
International Nuclear Information System (INIS)
Jannakos, K.; Potgeter, G.; Legner, W.
1991-01-01
A polygonal high-efficiency particulate air (HEPA) filter element has been developed and tested with a view to cleaning the dissolver offgas from reprocessing plants. It is likewise suited to filter process offgases generated in other plants. Due to its high dew point (about 30 degree C) the dissolver offgas, before being directed into the HEPA filter, is heated with a gas heater to approx. 100 degree C so that condensation in the pipework upstream of the filter and in the filter proper is avoided. In case of failure of the heater the offgas may undergo condensation upstream of the HEPA filter until it is bypassed to a standby heater or a standby filter system. Consequently, the filter may be loaded with water droplets. therefore, experiments have been performed with a view to estimating the behavior of the polygonal filter element when exposed to condensate droplets in a real plant. According to the experiments performed so far it can be anticipated that in case of failure of the heater the amount of condensate produced until bypassing to a standby system will not damage a new or little loaded polygonal filter element. The experiments will be carried on with the goal of investigating the behavior of a heavily loaded polygonal filter element exposed to water droplets
A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation
Energy Technology Data Exchange (ETDEWEB)
Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)
2011-07-01
In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)
DEFF Research Database (Denmark)
Watanabe, Tatsuya; Matsuoka, Norikazu; Christiansen, Hanne Hvidtfeldt
2017-01-01
properties and principal component analysis indicate that the distribution of patterned ground depends primarily on soil texture, soil moisture and the winter ground thermal regime associated with snow cover. Mudboils and composite patterns (mudboils surrounded by small polygons) occupy well-drained areas...... composed of clay-rich aeolian sediments. Compared to mudboils, composite patterns show a sharper contrast in soil texture between barren centres and vegetated rims. Hummocks filled with organic materials develop on poorly drained lowlands associated with a shallow water table. Ice-wedge polygons...
International Nuclear Information System (INIS)
Yang, F; Yang, Y; Young, L
2016-01-01
Purpose: Radiomic texture features derived from the oncologic PET have recently been brought under intense investigation within the context of patient stratification and treatment outcome prediction in a variety of cancer types; however, their validity has not yet been examined. This work is aimed to validate radiomic PET texture metrics through the use of realistic simulations in the ground truth setting. Methods: Simulation of FDG-PET was conducted by applying the Zubal phantom as an attenuation map to the SimSET software package that employs Monte Carlo techniques to model the physical process of emission imaging. A total of 15 irregularly-shaped lesions featuring heterogeneous activity distribution were simulated. For each simulated lesion, 28 texture features in relation to the intensity histograms (GLIH), grey-level co-occurrence matrices (GLCOM), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated and compared with their respective values extracted from the ground truth activity map. Results: In reference to the values from the ground truth images, texture parameters appearing on the simulated data varied with a range of 0.73–3026.2% for GLIH-based, 0.02–100.1% for GLCOM-based, 1.11–173.8% for GLNDM-based, and 0.35–66.3% for GLZSM-based. For majority of the examined texture metrics (16/28), their values on the simulated data differed significantly from those from the ground truth images (P-value ranges from <0.0001 to 0.04). Features not exhibiting significant difference comprised of GLIH-based standard deviation, GLCO-based energy and entropy, GLND-based coarseness and contrast, and GLZS-based low gray-level zone emphasis, high gray-level zone emphasis, short zone low gray-level emphasis, long zone low gray-level emphasis, long zone high gray-level emphasis, and zone size nonuniformity. Conclusion: The extent to which PET imaging disturbs texture appearance is feature-dependent and could be substantial. It is thus
Parraman, Carinna
2012-01-01
This presentation highlights issues relating to the digital capture printing of 2D and 3D artefacts and accurate colour reproduction of 3D objects. There are a range of opportunities and technologies for the scanning and printing of two-dimensional and threedimensional artefacts [1]. A successful approach of Polynomial Texture Mapping (PTM) technique, to create a Reflectance Transformation Image (RTI) [2-4] is being used for the conservation and heritage of artworks as these methods are non invasive or non destructive of fragile artefacts. This approach captures surface detail of twodimensional artworks using a multidimensional approach that by using a hemispherical dome comprising 64 lamps to create an entire surface topography. The benefits of this approach are to provide a highly detailed visualization of the surface of materials and objects.
Computing the Fréchet distance between folded polygons
Cook IV, A.F.; Driemel, A.; Sherette, J.; Wenk, C.
2015-01-01
Computing the Fréchet distance for surfaces is a surprisingly hard problem and the only known polynomial-time algorithm is limited to computing it between flat surfaces. We study the problem of computing the Fréchet distance for a class of non-flat surfaces called folded polygons. We present a
hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes
Cangiani, Andrea; Georgoulis, Emmanuil H; Houston, Paul
2017-01-01
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and elemen...
Lee, Junseong; Ghosh, Koushik; Stang, Peter J
2009-09-02
We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.
The Knot Spectrum of Confined Random Equilateral Polygons
Directory of Open Access Journals (Sweden)
Diao Y.
2014-01-01
Full Text Available It is well known that genomic materials (long DNA chains of living organisms are often packed compactly under extreme confining conditions using macromolecular self-assembly processes but the general DNA packing mechanism remains an unsolved problem. It has been proposed that the topology of the packed DNA may be used to study the DNA packing mechanism. For example, in the case of (mutant bacteriophage P4, DNA molecules packed inside the bacteriophage head are considered to be circular since the two sticky ends of the DNA are close to each other. The DNAs extracted from the capsid without separating the two ends can thus preserve the topology of the (circular DNAs. It turns out that the circular DNAs extracted from bacteriophage P4 are non-trivially knotted with very high probability and with a bias toward chiral knots. In order to study this problem using a systematic approach based on mathematical modeling, one needs to introduce a DNA packing model under extreme volume confinement condition and test whether such a model can produce the kind of knot spectrum observed in the experiments. In this paper we introduce and study a model of equilateral random polygons con_ned in a sphere. This model is not meant to generate polygons that model DNA packed in a virus head directly. Instead, the average topological characteristics of this model may serve as benchmark data for totally randomly packed circular DNAs. The difference between the biologically observed topological characteristics and our benchmark data might reveal the bias of DNA packed in the viral capsids and possibly lead to a better understanding of the DNA packing mechanism, at least for the bacteriophage DNA. The purpose of this paper is to provide information about the knot spectrum of equilateral random polygons under such a spherical confinement with length and confinement ratios in a range comparable to circular DNAs packed inside bacteriophage heads.
Zuvela, Frane; Bozanic, Ana; Miletic, Durdica
2011-01-01
Inadequately adopted fundamental movement skills (FMS) in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005). The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97) and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98) and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2). Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice. Key pointsAll 21 newly constructed tasks demonstrated high intra-rater reliability (0.83-0.97) in FMS assessment. High reliability was also noted in the FMS-POLYGON test (0.98).A high correlation was found between the FMS-POLYGON and TGMD-2 which is a confirmation of the new test's concurrent validity.The research resolved the problem of long and detailed FMS assessment by adding a new dimension using quick and effective norm-referenced approach but also covering all the most important movement areas.New and validated test can be of great use
Rancan, Marzio; Tessarolo, Jacopo; Zanonato, Pier Luigi; Seraglia, Roberta; Quici, Silvio; Armelao, Lidia
2013-06-07
A small coordination constitutional dynamic library (CDL) is self-assembled from Cu(2+) ions and the ortho bis-(3-acetylacetone)benzene ligand. Two coordination polygons, a rhomboid and a triangle, establish a dynamic equilibrium. Quantitative sorting of the rhomboidal polygon is reversibly obtained by crystallization. Thermodynamic and kinetic aspects ruling the CDL system have been elucidated.
Directory of Open Access Journals (Sweden)
Jianli eLiu
2015-11-01
Full Text Available Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and nonlinear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.
Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.
2012-01-01
Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral
[Visual Texture Agnosia in Humans].
Suzuki, Kyoko
2015-06-01
Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.
Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina
2016-03-01
Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-valuewomen's cancer risk evaluation.
Parallel-Sequential Texture Analysis
van den Broek, Egon; Singh, Sameer; Singh, Maneesha; van Rikxoort, Eva M.; Apte, Chid; Perner, Petra
2005-01-01
Color induced texture analysis is explored, using two texture analysis techniques: the co-occurrence matrix and the color correlogram as well as color histograms. Several quantization schemes for six color spaces and the human-based 11 color quantization scheme have been applied. The VisTex texture
DEFF Research Database (Denmark)
Wierzbanowski, Krzysztof; Wroński, Marcin; Leffers, Torben
2014-01-01
The crystallographic texture of metallic materials has a very strong effect on the properties of the materials. In the present article, we look at the rolling textures of fcc metals and alloys, where the classical problem is the existence of two different types of texture, the "copper-type texture......" and the "brass-type texture." The type of texture developed is determined by the stacking fault energy of the material, the rolling temperature and the strain rate of the rolling process. Recent texture simulations by the present authors provide the basis for a renewed discussion of the whole field of fcc......} slip without or with deformation twinning, but we also consider slip on other slip planes and slip by partial dislocations. We consistently make quantitative comparison of the simulation results and the experimental textures by means of a scalar correlation factor. We find that the development...
Directory of Open Access Journals (Sweden)
E.D. Lund
2001-01-01
Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.
Directory of Open Access Journals (Sweden)
M.F. Hossain
2014-08-01
Full Text Available Canada’s Arctic and sub-arctic consist 46% of Canada’s landmass and contain 45% of the total soil organic carbon (SOC. Pronounced climate warming and increasing human disturbances could induce the release of this SOC to the atmosphere as greenhouse gases. Canada is committed to estimating and reporting the greenhouse gases emissions and removals induced by land use change in the Arctic and sub-arctic. To assess the uncertainty of the estimate, we compiled a site-measured SOC database for Canada’s north, and used it to compare with a polygon database, that will be used for estimating SOC for the UNFCCC reporting. In 10 polygons where 3 or more measured sites were well located in each polygon, the site-averaged SOC content agreed with the polygon data within ±33% for the top 30 cm and within ±50% for the top 1 m soil. If we directly compared the SOC of the 382 measured sites with the polygon mean SOC, there was poor agreement: The relative error was less than 50% at 40% of the sites, and less than 100% at 68% of the sites. The relative errors were more than 400% at 10% of the sites. These comparisons indicate that the polygon database is too coarse to represent the SOC conditions for individual sites. The difference is close to the uncertainty range for reporting. The spatial database could be improved by relating site and polygon SOC data with more easily observable surface features that can be identified and derived from remote sensing imagery.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Mapping Norway - a Method to Register and Survey the Status of Accessibility
Michaelis, Sven; Bögelsack, Kathrin
2018-05-01
The Norwegian mapping authority has developed a standard method for mapping accessibility mostly for people with limited or no walking abilities in urban and recreational areas. We choose an object-orientated approach where points, lines and polygons represents objects in the environment. All data are stored in a geospatial database, so they can be presented as web map and analyzed using GIS software. By the end of 2016 more than 160 municipalities are mapped using that method. The aim of this project is to establish a national standard for mapping and to provide a geodatabase that shows the status of accessibility throughout Norway. The data provide a useful tool for national statistics, local planning authorities and private users. First results show that accessibility is low and Norway still faces many challenges to meet the government's goals for Universal Design.
A simple algorithm for calculating the area of an arbitrary polygon
Directory of Open Access Journals (Sweden)
K.R. Wijeweera
2017-06-01
Full Text Available Computing the area of an arbitrary polygon is a popular problem in pure mathematics. The two methods used are Shoelace Method (SM and Orthogonal Trapezoids Method (OTM. In OTM, the polygon is partitioned into trapezoids by drawing either horizontal or vertical lines through its vertices. The area of each trapezoid is computed and the resultant areas are added up. In SM, a formula which is a generalization of Green’s Theorem for the discrete case is used. The most of the available systems is based on SM. Since an algorithm for OTM is not available in literature, this paper proposes an algorithm for OTM along with efficient implementation. Conversion of a pure mathematical method into an efficient computer program is not straightforward. In order to reduce the run time, minimal computation needs to be achieved. Handling of indeterminate forms and special cases separately can support this. On the other hand, precision error should also be avoided. Salient feature of the proposed algorithm is that it successfully handles these situations achieving minimum run time. Experimental results of the proposed method are compared against that of the existing algorithm. However, the proposed algorithm suggests a way to partition a polygon into orthogonal trapezoids which is not an easy task. Additionally, the proposed algorithm uses only basic mathematical concepts while the Green’s theorem uses complicated mathematical concepts. The proposed algorithm can be used when the simplicity is important than the speed.
Seismic texture classification. Final report
Energy Technology Data Exchange (ETDEWEB)
Vinther, R.
1997-12-31
The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)
Methods of making textured catalysts
Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA
2010-08-17
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
Explicitly represented polygon wall boundary model for the explicit MPS method
Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori
2015-05-01
This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.
International Nuclear Information System (INIS)
Sofrenovic, R.; Lazarevic, Dj.
1965-01-01
Presence of textures in the metal uranium fuel is harmful because of anisotropy properties of uranium during thermal treatment, and especially during irradiation. Anisotropic radiation swelling of uranium can cause deformation of fuel element due to existence of textures. The objective of this work was studying of the influence of phase transformations on textures in uranium which has undergone plastic deformation due to rotational casting. Dilatometry method was adopted for testing the textures. This report describes the device for dilatometry testing and the measured preliminary results are shown
Micro-Texture Synthesis by Phase Randomization
Directory of Open Access Journals (Sweden)
Bruno Galerne
2011-09-01
Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.
Erbas, Ayhan Kursat; Yenmez, Arzu Aydogan
2011-01-01
The purpose of this study was to investigate the effects of using a dynamic geometry environment (DGE) together with inquiry-based explorations on the sixth grade students' achievements in polygons and congruency and similarity of polygons. Two groups of sixth grade students were selected for this study: an experimental group composed of 66…
Energy Technology Data Exchange (ETDEWEB)
Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J., E-mail: Gregory.Czarnota@sunnybrook.ca [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Vorauer, Eric [Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Chin, Lee [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Tran, William T. [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Wright, Frances C. [Division of General Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Surgery, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Gandhi, Sonal [Division of Medical Oncology, Sunnybrook Health Sciences Centre, and Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Yaffe, Martin J. [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)
2015-11-15
Purpose: Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean values of these functional metabolic maps. Methods: Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Results: Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001 < p < 0.049), and mean value of water
Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces
Efendiev, Yalchin
2014-01-01
We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions on arbitrary polygonal partitions of the domain. The proposed construction generates trial functions on polygonal elements which inherit some of the properties of the unknown solution. In the numerical realization, the relevant local problems are treated by means of boundary integral formulations. We test the accuracy of the method on two model problems. © 2014 Springer-Verlag.
Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments
2014-12-18
throughs of environments, gaming entertainment, augmented reality , indoor navigation, and energy simulation analysis. These applications rely on the...models are used in virtual reality , gaming, navigation, and simulation applica- tions. State-of-the-art scanning produces accurate point-clouds of...meshes that remove furniture and other temporary objects. We propose a method to texture-map these models from captured camera imagery to produce
Cook Inlet and Kenai Peninsula, Alaska ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet...
Directory of Open Access Journals (Sweden)
Frane Zuvela
2011-03-01
Full Text Available Inadequately adopted fundamental movement skills (FMS in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005. The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97 and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98 and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2. Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice.
Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William
2014-01-01
Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.
WRIS: a resource information system for wildland management
Robert M. Russell; David A. Sharpnack; Elliot Amidon
1975-01-01
WRIS (Wildland Resource Information System) is a computer system for processing, storing, retrieving, updating, and displaying geographic data. The polygon, representing a land area boundary, forms the building block of WRIS. Polygons form a map. Maps are digitized manually or by automatic scanning. Computer programs can extract and produce polygon maps and can overlay...
Guam and the Northern Mariana Islands ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins in Guam and the Northern Mariana Islands. Vector polygons in this data set represent marine...
Guam and the Northern Mariana Islands ESI: HYDRO (Hydrography Lines and Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Guam and the...
Precise algorithm to generate random sequential adsorption of hard polygons at saturation
Zhang, G.
2018-04-01
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.
Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror
Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei
2018-03-01
In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.
Polygons, Pillars and Pavilions: Discovering Connections between Geometry and Architecture
Madden, Sean Patrick
2017-01-01
Crowning the second semester of geometry, taught within a Catholic middle school, the author's students explored connections between the geometry of regular polygons and architecture of local buildings. They went on to explore how these principles apply famous buildings around the world such as the monuments of Washington, D.C. and the elliptical…
(2+1) gravity for higher genus in the polygon model
Kádár, Zoltán; Loll, R.
2004-01-01
We construct explicitly a (12g − 12)-dimensional space P of unconstrained and independent initial data for ’t Hooft’s polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g ≥ 2. Our method relies on interpreting the boost parameters of the gluing
Height perception influenced by texture gradient.
Tozawa, Junko
2012-01-01
Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.
Cook Inlet and Kenai Peninsula, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for marine mammals in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...
Abandoned Uranium Mine (AUM) Region Polygons, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...
Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas
Hudson, Mark R.; Murray, Kyle E.
2004-01-01
This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Rodriguez, M.; Aroztegui, J.; Lopez Portillo, H.
2015-07-01
Polygonal cracks represent a common way of modeling granite whose origin and evolution continues under study not even existing a systematization of these diverse structures. Some authors explain their origin by internal geo dynamic processes relating to movements of fracture planes in later stages of magmatic consolidation. Other authors attribute their formation and development to external factors related to climate regime. The great variety of polygonal cracks requires the use of a greater number of variables to define their different origins, the possible interrelations between external and internal factors, to explain the evolution of these structures and advance the classification of specific patterns. This work aims to contribute to systematize the mechanisms involved in the development of polygonal cracks. For that only polygonal cracks formed on flat vertical or sub vertical fractures are studied. In particular relations are established between the presence of polygonal cracks with: the fracturing network, height of appearance, angle and tilt of the wall, plaque morphology and depth of incision of the perimeter cracks. Moreover it establishes relationships between internal geo dynamic processes and external weathering processes. (Author)
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetlands classified according to the Environmental Sensitivity Index (ESI) classification system for...
Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon
Directory of Open Access Journals (Sweden)
Shuwei Wang
2014-04-01
Full Text Available A green transportation system composed of transit, busses and bicycles could be a significant in alleviating traffic congestion. However, the inaccuracy of current transit ridership forecasting methods is imposing a negative impact on the development of urban transit systems. Traffic Analysis Zone (TAZ delineating is a fundamental and essential step in ridership forecasting, existing delineating method in four-step models have some problems in reflecting the travel characteristics of urban transit. This paper aims to come up with a Transit Traffic Analysis Zone delineation method as supplement of traditional TAZs in transit service analysis. The deficiencies of current TAZ delineating methods were analyzed, and the requirements of Transit Traffic Analysis Zone (TTAZ were summarized. Considering these requirements, Thiessen Polygon was introduced into TTAZ delineating. In order to validate its feasibility, Beijing was then taken as an example to delineate TTAZs, followed by a spatial analysis of office buildings within a TTAZ and transit station departure passengers. Analysis result shows that the TTAZs based on Thiessen polygon could reflect the transit travel characteristic and is of in-depth research value.
Deelen, J. van; Tezsevin, Y.; Barink, M.
2017-01-01
Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.
2017-11-01
Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.
Perceptual asymmetry in texture perception.
Williams, D; Julesz, B
1992-01-01
A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for...
International Nuclear Information System (INIS)
Carpenter, J.S.; Liu, X.; Darbal, A.; Nuhfer, N.T.; McCabe, R.J.; Vogel, S.C.; LeDonne, J.E.; Rollett, A.D.; Barmak, K.; Beyerlein, I.J.; Mara, N.A.
2012-01-01
Precession electron diffraction (PED) is used to acquire orientation information in Cu–Nb nanolamellar composites fabricated by accumulative roll bonding (ARB). The resulting maps quantify the grain size, shape, orientation distributions and interface planes in the vicinity of nanometer-thick deformation twins. The PED-based texture results compare favorably with bulk textures provided by neutron diffraction measurements, indicating uniformity in the ARB Cu–Nb texture. Additionally, {1 1 2} Cu ||{1 1 2} Nb interfaces are present, suggesting that ARB techniques can lead to stable interfaces with a special crystallography.
Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.
2017-12-01
Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features
AMCO Off-Site Air Monitoring Polygons, Oakland CA, 2017, US EPA Region 9
U.S. Environmental Protection Agency — This feature class was developed to support the AMCO Chemical Superfund Site air monitoring process and depicts a single polygon layer, Off-Site Air Monitors,...
Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy
International Nuclear Information System (INIS)
Dharmendra, C.; Rao, K.P.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U.
2012-01-01
Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s −1 using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300–360 °C and 0.0003–0.001 s −1 and (2) 400–500 °C and 0.005–0.7 s −1 , which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30° from the compression direction. Specimens deformed at temperatures higher than 450 °C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: ► Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. ► The alloy exhibited flow instability at lower temperatures and higher strain rates. ► Activation energy values for deformation are high due to the back stress. ► Basal poles spread around 30° to the compression axis for Domain 1 peak condition. ► Texture got randomized at high temperature and strain rate conditions in Domain 2.
Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy
Energy Technology Data Exchange (ETDEWEB)
Dharmendra, C. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Rao, K.P., E-mail: mekprao@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Prasad, Y.V.R.K. [Processingmaps.com (formerly at City University of Hong Kong) (Hong Kong); Hort, N.; Kainer, K.U. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Magnesium Innovation Centre, Max-Planck-Strasse 1, Geesthact 21502 (Germany)
2012-10-15
Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300-500 Degree-Sign C and 0.0003-10 s{sup -1} using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300-360 Degree-Sign C and 0.0003-0.001 s{sup -1} and (2) 400-500 Degree-Sign C and 0.005-0.7 s{sup -1}, which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30 Degree-Sign from the compression direction. Specimens deformed at temperatures higher than 450 Degree-Sign C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: Black-Right-Pointing-Pointer Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. Black-Right-Pointing-Pointer The alloy exhibited flow instability at lower temperatures and higher strain rates. Black-Right-Pointing-Pointer Activation energy values for deformation are high due to the back stress. Black-Right-Pointing-Pointer Basal poles spread around 30 Degree-Sign to the compression axis for Domain 1 peak condition. Black-Right-Pointing-Pointer Texture got randomized at high temperature and strain rate conditions in
Rotational Fourier tracking of diffusing polygons.
Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G
2011-11-01
We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.
Energy Technology Data Exchange (ETDEWEB)
Garner, A., E-mail: alistair.garner@manchester.ac.uk [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Frankel, P. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Partezana, J. [Westinghouse Electric Company, 1332 Beulah Road, Pittsburgh, PA 15235 (United States); Preuss, M. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom)
2017-02-15
During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO{sub ™} were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zr−ZrO{sub 2} transformation. - Highlights: • Substrate orientation does not significantly affect oxide texture development. • Corrosion performance is independent of substrate texture. • Monoclinic oxide texture strength decreases with increasing oxidation temperature. • The main driving force for texture development is the oxidation-induced stress.
Research and Implementation of the Practical Texture Synthesis Algorithms
Institute of Scientific and Technical Information of China (English)
孙家广; 周毅
1991-01-01
How to generate pictures real and esthetic objects is an important subject of computer graphics.The techniques of mapping textures onto the surfaces of an object in the 3D space are efficient approaches for the purpose.We developed and implemented algorithms for generating objects with appearances stone,wood grain,ice lattice,brick,doors and windows on Apollo workstations.All the algorithms have been incorporated into the 3D grometry modelling system (GEMS) developed by the CAD Center of Tsinghua University.This paper emphasizes the wood grain and the ice lattice algorithms.