WorldWideScience

Sample records for textile sludge compost

  1. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  2. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  3. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Pongpat, S.; Hashimoto, Shoji.

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  4. A microbiological study on irradiated sludge composting

    Energy Technology Data Exchange (ETDEWEB)

    Pongpat, S. [Office of Atomic Energy for Peace, Bangkok (Thailand); Hashimoto, Shoji

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author).

  5. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  6. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  7. Enhanced composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.

    1984-01-01

    Studies on isothermal composting of radiation disinfected sewage sludge and liquid chromatography of water extracts of the products were carried out. The optimum temperature and pH were around 50 deg C and 7 to 8, respectively. The repeated use of products as seeds increased the rate of CO 2 evolution. The rate reached a maximum within 10 hours and decreased rapidly, and the CO 2 evolution ceased after about 3 days. The conversion of organic carbon to carbon dioxide attained to about 40% for the repeated use of products as seeds at the optimum conditions. As long as seeds as available were used, no remarkable difference was found in the composting of unirradiated and irradiated sludges. The composting process using radiation, however, can be carried out at the optimum conditions and is expected to shorten the composting period, because it is not necessary to keep fermentation temperature higher to reduce pathogen in sludge. Liquid chromatographic studies of the products showed that low molecular components decreased and higher molecular ones increased with fermentation. An index expressing the degree of reduction of easily decomposable organics was presented. The index also showed that the optimum temperature for fermentation was 50 deg C. (author)

  8. Monitoring of biopile composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  9. Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.)

    African Journals Online (AJOL)

    Yaoundé-Cameroon) in order to assess the effect of three sewage sludge: Macrophyte ratios on the co-composting process and compost quality. The ratios were T1: 25 kg of plant material (Echinochloa pyramidalis) and 75 kg sludge; T2: 50 kg ...

  10. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  12. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  13. Soil bioassays as tools for sludge compost quality assessment

    International Nuclear Information System (INIS)

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  14. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biological testing of a digested sewage sludge and derived composts.

    Science.gov (United States)

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  16. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  17. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  18. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    Science.gov (United States)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  19. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  20. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  1. Simulation of substrate degradation in composting of sewage sludge

    International Nuclear Information System (INIS)

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-01-01

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k 20 (the first-order rate constant at 20 o C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k 20 , k 20s (first-order rate coefficient of slow fraction of BVS at 20 o C) of the sewage sludge were estimated as 0.082 and 0.015 d -1 , respectively.

  2. Usage of pumice as bulking agent in sewage sludge composting.

    Science.gov (United States)

    Wu, Chuandong; Li, Weiguang; Wang, Ke; Li, Yunbei

    2015-08-01

    In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil

    NARCIS (Netherlands)

    Sousa, de Ricardo Silva; Santos, Vilma Maria; Melo, de Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; Brink, van den Paul J.; Araújo, Ademir Sérgio Ferreira

    2017-01-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the

  4. Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…

  5. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  6. Gross N transformation rates after application of household compost or domestic sewage sludge to agricultural soil

    DEFF Research Database (Denmark)

    Ambus, P.; Kure, L.K.; Jensen, E.S.

    2002-01-01

    Gross N mineralization and immobilization was examined in soil amended with compost and sewage sludge on seven occasions during a year using N-15 pool dilution and enrichment techniques. Gross N mineralization was initially stimulated with both wastes and accelerated through the first 112 days...... of incubation, peaking at 5 mg N.kg(-1).d(-1) with compost compared with 4 mg N.kg(-1).d(-1) in control and sludge-treated soil. The magnitudes of mineralization rates exceeded those of immobilization by on average 6.3 ( compost) and 11.4 ( sludge) times, leading to a persistent net N mineralization cumulating...... up to 160 mg N.kg(-1) soil(compost) and 54 mg N.kg(-1) soil (sludge) over the season from May to November. The numerical model FLUAZ comprehensively predicted rates of gross mineralization and immobilization. Sludge exhibited an early season N-release, whereas compost released only 10% of the N...

  7. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  8. Composting oily sludges: Characterizing microflora using randomly amplified polymorphic DNA

    International Nuclear Information System (INIS)

    Persson, A.; Quednau, M.; Ahrne, S.

    1995-01-01

    Laboratory-scale composts in which oily sludge was composted under mesophilic conditions with amendments such as peat, bark, and fresh or decomposed horse manure, were studied with respect to basic parameters such as oil degradation, respirometry, and bacterial numbers. Further, an attempt was made to characterize a part of the bacterial flora using randomly amplified polymorphic DNA (RAPD). The compost based on decomposed horse manure showed the greatest reduction of oil (85%). Comparison with a killed control indicated that microbial degradation actually had occurred. However, a substantial part of the oil was stabilized rather than totally broken down. Volatiles, on the contrary, accounted for a rather small percentage (5%) of the observed reduction. RAPD indicated that a selection had taken place and that the dominating microbial flora during the active degradation of oil were not the same as the ones dominating the different basic materials. The stabilized compost, on the other hand, had bacterial flora with similarities to the ones found in peat and bark

  9. Investigation into Total Carbon in Sewage Sludge and Compost

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-02-01

    Full Text Available The relation between soil and climate change is highly important. The soil is a part of the climate change problem; however, it could also be a part of the solution to the encountered problem. For a better understanding and estimation of climate gas emissions and for slowing down these processes, more investigation in this field is required. Sustainable soil usage could help with saving or even increasing the amount of carbon in the soil. Such process will sustain the balance of climate gas emissions. Soil carbon is an essential element that determines soil fertility. Recently, the importance of organic materials for soil quality and the applicability of sewage sludge to enrich the soil using such materials have been discussed. Sewage sludge as an organic carbon source can improve soil quality. The best way to stabilise and immobilise carbon is mineralisation that occurs in the composting process. The article analyses and evaluates the loss of organic carbon content during the composting process of sewage sludge and explores loss rates by adding various natural supplements (wood shavings and chips, milled bark, grained branches, peat and zeolite.Article in Lithuanian

  10. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    Science.gov (United States)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  11. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    Science.gov (United States)

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  12. Fate of polycyclic aromatic hydrocarbons during composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, M; Marques, M; Hogland, W; Nammari, D R

    2008-01-01

    In order to assess the effectiveness of aerobic degradation with emphasis on the 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAH), oily sludge generated by a dissolved air flotation flocculation unit of a wastewater treatment plant in a petroleum refinery was amended with remediated oil-contaminated soil and non-mature garden waste compost 40:40:20 (wet weight) respectively. About 21 t of the mixture with a top-layer formed by 30 cm of remediated soil was treated in a 28 m3 air-forced reactor. The PAH concentration was monitored for 370 days. In the top-layer, a reduction of 88 % of the total extractable PAH was measured at day 62 and a final reduction of 93% at day 370. In the mixture, a reduction of 72% in total PAH was measured at day 62, followed by fluctuation in concentration with a final measured reduction of 53% at day 370. The analysis of individual PAH in the mixture suggested that volatilization and biodegradation are the main mechanisms responsible for the reduction of 2 ring PAH and 3-4 ring PAH, respectively. Fluctuation of 5-6 ring PAH concentrations with increase observed at the end of the period might result from a combination of the following: (i) sequestration of large PAH in the organic matrix (reducing bioavailability, biodegradability and eventually, extractability) and desorption as composting progresses; (ii) heterogeneous distribution of the stable large PAH in the mixture, thus affecting sampling. It was concluded that one-time composting in static-aerated biopiles with organic amendments as the sole strategy to treat oily sludge is very effective in reducing the content of 2-4 ring PAH, but it is not effective in reducing the content of 5-6 ring PAHs, even after a relatively long time span (370 d). The concentrations measured in the remediated soil that formed the top layer after 62 days of composting suggests that further relevant reduction of residual PAH (89% of total PAH and 69% of 5-6 ring PAH) can be obtained if the

  13. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of Sewage Sludge Addition on the Completion of Aerobic Composting of Thermally Hydrolyzed Kitchen Biogas Residue

    OpenAIRE

    Hong-tao Liu; Lu Cai

    2014-01-01

    The composting of thermal-hydrolyzed kitchen biogas residue, either with or without sewage sludge, was compared in this study. The addition of sewage sludge increased and prolonged the temperature to a sufficient level that met the requirements for aerobic composting. Moreover, after mixing the compost materials, oxygen, ammonia, and carbon dioxide levels reverted to those typical of aerobic composting. Finally, increased dewatering, organic matter degradation, and similar mature compost prod...

  15. Management of sewage sludge by composting using fermented water hyacinth.

    Science.gov (United States)

    Tello-Andrade, A F; Jiménez-Moleón, M C; Sánchez-Galván, G

    2015-10-01

    The goal of the present research work was to assess the management of sewage sludge (SS) by composting using fermented water hyacinth (WHferm) as an amendment. The water hyacinth was fermented, and a higher production of volatile fatty acids (VFAs) (782.67 mg L(-1)) and soluble organic carbon (CSOL) (4788.34 mg L(-1)) was obtained using a particle size of 7 mm compared to 50 mm. For composting, four treatments (10 kg fresh weight each) were evaluated: treatment A (100 % SS + 0 % WHferm), treatment B (75 % SS + 25 % WHferm), treatment C (50 % SS + 50 % WHferm), and treatment D (25 % SS + 75 % WHferm). The WHferm added to SS, especially in treatments C (50 %) and D (75 %), increased the initial contents of organic matter (OM), organic carbon (CORG), CSOL, the C/N ratio, and the germination index (GI). The heavy metal content (HMC) (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) at the beginning was below the maximum allowed by USEPA regulations. All of the samples were free of Salmonella sp. from the beginning. The reduction of the CORG, CSOL, total Kjeldahl nitrogen (TKN), and C/N ratio indicated the degradation of the OM by day 198. The treatments with WHferm (B, C, and D) yielded higher values of electrical conductivity, cation exchange capacity, and GI than SS at day 198. No significant differences were observed in GI among the treatments with WHferm. The fecal coliforms were eliminated (Penicillium, Rhizopus, Paecilomyces (penicillin producers), and Fusariella isolated from the compost may have promoted the elimination of pathogens since no thermophile temperatures were obtained. WHferm as an amendment in the composting of SS improved the characteristics of the final product, especially when it was used in proportions of 25 and 50 %. An excellent product was obtained in terms of HMC, and the product was B class in terms of pathogens.

  16. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butkovskyi, A., E-mail: andrii.butkovskyi@wur.nl [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Ni, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Hernandez Leal, L. [Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Rijnaarts, H.H.M.; Zeeman, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2016-02-13

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  18. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    International Nuclear Information System (INIS)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  19. Concentration and speciation of heavy metals in six different sewage sludge-composts

    International Nuclear Information System (INIS)

    Cai Quanying; Mo Cehui; Wu Qitang; Zeng Qiaoyun; Katsoyiannis, Athanasios

    2007-01-01

    This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg -1 dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability

  20. Development of a process for radiation disinfection and composting of sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, Waichiro; Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1985-05-01

    Radiation disinfection of sewage sludge and composting of the irradiated sludge were studied for a purpose of their safe land application from a viewpoint of environment protection and beneficial utilization of resources. Seasonal changes of total bacterial number and coliform number in sludge cake, those of the dose required for disinfection and the regrowth of bacteria after disinfection were examined. Determination of residual bacteria werealso carried out. The dose for disinfection of coliform was 0.3-0.5 Mrad(3-5 kGy). Fermentation conditions such as temperature, pH, pressure, buking agent and seeds, were studied in addition to continuation and scale-up of the process for aerobic fermentation of irradiated sludge for a purpose of shortening the period for primary fermentation. And conditions for maintaining high oxygen permeability of sludge and deordorization were also investigated. The optimum conditions for composting were shown to be near 7 for pH, 50 0 C for temperature. Composting in a continuous process was studied based on microbiological rate expressions, and it was shown that the composting rate could be estimated from batch-experimental data. Composting in a large scale was investigated by using a small scale fermentor and a computer, and was estimated to have the same rate as in a small scale, when the fermentation conditions were maintained at the optimum. It was also shown that the diameter of sludge grain should be less than about 5 mm to obtain high oxygen permeability of sludge and maintain the fast rate in isothermal composting, and that the evolution of anmonia which is an index of ill-smell would also cease within 3 days under the optimum conditions. The products obtained in the isothermal composting of irradiated sludge were shown to be almost the same as those by usual composting processes using nonirradiated sludges. (J.P.N.)

  1. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  2. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  3. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Fungi in Old Paper Mixed Bio-sludge Compost and Its Metabolite and PGPR Effect

    OpenAIRE

    森本, 正則; 若山, 晃子; 駒井, 功一郎

    2005-01-01

    [Synopsis] Sometime, the compost products made from bio-sludge and containing paper strips, showed plant growth promoting effect by field application. We have evaluated to separating various fungi from biosludge compost that have PGPR (Plant Growth Promoting Rhizobacteria) effect against some crops by inoculating test into the incubation soil. Test fungi separated from the compost using multiple dilution method and colonization on the PDA agar plate. And, the surface of autoclaved oat serial...

  5. Experimental plant for sludge composting. Plant experimental de compostaje de lodos

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, A.; Caellas, N.; Amengual, A.; Calafact, J.

    1993-01-01

    Results and expertise collected during the first year of exploitation of a compost experimental plant located in Mallorca (Spain): The plant is treating sludge from the biological treatment plant of water at the town of Felanitx and the compost produced is used in agriculture. (Author)

  6. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    Science.gov (United States)

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    NARCIS (Netherlands)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and

  9. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Tian Yongqiang; Chen Liming; Gao Lihong; Michel, Frederick C.; Wan Caixia; Li Yebo; Dick, Warren A.

    2012-01-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  10. Influence of maize straw content with sewage sludge on composting process

    Directory of Open Access Journals (Sweden)

    Czekała Wojciech

    2016-09-01

    Full Text Available After entrance to EU in 2004, the management of sewage sludge has become more and more important problem for the new members. In Poland, one of the most promising technologies is composting process of sewage sludge with carbonaceous materials. However, the high price of typically used cereal straw forces the specialists to look for new and cheap materials used as donor of carbon and substrates creating good, porous structure of composted heap. This work presents the results of sewage sludge composting mixed with sawdust and maize straw used to create structure favorable for air exchange. The results show dynamic thermophilic phase of composting process in all cases where maize straw was used.

  11. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  12. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  13. Assessing the effects of using compost-sludge mixtures to reduce erosion in road embankments.

    Science.gov (United States)

    De Oña, J; Osorio, F; Garcia, P A

    2009-05-30

    Recent research shows the benefits derived from applying compost and sludge to road embankments to enhance the cover crop and reduce soil loss due to erosion, particularly in arid environments. Following this line of research, the study described in this paper analyzes and compares the use of sludge and compost for the purposes mentioned. In the first phase of this study, compost or sludge was applied separately to road embankments, and in the second phase both were applied simultaneously. This paper discusses the results obtained in each case. Our study was conducted on a total of 32 plots, located along a road embankment. The 32 plots, each with an area of 20 m(2), were divided into two groups of 16. One group was placed on a 2:1 side slope, and the other was on a 3:2 side slope. Each group received four different compost dosages (0, 40, 60 and 80 t/ha) and four sludge dosages (0, 60, 80 and 100t/ha). Four plant species were selected to be planted in each plot. Our study analyzes the survival rate of the plants, their growth rate and germination, colonization of the plots by other species, cover crop per plot, and soil loss, all in relation to the compost and sludge dosage as well as the side slope type. The results obtained show that when only sludge or compost was applied to the plot, soil loss was reduced by an average of 35%, whereas when a mixture of sludge and compost was applied, soil erosion was reduced by 63% to as much as 90%.

  14. Essential oil production of lemongrass (Cymbopogon citratus under organic compost containing sewage sludge

    Directory of Open Access Journals (Sweden)

    Júlia V. d'Ávila

    Full Text Available ABSTRACT One of the main urban polluting agents are the sewers, which even with proper treatment end up generating a polluting waste, the sewage sludge. One of the options for the disposal of this sludge is the use in agriculture, due to its high content of organic matter and nutrients. This study aimed to use urban sewage sludge for lemongrass cultivation and essential oil production. The plants were grown in soil containing different organic compost doses (0, 5, 10, 20, 40 and 60 t ha-1, formed from the sewage sludge composting process and waste of urban vegetation pruning. At harvest, plants were analyzed for the concentration of nutrients, chlorophyll content, number of tillers, biomass production, essential oil content and the microbiological quality of the leaves. The results showed that the addition of the compost increased the levels of nutrients in the plants, mainly nitrogen, positively influencing the production of tillers, biomass, chlorophyll contents, yield and essential oil content.

  15. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    Science.gov (United States)

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  16. Effect of pH on sludge composting

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1984-01-01

    The effect of pH on composting of irradiated sewage sludge was discussed. Inorganic materials, such as activated alumina, Kanuma-soil, and Akadama-soil, were used as bulking agents. Na 2 CO 3 was used as a pH adjuster. The fermentations were done isothermally at the optimum temperature, 50 0 C. The rate of CO 2 evolution increased initially with time, and then, decreased. The peak value of CO 2 evolution and the time to attain the peak varied by the addition of Na 2 CO 3 . When Kanuma-soil was used as the bulking agent, for example, the peak value became larger as the amount of Na 2 CO 3 was increased to 1.0 % and became smaller over this value. From pH measurements, it was found that the optimum pH for fermentation was ranged from 6 to 8 when activated alumina was used. When other bulking agents were used, the maximum value of CO 2 evolution rate was obtained at pH 7 to 8.5. The peak value and the peak time also varied by the addition of NH 3 in the aeration gas. (author)

  17. Electron beam sterilization and composting of sludge and its utilization as fertilizer for greenbelt and farmland

    International Nuclear Information System (INIS)

    Machi, Sueo; Hashimoto, Shoji

    1988-01-01

    Sludge should be sterilized to exterminate bacteria prior to its application as a fertilizer in greenbelts or farmland. Furthermore, sludge should be converted into compost to prevent odors or breeding of harmful insects. A technique is developed for complete sterilization of sludge and rapid production of compost. Sludge is first sterilized by electron beams and composting is performed under optimum conditions including the fermentation temperature. Typically, about 10 8 - 10 9 bacteria are contained in 1 g of sludge, with coliforms accounting for about 10 percent of the total bacteria. Irradiation of 15 kGy can reduce the total number of bacteria by 6 - 7 orders of magnitude. Irradiation of 2 kGy can almost completely exterminate coliforms, which are highly sensitive to radiations. This indicates that 0.2-second irradiation is sufficient if a dose rate of 10 kGy/sec is used. After the sterilization process, sludge is composted under the following conditions: temperature of 40 - 50 deg C, initial pH of 7 - 8 and particle size of 5 mm or less. Compared with conventional processes, the maximum fermentation rate is greater by 10 times and can be reached 10 times more rapidly. Conventional processes require more than 10 days while the present technique takes only 2 - 3 days until carbon dioxide stops generating. (Nogami, K.)

  18. Research on Ammonia and Methane Gas Emission from Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-04-01

    Full Text Available Sewage sludge treatment and disposal are related to climate change. Composting is the oldest and most natural form of recycling organic material. Carbon dioxide (CO2, methane (CH4 and nitrous oxide (NOx are all by-products of the composting process. These three greenhouse gases contribute to global warming by absorbing radiation emitted by the earth. When the natural breakdown of organic materials is happening under optimum conditions, it produces primarily carbon dioxide, water vapour and heat. When the process is unbalanced in some way, other gases begin to be produced, some of which have objectionable odours (NH3. Odour and greenhouse gases management, then, is one of the primary motivators for optimizing our composting process. The article deals with composting sewage sludge from the experimental results of the investigation of CH4 and NH3.Article in Lithuanian

  19. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge base compost

    International Nuclear Information System (INIS)

    Molina, M. J.; Ingelmo, F.; Soriano, M. D.; Gallardo, A.; Lapena, L.

    2009-01-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. since the chemical form of the metal in the sewage sludge-based compost depends on the effect of stabilization and maturation of the organic material during composting, the objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals in a mixture of ADSS and wood chips (70:30 on wet basis) with an initial C/N ratio of 30.4, during its aerobic batch composting at 30 degree centigrade of external temperature in an open type lab-scale reactor with-out lixiviation. (Author)

  20. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent.

    Science.gov (United States)

    Wang, Ke; Mao, Hailong; Li, Xiangkun

    2018-02-01

    The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system. Copyright © 2017. Published by Elsevier Ltd.

  1. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge base compost

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M. J.; Ingelmo, F.; Soriano, M. D.; Gallardo, A.; Lapena, L.

    2009-07-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. since the chemical form of the metal in the sewage sludge-based compost depends on the effect of stabilization and maturation of the organic material during composting, the objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals in a mixture of ADSS and wood chips (70:30 on wet basis) with an initial C/N ratio of 30.4, during its aerobic batch composting at 30 degree centigrade of external temperature in an open type lab-scale reactor with-out lixiviation. (Author)

  2. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  3. Assessment of co-composting of sludge and woodchips in the perspective of environmental impacts (EASETECH)

    DEFF Research Database (Denmark)

    Zhao, Yan; Lu, Wenjing; Damgaard, Anders

    2015-01-01

    To reveal potential impacts to environment and human health quantitatively, co-composting and utilization of sludge and woodchips were investigated using a life-cycle-based model, EASETECH. Three scenarios were assessed through experiments using different material ratios. Emission amounts during ...... rather than farming. Trace gaseous compounds showed marginal impacts to global warming and toxicity categories. The results provide a new perspective and offer evidence for appropriate sludge treatment selection.......To reveal potential impacts to environment and human health quantitatively, co-composting and utilization of sludge and woodchips were investigated using a life-cycle-based model, EASETECH. Three scenarios were assessed through experiments using different material ratios. Emission amounts during co...... of phosphorus substitution. With the application of fewer woodchips, impacts to acidification and terrestrial eutrophication decreased because more ammonium was reserved rather than released. All impacts to human toxicity were not significant (8.2. ±. 0.6 PE) because the compost was used for urban landscaping...

  4. Heavy metals and yield of cowpea cultivated under composted tannery sludge amendment

    Directory of Open Access Journals (Sweden)

    Iuna Carmo Ribeiro Gonçalves

    2014-04-01

    Full Text Available The study aimed to evaluate the phytoavailability of heavy metals (Cr, Cd, Ni and Pb concentrations in leaves and grains, and yield of cowpea (Vigna unguiculata L grown in soil amended with composted tannery sludge (CTS for two consecutive years. The experiments were carried out in 2009 and 2010 in soil amended with CTS at 0, 5, 10, 20, and 40 Mg ha-1. The CTS amendment rates applied were above 10 Mg ha-1, increased Cr concentrations in cowpea leaves. There were not increases in the heavy metals concentrations in cowpea grains after two years. In 2009, the application of CTS amendment did not promote increase in plant yield. However, in 2010, CTS amendment at 10 and 20 Mg ha-1 increased cowpea yield. The amendment of composted tannery sludge linearly increased linearly the concentration of Cr in the leaves of cowpea after two years. Composted tannery sludge promoted increases in cowpea yield.

  5. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  6. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    Science.gov (United States)

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Odor composition analysis and odor indicator selection during sewage sludge composting.

    Science.gov (United States)

    Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua

    2016-09-01

    On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation

  8. Odor composition analysis and odor indicator selection during sewage sludge composting

    Science.gov (United States)

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index

  9. STABILIZATION OF DEWATERED SEWAGE SLUDGE BY AEROBIC COMPOSTING METHOD: USING SAWDUST AS BULKING AGENTS

    Directory of Open Access Journals (Sweden)

    A PARVARESH

    2002-12-01

    Full Text Available Introduction. Sludge production from municipal wastewater treatment plants should have quality standards before disposal in to the environment. Environmental specialists classified sewage sludge as a hazardous waste because of high organic compounds and pathogenic microorganisms. They belive that sewage should be stabilized before disposal and so composting of sewage sludge is an effective and economical method to stabilize. Sewage sludge compost could be used to improve soil structure and enrich the soil with nutrients. Methods. To evaluate the optimum conditions of aerobic compost, the mixture of dewatered sewage sludge from Isfahan municipal waste water treatment plant and sawdust as bulking agent were used. Pilot scale study were performed in Isfahan municipal waste water treatment plant. To perform this research project, the dewatered sewage sludge with humidity between 78 to 82 percent were mixed with sawdust. Turning over method of the piles with one week interval were applied to aerate the mixture. Temperature of the piles were monitored at different depths daily. Other parameters such as N, G, organic matters and pH were determined weekly. Total and fecal coli form, and salmonella were determined at the beginning and end of the composting process, also heavy metals were measured at the same time. Results. The results of this study showed that after days, temperature of the mixture reached up to 55 G, and were stabled for 15 days. Humidity, organic matter, organic carbon and GIN ratio of the mixture decreased over the period of the study, due to increasing the temperature. Also organic matter and humidity mainly decreased in thermofilic phase. The number of total and fecal coliform and also salmonella decreased to A class standards of US.EPA at the end of the operation. Discussion. The results of the study also showed that, this type of composting method is reliable, and simple to schedule, with high flexibility and low odor

  10. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-06-15

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible

  11. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-01-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  12. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-07-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  13. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  14. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    Science.gov (United States)

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Olive mill wastewater sludge from evaporation ponds: evolution of physico-chemical parameters during storage and composting process.

    Science.gov (United States)

    Abid, N; Aloui, F; Dhouib, A; Sayadi, S

    2006-02-01

    The evolution of analytical parameters of olive mill waste water sludge stored in evaporation ponds was investigated after one year and two years of storage. It was observed that some of the phenolic monomer compounds resisted removal and the fraction of water soluble phenols was only slightly polymerised. Co-composting of the sludge was carried out with yard trimming as bulking agent ratio and poultry manure to balance the C/N. Three turned piles with three proportions of 35%, 65% and 80% of olive mill waste water sludge were prepared. Co-composting of the sludge was possible in all the cases. Best results were obtained, however, at a proportion of 35% which permitted a shorter composting time, a higher degree of nitrification and a higher rate of total phenols decreasing. A high polymerisation of the fraction of water soluble phenols was observed at the end of composting in all the piles.

  17. Non-destructive quantification of water gradient in sludge composting with Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Duval, F.P.; Quellec, S.; Tremier, A.; Druilhe, C.; Mariette, F.

    2010-01-01

    Sludge from a slaughter-house wastewater plant, and mixtures of bulking agent (crushed wood pallet) and sludge were studied by Nuclear Magnetic Resonance (NMR). The NMR spin-spin relaxation (T 2 ) and spin-lattice relaxation (T 1 ) signals for sludge, wet crushed wood pallet and mixtures of sludge and bulking agent were decomposed into three relaxation time components. Each relaxation time component was explained by a non-homogeneous water distribution on a microscopic length scale and by the porosity of the material. For all samples, the T 2 relaxation time value of each component was directly related to the dry matter content. The addition of wet crushed wood to sludge induced a decrease in the relaxation time, explained by water transfer between the sludge and the wood. Magnetic Resonance Imaging (MRI) and respirometric measurements were performed on sludge and wood mixtures. MR images of the mixtures were successfully obtained at different biodegradation states. Based on specific NMR measurements in an identified area located in the MRI cells, the results showed that grey levels of MR images reflected dry matter content. This preliminary study showed that MRI would be a powerful tool to measure water distribution in sludge and bulking agent mixtures and highlights the potential of this technique to increase the understanding of sludge composting.

  18. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.

    Science.gov (United States)

    Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción

    2018-06-01

    Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable

  19. Domestic sewage sludge composting in a rotary drum reactor: optimizing the thermophilic stage.

    Science.gov (United States)

    Rodríguez, Luis; Cerrillo, María I; García-Albiach, Valentín; Villaseñor, José

    2012-12-15

    The aim of this paper was to study the influence of four process variables (turning frequency, gas-phase oxygen level, type of bulking agent and sludge/bulking agent mixing ratio) on the performance of the sewage sludge composting process using a rotary drum pilot scale reactor, in order to optimize the thermophilic stage and reduce the processing time. Powdered sawdust, wood shavings, wood chips, prunings waste and straw were used as bulking agents and the thermophilic stage temperature profile was used as the main indicator for gauging if the composting process was developing correctly. Our results showed that a 12 h(-1) turning frequency and an oxygen concentration of 10% were the optimal conditions for the composting process to develop. The best results were obtained by mixing the sewage sludge with wood shavings in a 3:1 w/w ratio (on a wet basis), which adapted the initial moisture content and porosity to an optimal range and led to a maximum temperature of 70 °C being reached thus ensuring the complete removal of pathogens. Moisture, C:N ratio, pH, organic matter, heavy metals, pathogens and stability were all analysed for every mixture obtained at the end of the thermophilic stage. These parameters were compared with the limits established by the Spanish regulation on fertilizers (RD 824/2005) in order to assess if the compost obtained could be used on agricultural soils. The right combination of having optimal process variables combined with an appropriate reactor design allowed the thermophilic stage of the composting process to be speeded up, hence obtaining a compost product, after just two weeks of processing that (with the exception of the moisture content) complied with the Spanish legal requirements for fertilizers, without requiring a later maturation stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  1. Composting plant of sewage sludges in Calles, Valencia (Spain); Planta de compostaje de fangos en la localidad de Calles (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Jimenez Sanchez, J.; Zorrilla Soriano, F.; Manuelcandela, V.

    2000-07-01

    This article explains the operation of the composting plant of muds of residual waters in the location of Calles, in Valencia. Through the composting, the sludge is transformed in wet material. This process is developed by aerobic thermopile fermentation of the organic fraction of the muds. The composting is a biological process aerobic and thermopile by decomposition of organic waste in solid phase and in controlled conditions. (Author)

  2. Effect of operation conditions on ammonia evolution in isothermal composting of sewage sludge

    International Nuclear Information System (INIS)

    Nishimura, Koichi; Watanabe, Hiromasa; Hashimoto, Shoji; Kawakami, Waichiro

    1985-07-01

    In the isothermal composting of sewage sludge, influences of operation conditions on NH 3 evolution were studied to obtain informations on the sludge deodorization during composting. The pattern of CO 2 evolution from the sludge was not affected by the aeration rate or the bulking agent. On the other hand, the pattern of NH 3 evolution was affected by the fermentation condition and the overall weight ratios of C in CO 2 to N in NH 3 , CO 2 -C/NH 3 -N in the total gas evolved varied with fermentation time. The ratios approached to almost constant values ranging from 5 to 7 in earlier stages at higher aeration rate or temperature. These facts mean that the change of NH 3 evolution pattern with fermentation conditions is due to NH 3 absorption by the sludge and the bulking agent, and actually, the NH 3 generation is a simultaneous process with CO 2 generation. Therefore, deodorization by composting can be completed at the end of fermentation. (author)

  3. Elimination of Linear Alkylbenzene Sulfonate (LAS) and soap during composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Prats, D.; Rodriguez, M.; Muela, M.A.; Llamas, J.M.; Moreno, A.; Ferrer, J. De; Berna, J.L.

    2003-07-01

    The composting plant uses a variety of agricultural residue and sludge from nearby wastewater treatment plants. The results obtained indicate a very high removal of LAS (>97%) in a very short period of time while the removal of soap was substantially lower (32%) as well as the elimination of TOC (total organic matter). The average half life of LAS in the process was between 6 and 9 days which is very short compared to the average residence time of the feed in the composting process (40 days). (author)

  4. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose.

    Science.gov (United States)

    Meng, Liqiang; Zhang, Shumei; Gong, Hainan; Zhang, Xiancheng; Wu, Chuandong; Li, Weiguang

    2018-04-01

    The effects of spent mushroom substrate (SMS) and sucrose (S) amendment on emissions of nitrogenous gas (mainly NH 3 and N 2 O) and end products quality of sewage sludge (SS) composting were evaluated. Five treatments were composted for 20 days in laboratory-scale using SS with different dosages of SMS and S, without additive amended treatment used as control. The results indicated that SMS amendments especially combination with S promoted dehydrogenase activity, CO 2 production, organic matter degradation and humification in the composting, and maturity indices of composting also showed that the 30%SMS+2%S treatment could be much more appropriate to improve the composting process, such as total Kjeldahl nitrogen, nitrification index, humic acids/fulvic acids ratio and germination index, while the emissions of NH 3 and N 2 O were reduced by 34.1% and 86.2%, respectively. These results shown that the moderate addition of SMS and S could improve the compost maturity and reduce nitrogenous gas emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  6. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  7. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  8. Degradation kinetics of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge during composting

    International Nuclear Information System (INIS)

    Cheng, H.-F.; Kumar, Mathava; Lin, J.-G.

    2008-01-01

    The potential degradation of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge by composting was investigated using laboratory reactor at different operating conditions (E-1, E-2 and E-3). In all conditions, single stage thermophilic phase was observed within 2 days and almost, 60% of DEHP was degraded under this phase. At the end of composting, total DEHP degradation of more than 85% was observed in all conditions and total carbon reduction was 11.8% in E-1, 7.6% in E-2 and 10.8% in E-3. Similar trend was observed in the degradation of total nitrogen. The reduction of volatile solids (VS) in the composting reactors was 5.4% in E-1 (18 days), 5.5% in E-2 (12 days) and 4.3% in E-3 (18 days). The degradation kinetics of DEHP in thermophilic phase (including initial mesophilic phase) and the phase there after were determined by first order and fractional power kinetics, respectively. The significance of experimental parameters in DEHP degradation was assessed by Pearson correlation approach. Elevated temperature produced during composting was effective for the rapid degradation of DEHP from sewage sludge compared to mesophilic treatment

  9. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di

    2013-01-01

    Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.

  10. Behavior and fate of heavy metals in the composting of industrial tannery sludge

    International Nuclear Information System (INIS)

    Mahdi Ahmed; Azni Idris; Omer, S.R.S.

    2007-01-01

    It is known that heavy metals, when in high enough concentrations, have the potential to be both phyto toxic and zoo toxic. Heavy metals are frequently found as contaminants in tannery sludge. Any sludge that is subsequently segregated for composting theoretically has the potential to retain the possible contamination. To date, there have been a limited number of publications addressing this issue. most reports have concentrated on the types of heavy metals found in the composting process. As such, this investigation aimed to identify the fate of chromium, cadmium, copper, lead and zinc, concentrations in tannery sludge throughout a fifty day composting cycle. The results of this study showed a general increase in the removal of Cr, Cd, Pb and to a much smaller extent Zn and Cu, evident by a decrease in their overall concentrations within the solid fraction of the final product, by 38.5, 33.3, 31.2, 22.6 and 11.8 percent respectively. (author)

  11. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.

    Science.gov (United States)

    Barrena, Raquel; Pagans, Estel la; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni

    2007-06-01

    Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI(T)) and at 37 degrees C (SRI(37)). Notably, SRI(T) values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.

  12. Composting Used as a Low Cost Method for Pathogen Elimination in Sewage Sludge in Mérida, Mexico

    Directory of Open Access Journals (Sweden)

    Rafael Rojas-Herrera

    2013-07-01

    Full Text Available Spreading sewage sludge from municipal wastewater (MWW treatment on land is still a common practice in developing countries. However, it is well known that sewage sludge without special treatment contains various pollutants, which are (reintroduced into the environment by sludge landspreading and which might in turn have harmful effects on the environment and human health. This is more dangerous in places like Merida, Mexico, where soil is calcareous with fractures along the ground and thin layers of humus. Consequently, any liquid and semisolid wastes have the potential of percolating to the subsurface and contaminate the aquifer. The main aim of this work was using composting as a low cost process to eliminate pathogens contained in sewage sludge from MWW treatment in order to use the final product for land spreading in a safe way for both environment and human health. Two piles for composting process at real scale were settled using a mixture of sewage sludge from municipal waste water and green waste. Composting was carried out by windrow process and it was monitored during four weeks. Concentration of helminth eggs, salmonella and faecal coliforms were measured twice a week to observe its behavior and, as a control process, Temperature, Moisture Content (MC, and pH were also measured. After 30 days of composting sludge from municipal waste water system, salmonella was eliminated by 99%, faecal coliforms by 96% and helminth eggs by 81%. After 3 months compost reached GI = 160%, so did not show any phytotoxicity to seeds.

  13. Color pollution control in textile dyeing industry effluents using tannery sludge

    Directory of Open Access Journals (Sweden)

    Sajjala Sreedhar Reddy

    2008-12-01

    Full Text Available Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents. As an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge was used as an adsorbent for dyestuff removal from simulated textile dying industry effluent in this study. The color removal performance of tannery sludge derived activated carbon and commercial coal based activated carbon has been investigated using parameters such as adsorbent dosage, initial dye concentration, pH and temperature. It was found that tannery sludge derived activated carbon exhibits dye removal efficiency that is about 80–90 % of that observed with commercial coal based activated carbon. The amount of dye adsorbed on to tannery sludge derived activated carbon is lower compared with commercial activated carbon at equilibrium and dye adsorption capacity increased with increase of initial dye concentration and temperature, and deceasing pH. It was found that the Langmuir isotherm appears to fit the isotherm data better than the Freundlich isotherm. The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances.

  14. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    Science.gov (United States)

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    Science.gov (United States)

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Assessment of heavy metal pollution with applications of sewage sludge and city compost for maximizing crop yields

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Ramachandran, V.; Raghu, K.

    1997-01-01

    Land application of municipal sewage sludge and city compost as organic manures make it imperative to assess heavy-metal pollution in soils and crops. Greenhouse experiments, conducted on maize in a vertisol and an ultisol amended with various doses of dry sewage sludge and city compost from Mumbai, indicated significant increases in dry matter-yields only in the vertisol. Significantly higher concentrations of Zn, Cu, Co, Pb, Ni and Cd were obtained in plants grown in the amended ultisol, but not in the amended vertisol. As Cd is the most toxic, experiments were conducted with four contrasting soils amended with varying doses of Cd-enriched sewage sludge and city compost. Results showed significant reductions in dry-matter yields of maize shoots at the higher rates of sludge or compost in the ultisol and an alfisol, but with no significant effects in the vertisol or an entisol. The levels of Cd and Zn were significantly elevated in plants in all four soil types. There were negative residual effects from the sludge and compost amendments: dry-matter yields of a succeeding maize crop were decreased in the ultisol and alfisol. Experiments with soils amended with sludge enriched with either Cd or Zn at 80 mg kg -1 indicated significant reductions in dry matter in all soils with Cd, but not with Zn. The results demonstrate that sewage sludges and city composts may be effectively used for maximizing crop yields, especially in vertisols and entisols. However, caution has to be exercised when using sludges containing even relatively low levels of Cd, or high levels of Zn, depending upon soil type. (author)

  17. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  18. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    International Nuclear Information System (INIS)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-01-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications

  19. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    Science.gov (United States)

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  20. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  1. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    Science.gov (United States)

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  2. Ultrahigh performance composting of sludge from food industry-comparative study of fermentation in sawdust and paper mixing methods

    International Nuclear Information System (INIS)

    Hassan, A.; Masanori, M.; Mizuho, M.; Hiroe, K.; Shahjahan, M.M.; Tohru, H.; Hori, H.

    2005-01-01

    We succeeded to develop an ultra high performance composting system for food industrial sludge by employing paper mixing method. Sludge was mixed with cut pieces (3 x 12 mm) of waste paper, like newspapers, in the range of 10-20 % (w/w) in an electric mixer to enhance the porosity and reduce water content of the mass. We followed conventional way of sawdust mixing as control. The mixture was subjected to aeration at room temperature with an electric blower at 86 L/min/m/sup 2/ bottom area of bio-reactor. The composting process completed in 10 days, in contrast to the conventional cases where it takes 60 to 90 days to complete composting, thereby reducing the time course 6 to 9 fold. Chemical analyses of the compost showed concentration nitrogen (N) 5.0%, phosphorus (P) 4.9% and potassium (K) 0.6% while all heavy metal contents were below the standard required level. The compost showed pH 7.1, EC 5.6 and C/N ratio 8. We analyzed for nitrogen release into the soil and efficacy on the germination and growth of Brassica Tapa L. the compost showed markedly good effect on the growth of the plantlets. The present study demonstrated that the paper-mixed composting method is highly efficient and energy saving. In addition, this method can lead to design a reactor which is compact but with very high capacity to convert municipal organic waste to compost. (author)

  3. Fecal sludge management in developing urban centers: a review on the collection, treatment, and composting.

    Science.gov (United States)

    Odey, Emmanuel Alepu; Li, Zifu; Zhou, Xiaoqin; Kalakodio, Loissi

    2017-10-01

    The problems posed by fecal sludge (FS) are multidimensional because most cities rapidly urbanize, which results in the increase in population, urban settlement, and waste generation. Issues concerning health and waste treatment have continued to create alarming situations. These issues had indeed interfered with the proper steps in managing FS, which contaminates the environment. FS can be used in agriculture as fertilizer because it is an excellent source of nutrients. The recent decline in crop production due to loss of soil organic component, erosion, and nutrient runoff has generated interest in the recycling of FS into soil nutrients through stabilization and composting. However, human feces are considerably liable to spread microorganisms to other persons. Thus, sanitation, stabilization, and composting should be the main objectives of FS treatment to minimize the risk to public and environmental health. This review presents an improved FS management (FSM) and technology option for soil amendment that is grouped into three headings, namely, (1) collection, (2) treatment, and (3) composting. On the basis of the literature review, the main problems associated with the collection and treatment of FS, such as inadequate tools and improper treatment processes, are summarized, and the trends and challenges that concern the applicability of each of the technologies in developing urban centers are critically reviewed. Stabilization during pretreatment before composting is suggested as the best method to reduce pathogens in FS. Results are precisely intended to be used as a support for decisions on policies and strategies for FSM and investments for improved treatment facilities.

  4. CHROMIUM IN SOIL ORGANIC MATTER AND COWPEA AFTER FOUR CONSECUTIVE ANNUAL APPLICATIONS OF COMPOSTED TANNERY SLUDGE

    Directory of Open Access Journals (Sweden)

    Mara Lucia Jacinto Oliveira

    2015-02-01

    Full Text Available Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr, which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L. was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS. Over a four-year period, CTS was applied on permanent plots (2 × 5 m and incorporated in the soil (0-20 cm at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis. These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.

  5. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    International Nuclear Information System (INIS)

    Olivier, Romain; Staudt, Michael; Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline; Fernandez, Catherine

    2011-01-01

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha -1 and 100 Mg ha -1 , in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: → Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. → Compost spreading increased leaf biomass of Q. coccifera. → Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  6. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Romain [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Staudt, Michael [Departement Fonctionnement des Ecosystemes, Centre d' Ecologie Fonctionnelle et Evolutive (CEFE, UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5 (France); Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Fernandez, Catherine, E-mail: catherine.fernandez@univ-provence.fr [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France)

    2011-04-15

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha{sup -1} and 100 Mg ha{sup -1}, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: > Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. > Compost spreading increased leaf biomass of Q. coccifera. > Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  7. Sewage sludges compost and organic fraction urban solid waste from selective collection; Compostaje de lodos de depuradora y FORSU procedente de recogida selectiva

    Energy Technology Data Exchange (ETDEWEB)

    Chica, A.; Diaz, M. M.; Mohedo, J.

    2001-07-01

    The organic fraction of urban solid waste (FORSU) from selective collection has been analysed to make a good quality compost for soils an agricultural use. Different mixtures of FORSU, sludge from the municipal water treatment plant, and pruning garden has been composted in turned windrow. The composting process and the obtained refined compost were characterised. The results on evolution of pH, conductivity, C/N relation, P, metals,-organic matter and recovery yield were related. (Author) 15 refs.

  8. [Effect of bio-charcoal on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application].

    Science.gov (United States)

    Hua, Li; Chen, Ying-xu; Wu, Wei-xiang; Ma, Hong-rui

    2009-08-15

    The effects of bio-charcoal acted as sludge-composting additive on soil characteristics and plant growth were studied. Compared with the treatment of composted sludge without bio-charcoal, soil cation exchange capacity in treatment of composted sludge with bio-charcoal increased over 5% and 10% respectively and soil nitrogen content increased 13% and 18% respectively for two kind soils. The composted sludge with bio-charcoal also resulted in 23% higher enhancement on ryegrass biomass and 8%-10% higher enhancement on ryegrass chlorophyll content. In addition, with the amendment of bio-charcoal, the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in composted sludge was decreased, which resulted in the lower absorption and accumulation of ryegrass to PAHs. Compared with the control, the PAHs concentration in ryegrass amended composted sludge with bio-charcoal decreased 27%-34%. The results indicated that composted sludge with bio-charcoal resulted in much more improvement on the plant growth as well as less negative effect on environment. Therefore, biocharcoal was in favor of the safe land application of sewage sludge.

  9. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.

    Science.gov (United States)

    Milczarek, M; Neczaj, E; Parkitna, K

    2013-01-01

    The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW), sewage sludge, grass and sawdust. Differing proportions of biodegradable waste were investigated through changes of temperature, oxygen consumption, organic matters, moisture content, carbon, nitrogen, C/N ratio as well as heavy metals and pathogen microorganisms content. The present study has shown that addition of MSW above 10% had a negative impact on the composting process. The initial C/N of the mixtures with a higher MSW content was below 18. Lower losses of organic matter occurred during composting for the mixture with the highest addition of MSW. Although studies have shown that composting is a good method for the disposal of organic waste additional research is required in order to optimize the organic and nitrogen compounds degradation during the co-composting process. In conclusion, a 1:4:4:1 mixture of MSW:sewage sludge:grass:sawdust is recommended because it can achieve high temperature as well as the highest organic matter degradation and highest N content in the final composting product. The concentration of heavy and light metals in all composts was within the limits of regulation of the Polish Minister of Agriculture and Rural Development.

  10. Composting of pig manure and forest green waste amended with industrial sludge.

    Science.gov (United States)

    Arias, O; Viña, S; Uzal, M; Soto, M

    2017-05-15

    The aim of this research was to study the composting of chestnut forest green waste (FGW) from short rotation chestnut stands amended with sludge resulting from the manufacture of Medium Density Fibreboard (MDFS) and pig manure (PM). Both FGW and MDFS presented low biodegradation potential but different characteristics in granulometry and bulk density that make its mixture of interest to achieve high composting temperatures. PM decreased the C/N ratio of the mixture and increased its moisture content (MC). Three mixtures of MDFS:FGW at volume ratios of 1:1.3 (M2), 1:2.4 (M3) and 0:1 (M4) were composted after increasing its MC to about 70% with PM. A control with food waste (OFW) and FGW (1:2.4 in volume) (M1) was run in parallel. Watering ratios reached 0.25 (M1), 1.08 (M2) 1.56 (M3) and 4.35 (M4) L PM/kg TS of added solids wastes. Treatments M2 and M3 reached a thermophilic phase shorter than M1, whilst M4 remained in the mesophilic range. After 48days of composting, temperature gradients in respect to ambient temperature were reduced, but the mineralization process continued for around 8months. Final reduction in total organic carbon reached 35-56%, depending mainly on the content in MDFS. MDFS addition to composting matrices largely reduced nitrogen losses, which range from 22% (M2) to 37% (M3) and 53% (M4). Final products had high nutrient content, low electrical conductivity and low heavy metal content which make it a valuable product for soil fertilization, right to amend in the chestnut forests and as a pillar of their sustainable management. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. THE EFFECT OF COMPOST MADE WITH SEWAGE SLUDGE ON HEAVY METAL CONTENT IN SOIL AND IN LOLIUM MULTIFLORUM LAM.

    Directory of Open Access Journals (Sweden)

    Elżbieta Malinowska

    2016-07-01

    Full Text Available The aim of this paper is to assess the effects of different doses of sewage sludge compost mixed with wheat straw on heavy metal content in Italian ryegrass and in soil. A two year experiment with the Italian ryegrass was set up in autumn 2012. The experimental design consisted of a control plot, a plot with NPK fertiliser and three plots with three different doses of municipal sewage sludge compost (5, 10 and 15 Mg of fresh matter·ha-1. Those different compost doses contained the amounts of Nitrogen equivalent to 60, 120 and 180 kg N·ha-1. The two lower doses of compost were supplemented with nitrogen fertiliser so that the amount of this chemical element introduced to the soil of all plots with compost stood at 180 kg·ha-1. During 2013 and 2014 seasons the grass was cut three times a year after about a 30-day growing period. After dry mineralisation the content of Zn, Cu, Ni, Pb and Cd in the plant samples was measured with the ICP-AES method. The fertilisers applied significantly diversified the content of chemical elements in the grass and in the soil. The highest dose of compost resulted in the highest concentration of Zn, Cu and Cd in the grass while the highest concentration of Ni and Pb was in the soil and the grass from the plot where the mid dose of compost had been applied. Cadmium concentration in the soil was the highest in the plot where the mid dose was applied. The experiment proved that compost made with sewage sludge and wheat straw is beneficial for plants.

  12. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    Science.gov (United States)

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha -1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  13. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Science.gov (United States)

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    Science.gov (United States)

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of

  15. Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration

    International Nuclear Information System (INIS)

    Rosa, Edson V.C.; Giuradelli, Thayse M.; Correa, Albertina X.R.; Roerig, Leonardo R.; Schwingel, Paulo R.; Resgalla, Charrid; Radetski, Claudemir M.

    2007-01-01

    The short term (eco)toxicity potential of fresh and stabilized textile sludges, as well as the short term (eco)toxicity of leachates obtained from both fresh and stabilized textile sludges, was evaluated by a battery of toxicity tests carried out with bacteria, algae, daphnids, fish, earthworms, and higher plants. The (eco)toxicological results showed that, after 120 d of stabilization, the experimental loading ratio of 25% sludge:75% soil (v/v) (equivalent to 64.4 ton/ha) did not significantly increase toxicity effects and increased significantly the biomass yield for earthworms and higher plants. The rank of biological sensitivity endpoints was: Algae ∼ Plant biomass > Plant germination ∼ Daphnids > Bacteria ∼ Fish > Annelids. The lack of short term toxicity effects and the stimulant effect observed with higher plants and earthworms are good indications of the fertilizer/conditioner potential of this industrial waste, which after stabilization can be used in the restoration of a non-productive forest soil. - Short term ecotoxicity evaluation of textile sludge showed that stabilized sludge can be used in the restoration of a non-productive forest soil

  16. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  17. Stabilization of industry sludge by composting for use as an organic fertilizer

    Science.gov (United States)

    Elia Ruda, Ester; Mercedes Ocampo, Ester; Acosta, Adriana; Mongiello, Adriana; Olmos, Graciela

    2013-04-01

    The effluent treatment plant having PBLEINER SA food industry produces sludge coming from aerobic treatment reactors. The research team FIQ-UNL evaluated the feasibility of their use for the production of organic fertilizers as part of an environmental management problem to reduce the volume of sludge to be moved to land farming located more than 300 km of the plant. The mean values of the variables analyzed in the sludge were the following: carbon: 23.7 %, nitrogen: 7.83 %, pH: 7.36, bulk density: 0.722 g.cm-3, actual density: 1.76 g.cm-3, porosity: 50.7 %, potassium: 0.242 %, phosphorus: 1.29 %, calcium: 1.84 %, magnesium: 0.364 % and electrical conductivity: 3.51 dS.m-1 (25 °C). The content of heavy metals in sludge is much lower than the limits set by the European Union, USEPA and SENASA for use in agriculture. The mean values of the metals analyzed in the sludge were the following: cadmium: no detected, lead: 18.7 mg.kg-1, zinc 213 mg.kg-1, copper: 40.7 mg.kg-1, nickel: 110 mg.kg-1, chrome: 406 mg.kg-1, mercury: 1.53 mg.kg-1. In this framework it was proposed stabilization of sludge by composting, using sawdust or chips as stabilizing material, with aeration technique in rows with frequent turning and recycling leachate, so as to degrade organic solids humic material for application as a soil conditioner, this is for transformation into a new product to be used as fertilizer. The company provided the physical space and technical staff to assist the research team. This process design is a proposal to improve the waste treatment of an industrial plant, reducing its environmental impact and enabling the use of the resulting product for soil enhancement in the region. Optimizing operating parameters such as kinetics, moisture, temperature, pH, total dissolved solids, nutrient availability, alternative sources of carbon and processing steps, will allow obtaining technical data for the modelling process.

  18. Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Guoxue; Zhang, Bangxi

    2017-12-01

    Sewage sludge and corn stalk were co-composted under different aeration rates 0.12 (AR0.12), 0.24 (AR0.24), 0.36 (AR0.36)L·kg -1 DMmin -1 , respectively. Transformation of humic substance was evaluated by a series of chemical and spectroscopic methods to reveal compost humification. Results showed that aeration rate could significantly affect compost stability and humification process. Humic acid contents in AR0.24 were significantly higher than those in the other two treatments. The final humic acid/fulvic acid ratios in AR0.12, AR0.24 and AR0.36 treatment were 1.0, 1.9 and 0.8, respectively, corresponding to the final E 4 /E 6 of 4.7, 3.2 and 5.5. Moreover, compost in AR0.24 treatment had a high stability degree due to the low C/N atom ratio and high C/H atom ratio. However, it is noteworthy that composting could not significantly affect the structure of HA in a 35-day period. These results indicate that composting with the aeration rate of 0.24L·kg -1 DMmin -1 could accelerated the humification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Wang, Zhe; Wang, Wei; Ren, Nanqi

    2018-05-26

    Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N 2 O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N 2 O related functional genes, resulting in the reduction of cumulative N 2 O emission by 77.04% during 60 days composting. The higher pH and NH 4 + -N, but lower moisture, ORP and NO 2 - -N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N 2 O generation in the initial composting of ED sludge, and the decline of amoA restricted N 2 O production in the curing period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  1. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    International Nuclear Information System (INIS)

    Blazy, V.; Guardia, A. de; Benoist, J.C; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S.

    2014-01-01

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH 3 , 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10 5 to 10 6 is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent

  2. Composting plant of vegetables wastes and sewage sludges in Castesdefells. Plant de compostaje de restos de poda y lodos de depuradora en Castelldefells

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Castelldefells Municipality (Catalonia, Spain) has set up a recycling plant for vegetable wastes mixed with sewage sludge to obtain compost. The plant treats 48.000 m''3/y. of vegetable wastes, and receive 8.000 m''3/y. of sewage sludge. (Author)

  3. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  4. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    Science.gov (United States)

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Research Regarding the Accumulation in Soybeans of Heavy Metals from Anaerobic Composted Sewage Sludge Used as Organic Fertilizer

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2010-10-01

    Full Text Available In sewage sludge from urban wastewater treatment stations can often be find high levels of Ni, Pb, Cu, Zn, Mn andCd. Aerobic or anaerobic composting of this sewage sludge does not eliminate the possibility of bioaccumulation ofthese metals in plants through metabolic processes of phytoextraction type. Researches regarding the accumulationdegree of heavy metals through phytoextraction processes were performed on soybean plants (Glycine max, Condorvariety. Plants were fertilized with anaerobic composted sludge in amounts of 25 t of / ha, 50 t / ha and 100 t / ha.The chemical analysis was done on an average sample of three repetitions. Metal concentration in soybeans wasanalyzed by reporting to the maximum allowance level for sheep, considered one of the most sensitive farm speciesto heavy metal toxicity. Our results showed a higher level than normal with 5.8 mg / kg only in the case of copperions. Zn, Pb, Mn and Cd concentration in soybeans was below the maximum allowance limits set by the rules offeeding farm animals. Also, heavy metal content of soybeans was not affected by the amount of composted sludgeused as fertilizer.

  6. Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment.

    Science.gov (United States)

    Liang, Jieying; Ning, Xun-An; An, Taicheng; Sun, Jian; Zhang, Yaping; Wang, Yujie

    2016-08-15

    This paper reports, for the first time, a combined technique of ultrasound (US) with KMnO4 degradation of aromatic amines in a textile-dyeing sludge. The reaction mechanisms and the degradation kinetics of aromatic amines at various operating parameters (KMnO4 dosage, US power density and pH) were systematically examined by the combined system of US-KMnO4. The results indicated that there was a synergistic effect between US and KMnO4, as US greatly enhanced KMnO4 in the degradation of aromatic amines and exhibited apparent sludge disintegration and separated pollutants from the sludge. In addition to accelerating the Mn(VII) reaction with pollutants in the filtrate, US also caused Mn(VII) to enter the porous sludge and sufficiently facilitated the reaction of the strongly absorbed aromatic amines. The combined treatment of US-KMnO4 was effective in the degradation of aromatic amines in textile-dyeing sludge. On average, 58.7% of monocyclic anilines, 88.3% of other forms of aromatic amines, and 24.0% of TOC were removed under the optimal operating conditions of a KMnO4 dosage of 12mM, an US power density of 1.80W/cm(3) and pH 5. The present study proposed US-KMnO4 treatment as a practical method for the disposal of aromatic amines in textile-dyeing sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The compost with the OFMSW as a solution for the sludges from the wastewater purification plants; Compostaje con FORSU como una solucion para los fangos de depuradora

    Energy Technology Data Exchange (ETDEWEB)

    Chica Perez, A.; Diaz Rubio, M. M.; Mohedo Gaton, J. J.; Martin Martin, A. [Universidad de Cardoba (Spain); Revilla Alvarez, J. R.

    2001-07-01

    The correct management of the sludges coming from the municipal wastewater purification plants (mwpp) is an unsolved problem in many cases and its volume is quickly increasing. As a solution for its treatment and disposal the composting process of the sludges combined with the organic fraction of municipal solid wastes (OFMSW) selectively collected is proposed in this work. A suitable compost for agricultural use is obtained. Using respirometer methods better than using other analytical parameters can monitor the stabilisation process of the mixture of sludges from MWPP and OFMSW. The measurement of the maximum oxygen intake specific rate indicates an appropriate stabilisation of the mixture after third treatment month. (Author) 32 refs.

  8. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  9. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks.

    Science.gov (United States)

    Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza

    2017-07-31

    In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.

  10. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    Science.gov (United States)

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [The stratification of moisture content and its dynamics in co-composting of sewage sludge and pig manure].

    Science.gov (United States)

    Luo, Wei; Chen, Tong-bin; Gao, Ding; Zheng, Yu-qi; Zheng, Guo-di

    2004-03-01

    The experiment of co-composting of sewage sludge and pig manure was studied. The moisture contents were 50.82%-60.87% at the stage of temperature rising and 38.7%-52.17% at the stage of thermophilic fermentation, and the stratification of moisture content were not obvious for both stages because the door, the internal wall and the depth of the composting bay had little effect on the stratification. At the stage of cooling, the moisture content was 24.54%-49.39%, and the stratification of moisture content was remarkable as the door, the internal wall and the depth of the composting bay had great influence on it. At the stage of maturity, the moisture content was 19.18%-49.34%, and the stratification of moisture weakened, for which the door and the internal wall were mainly responsible. At the different composting stage, the degree of difference of moisture content on the profiles of the pile was of the order: maturity stage > cooling stage > thermophilic stage = temperature rising stage, and the moisture content in the pile was as follows: the lower > the middle > the upper. The relation between moisture content and composting time meeted with two-order kinetics equation.

  12. Study of effect of temperature on burning of textile sludge for use as alternative material on civil building

    International Nuclear Information System (INIS)

    Guedes, B.F.R.; Morais, C.R.S.; Altidis, M.E.D.; Lira, B.S.; Morais, S.R.A.

    2011-01-01

    The waste generated by textile industries has been the target of numerous challenges due to their release to the environment without proper treatment. These problems have led many researchers to seek solutions that enable the use of waste as building materials. This study aimed to heat-treat the textile sludge, and evaluate their chemical, mineralogical and structural properties. The textile sludge was calcined in a muffle furnace, a heating rate of 10°C/min and 2 hours stabilization by the following temperatures 400°C, 450°C, 500°C, 550°C and 600°C. It was observed a reduction between 88 and 90% weight, indicating the presence of a large amount of formation water and organic matter. The sludge after calcinations was characterized by techniques such as X-ray diffraction, infrared and chemical analysis. The x-ray spectra showed predominant peaks of silica, which were confirmed by chemical analysis (86% silica). (author)

  13. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6leaching behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Changes in microbial communities in green waste and sewage sludge composts following maturity

    International Nuclear Information System (INIS)

    Albrecht, R.; Ruaudel, F.; Petit, J. Le; Terrom, G.; Perissol, C.

    2009-01-01

    Composting is an interesting way to valorize various bio wastes and is becoming an increasingly used soil amendment. compost is a product obtained after a humification process. However, compost utilization as amendment needs to know precisely its stability and maturity. since composting is mainly a microbial process, knowledge of the various microbial groups and their role in the process of bio-oxidation is essential. (Author)

  15. Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil

    International Nuclear Information System (INIS)

    Vaca-Paulin, R.; Esteller-Alberich, M.V.; Lugo-de la Fuente, J.; Zavaleta-Mancera, H.A.

    2006-01-01

    The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E 4 /E 6 (λ at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil

  16. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Takehisa, M.; Arai, H.; Arai, M.

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users. (author)

  17. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M; Arai, H; Arai, M

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down a fermentor of a composting plant and the process reduces health risk for the workers as well as final users.

  18. Evaluation of biodegradation feasibility through rotary drum composting recalcitrant primary paper mill sludge.

    Science.gov (United States)

    Hazarika, Jayeeta; Khwairakpam, Meena

    2018-04-03

    Primary paper mill sludge (PPMS) is the major waste expelled from the pulp and paper industries contributing soil and water pollution through the recalcitrant organic and inorganic constituents. These pollutants can, however, be transformed into a high-value soil ameliorating material with nominal investment and time. Current study therefore evaluated the potential of rotary drum composting PPMS for 20 days to delineate an environmentally sustainable option. Five trials with proportions of PPMS, cow dung and saw dust: Trial 1 (10:0:0), Trial 2 (8:1:1), Trial 3 (7:2:1), Trial 4 (6:3:1) and Trial 5 (5:4:1) were performed for evaluation of degrading and nutritive ability along with the fate of pollutants for total mass of 150 kg. Trial 4 exhibited highest metabolic activity contributing higher temperature evolution and longer thermophilic phase (10 days) owing to optimum addition of innoculum and nitrogen through the cattle manure. Moreover, degradation of 16.8% organic matter was also best achieved in Trial 4 following up first-order kinetics. Furthermore, BOD, COD and C/N ratio also explains degradation to be maximum in trial 4 (6:3:1) with reduction of 59.3%, 60.1% and C/N ratio from 55.1 to 18 respectively, proving to be the essential determining factors. Phosphorus availability increased by around 67% in trial 4. PPMS can be thus transformed into a potential valued added product and safe for subsequent land application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  20. Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption

    Science.gov (United States)

    Chen, Huixia; Dou, Junfeng; Xu, Hongbin

    2017-12-01

    Sewage sludge compost biomass was used as a novel biosorbent to remove hexavalent chromium from water. Surface area analysis, scanning electron microscopy, fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and point zero charge was applied to study the microstructure, compositions and chemical bonding states of the biomass adsorbent. Effects of contact time, biomass dosage, agitation speed, pH, the initial concentration of Cr(VI) and Cr(Ⅲ) on its adsorption removal were also performed in the batch experiments. A model describing adsorption, desorption and reduction phenomena during the sorption process has been referenced to model Cr(VI) sorption onto sewage sludge compost biomass. The result of characterization test shows that adsorption of Cr(VI) onto sewage sludge compost biomass followed by the partial reduction to Cr(Ⅲ) by biomass groups such as hydroxyl, carboxyl, and amino groups. The absorption kinetics model in the description of adsorption-coupled reduction of Cr(VI) fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The study shows that sewage sludge compost biomass could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.

  1. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    Science.gov (United States)

    Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was

  2. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.

    Science.gov (United States)

    Hachicha, Salma; Sellami, Fatma; Cegarra, Juan; Hachicha, Ridha; Drira, Noureddine; Medhioub, Khaled; Ammar, Emna

    2009-02-15

    Olive mill sludge (OMS), a by-product resulting from natural evaporation of olive oil processing effluent, poses a major environmental threat. A current cost-effective practice of OMS management is composting. A mixture of OMS (60%) with poultry manure (PM) was successfully composted for 210 days. During the process, effluents of olive oil mill and confectionary were used to keep moisture at optimal level (40-60%). Biological indicators reflecting stability of the compost (microbial biota respiration and enumeration, and germination index) were analysed for the assessment of the product quality. The composted mixture showed a high microbial activity with a succession of microbial populations depending on the temperature reached during the biodegradation. The pathogen content from PM decreased with composting as did phytotoxic compounds. Phenols and lipids were reduced, respectively, by 40% and 84% while germination index increased with composting progress. Fourier transform infrared (FTIR) spectroscopic analysis revealed that the final compost improved the aromatic content compared to the starting materials, with a decrease in aliphatic groups and a reduction in the easily assimilated components by the microflora acting during the biological process. The final compost was characterized by relatively high organic matter content (26.21%), a low C/N ratio (16.21), an alkaline pH (8.32), a relatively high electrical conductivity (9.21mS/cm) and a high level of nutrients. The germination index for Lepidium sativum L. was 87.71% after 210 days of composting, showing that the final compost was not phytotoxic.

  3. Composting of sewage sludge from wastewater treatment plant mixed with a recirculated vegetal fraction in two ratios; Compostaje de fangos de E.D.A.R. en pilas con dos proporciones diferentes de estructurante vegetal recirculado

    Energy Technology Data Exchange (ETDEWEB)

    Plana, R.; Dominguez, J. [Universidad de Vigo (Spain); Aguilera, F.

    2002-07-01

    Due to the next European Directives that are being prepared about the waste management, specially about the organic fraction (U. S. W. sewage sludges, pig slurries, etc.) it will be necessary a previous biological treatment of the waste before spreading it on the soil. the current work studies the windrow composting of sewage sludge from an urban wastewater treatment plant mixed with a recirculated vegetal fraction in two different volumetric ratios (2:1 and 1:1). Temperature and oxygen consumption are measured to control the composting process, as well as the turning frequency and the quantity of products that is degradated. Although the process reaches thermofilic temperatures in both windrow, it is showed that in the 2:1 ratio more sludge is proportionally degradated. An economic study of the composting of this sewage sludge in different composting methods (dynamic and semi static) was made. (Author) 7 refs.

  4. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  5. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sludge composting of waste water treatment plant. Compost plant of Vila-Seca (Tarragona); Compostaje de lodos procedentes de la depuracion de aguas residuales. Planta de compostaje de Vila- Seca

    Energy Technology Data Exchange (ETDEWEB)

    Marza Brillas, J.

    1995-12-01

    Composting is a very effective process in waste treatment. Very good results are obtained in mass and volume loss, moisture reduction, organic matter establization as well as making possible agricultural uses for the final product. Some parameters as nutrients (C/N ratio), pH, temperature and oxygen content are pointed as the most important for the process. Some composting systems are mentioned but finally tunnel system is shown as the best. Its great advantage is that measurements from main parameters are given continuously to the control computer, so process optimization is done at the moment. The Vila-Seca sludge composting plant is described. This plant can treat 30.000 tones/year from three water treatment plants. The expected 50% on organic matter reduction and 70% on dry matter content has been achieved after only 3 months since its starting up. Finally, in september 1995 will start the construction of another sludge composting plant were the same technology, belonging to GICOM and represented by G.T.R. in Spain, will be installed.

  7. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  8. COMPARATIVE STUDY OF ORGANIC MATTER DEGRADATION OF COMPOSTED SLUDGE AND SLUDGE LANDFILLED / ETUDE COMPARATIVE DE LA DEGRADATION DE LA MATIERE ORGANIQUE DES BOUES COMPOSTEES ET BOUES MISES EN DECHARGE

    Directory of Open Access Journals (Sweden)

    SLIMANE LAHSAINI

    2016-04-01

    Full Text Available The results of the biotransformation of organic matter for three trials A (500 kg sludge + 400 kg turf + 100 kg of straw, B (1000 kg sludge composted alone, and C (1000 kg sludge landfilled after six months show a good degradation rate for trial A, compared to B, and C. C/N ratio decrease from 30 to 12 for mixture A, from 32 to 19 for B, and from 32 to 24 for C. An important decomposition rate, about 74 %, for mixture A has been reached after six months. The final compost for mixture A exhibited a high concentration (151.7 g·kg-1 of humic substance and a low concentration of heavy metal contents, compared to the AFNOR standard (NF U 44-041. The efficiency of the composting is confirmed by the germination index (GI, which exceeds 90 % for the trial A. However, phytotoxicity for trials B and C remains less important (GI does not exceed 40 %. The results of trial A will open the way for the agricultural use of sludge.

  9. Metal availability in technosols prepared with composted sewage sludge and limestone outcrop affected by the presence of barley

    Science.gov (United States)

    Román, Alejandro; Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume

    2017-04-01

    The use of composted sewage sludge (SSC), and limestone outcrop residue (LOR), is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Both wastes are used to improve the physical, chemical, and biological properties of impoverished soils (Karaca 2004; Jordão et al. 2006; Lovieno et al. 2009). However, the use of compost may have some negative effects on the environment (Navarro-Pedreño et al. 2004; Elridge et al. 2009). Moreover, plants cultivated in technosols can produced changes on the availability of essential and harmful metals and, for this reason, is necessary to made studies to evaluate the availability of metals and the effect of plants in their mobility and toxicity. In this experiment, it has been analyzed the effect of barley in metals availability in four technosols prepared mixing volumes of LOR (100, 98, 95 and 90 %) and SSC (0, 2, 5 and 10%). To determine the solubility and availability, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured by Lindsay-Norvell extraction procedure. For each technosoil, tree pots with barley (three plants) and three without barley were checked after 3 months A of them were irrigated with 1.5 L/week of tap water. At the end of this time, the metal solubility and availability were higher in soils with the presence of barley than the others. This was especially notorious for Fe and Zn. The presence of root exudates and the reduction of lixiviation due to plant transpiration can explain the highest presence of metals. This result may be considered in rhizosphere related to possible metal toxicity. Keywords: compost, limestone outcrop residues, heavy metals, barley. References: Eldridge SM, Chan KY, Barchia I, Pengelly PK, Katupitiya S, Davis JM (2009) A comparison of surface applied granulated biosolids and poultry litter in terms of risk to runoff water quality on turf farms in Western Sydney, Australia. Agr Ecosyst Environ doi:10.1016/j.agee.2009.07.007 Iovieno

  10. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  11. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  12. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  13. Beneficial use of waste nuclear isotopes - 137Cs radiation treatment of municipal sludge and compost

    International Nuclear Information System (INIS)

    Remini, W.C.; Wahlquist, B.J.; Sivinsky, H.D.

    1977-01-01

    For the past several years, the Nuclear Research and Applications Division has been sponsoring, in cooperation with EPA, a program to develop the technology and investigate the potential of using gamma radiation to reduce pathogen levels in sewage sludge. The irradiation source would be cesium-137 which has been extracted from the reactor wastes and diverted to this use. It would be used in this irradiation process until its source strength had decayed to the point that it was no longer effective. At that point, it would be transferred for disposal. This sludge irradiation program is a part of a larger effort to develop beneficial uses of individual isotopes or combinations of isotopes contained in the reactor wastes. Such potential applications include strontium-90 for power generation in remote applications, extraction of platinum family metals to help alleviate demands on foreign supplies, and use of krypton-85 in self-luminous light sources. Sludge irradiation offers what appears to be near-term benefits and has received the major focus in this program. This summary report reviews the progress and current status in the sludge irradiation program. It reviews the background of the national sludge problem and describes how the irradiation process may be applied to this problem. The two major approaches, wet and dry irradiation, are described and their technical and economic potential is discussed. Finally, the status of on-going efforts to experimentally apply irradiation to sludges are summarized and a projected development plan is outlined. (Auth.)

  14. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting.

    Science.gov (United States)

    Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar

    2017-01-01

    In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model ( R 2  > 0.8006). Degradation of TPH in 1:5 mixing ratio (k 2  = 0.0038 gmg -1 d -1 ; half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k 2  = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.

  15. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N2O emissions and denitrifying gene abundance.

    Science.gov (United States)

    Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli

    2017-12-01

    Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study of effect of temperature on burning of textile sludge for use as alternative material on civil building; Estudo do efeito da temperatura na queima de lodo textil para uso como material alternativo na construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, B.F.R.; Morais, C.R.S.; Altidis, M.E.D.; Lira, B.S.; Morais, S.R.A., E-mail: crislene@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2011-07-01

    The waste generated by textile industries has been the target of numerous challenges due to their release to the environment without proper treatment. These problems have led many researchers to seek solutions that enable the use of waste as building materials. This study aimed to heat-treat the textile sludge, and evaluate their chemical, mineralogical and structural properties. The textile sludge was calcined in a muffle furnace, a heating rate of 10°C/min and 2 hours stabilization by the following temperatures 400°C, 450°C, 500°C, 550°C and 600°C. It was observed a reduction between 88 and 90% weight, indicating the presence of a large amount of formation water and organic matter. The sludge after calcinations was characterized by techniques such as X-ray diffraction, infrared and chemical analysis. The x-ray spectra showed predominant peaks of silica, which were confirmed by chemical analysis (86% silica). (author)

  17. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop.

    Science.gov (United States)

    Mantovi, Paolo; Baldoni, Guido; Toderi, Giovanni

    2005-01-01

    To evaluate the effects of repeated sewage sludge applications in comparison to mineral fertilisers on a winter wheat-maize-sugar beet rotation, a field experiment on a silty-loam soil, in the eastern Po Valley (Italy), was carried out since 1988. Municipal-industrial wastewater sludge as anaerobically digested, belt filtered (dewatered), and composted with wheat straw, has been applied at 5 and 10 Mg DM ha(-1)yr(-1). Biosolids gave crop yields similar to the highest mineral fertiliser dressing. However, with the higher rate of liquid and dewatered sludge, excessive N supply was harmful, leading to wheat lodging and poor quality of sugar beet and wheat crops. From this standpoint compost use was safer. Biosolids increased organic matter (OM), total N, and available P in the soil and reduced soil alkalinity, with more evident effects at the highest rate. Compost caused the most pronounced OM top soil accumulation. Significant accumulations of total Zn and Cu were detected in amended top soil, but no other heavy metals (Cd, Cr, Ni, Pb), whose total concentration remained well below the hazard limits. Biosolid applications significantly increased the content of N, P, Zn, and Cu in wheat grain, N and Cu in sugar beet roots, and only Cu in maize grain. The application of biosolids brought about notable benefits to soil fertility but it was associated with possible negative effects on water quality due to increased P availability and on soil ecology due to Zn accumulation.

  18. Influence of sewage sludge compost applications on uptake of element by cultivated crops in a brown forest soil. Measurement by neutron activation analysis

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Kumagai, Hiroshi; Suzuki, Yuichi; Sakamoto, Kazunori; Inubushi, Kazuyuki; Nogawa, Norio; Kawate, Minoru; Sawahata, Hiroyuki

    2006-01-01

    A field study was conducted to investigate the absorption of various elements into oats and carrots cultivated in brown forest soil after three years' applications of chemical fertilizer and two types of sewage sludge compost mixed with sawdust (SD compost) or rice husk (RH compost). The results obtained in this study are summarized as follows. 1) The application of SD compost led to a significant increase on the concentrations of Mn, Zn, Ag and Ba in oat root, of Zn and Br in oat shoot, of Cl and Zn in oat ears, of Mg, Sc, Mn, Zn, Br, Ba and La in carrot peel, of Mn, Fe, Co and Zn in carrot edible portion and of Na, Sc, Mn, Fe, Co and Sm in carrot shoot. 2) The application of RH compost increased the concentrations of Mn, Zn, and Ag in oat root, of K, Cr, Mn, Zn and Br in oat shoot, of Zn and Br in oat ears, of Mg, Mn and Br in carrot peel, of Cl, Mn, Zn and Br in carrot edible portion and of Na, Mn, Zn, Br and Sm in carrot shoot. (author)

  19. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition.

    Science.gov (United States)

    Koolivand, Ali; Rajaei, Mohammad Sadegh; Ghanadzadeh, Mohammad Javad; Saeedi, Reza; Abtahi, Hamid; Godini, Kazem

    2017-07-01

    The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d -1 and 0.002-0.165gkg -1 d -1 , respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  1. Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage

    Science.gov (United States)

    Alves, David; Mato, Salustiano

    2016-01-01

    In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting

  2. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  3. Composted slaughterhouse sludge as a substitute for chemical fertilizers in the cultures of lettuce (Lactuca sativa L. and radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    José Juscelino de OLIVEIRA

    Full Text Available Abstract Flotation sludge (FS is produced in huge amounts at slaughterhouses in western Santa Catarina, Brazil. This waste is rich in plant nutrients and a valuable resource for soil amendments. Five FS composts were tested as a replacement for chemical fertilizers (QF, namely T1 (75% poultry manure (PM and 25% sawdust (SD; T2 (50% PM and 50% SD; T3 (25% PM and 75% SD; T4 (100% PM and 0% SD; and T5 (0% PM x 100% SD. For lettuce plants, treatments containing composted FS resulted in an increased number of leaves, leaf area and leaf fresh weight (LFW. T1 presented the best results with increases of 1.4 fold in LFW compared to plants supplemented with QF. T2 was the most effective treatment for radish with the best results of root fresh weight and root diameter. Although T4 had the highest nitrogen content, it did not present the best results in growth performance for lettuce or radish. The presence of higher proportions of SD in composts (25% for lettuce and 50% for radish improved the physical characteristics of the soil and proved to be a more balanced compost.

  4. Composting plant for pruning waste and sewage works sludge in Castelldefels (Barcelona, Spain). Planta de compostaje de restos de poda y lodos de depuradora en Castelldefels

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The biological waste water treatment works in Castelldefels (Barcelona, spain) generates 8,000 m''3 of sludge per year. Triturated vegetable remains are added and the mixture left to ferment for 14 days in 8 tunnels measuring 4x4x10 m provided with forced ventilation by 10 ventilators with a capacity for 2,000 m''3/h. Annual production is 8,000 m''3 of compost and 14,000 m''3 of substrates and mould. Fermentation loss is 30%. Process time, including storage, is 100 days.

  5. Social and environmental affection due to the smells from sewage works sludge-tunnel composting; Afectacion socioambiental por olores del compostaje en tuneles de lodos de EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Cid, J.; Mocholi, F.

    2008-07-01

    Quantifying the social odor impact in the surroundings of sludge composting plants is the aim of a methodology developed by Socioenginyeria. Three scientific tools are used: diaries of social perception of annoying odors (intensity and type); field olfactometry with the Nasal Ranger and chemical analysis of representative air currents. The environmental quality indicators obtained make it possible to establish the real contribution of the source of the smell to the perceived nuisance and to assess the performance of its deodorising systems. Similar, it is viable to set up a communication programme with the social receivers affected and to implement targeted corrective measures. (Author)

  6. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Composted sewage sludge (CS is considered a rich source of soil nutrients and significantly affects the physical, chemical, and biological characteristics of soil, but its effect on specific enzyme activity in soil is disregarded. The present experiment examined the absolute and specific enzyme activity of the enzymes involved in carbon, nitrogen, and phosphorus cycles, the diversity of soil microbial functions, and soil community composition in a Fluventic Ustochrept under a maize-wheat rotation system in North China during 2012-2015. Application of CS led to increase in MBC and in its ratio to both total organic carbon (TOC and microbial biomass nitrogen (MBN. Absolute enzyme activity, except that of phosphatase, increased in CS-treated soils, whereas specific activity of all the enzymes declined, especially at the highest dose of CS (45 t ha-1. The diversity of soil microbial community also increased in CS-treated soils, whereas its functional diversity declined at higher doses of CS owing to the lowered specific enzyme activity. These changes indicate that CS application induced the domination of microorganisms that are not metabolically active and those that use resources more efficiently, namely fungi. Redundancy analysis showed that fundamental alterations in soil enzyme activity depend on soil pH. Soil specific enzyme activity is affected more than absolute enzyme activity by changes in soil properties, especially soil microbial activity and composition of soil microflora (as judged by the following ratios: MBC/TOC, MBC/MBN, and TOC/LOC, that is labile organic carbon through the Pearson Correlation Coefficient. Specific enzyme activity is thus a more accurate parameter than absolute enzyme activity for monitoring the effect of adding CS on the activities and structure of soil microbial community.

  7. Role of Ca-bentonite to improve the humification, enzymatic activities, nutrient transformation and end product quality during sewage sludge composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Awasthi, Mrigendra Kumar; Zhao, Junchao; Chen, Hongyu; Ren, Xiuna; Wang, Meijing; Zhang, Zengqiang

    2018-04-10

    This study was aimed to examine the response of Ca-bentonite (CB) amendment to improve the sewage sludge (SS) composting along with wheat straw (WS) as bulking agent. Five treatments (SS + WS) were mixed with or without blending of discrepant concentration of CB (2%, 4%, 6%, and 10%), respectively, and without CB added treatment applied as the control. The results showed that compared to control and 2%CB blended treatments, while the 6-10%CB -amended treatment indicated maximum enzymatic activities with the composting progress and highest organic matter degradation and loss. The amendment of 6-10%CB increased the humic acid, HA/FA ratio, DON, NH 4 + -N, NO 3 and DOC but reduced the fulvic acids content and the maturity period by 2 weeks as compared to control. In addition, maturity parameters also confirmed that the highest seed germination was observed with the 10%CB applied compost followed by 6%CB, 4%CB and 2%CB applied treatments, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit

  9. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum.

    Science.gov (United States)

    Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P

    2016-10-01

    Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.

  10. E-beam Irradiation and Activated Sludge System for Treatment of Textiles and Food Base Industrial Waste Water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakkanu, S.; Jamaliah Sharif

    2011-01-01

    The combination of irradiation and biological technique was chosen to study COD, BOD5 and colour removal from textiles effluent in the presence of food industry wastewater. Two biological treatments, the first consisting a mix of non irradiated textile and food industry wastewater and the second a mix of irradiated textiles wastewater and food industry wastewater were operated in parallel. Reduction percentage of COD in textiles wastewater increased from 29.4 % after radiation only to 62.4 % after further undergoing biological treatment. After irradiation the BOD5 of textiles wastewater reduced by 22.1 %, but reverts to the original value of 36 mg/l after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment. (author)

  11. Mudas de Jasminum mesnyi Hance produzidas com substratos à base de lodo de esgoto compostado Seedlings of Jasminum mesnyi Hance produced in substrates based on composted sewage sludge

    Directory of Open Access Journals (Sweden)

    Maurício B. Scheer

    2012-09-01

    Full Text Available Entre as alternativas de disposição de resíduos urbanos está o reaproveitamento do lodo de esgoto no cultivo de plantas ornamentais e florestais. Objetivou-se, com este trabalho, avaliar o crescimento de Jasminum mesnyi (jasmim amarelo em substratos à base de lodo de esgoto aeróbio compostado com resíduos de podas de árvores trituradas, com diferentes níveis de fertilizante e comparar o desempenho em relação às mudas produzidas em substrato comercial à base de casca de Pinus compostada e vermiculita. Três níveis de fertilizante foram testados (0; 2,7 e 4 g dm-3 em três tipos de substrato: comercial e compostos à base de podas e lodo nas proporções 3:1 (v/v e 2:1 (v/v. Foram mensuradas as seguintes variáveis: somatória do comprimento dos ramos, altura e biomassa aérea seca (folhas e ramos. O crescimento obtido com o uso dos compostos à base de lodo de esgoto foi superior ao obtido com o substrato comercial para todos os níveis de fertilização. Os maiores crescimentos das mudas de jasmim amarelo foram observados com os compostos nas proporções de 3:1 e 2:1 (v/v associados à adição de 4 g dm-3 de fertilizante e com o composto na proporção de 2:1 com a adição de 2,7 g dm-3 de fertilizante.Use of sewage sludge is one of the alternatives for the disposal of urban waste. Sludge can be used for cultivation of ornamental and forest plants. The aim of this study was to evaluate the use of composted substrates based on sewage sludge and crushed tree pruning for the production of Jasminum mesnyi seedlings (Yellow jasmine and to compare growth rates with a commercial substrate based on composted Pinus bark and vermiculite. Three levels of fertilization (0; 2.7 e 4 g dm-3 and three types of substrates were tested: commercial, and 3:1 (v/v and 2:1 (v/v composted substrate based on crushed tree pruning and sewage sludge. Sum of branch length, height and dried aerial biomass (leaves and branches were measured. Growth rates were

  12. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Meijing; Chen, Hongyu; Wang, Quan; Zhao, Junchao; Ren, Xiuna; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-01-01

    This study was performed to investigate the effects of biochar as an amendment to a gaseous emissions and sewage sludge (SS) composting dynamics. Six dosage of biochar [low dosage of biochar (LDB) - 2%, 4% and 6%; and higher dosage of biochar (HDB) - 8%, 12% and 18%] were amended to a mixture of SS and wheat straw (4:1 ratio on dry weight basis) and compared to control or without additive. The HDB significantly reduced CH 4 , N 2 O and NH 3 emission by 92.85-95.34%, 95.14-97.30% and 58.03-65.17%, but not the CO 2 emission. Meanwhile, humification results indicated that humic and fulvic acid 35-42% and 24-28% higher in the HDB amended treatments than those in the LDB and control treatments. The HDB significantly decreased total nitrogen losses and greenhouse gas emission, while LDB had significantly (pemissions. Due to effective performance of HDB, the 12% biochar was recommended to be used in SS composting practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Occupational hygiene of windrow composting. Aumakompostoinnin tyoehygienia

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, K; Wihersaari, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.; Huvio, T; Lundstroem, Y [Helsingin kaupungin vesi- ja viemaerilaitos, Helsinki (Finland); Veijalainen, A [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    1993-01-01

    The occupational air in windrow composting of digested sewage sludge, raw sludge and source separated biowaste was investigated for microbe, endotoxin and dust concentrations and for odour level during turning and sieving of composts. The normal parameters of composting were investigated at the same time. The composting of the source separated biowaste was so vigorous that the drying due to heat generation may have slowed the process. Composting of the digested and the raw sludge took place much more slowly. In all composts, the measured values for heavy metals stayed well below specified norms. The composts were hygienic: no Salmonella bacteria were found in a single sample. The formation of odorous compounds was measured in small composters: more such compounds were formed in the thermophile stage of biowaste composts than in the digested sludge composts. Among the gases that were released, dimethyl sulphide, dimethyl disulphide, e-pinene and limonene clearly exceeded the odour threashould. Endotoxins and dust concentrations in the occupational air were small. Total dust concentrations in the cabs of composting machines at times exceeded the eight-hour HTP concentration for organic dust. Especially in the occupational air of the biowaste and raw sludge composts, the concentrations of bacteria and fungi exceeded 10[sup 2]-10[sup 5] cfu/m[sup 3] during turning. This concentration level may cause respiratory ailments. The identified fungi included members of the genera Aspergillus, Penicillum and Cladosporum, which are associated with allergies. The microbes and dust concentrations measured in this study of windrow composting are comparable to the findings of corresponding studies from other composting plants, landfills and waste treatment plants.

  15. Reasonable management plan of sludge in sewage disposal plant

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Kyu Jin; Koo, Hyun Jung [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The compost method, which is widely used as a sewage disposal recycling in Korea, is now basically impossible to recycle sludge to compost by the Ministry of Agriculture and Forestry announcement. Therefore, the disposal of sludge will be much harder with reducing the amount of sludge used as compost. The amount of sludge other than using as compost is very small, so the development of various sludge recycling and use will be needed with regulations. This study was implemented to help the establishment of sewage sludge recycling policy in Korea. 30 refs., 17 figs., 58 tabs.

  16. COMPARATIVE EVALUATION OF COMMERCIAL AND SEWAGE SLUDGE BASED ACTIVATED CARBONS FOR THE REMOVAL OF TEXTILE DYES FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    S. Sreedhar Reddy, B. Kotaiah

    2006-10-01

    Full Text Available The sorption of dyes from aqueous solutions on to sludge-based activated carbon have been studied and compared with commercial activated carbon. Adsorption parameters for the Langmuir and Freundlich isotherms were determined and the effects of effluent pH, adsorbent dosage, contact time and initial dye concentration were studied. A pseudo-second order kinetic model has been proposed to correlate the experimental data.

  17. Effect of mixed liquor volatile suspended solids (MLVSS and hydraulic retention time (HRT on the performance of activated sludge process during the biotreatment of real textile wastewater

    Directory of Open Access Journals (Sweden)

    Kapil Kumar

    2014-03-01

    Full Text Available Adequate information is available on colour and organics removal in batch mode using pure microbial cultures from dye contaminated wastewater. There was a need to develop environment friendly and cost effective treatment technique for actual field conditions. Therefore, the present study was undertaken with an aim to evaluate the potential of acclimatized mixed microbial consortia for the removal of colour and organics from real textile wastewater. Experiments were performed in laboratory scale activated sludge process (ASP unit under steady state condition, varying mixed liquor volatile suspended solids (MLVSS (2500, 3500 and 5000 mg/l and hydraulic retention time (HRT (18, 24 and 36 h. The results showed that decolourization and chemical oxygen demand (COD removal increased with increase in MLVSS and HRT. At 18 h HRT, decolourization was found to be 46, 54 and 67%, which increased to 67, 75 and 90% (36 h HRT at 2500, 3500 and 5000 mg/l MLVSS, respectively. COD removal was found to be 62, 73 and 77% (at 18 h HRT which increased to 77, 85 and 91% (36 h HRT at 2000, 3500 and 5000 mg/l MLVSS, respectively. On the basis of the results obtained in this study suitable treatment techniques can be developed for the treatment of wastewater contaminated with variety of dyes in continuous mode of operation. This shall have the advantage of treatment of larger quantity of wastewater in shorter duration.

  18. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species.

    Science.gov (United States)

    Rorat, Agnieszka; Suleiman, Hanine; Grobelak, Anna; Grosser, Anna; Kacprzak, Małgorzata; Płytycz, Barbara; Vandenbulcke, Franck

    2016-02-01

    Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.

  19. Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method

    Science.gov (United States)

    Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini

    2017-06-01

    The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.

  20. Residual effect of applying composted sewage sludge to the majority nutrients in an alive grove soil; Efecto residual de la aplicacion de un lodo de depuradora compostado sobre los nutrientes mayoritarios de un suelo de olivar

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez Fernandez, R.; Aguilar Torres, M. A.; Gonzalez Fernandez, P.

    2002-07-01

    The agricultural reuse of sewage sludge is an excellent management option because in addition to the elimination of the residue, from the environment an appreciable amount of nitrogen, phosphorus and some micronutrients are added to the soil. During two successive years 20 Mgha-1of composted sewage sludge was applied to a clay soil of the Campina de Cordoba cropped with olive trees. The concentrations of some of the main nutrients like phosphorus and potassium increased after the amendment. The phosphorus content in the surface soil horizon increased from 2.3 to 9.3 ppm whereas the potassium content increased from 239 to 320 ppm in the same horizon for the same two years period. These results are encouraging for the organic amendment use. (Author)

  1. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    user

    2014-02-12

    Feb 12, 2014 ... Mixtures of oil sludge, garden soil, poultry manure and the bulking agents .... These characteristics have made composting an attractive option to .... sequencing. The PCR was performed using MJ Mini thermal cycler (Bio-Rad, ...

  2. Property and quinone profile analysis of the compost made in Kuriyama town

    OpenAIRE

    森本, 正則; 桑原, 直美; 田中, 尚道; 駒井, 功一郎

    2006-01-01

    [Synopsis] Application of compost made from garbage and bio-sludge show crop growth promoting effect in the field. We have evaluated to a property of the compost made in Kuriyama town (Hokkaido). Kuriyama town have a compost producing facility established in 2004. Mainly, we have evaluated suppression of the plant disease and plant growth promotion by using this compost. Application of this compost had promoted the cucumber growth in dose dependent manner. Application of native compost ...

  3. Composite Compost Produced from Organic Waste

    OpenAIRE

    Lăcătuşu Radu; Căpăţână Romeo; Lăcătuşu Anca-Rovena

    2016-01-01

    The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33%) of...

  4. Removal of heavy metals from sewage sludge by extraction with organic acids

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    1999-01-01

    Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable

  5. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  6. Desenvolvimento inicial e estado nutricional do maracujazeiro em resposta à aplicação de lodo têxtil Development and nutritional status of passion fruit cuttings in response to application of textile sludge

    Directory of Open Access Journals (Sweden)

    Renato de Mello Prado

    2005-06-01

    Full Text Available O processo de tratamento de efluentes líquidos da indústria têxtil gera, como resíduo, um lodo de características orgânicas com concentração significativa de sódio e potássio. Objetivou-se quantificar os efeitos da aplicação do lodo ao solo, sobre o desenvolvimento inicial do maracujazeiro, e avaliou-se o crescimento e o estado nutricional das plantas. O delineamento experimental foi em blocos ao acaso, com quatro repetições de cinco tratamentos, que consistiram na aplicação de lodo têxtil, nas doses de 10, 15, 20 e 30 g vaso-1 (base seca, correspondentes a 10, 15, 20 e 30 t ha-1, respectivamente, além da testemunha sem aplicação do resíduo. As mudas receberam adubação básica com N, P, K, Zn e B, nas doses de 300, 450, 150, 5, e 0,5 mg dm-3, respectivamente. A unidade experimental foi constituída por vasos com 2 dm³ de amostra de um Latossolo Vermelho distrófico (V = 29%. Após 100 dias da semeadura, o lodo têxtil corrigiu a acidez do solo. Entretanto, em doses superiores a 10 t ha-1, promoveu a morte das plantas. O lodo têxtil aumentou os teores de N, K, S, B, Mn e Zn, diminuiu os de Ca e Mg e não alterou os de Cu e Fe da parte aérea das mudas.In the treatment of liquid effluents of the textile industry the textile sludge results as residue. This work aimed at evaluating the effect of sludge application to the substrate of production of passion fruit cuttings in the development, and nutritional status of plants. Experimental design used was randomized blocks with five treatments and four replications. The textile sludge was applied in the doses of 10, 15, 20 and 30 g per pot (dry base, corresponding 10, 15, 20 and 30 t ha-1, respectively, and a control without application. Plants were fertilized with N, P, K, Zn and B at 300, 450, 150, 5, and 0.5 mg dm-3, respectively. The experimental unit was represented by pots with 2 dm³ of a Red Latosol (Oxisol (V = 29%. After 100 days the textile sludge corrected soil

  7. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    OpenAIRE

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; G?mez, Ignacio; Navarro-Pedre?o, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (ne...

  8. Bioremediation of textile effluent polluted soil using kenaf (Hibiscus ...

    African Journals Online (AJOL)

    DR BADA

    Bioremediation of textile effluent polluted soil using kenaf (Hibiscus cannabinus Linn.) and composted ... Lead, Cadmium, Chromium and Zinc levels in plants and soil were determined using Atomic ..... Contaminated land in the EC: Report of ...

  9. Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus ...

    African Journals Online (AJOL)

    Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus cannabinus Linn.) and composted ... Journal of Applied Sciences and Environmental Management. Journal Home ... Twelve-litre plastic pots were filled with 10 kg soil.

  10. Composting of bio solids by composting tunnels; Compostaje de biosolidos mediante tunes de compostado

    Energy Technology Data Exchange (ETDEWEB)

    Varo, P.; Rodriguez, M.; Prats, D.; Soto, R.; Pastor, B.; Monges, M.

    2003-07-01

    The objective of this work is to study the bio-solid composting process carried out in the composting plant of Aspe (Alicante) by means of open composting tunnels, and to determine the quality of the resulting compost. The parameters under control are temperature. humidity, density, pH, conductivity, organic matter, C/N ratio, ammonium nitride and organic nitrogen. The concentrations of cadmium, chromium, nickel, lead and copper were monitored during the composting process. Observing the parameters analyzed we can conclude that the composting process of the sewage sludge from Aspe procedures a product suitable for agricultural use. The values obtained allow the product resulting from the process to be designated as compost. (Author)

  11. Use of Urban composts for the regeneration of a burnt Mediterranean soil

    Energy Technology Data Exchange (ETDEWEB)

    Cellier, A.; Baldy, V.; Ballini, C.; Houot, S.; Francou, C.

    2009-07-01

    In Mediterranean region, forest fires are a major problem towards the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined the effects of three urban composts and their mode of application (laid at the soil surface or buried) on soil restoration after fire: municipal wastes compost (MWC), sewage sludge and green wastes compost (SSC) and, green wastes compost (GWC). (Author)

  12. Compostagem aeróbia conjugada de lodo de tanque séptico e resíduos sólidos vegetais Conjugated aerobic composting of septic tank sludge and vegetable solid waste

    Directory of Open Access Journals (Sweden)

    André Gustavo da Silva

    2008-12-01

    Full Text Available O lodo sanitário, principal subproduto do tratamento de esgotos, constitui um dos maiores problemas ambientais urbanos da atualidade. Em meio a este contexto, objetivou-se nesse estudo avaliar o processo da compostagem conjugada de lodo de tanque séptico (LS e resíduos sólidos vegetais (RV e determinar a importância da temperatura para o processo de sanitização do substrato tratado. O experimento, inteiramente casualizado com três tratamentos e três repetições, consistiu de nove reatores aeróbios com 100 litros de capacidade. Os resíduos foram utilizados nas seguintes proporções - T1: 100% RV; T2: 5% LS + 95% RV; T3: 10% LS + 90% RV. A compostagem aeróbia conjugada mostrou ser uma alternativa viável para destruição de ovos de helminto e estabilização dos resíduos, sendo fundamentais para tal, a temperatura, o pH e as relações ecológicas presentes nos reatores.The sanitary sludge, principal byproduct of sewage treatment, constitutes one of the major municipal environmental problems of the present time. The present study was aimed to evaluate the composting of septic tank sludge (SS and vegetable solid waste (VW and to determine the importance of the temperature for the process of sanitization of the treated substrate. The experiment, entirely randomized with three treatments and three repetitions, constituted of nine aerobic reactors with 100 L capacity. The proportions of the wastes utilized were T1: 100%VW; T2: 5%SS + 95%VW; T3: 10%SS + 90%VW. The conjugated composting showed to be a feasible alternative for destruction of helminth eggs and stabilization of the wastes. The temperature, pH and ecological relations present in the reactors were fundamental for this purpose.

  13. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  14. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    Science.gov (United States)

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  15. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  16. Ultra-performance liquid chromatography MS/MS method for the determination of parabens in compost from sewage sludge: comparison of the efficiency of two extraction techniques.

    Science.gov (United States)

    Benítez-Villalba, Julio César; Zafra-Gómez, Alberto; Dorival-García, Noemí; Camino-Sánchez, Francisco Javier; Cantarero, Samuel; Vílchez, José Luis

    2013-08-01

    The efficiency of two extraction techniques--ultrasound-assisted extraction and pressurized liquid extraction--are compared and evaluated in the determination of parabens in compost samples. The extraction parameters for each technique were accurately optimized. The selected compounds were detected and quantified using ultra-performance LC MS/MS, operating in negative ESI and in SRM mode. The analytes were separated in less than 5 min. Ethylparaben (ring-(13)C6 labeled) was used as an internal standard. Two selective, sensitive, and accurate analytical methods were developed and validated. The LODs of the methods ranged from 3 to 7 ng/g and the LOQs from 10 to 23 ng/g, while inter- and intraday variability was under 6% in all cases. The methods were validated separately by using matrix-matched calibration and recovery assays with spiked samples. Recovery rates ranged from 94.0 to 105.0%. Compost samples were taken from different composting plants. Although the statistical comparison demonstrated no statistically significant differences between the two extraction techniques, the method based on pressurized liquid extraction was more sensitive than the ultrasound extraction based method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Auxetic textiles.

    Science.gov (United States)

    Rant, Darja; Rijavec, Tatjana; Pavko-Čuden, Alenka

    2013-01-01

    Common materials have Poisson's ratio values ranging from 0.0 to 0.5. Auxetic materials exhibit negative Poisson's ratio. They expand laterally when stretched longitudinally and contract laterally when compressed. In recent years the use of textile technology to fabricate auxetic materials has attracted more and more attention. It is reflected in the extent of available research work exploring the auxetic potential of various textile structures and subsequent increase in the number of research papers published. Generally there are two approaches to producing auxetic textiles. The first one includes the use of auxetic fibers to produce an auxetic textile structure, whereas the other utilizes conventional fibres to produce a textile structure with auxetic properties. This review deals with auxetic materials in general and in the specific context of auxetic polymers, auxetic fibers, and auxetic textile structures made from conventional fibers and knitted structures with auxetic potential.

  18. Multiclass method for the determination of pharmaceuticals and personal care products in compost from sewage sludge using ultrasound and salt-assisted liquid-liquid extraction followed by ultrahigh performance liquid chromatography-tandem mass spectrometry analysis.

    Science.gov (United States)

    Luque-Muñoz, A; Vílchez, J L; Zafra-Gómez, A

    2017-07-21

    An analytical method for the analysis of 16 pharmaceuticals and personal care products in compost from sewage sludge is successfully validated. Ultrasound assisted extraction with a mixture of acetonitrile:ethyl acetate (1:1, v/v) containing 10% (v/v) of acetic acid was carried out. Two cycles of extraction of 10min were applied. A clean-up of the extracts using salt-assisted liquid-liquid extraction (SALLE) was also included. Experimental design was used for the optimization of the main parameters involved in the extraction and cleaned-up steps. The chromatographic separation was carried out by ultrahigh performance liquid chromatography using a mobile phase gradient mixture of a 13mM buffer ammonium formate solution (pH 9.25) (solvent A) and methanol (solvent B). An ACQUITY UPLC ® BEH C18 column (1.7μm; 2.1×50mm) column was used. Analytes were separated in less than 11min. The compounds were detected and quantified using single reaction monitoring electrospray tandem mass spectrometry. The limits of detection calculated ranged from 0.5 to 4ngg -1 d.w., and the limits of quantification from 2 to 13ngg -1 d.w. Recoveries from 93% to 111%, with relative standar deviations lower than 11% in all cases, were obtained. The method was applied to natural compost samples. High concentrations of some analytes were found. Ketoprofen (510ngg -1 d.w.), methylparaben (240ngg -1 d.w.), diclofenac (175ngg -1 d.w.) and flufenamic acid (128ngg -1 d.w.) were the most abundant. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  20. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  1. Stability measurements of compost trough electrolytic respirometry

    International Nuclear Information System (INIS)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-01-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  2. Ammonia emissions from the composting of different organic wastes : dependency on process temperature

    OpenAIRE

    Pagans i Miró, Estel·la

    2006-01-01

    Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wast...

  3. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    Science.gov (United States)

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Future Textiles

    DEFF Research Database (Denmark)

    Hansen, Anne-Louise Degn; Jensen, Hanne Troels Fusvad; Hansen, Martin

    2011-01-01

    Magasinet Future Textiles samler resultaterne fra projektet Future Textiles, der markedsfører området intelligente tekstiler. I magasinet kan man læse om trends, drivkræfter, udfordringer samt få ideer til nye produkter inden for intelligente tekstiler. Områder som bæredygtighed og kundetilpasning...

  5. Antibacterial textiles

    NARCIS (Netherlands)

    Amrit, Usha

    2015-01-01

    The aim of this thesis was the antibacterial functionalization of textiles and its application in professional laundries. The antibacterial functionalization was meant for the various textile packages lent out by the laundry companies to their customers from hotels, hospital or food industries. The

  6. Textile Architecture

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2010-01-01

    Textiles can be used as building skins, adding new aesthetic and functional qualities to architecture. Just like we as humans can put on a coat, buildings can also get dressed. Depending on our mood, or on the weather, we can change coat, and so can the building. But the idea of using textiles...

  7. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  8. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  9. Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Li, Jiao; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhang, Zengqiang

    2017-12-01

    The aim of the study was to evaluate the bacterial and fungal diversities of 18contrastivecomposts applied with 17 different sources mad biochars applied treatments using 16S rRNA and 18S rDNA technology, while T-1 used as a control. The results showed that bacterial species of the phyla Actinobacteria, Proteobacteria and Chloroflexi, and fungi of the phylum Ascomycota and Basidiomycota were pre-dominant among the all treatments. The bacterial genus Subgroup_6_norank, Nocardioides, Pseudonocardia, Sphingomonas, Solirubrobacter and RB41_norank are first time identified in composting ecosystem. In addition, the fungal genus Ascomycota_unclassified, Aspergillus, Penicillium, Pleosporales_unclassified and Herpotrichlellacease_unclassified ubiquitous among the all compost. The Shannon and refraction-curve biodiversity indices showed a clear heterogeneity among all the treatments, which could be due to isolation of new genera in this system. Finally, the principal component analysis of the relative number of sequences also confirmed that bacterial and fungal population indiscriminate in different sources mad biochar applied treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Textile Supercapacitors

    Science.gov (United States)

    Jost, Kristy Alana

    Innovative and interdisciplinary solutions to wearable textile energy storage are explored as power sources for wearable electronics and smart textiles. Due to their long cycle life, non-toxic and inexpensive materials, supercapacitors were converted into textiles. Textile supercapacitors were developed using scalable fabrication methods including screen-printing, yarn making, and 3D computerized knitting. The electrode materials reported in this thesis undergo thorough electrochemical analysis, and are capable of storing up to 0.5 F/cm2 which is on par with conventionally solid supercapacitors (0.6 F/cm2). Capacitive yarns are capable of storing up to 37 mF/cm and are shown to be knittable on industrial knitting equipment. Both are some of the highest reported capacitance for all-carbon systems in the field. Yet both are the only systems composed of inexpensive and non-toxic activated carbon, the most commonly used electrode material used in supercapacitors, opposed to carbon nanotubes or graphene, which are typically more 10-100 times more expensive. However, all of the fabrication techniques reported here are also capable of incorporating a wide variety of materials, ultimately broadening the applications of textile energy storage as a whole. Fully machine knitted supercapacitors are also explored and electrochemically characterized in order to determine how the textile structure affects the capacitance. In conclusion, a wide variety of fabrication techniques for making textile supercapacitors were successfully explored.

  11. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-05-01

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Textiles Quotas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Shanghai launched China’s first electronic trading platform for textiles export licenses yesterday, allowing firms to easily sell or buy quotas. The platform (www.e-tj.cn) is aimed at raising efficiency and curb-

  13. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  14. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  15. Use of composts in revegetating arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  16. A vermicompostagem do lodo de lagoas de tratamento de efluentes industriais consorciada com composto de lixo urbano The vermicomposting of an industrial sludge combined with a compost of municipal solid refuse

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Valadares Veras

    2004-09-01

    Full Text Available A destinação dos resíduos sólidos constitui um sério problema ambiental para a humanidade, principalmente em regiões de grande concentração urbana, onde a disponibilidade de áreas para disposição dos rejeitos é quase sempre restrita. Com a intenção de fornecer mais uma alternativa para solução do problema, desenvolveu-se um estudo para avaliar a vermicompostagem de um lodo industrial, resultante do processamento de frutas, consorciado com composto de lixo urbano. Através desse processo, pode-se obter a reciclagem dos resíduos, produzindo-se um composto denominado húmus ou vermicomposto. Dentre os resultados obtidos pode-se destacar bons indicadores do nível de maturidade dos resíduos, representados pela relação carbono/nitrogênio, a influência da minhoca na elevação do pH e sua contribuição para uma estabilização mais acelerada da matéria orgânica.The final disposal of solid wastes is a serious environmental problem, mainly in big towns, where the areas to put the refuses on are not much available. To provide one more alternative to solve this problem, a research was developed to analyse the vermicomposting of industrial sludge combined with a compost of municipal solid refuse. By this process, it was possible to obtain the recycling of the wastes, producing a material called humus or vermicompost. The results showed good maturity levels of the refuses, presented by the carbon/nitrogen relations, the worms influence in the pH elevation and their possible acceleration of the organic material stabilization.

  17. Use of sewage sludge for agriculture in Japan

    International Nuclear Information System (INIS)

    Kumazawa, K.

    1997-01-01

    In Japan, the use of sewage sludge and composted sewage sludge is gradually increasing. They are applied not only to agricultural land, but also to golf courses, parks, etc. The presence of heavy metals and pathogens poses a major problem for such utilization of sludge. Composting is a traditional method of sewage treatment. Laws have been introduced and guidelines prepared for proper and safe use of these materials by farmers. Public acceptance plays a crucial role. At a time when environmental preservation is a major issue in almost every aspect of life, greater emphasis will have to be placed on making sludge and compost hygienically acceptable with minimum contamination from pathogenic organisms and heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. This paper reviews studies conducted on the use of sewage sludge in agriculture in japan. (author)

  18. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  19. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  20. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  1. Composting: a growth market

    International Nuclear Information System (INIS)

    Bueker, D.; Guenther, H.; Komodromos, A.

    1994-01-01

    The paper explains the current state of affairs in composting in Germany from the angles of licensing, engineering, the number and scale of existing and projected plants, the market for compost, and the prospective market for composting plants. (orig.) [de

  2. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  3. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  4. Closed substance cycle and substance cycling management: Compilation and evaluation of data for the assessment of priority organic contaminants in secondary raw-material fertilisers (slightly polluted sewage sludge from rural areas and compost) and organic farm fertilisers (liquid manure and slurry) for a risk assessment; Kreislaufwirtschaft - Stoffstrommanagement: Ermittlung und Auswertung von Daten zur Beurteilung prioritaerer organischer Schadstoffe in Abfallduengern (niedrig belastete Klaerschlaemme aus laendlichen Regionen und Kompost) sowie in organischen Wirtschaftsduengern (Guelle und Jauche) fuer eine Risikobewertung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, A.; Klein, M.

    2003-07-31

    In the scope of the presently discussed closed substance cycle management and the resulting substance cycling management the agricultural use of animal wastes, sewage sludges and composts as fertilisers and soil improvers, respectively, plays an important role. The aim of the present project was the scientific preparation of deliberations aiming to find out which concentrations of selected contaminants occurring in secondary raw-material fertilisers (sewage sludge and compost) and farm fertilisers can still be tolerated, which do not have harmful effects on the environment. Information on the occurrence in sewage sludges and soils and their effects on soil organisms were compiled and evaluated for the following substances: linear alkylbenzene sulfonates (LAS), nonylphenol (NP), tributyltin (TBT), benzo(a)pyrene (BaP), diethylhexyl phthalate (DEPH) and dibutyl phthalate (DBP). In addition, respective data were searched for polyacrylamide (PAM), polybrominated diphenyl ethers (PBDE) and polycyclic musk compounds. The impact of composts by organic contaminants was described giving examples for diethylhexyl phthalate and dibutyl phthalate, benzo(a)pyrene and polychlorinated biphenyls. Concerning the farm fertiliser slurry, information about organic pollutants stemming from cleaning agents or disinfectants, NP, LAS and quartenary ammonium compounds were collected. LAS, NP, TBT and DEHP were detected in most of the sewage sludge samples. DBP occurred less frequently and in lower concentrations than DEHP. Single exceedings of the respective limit-values of the 3{sup rd} Draft of the EU-Sewage Sludge Directive (LAS, NP, DEHP) or other expert groups (BaP) were observed. In compliance with the respective regulations, there seems to be no risk potential for terrestrial organisms. To derive reliable environmental standards for TBT, there is a need for more data. In compost, content of organic contaminants is generally dependent on impurities. Compost made of &apos

  5. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    Science.gov (United States)

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on γ-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others.

  6. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  7. An integrated approach of composting methodologies for solid waste management

    International Nuclear Information System (INIS)

    Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, p H and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  8. Quality evaluation of compost produced from agro-industrialbyproducts of sugar cane

    Directory of Open Access Journals (Sweden)

    Alexander Bohórquez

    2014-01-01

    Full Text Available Fresh by products of the sugar industry (sugarcane sludge, bagasse and vinasse incorporated into the soil generate a negative impact on plants. Therefore, compost is an alternative solution to the use of sugarcane byproducts, which must meet the requirements of the Colombian technical standard 5167 for use as biofertilizer. This study aimed to evaluate the quality of compost made from different combinations of products of the milling process of sugar cane (Saccharum officinarum L.. Composting piles were established in the Ingenio Riopaila-Castilla, Valle del Cauca, Colombia, using a complete randomized block design with five treatments and four replications. 100% sugarcane sludge (T1, 75% sugarcane sludge and 25% bagasse (T2, 50% bagasse and 50% sugarcane sludge (T3, 25% sugarcane sludge and 75% bagasse (T4 and 100% bagasse (T5, all supplemented with 2 m3 of vinasse. The response variables: pH, electrical conductivity, moisture, ash, organic matter, moisture retention, the carbon-nitrogen ratio, the total oxidizable organic carbon, total nitrogen, phosphorus, calcium, magnesium, potassium, iron, copper, manganese and zinc, were evaluated at the time when the initial compost piles were prepared, and the 42, 51, 59, 73 and 90 days after beginning the process. The results showed that the carbon-nitrogen mixtures initial ratio is critical for obtaining a good quality of compost. The T3 provided the best quality with the highest content of nutrients. The composting time ensuring adequate maturation levels for nutrients in the compost was 90 days.

  9. TEXTILE SALVAGE

    CERN Multimedia

    Relations with the Host States Service

    2002-01-01

    Readers are reminded that Geneva's agency for salvaging used clothing, other textiles and old shoes (Coordination d'oeuvres d'entraide pour la récupération de vêtements, textiles et chaussures usagés dans le canton de Genève) has a container in the car park outside CERN's Meyrin site. In 2001, 1000 tonnes of such items were collected in the Canton of Geneva (as compared with 840 tonnes in 2000), of which 4460 kg came from the container outside the Meyrin site. The operation's organisers (Caritas, Centre Social Protestant, the Geneva Section of the Swiss Red Cross, Terre des Hommes, the Geneva branch of Terre des Hommes Suisse and Emmaüs, Geneva) would like to thank all those who have donated clothing or otherwise supported their campaign. Relations with the Host States Service Tel. 72848 http://www.cern.ch/relations/

  10. Changes in cadmium mobility during composting and after soil application

    International Nuclear Information System (INIS)

    Hanc, Ales; Tlustos, Pavel; Szakova, Jirina; Habart, Jan

    2009-01-01

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg -1 , and contaminated Cambisol with total Cd 6.16 mg kg -1 . Decrease of extractable Cd (0.01 mol l -1 CaCl 2 ) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l -1 CH 3 COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.

  11. A microbiological study on sewage sludge treatment

    International Nuclear Information System (INIS)

    Sermkiattipong, Ngamnit; Ito, Hitoshi; Hashimoto, Shoji.

    1990-09-01

    Isolation and identification of salmonellae in sewage sludge cake and radiation sensitivities of the isolated strains were studied. Disinfection of the sludge by heat or radiation and effect of such treatment on composting were also carried out. Five groups of O-antigen and seven serotypes of salmonellae were identified from the sludge cakes. D 10 values of the salmonellae in phosphate buffer were ranged from 0.16 to 0.22 kGy and those in sludge were about three times larger. Total bacterial counts and coliforms in the sludges were determined to be 4.6 x 10 7 - 5.1 x 10 9 and 1.3 x 10 5 - 1.1 x 10 9 colony forming unit (cfu/g). After irradiation at 20 kGy by gamma ray or electron beam, decrease of total bacterial count was 5 - 7 log cycles and a dose of 5 kGy was enough to eliminate all of the coliforms. Coliforms decreased rapidly by heating at 65degC, but only one log cycle decrease was observed in total bacterial count. By heating at 100degC, total bacterial count decreased rapidly. Two peaks were observed in CO 2 evolution curves of radiation disinfected sludge composting, but only one peak in heat disinfected sludge composting. (author)

  12. Hygienization aspects of composting

    OpenAIRE

    Termorshuizen, A.J.; Alsanius, Beatrix

    2016-01-01

    Compost use in agriculture always brings about the risk of introducing plant and human pathogens. • The backbone of the hygienization process consists of temperature, moisture content and chemical compounds formed during composting and activity of antagonists. • Compost produced by proper composting, i.e. a process that produces high temperatures during asufficiently long thermophilic phase can be applied safely. • Farmers should invest in good relationships with compost produce...

  13. Textile Technology Analysis Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Textile Analysis Labis built for evaluating and characterizing the physical properties of an array of textile materials, but specifically those used in aircrew...

  14. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  15. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  16. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  18. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  19. Anaerobic Treatment Of Percolate From Faecal Sludge Drying Beds ...

    African Journals Online (AJOL)

    Composite percolate samples, from sludge drying beds of a pilot co-composting plant in Kumasi, Ghana, were characterised and subjected to laboratory scale anaerobic treatment. Two categories of percolate samples were investigated; samples seeded with anaerobic sludge and samples without seeding. The average ...

  20. Sustainability of Domestic Sewage Sludge Disposal

    OpenAIRE

    Claudia Bruna Rizzardini; Daniele Goi

    2014-01-01

    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a s...

  1. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Zhou Ruimin; Zhu Jinliang

    1998-01-01

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60 Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60 Co, 137 Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  2. EPR and DRIFT spectroscopic characterization of humic fractions during composting of sawdust and paper mill sludge Caracterização espectroscópica (RPE e DRIFT das frações húmicas durante a compostagem de lodo de fábrica de papel e serragem

    Directory of Open Access Journals (Sweden)

    Claudia Maria Branco de Freitas Maia

    2012-06-01

    Full Text Available

    The spectroscopic characteristics (DRIFT, UV-visible and EPR of humic fractions were studied during composting of sawdust and paper mill sludge. Infrared spectroscopy reveals a compost rich in hydroxyl and alkyl groups and carboxylates and carbohydrates. The alkyl fraction is abundant in the humic acids and humin. The decreasing of the E4/E6 ratio during composting indicates an enhancement of the organic chains number, with conjugated double bonds. This decreasing would correspond to a reduction of the lignin content and/or formation of porphyrins. The EPR shows that humin presents the highest concentration of free radical and the lowest intensities of the Fe3+.

    doi: 10.4336/2012.pfb.32.70.01

    The spectroscopic characteristics (DRIFT, UV-visible and EPR of As características espectroscópicas (DRIFT, UV-visível e RPE das frações húmicas foram estudadas durante a compostagem de serragem e lodo de fábrica de papel. A espectroscopia de infravermelho (DRIFT revelou um composto rico em hidroxilas, carboxilatos, alquilas e carboidratos. A fração alifática está concentrada nos ácidos húmicos e na humina. A diminuição da razão E4/E6 durante a compostagem indica um aumento de cadeias orgânicas com ligações duplas conjugadas. Esta redução corresponderia a uma diminuição do teor de lignina e/ou a formação de porfirinas. O RPE mostrou que a humina apresenta a concentração mais alta de radicais livres e a menor concentração de Fe3+ livre.

    doi: 10.4336/2012.pfb.32.70.01

  3. Effects of compost media on growth and flowering of parviflorous garden pansy (Viola x wittrockiana Gams.. Part II. Plant flowering and decorative value

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawadzińska

    2012-12-01

    Full Text Available The purpose of the studies was to determine the effects of media containing composts from sewage sludge and potato pulp on the flowering and decorative value of 'Butterfly Yellow with Blotch' parviflorous pansy. In the experiment 14 potting media, including 12 media made of 4 composts, were tested. The percentage of compost mixed with sphagnum peat was 25%, 50% and 75%. The components of particular composts were as follows: I - municipal sewage sludge 70% and straw 30%; II - municipal sewage sludge 70% and sawdust 30%; III - municipal sewage sludge 35%, potato pulp 35% and straw 30%; IV - municipal sewage sludge 35%, potato pulp 35% and sawdust 30%. Two control potting media were used: 1 - sphagnum peat with Osmocote Exact Lo-Start at the dose 5 g×dm-3 and 2 - sphagnum peat with Azofoska at the dose 2.5 g×dm-3. There was no top-dressing during cultivation. The pansies for whose cultivation a slow-release fertiliser was used turned out to have most flowers, but the plants cultivated in compost with peat at the ratio 1:1 had equally abundant flowering. At the generative stage, the pansies in control media were the most decorative and those growing in 25% of compost I, 75% of compost II and 50% of compost III and IV. On the basis of plant valuation scale, quality assessment and the abundance of flowering it was found that the media containing 50% of composts were optimal for pansy cultivation.

  4. Approach on environmental risk assessment of nanosilver released from textiles

    International Nuclear Information System (INIS)

    Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin

    2015-01-01

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  5. Approach on environmental risk assessment of nanosilver released from textiles

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Doris, E-mail: doris.voelker@uba.de [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Schlich, Karsten [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany); Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Polleichtner, Christian; Kussatz, Carola [Federal Environment Agency Germany, Section IV 2.4, Schichauweg 58, 12307 Berlin (Germany); Hund-Rinke, Kerstin [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)

    2015-07-15

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  6. Wat is goede compost?

    NARCIS (Netherlands)

    Willekens, K.; Janmaat, L.

    2014-01-01

    Compost wordt voor meerdere doelen ingezet. Als meststof, maar ook om de organische stofbalans op peil te houden. Maar compost heeft nog meer voordelen. Zo worden aan compost ziektewerende eigenschappen toegekend. Het doel van compostgebruik bepaalt voor een groot deel welke prijs er voor wordt

  7. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  8. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  9. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  10. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  11. Decolourisation and degradation of textile dyes using a sulphate ...

    African Journals Online (AJOL)

    Successful decolourisation and degradation of textile dyes was achieved in a biosulphidogenic batch reactor using biodigester sludge from a local municipality waste treatment plant as a source of carbon and microflora that augmented a sulphate reducing bacteria (SRB) consortium. Orange II (O II) was decolourised by ...

  12. Digital Inkjet Textile Printing

    OpenAIRE

    Wang, Meichun

    2017-01-01

    Digital inkjet textile printing is an emerging technology developed with the rise of the digital world. It offers a possibility to print high-resolution images with unlimited color selection on fabrics. Digital inkjet printing brings a revolutionary chance for the textile printing industry. The history of textile printing shows the law how new technology replaces the traditional way of printing. This indicates the future of digital inkjet textile printing is relatively positive. Differen...

  13. Textiles and Apparel Design.

    Science.gov (United States)

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…

  14. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    Science.gov (United States)

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  15. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  16. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  17. Recent developments in Sandia Laboratories' sewage sludge irradiation program

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-01-01

    Pathogen reduction studies show that gamma irradiation is effective in inactivating pathogenic bacteria, parasite ova, and viruses in liquid sludges. Ammonia is shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are relatively economical for composted or dried sludges, but only marginally competitive with costs of heat treatment for liquid sludges. Physical and chemical studies show that effects of irradiation of sludges on dewatering properties are insignificant when compared to the effects of polymer addition. Dried, irradiated undigested sludge has significant nutritional value as a feed supplement for sheep and cattle and in agronomic uses such as greenhouses and field plots. No significant harmful effects have been demonstrated in the feeding program. Product enhancement studies are under way, including schemes for removing nitrogen from wastewaters and adding it to sludges in the form of ammonium salts

  18. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  19. Wastewater and sludge management and research in Oman: An overview.

    Science.gov (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  20. Site-specific analysis for location of a sludge irradiation plant at Provo, Utah

    International Nuclear Information System (INIS)

    Bingham, M.L.; Luce, W.A.; Ahlstrom, S.B.; Johnson, B.A.

    1980-01-01

    Provo's current sludge handling program consists of anaerobic digestion, sand drying beds, and stockpiling onsite until the sludge can be removed for application to the land. This practice is adequate to meet current State of Utah regulations. However, EPA-proposed regulations will require Provo to either upgrade its current sludge disposal practices to provide more adequate pathogen destruction prior to land application, or change its method of final sludge disposal. Four possible alternatives to the existing practice were evaluated. These include (1) applying liquid sludge from the digesters to agricultural land, (2) landfilling, (3) irradiation, and (4) composting of dry sludge. Land application of liquid sludge and landfilling were found to be the most costly alternatives, primarily because of high transportation costs. Composting and irradiation were found to be the least costly alternatives. Irradiation had a higher initial capital cost, but a lower annual operation and maintenance cost than composting. Overall, composting appeared to be the most cost-effective alternative; however, pilot testing would be necessary to verify the unusual criteria for composting at Provo

  1. Anaerobic composting of waste organic fraction. Compostaje anaerobico de la fraccion organica de los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Baere, L. de; Verdonck, O.; Verstraete, W.

    1994-01-01

    The dry anaerobic composting can be carried out in mesophilic and thermophilic conditions. Gas production of 6,2 and 8.5 m''3 biogas m''3 daily in laboratory fermenters was obtained. The quality of waste is higher than obtained in aerobic process. The streptococcus sludge was destroyed. This experimental can be applied for big scale and it permits energy recovery and organic compost of municipal solid wastes. (Author)

  2. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  3. Bioavailability of phosphorus from composts and struvite in acid soils

    Directory of Open Access Journals (Sweden)

    Carmo Horta

    Full Text Available ABSTRACT The objective of this study was to assess the type and fractions of phosphorus (P forms in composts and struvite and how these P forms affect the bioavailability of P in the soil. P fertilization was performed with compost from sewage sludge (CSS, compost from poultry litter (CPL and struvite (SV and compared with single superphosphate (SSP. P forms were quantified through a sequential fractionation scheme. The first extraction was performed with H2O, the second with 0.5 M NaHCO3, the third with 0.1 M NaOH and the fourth with 1 M HCl. The release of P over time, after soil P fertilization, was assessed by incubating the fertilizers with a low-P acid soil. P bioavailability was assessed through a micro-pot experiment with the incubated soils in a growth chamber using rye plants (Secale cereale L.. Inorganic P forms in the first two fractions represented ~50% (composts, 32% (SV and 86% (SSP of the total P; and in the HCl fraction, ~40% (composts, 26% (SV and 13% (SSP of the total P. Despite the variability of the P form fractions in the composts and struvite, the P release and bioavailability were similar among the fertilized treatments. The acidic nature of the soil, which improve solubility of Ca-P forms, and the high efficiency of rye, which favors P uptake, were factors that contributed to these results.

  4. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  5. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-01-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  6. Composting Begins at Home.

    Science.gov (United States)

    Dreckman, George P.

    1994-01-01

    Reports the results of a year-long home composting pilot program run by the city of Madison, Wisconsin. The study was designed to gather data on the amount and type of materials composted by 300 volunteer households and to determine the feasibility of a full-scale program. (LZ)

  7. Textiles and Microbes

    Science.gov (United States)

    Freney, Jean; Renaud, François N. R.

    Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

  8. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    Science.gov (United States)

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of compost media on growth and flowering of parviflorous garden pansy (Viola x wittrockiana Gams.. Part I. Plant growth and conformation

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawadzińska

    2012-12-01

    Full Text Available The aim of the studies was to determine the effects of media with composts, based on sewage sludge and potato pulp, on the growth and conformation of the cultivar 'Butterfl y Yellow with Blotch'. In the experiment 14 potting media, including 12 media made of 4 composts, were tested. The percentage of compost mixed with sphagnum peat was 25%, 50% and 75%. The components of particular composts were as follows: I - municipal sewage sludge 70% and straw 30%; II - municipal sewage sludge 70% and sawdust 30%; III - municipal sewage sludge 35%, potato pulp 35% and straw 30%; IV - municipal sewage sludge 35%, potato pulp 35% and sawdust 30%. Two control potting media were used: 1 - sphagnum peat with Osmocote Exact Lo-Start at the dose 5 g×dm-3, and 2 - sphagnum peat with Azofoska at the dose 2.5 g×dm-3. There was no top-dressing during cultivation. The potting media used for pansy cultivation were rich in essential nutrients and in certain media macroelement content exceeded the limits recommended for the species with great nutrient requirements. The effects of the media on the growth, conformation and foliage of pansies depended on compost composition and its pecentage in a medium. The composts used for the media were found to be suitable for pansy cultivation. Despite smaller leaf rosettes in comparison with control plants, the pansies from compost media grew well and showed no disease symptoms.

  10. TEXTILE TECHNOLOGIES IN CONCRETE ENVIRONMENTS."

    OpenAIRE

    Morrow, Ruth; Belford, Patricia

    2007-01-01

    Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.Girli Concrete brings together concrete and textile technologies, testing ideas ofconcrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concre...

  11. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  12. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  13. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  14. The effects of pelleted sewage sludge on Norway spruce establishment and nitrogen dynamics

    International Nuclear Information System (INIS)

    Johannesson, Anders

    1999-01-01

    In Sweden there is a big resource in unutilised sewage sludge. Studies have shown that application of municipal sewage sludge can improve forest productivity and planting environment. This study is examining the effects of two types of pelleted sewage sludge (pure sludge and a mixture of sludge and domestic wastes compost) on nitrogen turnover. Large differences were found in the fertilisation effect of the different treatments. The pure sewage sludge pellets treatment showed significant increases for NH 4 -accumulation, nitrification and NO 3 -leaching in the top 10 cm of the soil. Uptake of nitrogen was increased in spruce plants and vegetation. The mixed sludge/domestic waste pellets treatment showed indications of a minor initial release of nitrogen. This is seen as a small but significant initial increase in soil nitrification. These results suggest that the pure sewage sludge pellet is an adequate nitrogen fertiliser. The mixed sludge though is inadequate at least in the short run

  15. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The technical viability of using compost as an alternative sponging agent in the Manresa composting plant; Viabilidad tecnica de la utilizacion del compost como agent esponjante alternative en la planta de compostaje de Manresa

    Energy Technology Data Exchange (ETDEWEB)

    Vila Punzano, M.; Serra Dubany, X.

    2001-07-01

    The composting plant in Manresa/San Joan de Vilatorrda (Barcelona-1994) operates with sludges from waste water treatment plants or bio solids to which it adds pine bark as a sponging agent. However the high cost of this material has led it to look for substitutes. The plant has eight windrow tuners with a staying time of 15 days and subsequent maturation in static piles for several months. A trial was carried out replacing the pine bark with compost obtained in the plant. The process functioned normally when the proportion used maintained a 30% porosity. Operating in this way reduces the consumption of bark by 29%, the compost obtained by 52% and the capacity for treating sludge in the plant by 6%. An economic analysis of these factors shows that this alternative is economically viable. (Author) 12 refs.

  17. Sewage sludge - What can be done with it?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2002-01-01

    This article presents a review of the state-of-the-art in the disposal of the sewage sludge that is left over after treatment of wastewater. Also, developments over the past ten years both in market structures and in legislation are discussed and future developments are reviewed. On account of legislation and political influences on the market, the thermal exploitation of sewage sludge is looked at in depth. The ecological and economic aspects of sewage sludge disposal are examined and the costs of different methods of sewage sludge treatment are compared. Various methods of disposal including dumping, composting, incineration in cement ovens, coal-fired power stations and waste incineration facilities are discussed, as is burning in special sludge incineration plant. A prognosis is made on the development of sewage sludge quantities for Germany, Switzerland and Austria over the next years

  18. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-01-01

    Studies reported herein have shown that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads γ radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron-beam (which, for all practical purposes, is equivalent to γ irradiation for a given absorbed dose) was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  19. An Investigation on In-Vessel Composting of Pistachio Residuals with Different Additions

    OpenAIRE

    M Jalili; M Mokhtari; AA Ebrahimi; F Boghri

    2016-01-01

    Background and Objective: About 1.35×105 tons of pistachio waste are produced in annually Iran that can result in environmental problems if managed improperly. . The purpose of this study was to investigate in-vessel composting of pistachio residuals with addition of cow manure and dewatered sludge as a recycling alternative. Materials and Methods: Pistachios wastes were combined with weight ratio of 5.5:10 (dewatered sludge: pistachio waste) and weight ratio of 1:10 (Cow manure: pi...

  20. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  1. Hemp for textiles

    NARCIS (Netherlands)

    Westerhuis, W.

    2016-01-01

    Abstract

    Key words: Cannabis sativa L., day length sensitivity, fibre hemp, genotype, harvest time, plant density, plant weight, primary fibres, secondary fibres, sowing date, textiles.

    Westerhuis, W. (2016) Hemp for textiles: plant

  2. CONTAINER FOR USED TEXTILES

    CERN Multimedia

    Relation with the Host States

    2001-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site. The Association has informed us that 3 306 kg of textiles were deposited in the container in 2000 and wishes to convey its warm gratitude to all donors.

  3. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  4. The Textile Space

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    Textile has within the last decade increasingly been regarded as an architectural material. Many new textiles have been developed and this has increased its applications in architecture. But how do textile and space meet and which spatial qualities can arise in this meeting? The paper describes...... a series of practical studies of the spatial qualities that can be established through the design of three very different fabrics. The topic is part of an ongoing Ph.D. project at The Danish Design School in Copenhagen. The main theme of the Ph.D. is the inter-play between textile, space and sound. Space...... and it has a special poetry which is not to be found in any other material. Which spatial qualities can be obtained with these textile properties? Contemporary conception of space in architecture can be said still to rely on the modernist conception. In practical experiments it is investigated how...

  5. The Science of Composting.

    Science.gov (United States)

    Swarthout, Flora L.

    1993-01-01

    Students are able to experience cellular respiration in action and become more informed about the environment by creating compost. This article describes an activity that brings a natural process into the classroom. (ZWH)

  6. Composting: Great Rotten Idea.

    Science.gov (United States)

    Chemecology, 1992

    1992-01-01

    To help students investigate both the advantages and disadvantages of composting, various activities are presented dealing with the definitions and the applications of the concepts of recyclable and biodegradable. (MCO)

  7. ENGINEERING BULLETIN: COMPOSTING

    Science.gov (United States)

    Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...

  8. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  9. The efficiency of home composting programmes and compost quality.

    Science.gov (United States)

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. MBR pilot plant for textile wastewater treatment and reuse.

    Science.gov (United States)

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  11. Análise da contaminação parasitária em compostos orgânicos produzidos com biossólidos de esgoto doméstico e resíduos agropecuários Analysis of parasitological contamination in organic composts with sewage sludge and agricultural residues

    Directory of Open Access Journals (Sweden)

    Eduardo Robson Duarte

    2008-08-01

    Full Text Available Este estudo avaliou a contaminação por ovos de helmintos, cistos e oocistos de protozoários em compostos orgânicos utilizando lodo de esgoto doméstico e resíduos agropecuários. Foram realizadas análises parasitológicas em amostras de 25 diferentes compostos orgânicos, antes e após tratamento térmico a 60°C durante 12 horas. Os resultados demonstraram elevada contaminação parasitária em todos os compostos analisados antes do tratamento e a não redução dessa contaminação após o tratamento térmico. A identificação das larvas obtidas em coproculturas antes e após o tratamento térmico dos compostos indicou que os gêneros mais freqüentemente observados foram Cooperia e Trichostrongylus, que são nematóides gastrintestinais de ruminantes. Estes resultados demonstram que ovos de helmintos podem permanecer viáveis mesmo após o processo de compostagem e o tratamento térmico. Os compostos produzidos com lodo de esgoto doméstico e resíduo agropecuários, utilizando esses processos de tratamentos, podem constituir riscos de contaminação para humanos e animais.This research aimed at evaluating the cysts, oocysts and eggs contamination before and after thermal treatment of 60°C for 12 hours, in 25 different organic composts produced with biosolids from domestic waste-water treatment and animal and agricultural residues. The results showed high parasitological contamination for all organic composts before the treatment and these contaminations were not reduced after thermic treatment. The larva identification in coprocultures before and after thermic treatment showed Cooperia spp. and Trichostrongylus spp. were the most prevalent nematodes. These results demonstrated that helmintus’ eggs can remain viable even after the composing and thermic treatment. The obtained composition with sewage sludge and agricultural residues through these treatment processes can establish contamination risks for humans and animals.

  12. Approach on environmental risk assessment of nanosilver released from textiles.

    Science.gov (United States)

    Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin

    2015-07-01

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  13. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill.

    Science.gov (United States)

    Song, Uhram

    2017-04-03

    To increase the remediation ability and life expectancy of a leachate channel in a sanitary landfill, the plants used for remediation were composted as a post-remediation management technique. Phragmites australis or Typha angustifolia used for phytoremediation in a landfill leachate channel was harvested and used as a co-composting material with sewage sludge. The macrophyte compost was applied to the slope of a landfill on which plants were introduced for revegetation and to plants grown in pots to test for acute effects of the compost. The compost of the macrophytes successfully increased soil moisture and nutrient contents both on the landfill slope and in the soil of the pot experiment. Additionally, the rates of photosynthesis and the nutrient contents increased for plants grown in macrophyte compost. Thus, the revegetation or restoration management of the landfill would improve with the macrophyte compost used as a soil conditioner. The harvest of the macrophytes has the additional benefit of improving the remediation function of the leachate channel. Therefore, to sustainably manage both the leachate channel and the landfill, the composting of post-remediation macrophytes is an environmentally friendly and economically affordable method.

  14. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of color removal agent on textiles waste water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakknu, Sarala; Jamaliah Shariff; Ting, Teo Ming; Khairul Zaman Dahlan

    2010-01-01

    The effect of color removal agent (CRA) on textile waste water has been studied. The aim of this work is to determine the optimum condition for CRA to react on the textile waste water and to see the effect of CRA on waste water with different Chemical Oxygen Demand. 8 ml CRA was used to treat 800 mls of sample with various COD ranging between 2500 mg/ l-500 mg/ l. The results showed that CRA totally remove the colour of textile waste water at pH ranging from 6 to 8. At an optimum condition CRA works efficiently on waste water with COD 2300 mg/ l for reduction of suspended solid and turbidity. It also observed, sludge accumulation was depended on COD concentration. Color removal curves for different initial COD concentration also obtained. (author)

  16. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. The future of composting in Italy; El futuro del compostaje en Italia

    Energy Technology Data Exchange (ETDEWEB)

    Fraja, E. de; Vismara, R.

    1997-06-01

    In Italy there are currently 29 composting plants for MSV (municipal solid waste), sludges and other organic-matrix wastes, that are fully operative or about to be started up in the near future. In addition, 23 plants are under construction, while another 15 have already been financed or are operated by contracting companies. (Author)

  18. Experimental evaluation of compost leachates.

    Science.gov (United States)

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  19. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  20. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  1. Possibility of radiation application to sludge treatment in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course, heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by ..gamma.. irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which dose the coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it does not require high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost.

  2. Possibility of radiation application to sludge treatment in Japan

    International Nuclear Information System (INIS)

    Takehisa, Masaaki

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewerage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by γ irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it is not required to keep high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost. (Wakatsuki, Y.)

  3. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  4. Nanotechnology in Textiles.

    Science.gov (United States)

    Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun

    2016-03-22

    Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.

  5. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  6. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  7. Digital Textile Printing

    OpenAIRE

    Moltchanova, Julia

    2011-01-01

    Rapidly evolving technology of digital printing opens new opportunities on many markets. One of them is the printed fabric market where printing companies as well as clients benefit from new printing methods. This thesis focuses on the digital textile printing technology and its implementation for fabric-on-demand printing service in Finland. The purpose of this project was to study the technology behind digital textile printing, areas of application of this technology, the requirements ...

  8. CONTAINER FOR USED TEXTILES

    CERN Multimedia

    Relations avec les Pays hôtes

    2000-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site.The Association has informed us that 2 530 kg of textiles were deposited in the container in 1998 and wishes to convey its warm gratitude to all donors.Relations with the Host StatesTel. 75152

  9. Composting; Konposuto ka shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K. [Saitama Univ., Saitama (Japan)

    2000-02-05

    The composting method can be divided roughly into the aerobic process and the anaerobic process. The former one is a method of processing which decomposes organic substances in the work of the micro-aerobion by blowing the air in the compost material layer, and the latter one is a method for mainly decomposing the organic substance by the work of the anaerobiont microorganism without the positive contact of the material and air. Since the anaerobic process has a slow reaction rate, and emits a resistant odor, an aerobic process system is taken in many plants. In this paper, the aerobic process is described. At first, a fermenter, crush equipment, screening system and a deodorizer as the composting facilities are explained, and the problems of the composting process are described. The largest problem is to exploit a demand without a seasonal variation. It is necessary to exploit the market except for farmland and orchards in order to avoid the seasonal variation. For example, there is a demand for compost in parks, green land and golf courses. It can be also utilized for the normal plane protection of roads and railways. In addition, there are utilization applications such as barn bedding, earthworm culture floors and a deodorant of sewage urine disposal facilities. (NEDO)

  10. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  11. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  12. Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Ros, Margarita; Pascual, Jose Antonio

    2015-05-01

    The lack of reliable prediction tools for evaluation of the level and specificity of compost suppressiveness limits its application. In our study, different chemical, biological and microbiological parameters were used to evaluate their potential use as a predictor parameter for the suppressive effect of composts against Fusarium oxysporum f. sp. melonis (FOM) and Phytophthora capsici (P. capsici) in muskmelon and pepper seedlings respectively. Composts were obtained from artichoke sludge, chopped vineyard pruning waste and various agro-industrial wastes (C1: blanched artichokes; C2: garlic waste; C3: dry olive cake). Compost C3 proved to offer the highest level of resistance against FOM, and compost C2 the highest level of resistance against P. capsici. Analysis of phospholipid fatty acids isolated from compost revealed that the three composts showed different microbial community structures. Protease, NAGase and chitinase activities were significantly higher in compost C3, as was dehydrogenase activity in compost C2. The use of specific parameters such as general (dehydrogenase activity) and specific enzymatic activities (protease, NAGase and chitinase activities) may be useful to predict compost suppressiveness against both pathogens. The selection of raw materials for agro-industrial composts is important in controlling Fusarium wilt and Phytophthora root rot. © 2014 Society of Chemical Industry.

  13. End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis.

    Science.gov (United States)

    Faverial, Julie; Boval, Maryline; Sierra, Jorge; Sauvant, Daniel

    2016-12-01

    A meta-analysis on end-product quality of 442 composts was performed to assess the effects of climate and raw materials on compost quality. The analysis was performed using an ANOVA including a mixed model with nested factors (climate, raw material and publication effect). Tropical composts presented lower carbon, nitrogen, potassium and soluble-carbon contents, and higher electrical conductivity. The results suggest that compost quality in the tropics was affected by weather conditions during composting (e.g. high temperature and rainfall), which induced high losses of carbon and nutrients. For most properties, industrial, sewage sludge and manure-based composts displayed the highest quality under both climates, while the contrary was found for household and municipal solid waste-based composts. The publication effect represented >50% of total variance, which was mainly due to the heterogeneity of the composting procedures. The meta-analysis was found to be a helpful tool to analyse the imbalanced worldwide database on compost quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Experiments as to the influence of heat recovery from a bioreactor on sewage sludge disinfecting

    Energy Technology Data Exchange (ETDEWEB)

    Tarjanyi, J.; Strauch, D.; Philipp, W.

    The influence of heat recovery on the disinfecting effect of composting of sewage sludge in a bio-reactor (in-vessel-composting) was investigated in a reactor type Weiss-system Kneer. As test agents 3 different serovars of salmonella, Parvo- and Poliovirus and eggs of Ascaris suum were used. The experiments were done in a reactor which was fed with dewatered municipal sewage sludge mixed with waste-paper as C-carrier for better composting. Even under winter conditions the test agents were inactivated within the time which is characteristic for the passage of the composting material through the plug-flow reactor. These results cannot simply be applied without further investigation to other reactors of the same type but with different ways of operation. (orig.)

  16. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions.

    Science.gov (United States)

    Ignatowicz, Katarzyna

    2017-07-01

    The aim of the study was to assess the physicochemical properties of compost made of municipal sewage sludge from selected Municipal Sewage Treatment Plant. Content of basic macroelements and heavy metals (Zn, Cu, Cr, Cd, Ni, Pb, Hg, Mg, Ca, N, P, K, Na) and their fractions was determined by means of BCR method. Based on the analyzes, it was found that the content of heavy metals in compost did not exceed the limits set by natural land management of sewage sludge; the compost is very abundant in biogenic elements - nitrogen and phosphorus - and it can be also considered a significant source of calcium and magnesium. The analysis of results obtained from the three-stage chemical extraction revealed that deposits subjected to aerobic stabilization and composting accumulate metals (in descending sequence) in fractions III and II, i.e. fractions virtually inaccessible to the ecosystem in optimal conditions of use. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  18. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    Science.gov (United States)

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-11-01

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    The use of vermi-compost in northern Ethiopia is not a common practice. It is, therefore, important to understand the possible impediments through studying its chemical and biological properties and its extra contribution compared to other composting techniques. Four compost types (vermi-compost, conventional compost, ...

  20. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    Science.gov (United States)

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  1. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings.

    Science.gov (United States)

    Morales, Ana Belen; Ros, Margarita; Ayuso, Luis Miguel; Bustamante, Maria de Los Angeles; Moral, Raul; Pascual, Jose Antonio

    2017-02-01

    Environmental concerns about peat extraction in wetland ecosystems have increased. Therefore, there is an international effort to evaluate alternative organic substrates for the partial substitution of peat. The aim of this work was to use different composts (C1-C10) obtained from the fruit and vegetable processing industry (pepper, carrot, broccoli, orange, artichoke residues, sewage sludge (citric and pepper) and vineyard pruning wastes) to produce added-value composts as growing media with suppressive effect against Fusarium oxysporum f.sp. melonis (FOM) in muskmelon. Composts showed values of water-soluble carbon fractions and dehydrogenase activity that allowed them to be considered mature and stabilized. All compost treatments produced significantly (F = 7.382; P values. Treatments T-C5, T-C7 and T-C8 showed percentages of disease incidence that were significantly (F = 16.052; P values below 50%. Composts produced are suitable components of mixed compost-peat growing media, providing a 50% substitution of peat. Furthermore, some of these composts also showed an added value as a suppressive organic medium against Fusarium wilt in muskmelon seedling, a fact probably related to high pH and pepper wastes and high content of pruning waste as initial raw materials. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Automated visual inspection of textile

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1997-01-01

    A method for automated inspection of two types of textile is presented. The goal of the inspection is to determine defects in the textile. A prototype is constructed for simulating the textile production line. At the prototype the images of the textile are acquired by a high speed line scan camera...... the protype to a production line system we only need to gain a speed factor of 4....

  3. Compost levert complete bemesting

    NARCIS (Netherlands)

    Willekens, K.; Janmaat, L.

    2014-01-01

    Compost is een zeer goed bemestingsproduct. Het kan kort voor het zaaien worden aangebracht, belemmert de wortelgroei niet en levert een kant-en-klaar ecosysteem als aanvulling en versterking van de bodembiologie. Ook de pH van de bodem en de lucht- en waterhuishouding varen wel bij de toepassing

  4. Composting or Thermal valorisation

    International Nuclear Information System (INIS)

    Lutgen, Pierre

    2001-01-01

    It is shown how thermal valorisation of organic wastes it is much more promising, from the economical and environmental points of view, than composting. Obviously, it implies that the incineration should be done under very controlled conditions. With examples taken from Europe. The author argues for this affirmation

  5. Problems with textile wastewater discharge

    International Nuclear Information System (INIS)

    Rantala, Pentti

    1987-01-01

    The general character of textile industry wastewaters is briefly discussed. General guidelines and practice in Finland when discharging textile industry wastewaters to municipal sewer systems is described. A survey revealed that most municipalities experience some problems due to textile industry wastewaters. Pretreatment is not always practiced and in some cases pretreatment is not operated efficiently. (author)

  6. Sustainability in the textile industry

    CERN Document Server

    2017-01-01

    This book examines in detail key aspects of sustainability in the textile industry, especially environmental, social and economic sustainability in the textiles and clothing sector. It highlights the various faces and facets of sustainability and their implications for textiles and the clothing sector.

  7. Innovation, entrepreneurship and textiles

    Science.gov (United States)

    Blanton Godfrey, A.; Pourmojib, S.

    2017-10-01

    Innovation and entrepreneurship have become increasingly important parts of economic development in almost every country, region, and community. In this research we investigate the reasons people become entrepreneurs in the textile and apparel industries and compare entrepreneurship in these industries with other industries looking also at the success factors for start up companies. During our research we found many disrupters, people entering the textile and apparel industries from outside often having no prior experience in textiles or apparel. We also investigate the impact of government intervention on entrepreneurship. In recognition of the large economic impact entrepreneurial companies have on economic development and job growth, almost all federal governments, regional governments, and community governments have created support for innovation and entrepreneurship.

  8. Textile technology development

    Science.gov (United States)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  9. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The use of composting in bioremediation has received little attention (Potter et al., ..... Counts of microorganisms in the compost during composting. Values are means of three ..... chlorinated pesticides. J. Water Poll. Cont. Fed.

  10. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  11. Irradiation of sewage sludge using cesium-137: a comparative assessment

    International Nuclear Information System (INIS)

    1980-06-01

    Irradiation using 137 CS is a recently developed process for disinfecting sewage sludge before applying it to the land. Irradiation, composting, and heat drying are Processes to Further Reduce Pathogens (PFRP) when operated to meet the guidelines set forth under Title 40, Code of the Federal Register, Part 257 (40 CFR 257). This report identifies and develops technical, operational, and environmental considerations for sludge handling systems incorporating these PFRP to determine the economic advantages of each process. The results indicate that sludge irradiation systems are cost-competitive with composting and heat drying systems for wastewater treatment plants with or without existing anaerobic digesters. Irradiation can thus be considered for new as well as upgrading existing facilities for sludge disinfection. An attractive aspect of the irradiation process is that significantly less conventional energy is used for operation when compared to composting and heat drying. In the final analysis, however, the applicability and desirability of any process is best determined by more evaluations specific to a given community

  12. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  13. Co-compostage de boues de laiterie et de fumier de bovins à l'Ile de la Réunion : hygiénisation, pertes de nutriments et homogénéité du compost produit

    Directory of Open Access Journals (Sweden)

    Rafolisy, T.

    2015-01-01

    Full Text Available Co-composting of sludge and dairy cattle manure in Réunion (France: sanitization, nutriment losses and compost homogeneity. Description of the subject. Nutrient balance, windrow homogeneity and the sanitization of composts obtained from the co-composting of dairy sludge and cattle manure were investigated in Réunion at the request of the island's dairy industry, which wants both to develop the agronomic valorization of dairy sludge and to satisfy regulatory constraints on the island. Objectives. The aims of this experiment were to evaluate the feasibility of co-composting cattle manure with dairy sludge and to determine the quality of the compost produced. Method. Three heaps of manure with two doses of dairy sludge were established (on a mass basis: manure alone (T, manure ⅔ + sludge ⅓ (B1 and manure ½ + sludge ½ (B2, with a bulk density of 305, 566 and 630 kg·m-3 and a free air space of 72%, 48% and 42%, respectively. The heaps were turned after 21 days. Total composting time was 142 days. Results. During the experimentation, the temperature remained high and above 55°C for 40 days for the pure manure heap T, for 29 days for heap B1 and for 34 days for heap B2. During composting, heap T lost 69% of its wet mass and 64% of its initial volume, while heap B1 lost 71% and 44% and B2 lost 68% and 49%, respectively. Heap T lost 54% of its organic matter (OM and 15% of its initial nitrogen (N; the respective levels of loss for B1 were 51% and 42% and for B2 56% and 50%. The heterogeneity of the dry matter (DM and N content decreased during composting for heaps T and B1, whereas it increased for heap B2. Conclusions. The composts obtained were in accordance with the French standard NFU 44-51 (T and the French standard NFU 44-95 (B1 and B2, except for the DM content criterion for B1 and B2. Relative to bovine manure compost, compost with the addition of sludge (⅓ was found to be enriched (on a fresh weight basis in N (+ 15%, in P (+ 40

  14. Adsorção dos corantes RO16, RR2 e RR141 utilizando lodo residual da indústria têxtil Adsorption of dyes RO16, RR2 and RR141 using residual sludge of textile industry

    Directory of Open Access Journals (Sweden)

    Andressa Regina Vasques

    2011-09-01

    Full Text Available A adsorção é uma das técnicas empregadas com sucesso para remoção efetiva da cor presente em efluentes têxteis. Com o objetivo de avaliar os diferentes parâmetros adsortivos, bem como determinar a eficiência de um adsorvente alternativo desenvolvido a partir de lodo residual têxtil na remoção de corantes, foram determinadas curvas de cinética de adsorção e isotermas. Por meio dos dados cinéticos e de equilíbrio obtidos, verificou-se que a 25ºC a adsorção foi favorável para todos os corantes, sendo esta a melhor condição para os corantes RO16 e RR2 na ausência de sais. Para o corante RR141, a adição de NaCl aumentou a capacidade de adsorção do adsorvente no equilíbrio e a adição de Na2SO4 favoreceu a adsorção para o corante RO16, ao contrário do que se observou para os outros dois corantes. A quantidade máxima de corante adsorvida por unidade de massa de adsorvente (q max nas melhores condições adsortivas para os corantes RO16, RR2 e RR141 foi de 81,30, 53,48 e 78,74 mg.g-1, respectivamente.The adsorption is one of the techniques that have been successfully used for effective removal of the dyes present in textile effluents. With the objective to evaluate the different adsorptive parameters, as well as determining the efficiency of one alternative adsorbent in the removal of dyes, kinetics and equilibrium data of adsorption were determined. By the kinetic data and of equilibrium, it was verified that the adsorption was favorable for all the dyes in 25ºC, being the best condition for the dye RO16 and RR2 in the total absence of salt. For the dye RR141, the addition of NaCl increased the adsorption capacity of adsorbent in the equilibrium and the addition of Na2SO4 favored the adsorption for the dye RO16, in contrast to what was observed for the two other dyes. The maximum quantity of dye adsorbed per unit mass of adsorbent (q max in the best adsorptive conditions for the dyes RO16, RR2 and RR141 was of 81

  15. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  16. Growing Backyard Textiles

    Science.gov (United States)

    Nelson, Eleanor Hall

    1975-01-01

    For those involved in creative work with textiles, the degree of control possible in texture, finish, and color of fiber by growing and processing one's own (perhaps with students' help) can make the experience rewarding. The author describes the processes for flax and nettles and gives tips on necessary equipment. (Author/AJ)

  17. Rechargeable electronic textile battery

    NARCIS (Netherlands)

    Bhattacharya, R.; Kok, M.M. de; Zhou, J.

    2009-01-01

    We present a simple fabrication process that produces polymeric charge storage devices directly onto a textile surface. By using a coating of poly-(3,4-ethylenedioxythiophene):poly(styrene sulphonic acid) (PEDOT) as a solid electrolytic layer deposited between two woven silver coated polyamide

  18. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    Science.gov (United States)

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.

  19. Cost and value of pathogen reduction for land application of sludges

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Morris, M.E.

    1978-03-01

    This paper discusses the general pressures that are forcing sewage sludge managers to reconsider land application of sludges where it is not already used; presents the cost of using gamma-radiation from the isotope cesium-137 for sludge disinfection; and documents the economic and social pressures that could compel a city such as Washington, D.C. to disinfect its compost before sale. Washington was chosen as an example because it is a city for which suitable compost marketing data are readily available. With these data it is reasonably straightforward to document the costs and benefits of radiation processing. The economic and social pressures that affect Washington are probably similar to those in many other areas where the radiation disinfection of dried sludge could provide the same disposal options

  20. N Uptake From Irradiated Sludge Combined With N Fertilizer By Edible Nightshade Crop

    International Nuclear Information System (INIS)

    Mitrosuharjo, M.M.; Haryanto; S, Suwirma; Harsojo; Hilmy N

    2000-01-01

    A greenhouse pot experiment has been carried out to study the amount of N uptake from sludge by edible nightshade (solanum melongena) crop. Sludge used in this experiment was a municipal sludge that has been processed (to be a compost sludge so it was ready to be used) from pulo gebang, east jakarta, then sludge was irradiated in a dose rate between 3.6 to 4.4 kGy at P3TIR-BATAN, jakarta. The sludge was given in the amount equivalent to 60, 120, 180 and 240 kg N/ha. For control was used treatment without sludge, without sludge but with N fertilizer in a normal rate. Each of treatment was applied with 15N in the rate equivalent to 20 kg N/ha. For buffer of soil nutrient, fertilizer P and K were also applied in normal rate. As experimental crop hybrid edible nightshade of FORTUNA variety was used. Result of this experiment showed that application of sludge was able to increase yield, dry matter production, total N uptake and N uptake derived from sludge. The amount of N uptake derived from sludge was spread between 17.5 to 151.8 mg N/pot for application sludge in 1% N content at the rate equivalent 60 to 240 kg N/ha

  1. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  2. Compost duurzaam ingezet. De Compost Scorekaarten: een instrument voor het afwegen van de waarde van compost

    OpenAIRE

    Schrik, Yannick; Koopmans, Chris

    2015-01-01

    Het duurzame gebruik van een reststof zoals compost hangt sterk samen met de waarde die de compost heeft bij toepassing. Deze publicatie geeft via heldere Compost Score Kaarten inzicht in het vinden van de juiste compostsoort voor het gewenste doel. Of het nu gaat om organischestofvoorziening, verbetering van de bodemstructuur of de nutriëntenvoorziening van gewassen: een bewuste keuze voor de compostsoort en –kwaliteit draagt bij aan een duurzame inzet en duurzaam hergebruik van reststoffen.

  3. Changes in soil organisms by the application of sludge composits, and their effects. Odei taihirui no shiyo ni tomonau dojo seibutsu no henka to sono eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Niijima, K.; Fujita, K.; Ogawa, M. (Forestry and Forest Products Research Institute, Tsukuba (Japan))

    1993-08-31

    With an objective to utilize sewage sludge more effectively, composted sewage sludge has been applied to seed beds to investigate its effect on soil macrofauna and higher fungi, and its relativity with change in soil organisms, growth of young trees, and soil science. Forty-eight seedling sections, each 5 m [times] 5 m, were made on a seed bed which was applied with Tenryu sludge composts (polymer-based coagulant), several other kinds of sludge composts, fallen leaf composts, and cattle excrement composts at predetermined rates from zero to 20 kg. Each section was planted with 25 three-year-old nursery trees of a kind of oak, black pine, and cypress. As a result, the following findings were obtained: wet weight of larvae of Japanese gold beetles that attack tree roots has increased during the first and second years in the Tenryu sludge applied section, but no longer increased in the third year; the relationship between the other composts and soil macrofauna was not made clear; Scleroderma Cepa PERS, a mycorrhiza bacteria, has been generated in the oak planted section in the second, third and fourth years, with the second year particularly having generated it in a greater amount in proportion with the fertilizer application amount, but the fertilizer effect thereafter is not clear. 24 refs., 6 figs., 9 tabs.

  4. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    The aerobic composting potential and quality of Source Separated Municipal Solid Waste (SSMSW) was studied using four different treatments for over 80 days. Four different types of treatments using different inoculums were used for the composting of source separated municipal solid waste. The phytotoxicity tests of the ...

  5. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  6. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  7. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  8. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge.

    Directory of Open Access Journals (Sweden)

    Martijn Eikelboom

    Full Text Available The Multi-Criteria Decision Analysis (MCDA procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery, economic (overall costs, value of products and technical (maintenance and operation, feasibility of implementation. The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry. Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery.

  9. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    Science.gov (United States)

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  10. Strike It Rich with Classroom Compost.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  11. The Compost Pile Meets the 1990's.

    Science.gov (United States)

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  12. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis.

    Science.gov (United States)

    Yang, Xiaoyi; Xue, Yu; Wang, Wenna

    2009-01-01

    Enhanced activated sludge by interior microelectrolysis (EAIM) was studied to treat textile wastewater, kinetics, mechanism and application of which were also discussed in comparison with traditional activated sludge and interior microelectrolysis, respectively. The results of kinetics study indicated three different processes all followed first-order kinetics well. In EAIM, three impact factors take effects on COD removal, which are flocculation, activated sludge and electrophoresis and redox. In terms of assumption of no interaction among three COD removal mechanisms, 49.6% of the total COD removal is ascribed to flocculation, 30.1% to activated sludge and 20.3% to electrophoresis and redox. EAIM showed its advantages in COD removal efficiency, extensive adaptability to complex composition and wide range of pH. EAIM-aerobic process provided an efficient and economic performance for dealing with textile wastewater.

  13. Offshoring in textile industry

    OpenAIRE

    MONTÓN GARCÍA, JORGE

    2015-01-01

    [ EN] This project is about offshoring in the textile industry, focusing in the rights violated in this process, this concept can be defined as the moving of various operations of a company to another country for reasons such as lower labor costs or more favorable economic conditions in that other country. The project describes the evolution of offshoring, which started in 1960’s and has continued since then; it was characterized primarily by the transferring of factories from the develope...

  14. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...... these issues and being able to account for them is a prerequisite in compost engineering and for establishing and running a successful composting facility. Of specific importance is the final use of the compost product. Use in agriculture is described in Chapter 9.10 and the use of compost in soil amendment...

  15. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  16. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend.

    Science.gov (United States)

    Liang, C; Das, K C; McClendon, R W

    2003-01-01

    To understand the relationships between temperature, moisture content, and microbial activity during the composting of biosolids (municipal wastewater treatment sludge), well-controlled incubation experiments were conducted using a 2-factor factorial design with six temperatures (22, 29, 36, 43, 50, and 57 degrees C) and five moisture contents (30, 40, 50, 60, and 70%). The microbial activity was measured as O2 uptake rate (mg g(-1) h(-1)) using a computer controlled respirometer. In this study, moisture content proved to be a dominant factor impacting aerobic microbial activity of the composting blend. Fifty percent moisture content appeared to be the minimal requirement for obtaining activities greater than 1.0 mg g(-1) h(-1). Temperature was also documented to be an important factor for biosolids composting. However, its effect was less influential than moisture content. Particularly, the enhancement of composting activities induced by temperature increment could be realized by increasing moisture content alone.

  17. Temperature and final characteristics of composting process of the Municipal solid wastes; Evolucion de la temperatura y caracteristicas finales del co-compostaje de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, O.; Leon, J.J. de; Revilla, J.; Dobao, M.M.; Ruiz, J.L. [Departamento de Quimica Agricola y Edafologia, Universidad de Cordoba, cordoba (Spain)

    1996-06-01

    In this paper it has been studied the evolution of temperature in two depth of three piles during the composting process using the organic matter of the Municipal Solid Waste from Cordoba (Spain) from the selective harvest. The cited mixtures were composed of organic matter (<50 mm), sludge from the water treatment plant, pruning garden and bark of pine (bunking). Almost it has been obtained the yield of the composting piles and the agronomic quality of the compost obtained. The mixture organic matter <50 mm+pruning arden+bunking (M.P.B.) shoved the best index. (Author) 15 refs.

  18. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. State of art and prospectives of composting; Stato dell`arte e prospettive del compostaggio

    Energy Technology Data Exchange (ETDEWEB)

    Canditelli, M [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dip. Ambiente

    1995-10-01

    The report illustrates the importance of composting, as a technology for wastes disposal and resource recovery. The process of aerobic stabilization, microbial mechanisms and physic-chemical parameters characterizing such activities, have been described. Importance of separate collection and compost able compound selection in the optimization of this spontaneous biotechnology for biodegradable wastes and sludge treatment, is emphasized. It is to be noted that residues that it can be used as an appropriate management process that allow the utilization of different types of wastes, converting them into a good compost, a product seems to be fit both from agronomic and environmental point of view. Regulations in force both at national and regional levels (Lombardia, Piemonte, Veneto) as well as a course to revise the present legislation, particularly suggestion to introduce a certification system, identified by an agronomic-environmental quality-mark, have also been reported.

  20. Textiles and clothing sustainability recycled and upcycled textiles and fashion

    CERN Document Server

    2017-01-01

    This book discusses in detail the concepts of recycling and upcycling and their implications for the textiles and fashion sector. In addition to the theoretical concepts, the book also presents various options for recycling and upcycling in textiles and fashion. Although recycling is a much-developed and widely used concept, upcycling is also gaining popularity in the sector.

  1. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties are not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges

  2. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  3. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  4. Greening textile industry in Vietnam

    NARCIS (Netherlands)

    Nguyen Thi Phuong, L.

    2011-01-01

    The textile and garment industry has made a remarkable contribution to the economic development of Vietnam and employs currently a large labor force of 2.5 million people.However, the textile industry is also seen as a most polluting and unsustainable industry due to the use of

  5. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    3Addis Ababa University, Faculty of Sciences, Environmental Science Program, P.O.Box:1176, Addis ... practices of solid waste management of the city. ..... Basic Principles for composting of ... (http://www.extension.umn.edu/distribution/natu.

  6. FOREST SEEDLINGS PRODUCTION USING STABILIZED SEWAGE SLUDGE / PRODUÇÃO DE MUDAS FLORESTAIS UTILIZANDO LODO DE ESGOTO ESTABILIZADO

    Directory of Open Access Journals (Sweden)

    DURVAL R. DE PAULA JR

    2009-11-01

    Full Text Available Aiming tThis study aims at evaluating the physical, chemical and biological characteristics of sewage sludge and its feasibility for use as a component of substrata to produce seedlings of native and exotic trees. The sewage sludge was previously stabilized through the process of composting with grassremnants. Before and after the composting, chemical analyses were carried out in order to quantify levels of heavy metals, macro nutrients and micro nutrients in addition to microbiological analyses of sewage sludge. The mixtures (Treatments in the proportions vary from 0 to 100% of organic compostof sewage sludge (OCSS in composition with carbonized rice husks (CRH and were compared to control treatments, which consisted of commercial substrates (PLANTMAX-EUCATEX and cattle manure. Porosity, density, capacity of water retention and particles size of treatments were evaluated. Results of the physical characterization of substrates revealed that proportions ranging from 100 to 40% of the compost showed better results for tree seedlings cultivation. The use of organic compost of sewage sludge (OCSS to produce seedlings of forest essences is a viable alternative for waste reuse, aggregating not only economy and quality of inputs in the yields, but also environmental benefits.

  7. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Directory of Open Access Journals (Sweden)

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  8. Leachability and phytoavailability of nitrogen, phosphorus, and potassium from different bio-composts under chloride- and sulfate-dominated irrigation water.

    Science.gov (United States)

    Ahmad, Zahoor; Yamamoto, Sadahiro; Honna, Toshimasa

    2008-01-01

    Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.

  9. The Mycenaean Palace-Organised Textile Industry

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    2008-01-01

    Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings.......Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings....

  10. Treatment of textile sludge using anaerobic technology | Asia ...

    African Journals Online (AJOL)

    Samples were subjected to mesophilic anaerobic treatment at the temperature of 35±2°C. The method achieved solids reduction of 61% total solids, 68% settleable solids and 51% volatile solids and a total bacteria reduction of 99.99%. The reduction in BOD and COD were 89% each. Nitrate and phosphate were found to ...

  11. Composting of food wastes: Status and challenges.

    Science.gov (United States)

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Applying NISHIJIN historical textile technique for e-Textile.

    Science.gov (United States)

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  13. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  14. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  15. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  16. Textiles of the Phu Thai of Laos

    OpenAIRE

    McIntosh, Linda Susan

    2009-01-01

    This thesis documents the hand-woven textiles that the Phu Thai ethnic group living in Savannakhet Province, Laos, produce. The various stages of textile production and the uses of textiles in Phu Thai society, especially as identity markers, are also examined. Textiles of neighboring groups are also investigated to how knowledge of textile technology, types, and aesthetics are transferred between the Phu Thai and other ethnicities, specifically the Lao and Katang. The study's field research ...

  17. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    Science.gov (United States)

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  18. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Textile production in Quartier Mu

    DEFF Research Database (Denmark)

    Cutler, Joanne Elisabeth; Andersson Strand, Eva Birgitta; Nosch, Marie-Louise Bech

    2013-01-01

    , geographical and chronological factors.  In contrast, recent research has considered some aspects of shape as an expression of loom weight function. This new approach, which draws on experimental archaeology, has made it possible to render textile craft visible, even if the textiles themselves...... are not preserved (Mårtensson et al. 2009). It is this approach that has been adopted in the following analysis of the loom weights from Quartier Mu. The chapter divided into four parts. The first part gives an outline of general textile techniques and presents the methodology. The second part consists...

  20. A novel textile characterisation approach using an embedded sensor system and segmented textile manipulation

    Science.gov (United States)

    Fial, Julian; Carosella, Stefan; Langheinz, Mario; Wiest, Patrick; Middendorf, Peter

    2018-05-01

    This paper investigates the application of sensors on carbon fibre textiles for the purpose of textile characterisation and draping process optimisation. The objective is to analyse a textile's condition during the draping operation and actively manipulate boundary conditions in order to create better preform qualities. Various realisations of textile integrated sensors are presented, focusing on the measurement of textile strain. Furthermore, a complex textile characterisation approach is presented where these sensors shall be implemented in.

  1. HEAVY METAL ASPECTS OF COMPOST USE

    Science.gov (United States)

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  2. New trends in processing and disposal of municipal and industrial sewage sludges. 8. Joint seminar `waste water technology` with exhibitor`s forum; Neue Trends bei der Behandlung und Entsorgung kommunaler und industrieller Klaerschlaemme. Achtes gemeinsames Seminar `Abwassertechnik` mit Ausstellerforum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The present conference proceedings handle all aspects of sewage sludge disposal: agricultural use of sewage sludge, processing in anaerobic reactors, composting, drain, drying, gasification, combustion, economical aspects, ecological aspects, building, design and operation of modern sludge treatment plants. (SR) [Deutsch] Der vorliegende Tagungsband behandelt alle Aspekte der Klaerschlammentsorgung: landwirtschaftliche Nutzung von Klaerschlamm, Behandlung in Anaerobreaktoren, Kompostierung, Entwaesserung, Trocknung, Vergasung, Verbrennung, wirtschaftliche Aspekte, oekologische Aspekte, Bau, Ausruestung und Betrieb von modernen Schlammbehandlungsanlagen. (SR)

  3. Functional textiles in hospital interiors

    DEFF Research Database (Denmark)

    Mogensen, Jeppe

    This PhD thesis explores the possibilities and design qualities of using functional textiles in the interior of hospital environments, and is the result of a three years collaboration between Aalborg University, Department of Civil Engineering, and VIA University College, VIA Design. The project...... that the physical environments affect the patients’ level of stress and influence their process of recovery and healing. However, although research in this field of hospital design has increased substantially in recent years, knowledge on the use of new materials and textiles in hospital interiors is still rather...... limited. Concerned with the design potentials of using textiles in hospital interiors, the purpose of the PhD project has been to explore the possibilities and design qualities of using these materials in hospital design. Relating to both technical and aesthetic aspects of using functional textiles...

  4. Production of sludge-incorporated paver blocks for efficient waste management.

    Science.gov (United States)

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  5. Physical tools for textile creativity and invention

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen; Lenau, Torben Anker

    2010-01-01

    Two textile research projects (one completed and one ongoing) are described, where physical inspirational tools are developed and tested with the aim of stimulating textile creativity and invention, i.e. the use of textile materials in new kinds of products, thus bringing textiles into new contexts....... The first research project (completed) concerns how textile designers use new responsive materials and technologies, whereas the second (ongoing) concerns how architects and design engineers can use textile materials. In both projects, the developed inspirational tool is tested through workshops...... with the mentioned stakeholders. In these workshops, new ways of disseminating the results from research in textiles and textile design are experimented with. The submitted contribution therefore mainly addresses the role of interdisciplinarity in textile design research as well as the impact of new materials...

  6. Modeling composting kinetics: A review of approaches

    NARCIS (Netherlands)

    Hamelers, H.V.M.

    2004-01-01

    Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and

  7. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture,

  8. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    is potentially better growth medium amendment when compared with traditional compost types. The use of vermi-compost is, therefore, very helpful in terms of providing beneficial soil nutrients as compared to other compost types. In contrast to the other chemical and biological properties, the highest pH was recorded in the.

  9. Influence of composting techniques on microbial succession ...

    African Journals Online (AJOL)

    pH also stabilized as the composting process progressed in the pit. Good quality compost was obtained in 5 weeks when PACT was used. Conventional pit method lasted over several weeks. Key Words: Municipal wastes; passive aeration; pit composting; temperature; microbial succession. African Journal of Biotechnology ...

  10. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    Science.gov (United States)

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  11. Structural analysis of ceramic blocks sealing or structural incorporated with the industrial laundry sludge

    International Nuclear Information System (INIS)

    Almeida, P.H.S.; Grippe, V.Y.Q.; Goulart, J.V.

    2016-01-01

    Industrial and commercial development of recent decades has led to an increase in waste generation. Thus, it is necessary to develop alternative and effective methods of treatment, replacing the simple disposal of these wastes in landfills. The objective of this work is to study the incorporation of textile industrial laundries sludge in ceramic blocks sealing or structural. Samples of ceramic blocks were produced using formulation with 20% sludge, the mass of ceramic clay. Structural analysis of the block was observed the tendency of most empty emergence (pores) during the firing of the blocks, as textile sludge was added in the ceramic paste composition. The mechanical testing of blocks compressive strength was above the minimum 3.0 MPa specified by the standard limit. The physical test water absorption of the blocks was within the range 8 to 22% specified by the standard. (author)

  12. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  13. Types and treatment of sewage sludges: Practice in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tabasaran, M.O.

    1975-01-01

    The sludge that is formed by the various processes in the sewage treatment plant consists mainly of water with a small amount of organic and inorganic suspended solids. It contains pathogenic agents and biological inhibitors, and must be prepared and brought into a form where it is less dangerous to the environment. The de-watering of the sludge is the first step in sludge handling. The solids content of the raw sludge, which is usually between 5 and 10%, can be increased by gravity thickening to 15%, by centrifuging or straining-band-pressing up to 30%, and by pressure-filtration up to 40%. The process of drying enables a substance with almost no moisture to be obtained. Generally the sludge will be either mixed before de-watering with coagulation agencies, or preheated, or its colloidal components biochemically oxidized in order to accelerate the withdrawal of the water. One of the most common methods of disposal is the transport of sludge to a land filling, usually together with the solid refuse of the community. For this purpose the moisture content of the sludge should not be more than 60 to 70 percent. The disposal of sludge into the sea can be practised in coastal towns, but the ecological effects of this kind of sludge removal are still disputed. More expedient is the agricultural utilization of sludge, particularly if the sludge is composted together with a carbon carrier such as city refuse which would make it a very suitable soil improver. In the Federal Republic of Germany the wet oxidation of sludge is applied in a few cases. The most common process is anaerobic alkaline digestion. The incineration of sludge is more economical than drying, but still too, expensive in comparison with other approved processes. (author)

  14. SAVE ENERGY IN TEXTILE SMES

    Directory of Open Access Journals (Sweden)

    SCALIA Mauro

    2016-05-01

    Full Text Available Efficiency and competitiveness in textile and clothing manufacturing sector must take into account the current and future energy challenges. Energy efficiency is a subject of critical importance for the Textile & Clothing industry, for other sectors and for the society in general. EURATEX has initiated Energy Made-to-Measure, an information campaign running until 2016 to empower over 300 textile & clothing companies, notably SMEs, to become more energy efficient. SET( Save Energy in Textile SMEs a collaborative project co-funded within the European Programme Intelligent Energy Europe II helps companies to understand their energy consumption and allows them to compare the sector benchmarks in different production processes. SET has developed the SET tool, Energy Saving and Efficiency Tool, a free of charge tool customized for textile manufacturers. The SET tool is made up of 4 elements: a stand-alone software (SET Tool for self-assessment based on an Excel application; an on-line part (SET tool Web for advanced benchmarking and comparison of the performances across years; a guiding document for the companies and overview of financial incentives and legal obligations regarding energy efficiency. Designed specifically for small and medium enterprises (SMEs, the SET tool enables the evaluation of energy consumption and recommends measures to reduce the consumption. Prior to modifying the company’s production processes and making investments to increase energy efficiency, textile SMEs need to get different type of information, including legal context, economic and technical peculiarities.

  15. Biochar composts and composites.

    Science.gov (United States)

    Ekebafe, Marian Osazoduwa; Ekebafe, Lawrence Olu; Ugbesia, Stella Omozee

    2015-01-01

    Research has shown that the carbon content of wastes decreases during composting with an increase in the nitrogen content. This indicates that the increased microbial activity in the process results in an increased mineralisation rate of organic nitrogen. A formula containing biochar in the form of terra preta, biochar bokashi, biochar glomalin, biochar hydrogel and biochar mokusaku-eki could further enhance the stability of the system and its effectiveness as a soil ameliorant. It could increase the cation exchange capacity, reuse crop residue, reduce runoff, reduce watering, reduce the quantity of fertiliser increase crop yield, build and multiply soil biodiversity, strengthen and rebuild our soil food web, sequester atmospheric carbon in a carbon negative process, increase soil pH, restructure poor soils, and reduce carbon dioxide/methane/ nitrous oxide/ammonia emissions from gardens and fields. This paper considers these claims and also the wider environmental implications of the adoption of these processes. The intention of this overview is not just to summarise current knowledge of the subject, but also to identify gaps in knowledge that require further research.

  16. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  17. Treatment aerobic conjugate of sludges of septic tanks and household organic solid wastes

    Directory of Open Access Journals (Sweden)

    Wanderson Barbosa da Silva Feitosa

    2009-12-01

    Full Text Available It was aimed at to evaluate the co-composting as technological alternative to the treatment of sludges of septic tanks with household organic solid wastes originating from cities of small and medium loads. The sludges and the domiciliary organic solid waste were collected in Cabaceiras, Caraúbas and Queimadas, state of Paraíba. The experiment consisted of four treatments with three repetitions, totaling 12 reactors, of cylindrical configuration in polyethylene of 100 L of capacity. Each reactor was fed with 50 kg substratum with variable composition in function of the sludge fraction: 0%, 10%, 20% and 30%. The manual turning was accomplished three times a week and the temperature was monitored daily. The total destruction of helminth eggs in period differentiated in function of the sludges fraction (14, 28, 35 and 63 days and the medium transformation of 54.1% of sludges in biosolids class A and class B, with favorable characteristics to the use in agricultural cultures in 91 days, expressed the viability of the treatment for co-composting of sludges of tanks septic multichamber of collective use for the cities of small and medium load.

  18. Ozone treatment of textile wastewaters for reuse.

    Science.gov (United States)

    Ciardelli, G; Capannelli, G; Bottino, A

    2001-01-01

    Treatment of textile wastewaters by means of an ozonation pilot plant are described. Wastewaters used were produced by a dyeing and finishing factory and were first treated in an active sludge plant and filtrated through sand. In the appropriate conditions very high colour removal (95-99%) was achieved and the effluent could be reused in production processes requiring water of high quality as dyeing yarns or light colorations. Even if the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease of up to 60%) that was usually considered to be too high for recycling purposes, recycling experiments were successful. The economical viability of the techniques implementation was also demonstrated and the industrial plant is currently under realisation under an EU financed project. The paper considers also the possible improvement of ozone diffusion by means of membrane contactors realised in a second pilot plant, in order to further reduce operating costs of the technique. With respect to traditional systems, the gas/liquid contact surface is much higher being that of the membrane. Ozone at the interface is therefore immediately solubilized and potentially consumed with no additional resistance to the mass transfer.

  19. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  20. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  2. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Polina Galitskaya

    Full Text Available Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil and one discriminate component (sewage sludges of different origin were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2 x 106 and (0.4±0.0 x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0 x105 and (6.1±0.2 x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was

  3. Identificación de hongos fitopatógenos y presencia de salmonella sp en compost de plantas de tratamiento de aguas residuales

    Directory of Open Access Journals (Sweden)

    Jorge Antonio Silva-Leal

    2007-01-01

    Full Text Available This study shows adapted methodologies to identify of phytopathogens fungi (Botrytis spp, Fusarium sp., Phytophthora sp., Rhizoctonia sp and bacteria as Salmonella sp. Presence of mentioned microorganism was evaluated in compost samples produced from dewatering primary sludge, generated in Cañaveralejo Wastewater Treatment Plant -WWTPC. The adapted methodologies shown that the appropriate dilutions for isolation of phytopathogens fungi in compost are 10-3,10-4and 10-5 and the most appropriated selective culture medium for the salmonella sp identification is the Salmonella-Shigella agar. Fusarium sp was the only phytopathogens fungi founded in compost; Salmonella sp was also founded. Therefore, it is recommended the quantification in order to define the concentrations that can cause health problems; additionally, it is necessary sanitization of compost for use in agriculture, mainly in industrial crops.

  4. EXERGY OF TEXTILE MATERIALS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The article presents solution for the task of evaluating exergy of the substance in the flow for textile and woven fabrics based on thermodynamic analysis of the corresponding technical systems. The exergy method allows estimating the energy effectiveness for the most problematic heat-technological systems of substance transformation and thus outlining the ways for decreasing the electric-power component in the production prime cost. The actuality of the issue stems from the renowned scenario alteration on the world energy market and is aggravated by necessity of retaining and building up the export potential of the light industry as an important component of the republic national-economic complex. The exergy method has been here for quite a long time and saw the interest fading and appearing again with periodicity of the research-generations alternation. Cooling down of every new generation towards the specified method is explained mostly by unresolved problem of the exergy evaluation for diverse materials, which poses a problem in the course of analysis of the substance transformation systems. The specified problem as a general rule does not create obstacles for energyconversion systems. However, the situation with substance-transformation systems is by far more complicated primarily due to diversity of the materials and respectively of the specification peculiarities of such component of the substance exergy in the flow as chemical component. Abeyance of conclusion in finding the chemical component of the substance exergy does not allow performing thermodynamic valuation of the energy provision for the heat-technological process in full measure. Which complicates the matters of decision-making and finding a medium for reduction of their energy consumption. All stated above relates to the textile industry and in the first instance to the finishing production departments.The authors present the exergy-evaluation problem solution for the

  5. Impact of urban waste water treatment on sludge utilization and disposal with special emphasis on thermal treatment

    International Nuclear Information System (INIS)

    Gammeltoft, P.

    1993-01-01

    The acceptance of the European Communities Directive 9/271/CEE concerning urban waste water treatment by all the EC Member States will result in a sewage sludge production increase of 2 to 3 times the actual amounts (for the year 2000 the forecast is about 30 million tonnes per year). All the traditional sewage sludge treatment methods (agricultural, disposal, compost, thermal treatment) entail costs which are always increasing because of the stricter requirements; in addition EC policy is oriented towards the reduction of the quantity of sludge production. In some situations, drying and subseque incineration may thus be the only practicable method of disposal, particularly, in very large urban agglomerations

  6. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  7. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nutritional analysis of some composted and non-composted ...

    African Journals Online (AJOL)

    Student

    2013-05-08

    May 8, 2013 ... Key words: Wood ear mushrooms, fresh and composted agricultural wastes, wheat bran, Kenya. ... substrate, especially the C : N ratio which is attained by getting the right ... was excess water, sun drying was done followed by a squeeze test ..... dependent on free circulation of moisture and air in the.

  9. Scope of nanotechnology in modern textiles

    Science.gov (United States)

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  10. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    Science.gov (United States)

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  11. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    Science.gov (United States)

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Photonic textiles for pulse oximetry.

    Science.gov (United States)

    Rothmaier, Markus; Selm, Bärbel; Spichtig, Sonja; Haensse, Daniel; Wolf, Martin

    2008-08-18

    Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising.

  13. Textile materials trading center formally launched online

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Textile materials trading center was formally launched online in Wuxi City,Jiangsu Province. This is the first third-party electronic trading platform for spot trading in China textile materials professional market. The project will strive to build the most influential textile materials trading center of East China,the whole country and even the whole world China textile materials trading center will be

  14. Comparison of Composting and Vermicomposting Processes in Refining Drill Cutting Mud from Ahvaz Oil Field in the Presence of Biosolids

    Directory of Open Access Journals (Sweden)

    afshin takdastan

    2017-11-01

    Full Text Available Cutting and drilling mud contains significant amounts of petroleum hydrocarbons that are detrimental to both the environment and public health. The objective of this study was to remove the hazardous components of drill cutting mud using the two biological processes of sewage sludge vermicomposting and biocomposting. In an experimental laboratory research, two pilot composting and vermicomposting processes, each over a period of two months with 2 repetitions, were conducted using the the same biological sludge mixed with drill cuttings contaminated with total petroleum hydrocarbon (TPH along with sawdust and yard waste. The GC-FID unit was used to determine the residual total petroleum hydrocarbon concentrations. Results showed that the vermicomposting pilot had a higher TPH removal efficiency than did the composting one so that TPH concentration in the mixed waste mass declined after 60 days from its original value of 42.004 g/kg to 11.316 g/kg. In other words, TPH removal in the pilots A (vermicomposting and B (biocomposting were 73/06% and 55/3%, respectively. Moreover, the TPH levels in the two composting and vermicomposting pilots on the 45th and 60th days showed significant differences (p < 0.05. The study showed that the vermicomposting process enjoys a higher capability than the composting one in removing TPH from oil-based drill cutting waste.

  15. Moisture relationships in composting processes

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.

    2002-01-01

    Moisture is a key environmental factor that affects many aspects of the composting process. Biodegradation kinetics are affected by moisture through changes in oxygen diffusion, water potential and water activity, and microbial growth rates. These relationships are made more complex by the dynamic

  16. Emerging research trends in medical textiles

    CERN Document Server

    Gokarneshan, N; Rajendran, V; Lavanya, B; Ghoshal, Arundhathi

    2015-01-01

    This book provides a comprehensive review of the significant researches reported during the recent years in the field of medical textiles. It also highlights the use of new types of fibres in developing medical textile products and their promising role in the respective areas of application. Considerable developments have taken place in the development of medical textiles for varied applications.

  17. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  18. Reduction of heavy metals in refinery waste sludge using em treatment

    International Nuclear Information System (INIS)

    Ahmad, J.; Ahmad, F.; Saleemi, A.R.; Ahmad, I.

    2005-01-01

    This paper presents the efforts of National Cleaner Production Center (NCPC) and Attock Refinery Limited (ARL) Rawalpindi, to address the problem of refinery solid waste. A trial project was designed to treat and convert 1.7 m ton to oil sludge into environmental friendly residue (compost) under anaerobic conditions. The residue can be treated as bio fertilizer for agricultural purpose. The trial on bio remediation (anaerobic) of oily sludge of ARL, Rawalpindi within its premises using EM technology was successfully completed with the collaboration of effective microorganism research organization (EMRO), NCPC and ARL between 29th October to 10th December, 2002. The effective microorganisms transformed the undiluted oily sludge from ARL into bioactive sludge; which may be called as bio sludge. For heavy metal breakdown the trial data shows that Ba has been reduced by 85% in the EM. Treated oily sludge as compared to original ARL sludge, and Pb, Fe, Zn and Ni have been reduced by about 50% in the treated bio sludge. The contents of As, Cr, Cu and Mn showed no change. The residue obtained can be used as a bio fertilizer. (author)

  19. Fate of diesel fuel hydrocarbon in composting bioremediation system using radio- labeled 14C phenanthrene

    International Nuclear Information System (INIS)

    Hesnawi, R. M.; McCartney, D. M.

    2008-01-01

    To characterize the fate of fuel hydrocarbon in bioremediation composting system, diesel fuel, spiked with radio-labeled [9-1 4C ] phenanthrene at activity of 0.15μCi g - 1 of diesel fuel, was added to the soil to yield a contaminant load of 20,000 mg kg - 1 dry soil. The contaminated soil was amended with either fresh feedstock material (municipal sludge, leaves, and wood shaving) or mature compost and then incubated at thermophilic temperature pattern for 126 day. The mineralized, volatilized, and extractable fractions of 1 4C labeled phenanthrene were determined every two weeks over 126-days experimental period. The 1 4C data were used to predict the amount of removal due to biodegradation and sorption. In controls that were not amended with compost, no mineralization of 1 4C phenanthrene was detected, whereas treatments that received compost amendment showed significant release of phenanthrene as 1 4C O 2., ranging from 25% to 42% of initial radioactivity concentrations. The 1 4C extracted from the solids were decreasing with time. The total radioactivity extracted at the end of the experiment was less than 11% in the amended soil, whereas in the controls, more than 65% of the 1 4C was extracted. The 1 4C data indicated that bound residues formation was the major mechanism for the removal of pantherine or its metabolites. (author)

  20. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  1. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  2. Emotional Value of Applied Textiles

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2011-01-01

    The present PhD thesis is conducted as an Industrial PhD project in collaboration with the Danish company Gabriel A/S (Gabriel), which designs and produces furniture textiles and ‘related products’ for manufacturers of furniture. A ‘related textile product’ is e.g. processing of piece goods....... In chapter six I elaborate on the creation of the design game the Stakeholder Game. The purpose of the game is for the participants (different stakeholders) to develop emotional concepts for future design based on personal and professional experiences. The Stakeholder Game summarises and refines the Tripod...

  3. CO2 emission from soil after reforestation and application of sewage sludge

    Directory of Open Access Journals (Sweden)

    Janaina Braga Carmo

    2014-09-01

    Full Text Available This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE, sewage sludge compost (CLE, mineral fertilizer (AM and no fertilization (T0. The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0 with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae. Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001, as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005. The AM treatment (4.96±1.61 g C m- 2 day- 1 had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1. CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.

  4. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  5. Toepassingsmogelijkheden van compostering in de ecologische varkenshouderij : een milieutechnische benadering

    OpenAIRE

    Hilkens, W.

    1993-01-01

    Student report in which the possibilities of composting for a pig farming system in Gemert, The Netherlands, with an ecological basis, are investigated. The process of composting and different composting systems were evaluated

  6. Design Management in the Textile Industry

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2013-01-01

    In this paper we explore textile design activities and textile design management from an industrial network perspective. The textile industry is probably one of the most globalized manufacturing industries in the world and thus one of the most dispersed industries on the globe. Most studies...... on design management are framed inside the organisational context of the firm. In this study the role and practice of textile design is addressed in perspective of the global textile production network. The empirical data stems from six case studies exploring how different types of enterprises are organised...

  7. Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application

    OpenAIRE

    Fuchs, Jacques G.

    2010-01-01

    Numerous microorganisms are involved in the composting process, but their precise roles are often unknown. Compost microorganisms are influenced by the composition of the substrate and by the temperature in the compost pile. In addition, different microorganisms also influence each other, e.g. through competition. In the first phase of composting, microbial activity increase drastically, leading to a rise in temperature. The initial bacterial dominance is replaced by a fungal one during compo...

  8. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  9. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  10. Presence of helminth eggs in sewage sludge from waste water plants; Presencia de huevos de helmintos en lodos procedentes de la depuracion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Muro, J. L.; Garcia Orenes, F.; Nieto Asensio, N.; Bonora, I. B.; Morenilla Martinez, J. J.

    2003-07-01

    Land application of sewage sludge is a usual practice in wide areas of the Comunidad Valencia, due the low organic contents and nutrients of the soils, and the sewage sludge is a suitable material to use os organic amendment of soils. However the use of sewage sludge involves a very detailed characterization of sewage, to avoid sanitary hazards as the presence of helminth eggs and its high resistant to most of the treatment used to stabilize sewage sludge. The aim of this work was determine the parasitic contamination of helminths found in sewage sludge, stabilized by anaerobic digestion, from two waste water plants of Alicante (Alcoy y Benidorm) destined to agricultural land. Also it was studies the evolution of helminth eggs content of a sewage sludge subjected to composting process. (Author) 12 refs.

  11. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms.

    Science.gov (United States)

    Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish

    2010-10-01

    Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.

  12. Recent Advances in Soft E-Textiles

    Directory of Open Access Journals (Sweden)

    Kunal Mondal

    2018-04-01

    Full Text Available E-textiles (electronic textiles are fabrics that possesses electronic counterparts and electrical interconnects knitted into them, offering flexibility, stretchability, and a characteristic length scale that cannot be accomplished using other electronic manufacturing methods currently available. However, knitting is only one of the technologies in e-Textile integration. Other technologies, such as sewing, embroidery, and even single fiber-based manufacture technology, are widely employed in next-generation e-textiles. Components and interconnections are barely visible since they are connected intrinsically to soft fabrics that have attracted the attention of those in the fashion and textile industries. These textiles can effortlessly acclimatize themselves to the fast-changing wearable electronic markets with digital, computational, energy storage, and sensing requirements of any specific application. This mini-review focuses on recent advances in the field of e-textiles and focuses particularly on the materials and their functionalities.

  13. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  14. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    Science.gov (United States)

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  16. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    Science.gov (United States)

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  17. Sewage sludge utilisation and disposal alternatives and their comparison; Puhdistamolietteiden hyoedyntaemis- ja loppusijoitusvaihtoehdot sekae niiden vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, P.

    2001-07-01

    Sludge production will presumably not decrease in future. At present agricultural use of sludge is unstable and landfilling will most probably be restricted in the following years. The objective of this thesis is to gather information on options for sludge treatment and utilisation and to compare these options in order to find the best possible solution for future alternatives of sludge utilisation. Finnish and international literature as well as Finnish and EU legislation have been reviewed. Furthermore the mentoring group of this thesis as well as other experts in Finland have been used as a source of information. Sludge contains not only plant nutrients and organic matter but also varying quantities of a number of more or less hazardous substances. The quality and quantity of sewage sludge are described and possible health and environmental risks caused by sewage sludge are pointed out. The legislation linked to sludge utilisation and its demands are also presented. The sludge processing methods reviewed are: thickening, lime stabilisation, aerobic digestion, anaerobic digestion, composting and mechanical and thermal drying. In addition, the positive and negative sides of the stabilisation processes are looked at in greater detail. Agricultural use, landscaping, forestry, landfill, incineration, sludge derived products and newer processing technologies are reviewed as sludge utilisation options. Their environmental impacts, positive and negative sides and practical feasibility are evaluated. Various treatment utilisation combinations are also compared. Furthermore a rough cost assessment is presented. The optimal utilisation alternative has to be chosen case by case. The best use of plant nutrients and valuable organic matter is obtained in agricultural use or in landscaping. In the present situation it is difficult to enhance the portion of agricultural use, and landscaping is restricted by a low demand on the market. Incineration is an expensive option and can

  18. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  19. Valorization of beer brewing wastes by composting

    OpenAIRE

    Silva, Maria Elisabete; Brás, Isabel

    2017-01-01

    The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored b...

  20. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  1. The presence of insect at composting

    Science.gov (United States)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  2. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    International Nuclear Information System (INIS)

    Santos, Sílvia C.R.; Boaventura, Rui A.R.

    2015-01-01

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD 5 removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD 5 removals above 91% and average color removals of 60–69%

  3. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  4. Effects of Medium-Term Amendment with Diversely Processed Sewage Sludge on Soil Humification—Mineralization Processes and on Cu, Pb, Ni, and Zn Bioavailability

    Directory of Open Access Journals (Sweden)

    Gabriella Rossi

    2018-03-01

    Full Text Available The organic fraction of sewage sludge administered to agricultural soil can contribute to slowing down the loss of soil’s organic carbon and, in some cases, can improve the physical and mechanical properties of the soil. One of the main constraints to the agricultural use of sewage sludge is its heavy metals content. In the long term, agricultural administration of sewage sludge to soil could enhance the concentration of soil heavy metals (as total and bioavailable fractions. The aim of this research was to evaluate the effects of medium-term fertilization with diversely processed sewage sludge on the soil’s organic carbon content and humification–mineralization processes, on the physical–mechanical properties of soil and their influence on the pool of potentially bioavailable heavy metals, in order to assess their effectiveness as soil organic amendments. After eight years of sludge administration; an increase in the concentrations of bioavailable form was evidenced in all the heavy metals analyzed; independently of the type of sludge administered. The form of sludge administration (liquid, dehydrated, composted has differently influenced the soil humification–mineralization processes and the physical–mechanical properties of soil. The prolonged amendment with composted sewage sludge contributed to keeping the soil humification–mineralization process in equilibrium and to improving the physical and mechanical qualities of the treated soil.

  5. Stalled ERP at Random Textiles

    Science.gov (United States)

    Brumberg, Robert; Kops, Eric; Little, Elizabeth; Gamble, George; Underbakke, Jesse; Havelka, Douglas

    2016-01-01

    Andre Raymond, Executive Vice President of Sales and Marketing for Random Textiles Co. Inc. (RTC), stood in front of the podium to address his team of 70 sales consultants in Las Vegas, NV. The organization had increased market share and achieved record sales over the past three years; however, in the shadow of this success lurked an obstacle that…

  6. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    Science.gov (United States)

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.

  7. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  8. The Learning of Compost Practice in University

    Science.gov (United States)

    Agustina, T. W.; Rustaman, N. Y.; Riandi; Purwianingsih, W.

    2017-09-01

    The compost as one of the topics of the Urban Farming Movement in Bandung city, Indonesia. The preliminary study aims to obtain a description of the performance capabilities and compost products made by students with STREAM (Science-Technology-Religion-Art-Mathematics) approach. The method was explanatory sequential mixed method. The study was conducted on one class of Biology Education students at the one of the universities in Bandung, Indonesia. The sample was chosen purposively with the number of students as many as 44 people. The instruments were making Student Worksheets, Observation Sheets of Performance and Product Assessment, Rubric of Performance and Product, and Field Notes. The indicators of performance assessment rubrics include Stirring of Compost Materials and Composting Technology in accordance with the design. The product assessment rubric are a Good Composting Criteria and Compost Packaging. The result of can be stated most students have good performance. However, the ability to design of compost technology, compost products and the ability to pack compost are still lacking. The implication of study is students of Biology Education require habituation in the ability of designing technology.

  9. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    Science.gov (United States)

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  10. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    Science.gov (United States)

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  11. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS Bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 250 citations and includes a subject term index and title list.)

  12. Pathogens\\' Reduction in Vermicompost Process Resulted from the Mixed Sludge Treatments-Household Wastes

    OpenAIRE

    Hossien Karimi; Mohammad Rezvani; Morteza Mohammadzadeh; Yaser Eshaghi; Mehdi Mokhtari

    2016-01-01

    Introduction: The presence of pathogenic microbial agents and pathogens in organic fertilizers causes health problems and disease transmission. The aim of this study was to evaluate the efficiency of vermicomposting process in improve the microbial quality of the compost produced. Materials and Methods: This experimental study was conducted as a pilot-scale one, in the laboratory of school of Health. In order to produce vermicompost, some perishable domestic waste were mixed whit sludge o...

  13. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  14. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies

    Directory of Open Access Journals (Sweden)

    S. Sathian

    2014-06-01

    Full Text Available In this work, sequential batch reactor (SBR was employed for the treatment of textile dye wastewater. The performance of four white rot fungi (WRF viz. Coriolus versicolor, Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was evaluated in pure and mixed combinations in terms of decolorization. From the results it was found that the combination of Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was best and they were used in the SBR. The process parameters like air flow rate, sludge retention time (SRT and cycle period were optimized using response surface methodology (RSM. At these optimized conditions, treatment of textile dye wastewater was carried out at various initial dye wastewater concentration and hydraulic retention time. The performance of SBR was analyzed in terms of decolorization, COD reduction and sludge volume index (SVI. From the results it was found that a maximum decolorization and COD reduction of 71.3% and 79.4%, respectively, was achieved in the SBR at an organic loading rate of 0.165 KgCOD/m3 d. The sludge volume index (SVI was found to be low in the range of 90–103 mL/g. The kinetic study was carried out using a first order based model and the degradation follows the first order system.

  15. Microbiological consequences of indoor composting.

    Science.gov (United States)

    Naegele, A; Reboux, G; Vacheyrou, M; Valot, B; Millon, L; Roussel, S

    2016-08-01

    Recycling of organic waste appeals to more and more people. The aim of this study was to evaluate the microbiological contamination around organic waste bins at three distances over a 12-month period. Contamination near the customary trash of control households was evaluated at the beginning to ensure that there is no recruitment bias. Air samples using the MAS 100 impactor were carried out in 38 dwellings that do household waste composting and in 10 dwellings of controls. Collection of particles by CIP 10 rotating cup sampler and dust samples collected by electrostatic dust collector cloths were acquired in dwellings that do household waste composting. Samples were analyzed by culture and by real-time quantitative PCR. Information about dwelling characteristics and inhabitant practices was obtained by a standardized questionnaire. The genera most often isolated were Penicillium, Aspergillus, Cladosporium and Streptomyces. Near the organic waste bins, bioaerosol samples showed an increase of Acarus siro (P = 0.001). Sedimented dust analyses highlighted an increase of A. siro, Wallemia sebi, Aspergillus versicolor, and Cladosporium sphaerospermum concentrations after a 12-month survey compared to the beginning. Composting favors microorganism development over time, but does not seem to have an effect on the bioaerosol levels and the surface microbiota beyond 0.5 m from the waste bin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. TEXTILE STRUCTURES FOR AERONAUTICS (PART I

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The first part of this paper deals with the introduction of our Textile Research Centre in the field of composites and carbon fiber as a main material to produce three – dimensional textile structures. The use of composite materials in aerospace structures has increased over the past decades. Our contribution related to this field consists of the development of three- dimensional textile structures and even the adaptation and improvement of machinery to do it possible. Carbon fiber provides advantages as volumetric fraction and minimum fault occurrence. However carbon fiber has also disadvantages as uncomfortable handling delamination and high cost of material and processing.

  17. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  18. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    Science.gov (United States)

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  19. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  20. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  1. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    Science.gov (United States)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  2. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  3. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices.

    Directory of Open Access Journals (Sweden)

    Jieying Huang

    Full Text Available Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different.

  4. Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference

    Energy Technology Data Exchange (ETDEWEB)

    Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2006-07-01

    Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

  5. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties are not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges.

  6. Effect of HRT on SBR Performance for Treatability of Combined Domestic and Textile Wastewaters

    International Nuclear Information System (INIS)

    Nawaz, M.S.; Khan, S.J.; Khan, S.J.

    2013-01-01

    Textile wastewater contains organics and color dyes which need to be treated before discharging into receiving water bodies. Sequencing batch reactor (SBR) is proved promising against textile wastewater due to its high organic and nutrient removal efficiencies. In this study the influence of variable hydraulic retention time (HRT) on the performance of SBR in treating combined textile and domestic wastewater was evaluated. Six SBRs were operated in parallel at 12 and 8 hrs HRTs respectively, three for synthetic and three for real textile plus domestic wastewater. SBRs were operated at constant temperature 25 +- 1 degree C and pH 7 +- 1 to avoid seasonal effects. The biological oxygen demand (BOD) removal efficiency was consistent at 73% while, total suspended solids (TSS) removal efficiency increased from 52 to 63% in SBRs with decrease in HRT from 12 to 8 hrs. The organic loading rate (OLR) increased from 0.45 to 0.68 Kg/m3/d, SVI decreased from 94 to 84 mL/g and chemical oxygen demand (COD) removal efficiency increased in real waste water (RWW) SBRs from 59 to 63% with decrease in HRT from 12 to 8 hrs. Low COD removal at 12 hr HRT can be attributed to poor settling characteristics of sludge due to possible filamentous growth at low F/M (0.03) and greater SRT (28 days) as compared to 8 hr HRT condition, where F/M was 0.05 and SRT of 20 days. (author)

  7. Sewage sludge pretreatment and disposal. January 1980-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Feb 92

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 181 citations with title list and subject index.)

  8. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  9. Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant.

    Science.gov (United States)

    Baban, Ahmet; Yediler, Ayfer; Ciliz, NilgunKiran; Kettrup, Antonius

    2004-11-01

    Textile dyeing and finishing industry involves considerable amount of water usage as well as polluted and highly colored wastewater discharges. Biological treatability by means of mineralization, nitrification and denitrification of high strength woolen textile dye bathes, first- and second-rinses is presented. COD fractionation study was carried out and kinetic parameters were determined. Biodegradability of organic compounds in highly loaded composite wastewater after segregation and the effluent of applied biological treatment of high strength composite wastewater were measured by determining oxygen consumption rates. The results were used in terms of assessing an alternative method for inert COD fractionation. The study implied that about 80% soluble COD, 50% color and 75% toxicity reduction were possible by single sludge biological processes. Sixteen per cent of total COD was found to be initially inert. Inert fraction was increased to 22% by production of soluble and particulate microbial products through biological treatment. copyright 2004 Elsevier Ltd.

  10. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  11. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  12. Relationship between centrifugation and drying of sludge and the organic halogens

    Directory of Open Access Journals (Sweden)

    Karel Hrich

    2010-01-01

    Full Text Available This work is focused on determination of adsorbable organic halogens (AOX concentration in the digested sludge from the sewage treatment plant and the losses of this component during dewatering and drying of sludge. Drying of the sludge from wastewater treatment plant is not extended too much in Czech Republic. In this work, the AOX are monitored, because AOX is one of the limits restraining use of the sludge on an agricultural land. Another reason is technological demand for using the sludge in cement processing, because chlorine in AOX can cause decrease in a heat transfer effect in a cement kiln. It is clear from the results that both centrifuged and dried sludge from the sewage treatment plant Brno fulfilled limits for using sludge on agriculture land. They can also be composted, in case they meet other requirements. If not, it is a possibility of co-incineration in cement kiln. In such case, limit for total chlorine including the AOX is required too. This limit was not exceeded. Another aim was to calculate a mass balance of AOX during the centrifugation and drying processes. It was found out, that after centrifugation the main part of AOX remained in the centrifuged sludge (96.4 %. The rest was drawn-off with reject water. 60 % of AOX in the reject water were dissolved compounds. A similar situation occurred during the drying process. More than 99 % of AOX was bound in the dried sludge. The air and vaporised water contained such quantity of AOX, which corresponded with the amount of the dust in the air and the amount of particles of sludge in vaporised water.

  13. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  14. School Compost Programs: Pathways to Success

    Science.gov (United States)

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    After the oft-repeated three Rs (reduce, reuse, recycle) comes the lesser-known but equally important fourth R: rot. In this case, rot means compost. Classrooms, schools, and school districts can use a number of methods to establish a compost program. The finished product is a valuable soil amendment that adds fertility to local farmland, school…

  15. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  16. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    Het onderhavige onderzoek is een eerste verkenning geweest naar de aanwezigheid van organische microverontreinigingen in gft-compost. In deze rapportage is een indicatieve vergelijking van de gehalten in compost met de streefwaarden voor bodem (H=20%) gemaakt. Mede op basis van dit onderzoek

  17. Compost: Brown gold or toxic trouble?

    Science.gov (United States)

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  18. Composting and water pollution; Kompostointi vesistoen kuormittajana

    Energy Technology Data Exchange (ETDEWEB)

    Ettala, M. [Kuopio Univ. (Finland)

    2000-07-01

    The composting of biowaste collected separately is becoming increasingly common. However, numerous structural and operational problems are involved. The study deals with the water and nitrogen balances in composting, demonstrating a substantial nitrogen load on waters due to the practice. (orig.)

  19. Process of composting; Proceso de compostaje envital

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, D.; Ibanez, E.; Sanchez, F.

    1998-12-31

    Update, the european region uses three methods for Municipal Solid Wastes treatment: landfilling, incineration with energy recovery and composting. This last one is being used more and more lately. This is because of the separated collection that makes easier to give an adequate treatment to the organic fraction of MSW, like composting. (Author)

  20. The Early Years: Composting with Children

    Science.gov (United States)

    Ashbrook, Peggy

    2016-01-01

    "Composting" is a way to purposefully use the process of decay to break down organic materials in a location where the resulting mixture can be harvested for enriching garden soil. The large body of literature about the science of composting provides many options for early childhood educators to choose from to incorporate into their…

  1. Analysis Of Students' Performance In Clothing And Textiles In ...

    African Journals Online (AJOL)

    Analysis Of Students' Performance In Clothing And Textiles In Colleges Of ... in Clothing and Textiles more than foods and Nutrition and Home Management. ... poor attitude of students towards clothing and Textiles, lack of enough time ...

  2. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  3. Compost plant of Medellin - An economically viable project

    International Nuclear Information System (INIS)

    Bedoya V, Julian; Arango M, Carlos Andres

    1999-01-01

    The solid waste treatment facility of Empresas Varias de Medellln started operation of the 70's. The total investment in equipment and construction by 1971 was of about $ 36'000. 000 Colombian pesos, that by 1997 was valued at more than seven thousand million pesos $7.000'000. 000). The solid waste treatment facility was able to process 180 t/day, generating compost and recyclable by products (textile fibbers. paper, cardboard, glass, plastics, scrap metals) with commercial value. Operating expenses for the facility in 1972 were $2'187.742 to process 53.300 t/year in 296 working days. Revenues from compost and recyclable by products were $ 8 '791.280, with a positive balance of $ 6 '603.538. For those years debt annual payments were $ 3'919.372, giving a yearly profit of $ 2'684.165. Instead of debt payments a yearly charge of $ 7 '315. 240 can be made to account for equipment and construction costs; in addition land rent of $ 500000 per year should be charged to the plant. in this case the operational loss is of $ 1' 397.663 ($ 26/ t) that has to be covered by solid waste service charges. Under these conditions the project is not economically feasible, especially if taking solid wastes to Moravia has not cost at all. Twenty-five years later situation is different: transportation and final disposal costs in Curva de Rodas amount to more than $ 19. 000/t. expected total revenues for a similar project in 1997 could be $2.778' 000.000 and operational expenses for 365 days are estimated at $ 506' 000.000; yearly annual cost for construction and equipment amounts to $1. 411' 000.000 and land rental of $96'000.000 give a profit of close to $765 '000.000. Under these conditions the project is economically feasible and generates a profit: it may be even more attractive if the solid waste company pays a disposal fee, since it is saving room in Curva de Rodas. In order to obtain fully feasibility of the project requires: compost must be improved and positioned in the market

  4. Evaluation of Grape Pomace Composting Process

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2014-01-01

    Full Text Available The paper deals with the problems of composting of grape pomace in strip compost piles. The three variants of compost piles formed from grape pomace and vegetables waste, wood chips and mature in varying proportions were tested. Turning of piles was performed using windrow turner PKS 2.8, in which the achieved performance was monitored. On the performance of windrow turner has a significant influence also cross section or width and height of turning piles and the bulk density of ingredients including their moisture. In evaluating, attention has been paid to assessment of selected parameters (temperature, moisture content of the composting process. From the viewpoint of temperature course, the highest temperature reached at the piles in Var. I (64.1 °C and Var. II (55.3 °C. Moisture of compost piles in the individual variants did not differ significantly and ranged between 25–35%.

  5. Textiles and clothing sustainability nanotextiles and sustainability

    CERN Document Server

    2017-01-01

    This book highlights the sustainability aspects of textiles and clothing sector in light of nanomaterials and technologies. The invasion of nano in every industrial sector has been important and has made remarkable changes as well as posed new challenges, including the textiles and clothing sector. There is quite a great deal of research happening in terms of nano materials for textiles across the globe, some of which are covered in this book. .

  6. Competitive situation of clothing and textile industry

    OpenAIRE

    Jansevičiūtė, Daina

    2010-01-01

    This paper is up for discussing the composed competitive situation of Lithuanian clothing and textile industry. Author concisely proposes aspects of competitive ability conception, explores the main statistical information illustrating importance of clothing and textile industry in all manufacturing and economics. Willing to accomplish a statistical data analysis of trade clothing and textile industry competitors and advantages which they have and which influence Lithuanian clothing and texti...

  7. Submicron Surface-Patterned Fibers and Textiles

    Science.gov (United States)

    2016-11-04

    www.statista.com/ statistics /263154/ worldwide -production-volume-of-textile-fibers- since-1975/ (accessed October 26, 2016). [2] W. S. Perkins, Textile coloration...Engineering. Submitted to 2 Presently, the worldwide annual production volume of textile fibers is nearly one hundred million metric tons... stress where viscous forces dominate and surface energy- driven deformations are kinetically restrained. A specific example of a surface-patterned

  8. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Science.gov (United States)

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  9. NANOTECHNOLOGY IN TEXTILE INDUSTRY [REVIEW

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2015-05-01

    Full Text Available Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanotechnology overcomes the limitation of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of the textile industry. Nanotextiles are nanoscale fibrous materials that can be fictionalized with a vast array of novel properties, including antibiotic activity, self-cleaning and the ability to increase reaction rates by providing large surface areas to potential reactants. These materials are used not only as cloth fabric, but as filter materials, wound-healing gauzes and antibacterial food packaging agents in food industry. World demand for nano-materials will rise more than two-and-a-half times to $5.5 billion in 2016 driven by a combination of increased market penetration of existing materials, and ongoing development of new materials and applications. In recent years was demonstrated that nanotechnology can be used to enhance textile attributes, such as fabric softness, durability and breathability, water repellency, fire retardancy, antimicrobial properties in fibers, yarns and fabrics. The development of smart nanotextiles has the potential to revolutionize the production of fibers, fabrics or nonwovens and functionality of our clothing and all types of textile products and applications. Nanotechnology is considered one of the most promising technologies for the 21st century. Today is said that if the IT is the wave of the present, the nanotechnology is the wave of the present, the nanotechnology is the wave of the future.

  10. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil - A critical review.

    Science.gov (United States)

    Verlicchi, P; Zambello, E

    2015-12-15

    This review is based on 59 papers published between 2002 and 2015, referring to about 450 treatment trains providing data regarding sludge concentrations for 169 compounds, specifically 152 pharmaceuticals and 17 personal care products, grouped into 28 different classes. The rationale of the study is to provide data to evaluate the environmental risk posed by the spreading of treated sludge in agriculture. Following discussion of the legislative scenario governing the final disposal of treated sludge in European countries and the USA, the study provides a snapshot of the occurrence of selected compounds in primary, secondary, mixed, digested, conditioned, composted and dried sludge originating in municipal wastewater treatment plants fed mainly with urban wastewater as well as in sludge-amended soil. Not only are measured values reported, but also predicted concentrations based on Kd values are reported. It emerges that in secondary sludge, the highest concentrations were found for fragrances, antiseptics and antibiotics and an attenuation in their concentrations occurs during treatment, in particular anaerobic digestion and composting. An in-depth literature survey of the (measured and predicted) Kd values for the different compounds and treated sludge are reported and an analysis of the influence of pH, redox conditions, sludge type was carried out. The data regarding measured and predicted concentrations of selected compounds in sludge-amended soil is then analyzed. Finally an environmental risk assessment posed by their occurrence in soil in the case of land application of sludge is examined, and the results obtained by different authors are compared. The most critical compounds found in the sludge-amended soil are estradiol, ciprofloxacin, ofloxacin, tetracycline, caffeine, triclosan and triclocarban. The study concludes with a focus on the main issues that should be further investigated in order to refine the environmental risk assessment. Copyright © 2015

  11. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  12. THE COMPETITIVENESS OF TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    PRUNEA ANA

    2014-05-01

    Full Text Available The role of this paper is to highlight the position of the European players in the textile market and the challenges to which they are subjected. In this paper are presented ways, taking the „diamond" model of M. Porter and are adapted to the situation of the textile market. These adaptations have outlined the main existing problems and the possible solutions that can ensure the long-term competitive advantage. Gaining a competitive advantage based on innovation, the development of production and outsourcing strategies using the "diamond" model of M. Porter, we can say that is one of the viable solutions for gaining competitive advantages necessary for proper European companies to face competition from countries outside Europe. As developing countries do not meet certain environmental standards or norms of European law, but in terms of product innovation and development of new materials, they do not have the necessity for technology. We conducted an analysis of the factors that play a key role in the production of textiles, representing how they are used in the favor of European companies such investments to be supplemented can be found in how these factors act on the total costs.

  13. STAGE OF TEXTILE RECYCLE WASTE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TRIPA Simona

    2014-05-01

    Full Text Available Aim of this article is to examine the stage of textile recycle waste in Romania. For this purpose were analyzed the main sources of textile waste from Romania (industry of manufacture of textiles, wearing apparel, leather and related products, imports of textiles, clothing and footwear and imports of second hand clothing and also evolution of the quantity of textile waste in Romania. The benefits (economic and environmental of the collection and recycling of waste and the legislation on the waste management, have determined the diversification and increasing the number and the capacity of recovery and disposal of waste in Romania. We found the most textile waste in Romania was deposited in deposits onto or into land, in the proportion of 18.51%. This proportion is under the EU average of 34.03%, but is much higher than in other European country. Also, has been an increase in the number of incinerators, in the last years. With all of this, the interest in textile waste management in Romania is far from being to the level of European, where are associations who dealing with the collection and recycling of textiles and is achieved a selective collection of textile waste in the points especially designed for this thing. The information for this paper was gathered from literature, from the EUROSTAT database and INSSE database analysis and by Internet.

  14. Degradation rates in thermophilic sludge processing - the liquid and the solid way

    Energy Technology Data Exchange (ETDEWEB)

    Mihaltz, P.; Kovacs, R.; Csikor, Zs.; Dahab, M.F.

    2003-07-01

    Two promising and well known techniques for sludge stabilization and pathogen destruction, the composting and autothermal thermophilic aerobic digestion (ATAD, often referred to as ''liquid composting'') have not yet undergone a comparative parallel study. This comparison is presented in this paper to identify - sometimes unusually (e.g. up to 30 mg O{sub 2} /gVS h) high - degradation rates, their main influencing parameters. For the ATAD we developed a well fitting modified two-substrate kinetic model quantitatively describing this process feature too - the clear signs of two substrate degradation also appears in most own and literature composting records. However compost process modelling needs as a prerequisite the clarification of the controlling transport mechanisms. Experimental conclusions suggest the dual role of local VS limitation closely connected with, but being behind the strong observed oxygen limitation, what is proposed for the explanation of composting process rates - essentially based on specific surface area controlled transport phenomena, justifying efforts to conduct the process at lower (<20 to 25%) moisture content and higher (>1000 1/m) specific surface area levels. (author)

  15. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation

    International Nuclear Information System (INIS)

    Tandy, Susan; Healey, John R.; Nason, Mark A.; Williamson, Julie C.; Jones, Davey L.

    2009-01-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost. - Co-composting did not provide enhanced stabilization of trace elements over the conventional addition of compost to contaminated land

  17. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  18. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  19. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  20. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.