WorldWideScience

Sample records for textile sludge compost

  1. Plant bioassays to assess toxicity of textile sludge compost Bioensaios vegetais na avaliação da toxidade do composto de lodo têxtil

    Directory of Open Access Journals (Sweden)

    Ademir Sérgio Ferreira Araújo

    2005-06-01

    Full Text Available Composting of industrial wastes is increasing because of recycling requirements set on organic wastes. The evaluation of toxicity of these wastes by biological testing is therefore extremely important for screening the suitability of waste for land application. The toxicity of a textile sludge compost was investigated using seed germination and plant growth bioassays using soybean and wheat. Compost samples were mixed with water (seed germination bioassay or nutrient solution (plant growth bioassay at concentrations of 0, 19, 38, 76 and 152 g L-1. No negative effects were observed after five days of compost water-extract in relation to soybean and wheat seed germination. After fifteen days, under a hydroponics system, plant growth had harmful effects of the compost at concentrations above 38 g L-1. Textile sludge compost presented great phytotoxicity under hydroponics condition and the soybean and wheat were sensitive for evaluation of organic wastes in plant growth bioassays.A compostagem de resíduos industriais tem aumentado devido à pressão para reciclar os resíduos orgânicos. A avaliação da toxicidade destes resíduos por testes biológicos é extremamente importante para selecionar resíduos apropriados para aplicação no solo. A toxicidade do composto de lodo têxtil foi investigada utilizando bioensaios de germinação de sementes e crescimento vegetal em soja e trigo. Amostra do composto foi misturada com água (bioensaio de germinação de sementes ou solução nutritiva (bioensaio de crescimento de plantas em concentrações de 0, 19, 38, 76 e 152 g L-1. Não foram observados efeitos negativos, após cinco dias, do extrato aquoso do composto para a germinação de sementes da soja e do trigo. Após quinze dias em sistema hidropônico, houve efeitos deletérios do composto em concentrações acima de 38 g L-1. O composto de lodo têxtil mostrou maior fitotoxicidade em condições hidropônicas e a soja e o trigo são esp

  2. Composto de lodo têxtil em plântulas de soja e trigo Textile sludge compost on soybean and wheat seedlings

    Directory of Open Access Journals (Sweden)

    Ademir Sérgio Ferreira de Araújo

    2005-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do composto de lodo têxtil sobre plântulas de soja e trigo. O composto de lodo têxtil foi misturado com água e solução nutritiva nas seguintes concentrações (g do composto em 1.000 mL de água e solução nutritiva: 19 g L-1, 38 g L-1, 76 g L-1 e 152 g L-1. Um controle, constituído de água e solução nutritiva, foi incluído no experimento. O delineamento experimental foi inteiramente casualizado com quatro repetições. As plântulas de soja e trigo foram expostas aos extratos do composto, em sistema de hidroponia com aeração e, após 15 dias, foram avaliadas a massa da matéria seca total, altura da parte aérea, comprimento radicular, conteúdo de clorofila e atividade da peroxidase nas folhas e raízes. Houve diminuição na massa da matéria seca total, altura da parte aérea e comprimento radicular das plântulas de soja e trigo com o aumento da concentração do composto, a partir de 38 g L-1. A atividade da peroxidase, das raízes e das folhas das plântulas de soja e trigo, aumentou a partir da concentração de 38 g L-1. Concentrações maiores do composto de lodo têxtil afetam, de forma prejudicial, as plântulas de soja e trigo.The objective of this work was to evaluate the effect of textile sludge compost on soybean and wheat seedlings. The textile sludge compost was mixed with water plus nutritive solution, in the following concentrations (g of compost in 1,000 mL of water plus nutritive solution: 19 g L-1, 38 g L-1, 76 g L-1 and 152 g L-1. A control, constituted of water plus nutritive solution, was included in the experiment. A completely randomized design was used with four replicates. The seedlings were exposed to the concentrations of compost extract, in hydroponic system, and after 15 days, the total dry mass, height of aerial part, root length, chlorophyll content and peroxidase activity of leaves and roots were evaluated. Seedlings of both crops showed a decrease

  3. Monitoring of biopile composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  4. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  5. Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.)

    African Journals Online (AJOL)

    Yaoundé-Cameroon) in order to assess the effect of three sewage sludge: Macrophyte ratios on the co-composting process and compost quality. The ratios were T1: 25 kg of plant material (Echinochloa pyramidalis) and 75 kg sludge; T2: 50 kg ...

  6. Effect of initial physical characteristics on sludge compost performance.

    Science.gov (United States)

    Trémier, Anne; Teglia, Cécile; Barrington, Suzelle

    2009-08-01

    To develop an active microbial activity quickly developing stabilizing thermophilic temperatures during the composting of wastewater sludge, the bulking agent (BA) plays a major role in establishing the recipe structure, exposed particle surface area and porosity. To optimize the biodegradation of a sludge compost recipe, the objective of this paper was to study the effect and interaction of initial moisture content (MC) and BA particle size distribution. Three 300 L insulated laboratory composters were used to treat two series of ten (10) recipes with different combinations of MC and BA particle size distribution. Using a to wastewater sludge to BA dry mass ratio of 1/6, the ten (10) recipes were repeated using two BA, residues recycled from a commercial sludge composting plant and crushed wood pallets. Each four week trial monitored O(2) uptake, temperature, compost consolidation and airflow distribution. The Central Composite Factor Design method produced a model from the results estimating the impact of a wider range of MC and BA particles size distribution. The MC directly affected the total O(2) uptake and therefore, organic matter biodegradation. The BA particle size distribution influenced compost consolidation with a MC crossed effect. Both BA particle size distribution and MC influenced compost airflow dispersion. Composting was optimized using the BA consisting of recycled green waste residues with particle size of 20-30 mm and a 55% MC. The predictive models suggested the need for further optimization of sludge and wood residue composting recipe.

  7. Soil bioassays as tools for sludge compost quality assessment.

    Science.gov (United States)

    Domene, Xavier; Solà, Laura; Ramírez, Wilson; Alcañiz, Josep M; Andrés, Pilar

    2011-03-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A systematic study of the gaseous emissions from biosolids composting: raw sludge versus anaerobically digested sludge.

    Science.gov (United States)

    Maulini-Duran, Caterina; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2013-11-01

    Volatile organic compound (VOC) and ammonia, that contribute to odor pollution, and methane and nitrous oxide, with an important greenhouse effect, are compounds present in gaseous emission from waste treatment installations, including composting plants. In this work, gaseous emissions from the composting of raw (RS) and anaerobically digested sludge (ADS) have been investigated and compared at pilot scale aiming to provide emission factors and to identify the different VOC families present. CH4 and N2O emissions were higher in ADS composting (0.73 and 0.55 kg Mg(-1) sludge, respectively) than in RS composting (0.01 kg Mg(-1) sludge for both CH4 and N2O). NH3 and VOCs emitted were higher during the RS composting process (19.37 and 0.21 kg Mg(-1) sludge, respectively) than in ADS composting (0.16 and 0.04 kg Mg(-1) sludge). Significant differences were found in the VOC compositions emitted in ADS and RS composting, being more diverse in RS than ADS composting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties.

    Science.gov (United States)

    Xue, Dong; Huang, Xiangdong

    2013-10-01

    In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)-soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0-75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15-45%, and then an increasing trend from compost application of 45-75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30-75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ≤45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony-soil ecosystems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    Science.gov (United States)

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  12. Methylene blue removal by carbonized textile sludge-based adsorbent.

    Science.gov (United States)

    Rahman, Ari; Kishimoto, Naoyuki; Urabe, Takeo; Ikeda, Kazuki

    2017-12-01

    Colored effluent and a large amount of sludge are major pollutant sources derived from textile industry activity. In this research, the idea for converting textile sludge into a potential adsorbent was conducted through a carbonization process in order to solve the colored effluent problem. Textile sludge was carbonized at a temperature ranging from 400 to 800 °C in the absence of oxygen. Maximum adsorption capacity of carbonized sludge for methylene blue removal reached 60.30 mg/g when the sludge was carbonized at 600 °C with specific surface area of 138.9 m 2 /g and no significant alteration was observed until 800 °C. Experimental research by using a real wastewater also showed that there was almost no disruption during adsorption of methylene blue into surface of carbonized sludge. While reactivation process revealed that the regeneration of carbonized sludge was applicable by secondary heating at the same carbonization temperature. Furthermore, the application of this research demonstrated that the carbonized textile sludge was a good adsorbent for methylene blue removal and had a capability to be reactivated.

  13. Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny.

    Science.gov (United States)

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2013-09-01

    The aim of present study was for the vermiremediation of dyeing sludge from textile mill into nutrient-rich vermicompost using earthworm Eisenia fetida. The dyeing sludge was mixed with cattle dung in different ratios, i.e., 0:100 (D0), 25:75 (D25), 50:50 (D50), 75:25 (D75), and 100:0 (D100) with earthworms, and 0:100 (S0), 25:75 (S25), 50:50 (S50), 75:25 (S75), and 100:0 (S100) without earthworms. Minimum mortality and maximum population build-up were observed in a 25:75 mixture. Nitrogen, phosphorus, sodium, and pH increased from the initial to the final products with earthworms, while electrical conductivity, C/N ratio, organic carbon, and potassium declined in all the feed mixtures. Vermicomposting with E. fetida was better for composting to change this sludge into nutrient-rich manure.

  14. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment.

    Science.gov (United States)

    Hua, Li; Wu, Weixiang; Liu, Yuxue; McBride, Murray B; Chen, Yingxu

    2009-01-01

    Composting is an effective treatment process to realize sludge land application. However, nitrogen loss could result in the reduction of nutrient value of the compost products and the stabilization effect of composting on heavy metal concentration and mobility in sludge has been shown to be very limited. Laboratory-scale experiments were carried out to investigate the effects of bamboo charcoal (BC) on nitrogen conservation and mobility of Cu and Zn during sludge composting. The result indicated that the incorporation of BC into the sludge composting material could significantly reduce nitrogen loss. With 9% BC amendment, total nitrogen loss at the end of composting decreased 64.1% compared with no BC amendment (control treatment). Mobility of Cu and Zn in the sludge may also have been lessened, based on the decline in diethylenetriaminepentaacetic acid-extractable Cu and Zn contents of composted sludge by 44.4% and 19.3%, respectively, compared to metal extractability in the original material. Ammonia adsorption capability of BC might be the main reason for the retention of nitrogen in sludge composting materials. Decrease of extractable Cu2+ and Zn2+ in the composting material mainly resulted from the adsorption of both metals by BC. Incorporation of BC into composting material could significantly lessen the total nitrogen loss during sludge composting. Mobility of heavy metals in the sludge composting material could also be reduced by the addition of BC. Bamboo charcoal could be an effective amendment for nitrogen conservation and heavy metal stabilization in sludge composts. Further research into the effect of BC-amended sludge compost material on soil properties, bioavailability of heavy metals, and nutrient turnover in soil needs to be carried out prior to the application of BC-sludge compost in agriculture.

  15. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  16. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  17. The impact of sewage sludge and compost on winter triticale.

    Science.gov (United States)

    Kchaou, Rajia; Baccar, Rim; Bouzid, Jalel; Rejeb, Saloua

    2017-11-03

    There is an increasing interest in the agricultural application of organic waste such as soil amendment, due to the possibility of recycling valuable components, organic matter, and nutrient elements necessary for plant growth. The present study was carried out to evaluate the effects of sewage sludge, and green waste compost application, on a forage crop, triticale "X Triticosecale Wittmack" compared to unfertilized control. The experimental design was installed in the glasshouse conditions at the Regional Field Crop Research Center in Beja, Tunisia. Sewage sludge and green waste compost were added by four rates (0, 5, 10, and 20 t/ha) in soil, 15 days before triticale sowing. The main results showed that plant response differs depending on the type of adding fertilizer. Indeed, compost inputs decreased shoot length and production of triticale, among all sewage sludge rates, by average values of 26 and 60% respectively at final harvest, as compared to unamended soil. However, amendment with different rates of sewage sludge significantly (p < 0.05) increased different plant growth and yield attributes.

  18. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil

    NARCIS (Netherlands)

    Sousa, de Ricardo Silva; Santos, Vilma Maria; Melo, de Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; Brink, van den Paul J.; Araújo, Ademir Sérgio Ferreira

    2017-01-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the

  19. Effects of biochar on nitrogen transformation and heavy metals in sludge composting.

    Science.gov (United States)

    Liu, Wei; Huo, Rong; Xu, Junxiang; Liang, Shuxuan; Li, Jijin; Zhao, Tongke; Wang, Shutao

    2017-07-01

    Composting is regarded as an effective treatment to suppress pathogenic organisms and stabilize the organic material in sewage sludge. This study investigated the use of biochar as an amendment to improve the composting effectiveness and reduce the bioavailability of heavy metals and loss of nitrogen during composting. Biochar of 0%, 1%, 3%, 5% and 7% were added into a mixture of sludge and straw, respectively. The use of biochar, even in small amounts, altered the composting process and the properties of the end products. Biochar addition resulted in a higher pile temperature (66°C) and could reduce nitrogen loss by transforming ammonium into nitrite. In the 5% biochar group, the final product from sludge composting, ammonia nitrogen, decreased by 22.4% compared to the control, and nitrate nitrogen increased by 310.6%. Considering temperature and N transformation, the treatment with 5% biochar is suggested for sludge composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…

  1. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    Science.gov (United States)

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Gross N transformation rates after application of household compost or domestic sewage sludge to agricultural soil

    DEFF Research Database (Denmark)

    Ambus, P.; Kure, L.K.; Jensen, E.S.

    2002-01-01

    Gross N mineralization and immobilization was examined in soil amended with compost and sewage sludge on seven occasions during a year using N-15 pool dilution and enrichment techniques. Gross N mineralization was initially stimulated with both wastes and accelerated through the first 112 days...... of incubation, peaking at 5 mg N.kg(-1).d(-1) with compost compared with 4 mg N.kg(-1).d(-1) in control and sludge-treated soil. The magnitudes of mineralization rates exceeded those of immobilization by on average 6.3 ( compost) and 11.4 ( sludge) times, leading to a persistent net N mineralization cumulating...... up to 160 mg N.kg(-1) soil(compost) and 54 mg N.kg(-1) soil (sludge) over the season from May to November. The numerical model FLUAZ comprehensively predicted rates of gross mineralization and immobilization. Sludge exhibited an early season N-release, whereas compost released only 10% of the N...

  3. Investigation into Total Carbon in Sewage Sludge and Compost

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-02-01

    Full Text Available The relation between soil and climate change is highly important. The soil is a part of the climate change problem; however, it could also be a part of the solution to the encountered problem. For a better understanding and estimation of climate gas emissions and for slowing down these processes, more investigation in this field is required. Sustainable soil usage could help with saving or even increasing the amount of carbon in the soil. Such process will sustain the balance of climate gas emissions. Soil carbon is an essential element that determines soil fertility. Recently, the importance of organic materials for soil quality and the applicability of sewage sludge to enrich the soil using such materials have been discussed. Sewage sludge as an organic carbon source can improve soil quality. The best way to stabilise and immobilise carbon is mineralisation that occurs in the composting process. The article analyses and evaluates the loss of organic carbon content during the composting process of sewage sludge and explores loss rates by adding various natural supplements (wood shavings and chips, milled bark, grained branches, peat and zeolite.Article in Lithuanian

  4. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    Science.gov (United States)

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  5. Improvement of salinity in sewage sludge compost prior to its utilization as nursery substrate.

    Science.gov (United States)

    Liu, Hong-Tao; Gao, Ding; Chen, Tong-Bin; Cai, Hong; Zheng, Guo-Di

    2014-05-01

    Soluble salts are enriched in sewage sludge compost because of their inherent derivation. Accordingly, the content of soluble salt in sludge compost is usually much higher than most seedlings can tolerate. To determine whether sludge compost is suitable for use as a nursery substrate, some experiments were conducted. Reduction of the electrical conductivity (EC) value could improve seed germination in saturated extract from sludge compost. In addition, water elution and mixing dilution with raw soil were all shown to be able to alleviate saline inhibition on seed germination and seedling growth, including stem diameter, seedling height, and above-ground weight. Overall, salinity is a crucial problem when sewage sludge compost is reused as a nursery substrate, and some effective and convenient approaches to reduce salt should be served prior to its reuse. Sewage sludge after being composted is usually reused as organic fertilizer or plant substrate. However, salt is the main problem during its reclamation. What is the highest salt level the seedling can tolerate? Which types of salts are effective in salinity of sludge-amended substrate? Meanwhile, can the salinity be reduced through water elution or soil mixing dilution? This paper is the first to investigate the salinity and its reduction of sewage sludge compost prior to its use in the development of nursery substrate.

  6. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    Science.gov (United States)

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts.

  7. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag.

    Science.gov (United States)

    Zeng, Zheng-Zhong; Wang, Xiao-Li; Gou, Jian-Feng; Zhang, He-Fei; Wang, Hou-Cheng; Nan, Zhong-Ren

    2014-03-01

    Sewage sludge and industrial steel slag (SS) pose threats of serious pollution to the environment. The experiments aimed to improve the stabilizing effects of heavy metal Ni and Cd morphology in composting sludge. The total Ni and Cd species distribution and chemical forms in the compost sewage sludge were investigated with the use of compost and co-compost with SS, including degradation. The carbon/nitrogen ratio of piles was regulated with the use of sawdust prior to batch aerobic composting experiments. Results indicated that the co-composting with SS and organic matter humification can contribute to the formation of Fe and Mn hydroxides and that the humus colloid significantly changed Ni and Cd species distribution. The decreased content of Ni and Cd in an unstable state inhibited their biological activity. Conclusions were drawn that an SS amount equal to 7% of the dry sludge mass was optimal value to guarantee the lowest amount of Cd in an unstable state, whereas the amount was 14% for Ni.

  9. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    Science.gov (United States)

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butkovskyi, A., E-mail: andrii.butkovskyi@wur.nl [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Ni, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Hernandez Leal, L. [Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Rijnaarts, H.H.M.; Zeeman, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2016-02-13

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  11. Antibiotic resistome and its association with bacterial communities during sewage sludge composting.

    Science.gov (United States)

    Su, Jian-Qiang; Wei, Bei; Ou-Yang, Wei-Ying; Huang, Fu-Yi; Zhao, Yi; Xu, Hui-Juan; Zhu, Yong-Guan

    2015-06-16

    Composting is widely used for recycling of urban sewage sludge to improve soil properties, which represents a potential pathway of spreading antibiotic resistant bacteria and genes to soils. However, the dynamics of antibiotic resistance genes (ARGs) and the underlying mechanisms during sewage sludge composting were not fully explored. Here, we used high-throughput quantitative PCR and 16S rRNA gene based illumina sequencing to investigate the dynamics of ARGs and bacterial communities during a lab-scale in-vessel composting of sewage sludge. A total of 156 unique ARGs and mobile genetic elements (MGEs) were detected encoding resistance to almost all major classes of antibiotics. ARGs were detected with significantly increased abundance and diversity, and distinct patterns, and were enriched during composting. Marked shifts in bacterial community structures and compositions were observed during composting, with Actinobacteria being the dominant phylum at the late phase of composting. The large proportion of Actinobacteria may partially explain the increase of ARGs during composting. ARGs patterns were significantly correlated with bacterial community structures, suggesting that the dynamic of ARGs was strongly affected by bacterial phylogenetic compositions during composting. These results imply that direct application of sewage sludge compost on field may lead to the spread of abundant ARGs in soils.

  12. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  14. Microorganism communities and chemical characteristics in sludge-bamboo charcoal composting system.

    Science.gov (United States)

    Hua, Li; Chen, Yingxu; Wu, Weixiang; Ma, Hongrui

    2011-04-01

    Microorganism communities and chemical characteristics in sludge-bamboo charcoal composting system were investigated to find the effect of bamboo charcoal on composting. According to a plate count test, abundances of bacteria, fungi and actinomycetes in the treatment with bamboo charcoal were several times higher than those in treatment without bamboo charcoal. In addition, terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the bacterial community diversity in treatment with bamboo charcoal was greater than that of the control. Both results demonstrated that amendment with bamboo charcoal can increase microorganism population and microorganism community diversity in a sludge composting system. Moreover, the results of FTIR spectroscopy disclosed that aerobic composting can promote the formation of surface acid groups on bamboo charcoal. These surface acid groups may deprotonate and react with NH4+ to form stable complexes. Therefore, the increase of functional groups accompanied with greater assimilation of nitrogen by microorganisms could reduce nitrogen loss in sludge composting.

  15. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  17. Changes in organic matter composition during composting of two digested sewage sludges.

    Science.gov (United States)

    Hernández, T; Masciandaro, G; Moreno, J I; García, C

    2006-01-01

    Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.

  18. Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge*

    Science.gov (United States)

    Wu, Dong-lei; Liu, Ping; Luo, Yan-zhang; Tian, Guang-ming; Mahmood, Qaisar

    2010-01-01

    Sewage sludge composting is an important environmental measure. The reduction of nitrogen loss is a critical aim of compost maturation, and the addition of spent mushrooms (SMs) and herbal residues (HRs) may be helpful. To evaluate the nitrogen transformations during co-composting of sewage sludge, SMs, and HRs, windrows were constructed in a residual processing plant. Dewatered sewage sludge and sawdust were mixed with SMs and HRs at two proportions on a fresh weight basis, 3:1:1 (sewage sludge:sawdust:SMs or HRs) and 3:1:2 (sewage sludge:sawdust:SMs or HRs). The mixture was then composted for 40 d. Changes in the physicochemical characteristic of sewage sludge during composting were recorded and analyzed. Addition of SMs and HRs accelerated the temperature rise, mediating a quicker composting maturation time compared to control. The addition also resulted in lower nitrogen losses and higher nitrate nitrogen levels in the compost products. Among the windrows, SM and HR addition improved the nitrogen status. The total nitrogen (TN) and nitrogen losses for SM and HR treatments ranged from 22.45 to 24.99 g/kg and from 10.2% to 22.4% over the control values (18.66–21.57 g/kg and 40.5%–64.2%, respectively). The pile with the highest proportion of SMs (3:1:2 (sewage sludge:sawdust:SMs)) had the highest TN level and the lowest nitrogen loss. The germination index (GI) values for all samples at maturity were above 80%, demonstrating optimal maturity. The addition of SMs and HRs augments sewage composting. PMID:20593514

  19. Management of sewage sludge by composting using fermented water hyacinth.

    Science.gov (United States)

    Tello-Andrade, A F; Jiménez-Moleón, M C; Sánchez-Galván, G

    2015-10-01

    The goal of the present research work was to assess the management of sewage sludge (SS) by composting using fermented water hyacinth (WHferm) as an amendment. The water hyacinth was fermented, and a higher production of volatile fatty acids (VFAs) (782.67 mg L(-1)) and soluble organic carbon (CSOL) (4788.34 mg L(-1)) was obtained using a particle size of 7 mm compared to 50 mm. For composting, four treatments (10 kg fresh weight each) were evaluated: treatment A (100 % SS + 0 % WHferm), treatment B (75 % SS + 25 % WHferm), treatment C (50 % SS + 50 % WHferm), and treatment D (25 % SS + 75 % WHferm). The WHferm added to SS, especially in treatments C (50 %) and D (75 %), increased the initial contents of organic matter (OM), organic carbon (CORG), CSOL, the C/N ratio, and the germination index (GI). The heavy metal content (HMC) (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) at the beginning was below the maximum allowed by USEPA regulations. All of the samples were free of Salmonella sp. from the beginning. The reduction of the CORG, CSOL, total Kjeldahl nitrogen (TKN), and C/N ratio indicated the degradation of the OM by day 198. The treatments with WHferm (B, C, and D) yielded higher values of electrical conductivity, cation exchange capacity, and GI than SS at day 198. No significant differences were observed in GI among the treatments with WHferm. The fecal coliforms were eliminated (<3 MPN g(-1)) and the helminths were reduced to ≤5 eggs/2 g during the process. The competition for nutrients and the presence of suppressive fungi of the genera Penicillium, Rhizopus, Paecilomyces (penicillin producers), and Fusariella isolated from the compost may have promoted the elimination of pathogens since no thermophile temperatures were obtained. WHferm as an amendment in the composting of SS improved the characteristics of the final product, especially when it was used in proportions of 25 and 50 %. An excellent product was obtained in terms of HMC, and the product was B class

  20. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    NARCIS (Netherlands)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and

  1. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    Science.gov (United States)

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    Science.gov (United States)

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Biological and ecophysiological reactions of white wall rocket (Diplotaxis erucoides L.) grown on sewage sludge compost.

    Science.gov (United States)

    Korboulewsky, Nathalie; Bonin, Gilles; Massiani, Catherine

    2002-01-01

    We studied the effects of sewage sludge compost on white wall rocket (Diplotaxis erucoides L.) compared with mineral fertilization and control (without any fertilizer) in a greenhouse experiment. The plants grown on the compost-amended soil showed a different growth dynamic: a significant delay in flowering and a bigger root system. Both the compost and the fertilization treatments increased biomass and seed yield. Heavy metal (Cu, Cd, Zn, Ni) distribution within the plant was in the following order: roots > leaves > stems, except for zinc which was homogeneously distributed. The balance of mineral nutrition was not affected by treatments. Zinc was the trace element which was most taken up. Unlike many species of Brassicaceae, white wall rocket is not a hyperaccumulator. Although sewage sludge compost improved plant growth, delay in flowering shows that it is necessary to take precautions when spreading sewage sludge in natural areas.

  4. Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality.

    Science.gov (United States)

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Keener, Harold M; Klingman, Michael; Dick, Warren A

    2012-12-01

    Melamine resin (MR) is introduced to the environment from many industrial effluents, including waste paint sludge (WPS) from the automobile industry. Melamine resin contains a high nitrogen (N) content and is a potential N source during composting. In this study, two carbon sources, waste paper (WP) and plant residue (PR), were used to study their effects on composting of WPS. Additional work tested the WPS-composts effects on plant growth and soil water quality. After 84 days of composting, 85% and 54% of the initial MR was degraded in WP- and PR-composts, respectively. The limiting factor was that the MR created clumps during composting so that decomposition was slowed. Compared to the untreated control, both WP- and PR-composts increased growth of cucumber (Cucumis sativus), radish (Raphanus sativus) and lettuce (Lactuca sativa). Concentrations of trace elements in plants and soil water did not rise to a level that would preclude WPS-composts from being used as a soil amendment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  6. The Relation between Sludge Compost Application and Dense Planting Effect on the Rice Cropping

    OpenAIRE

    奥村, 俊勝

    2004-01-01

    [Synopsis] In the field experiment, the relation between sludge compost application and dense planting effects was investigated on the rice cropping. When 1000g/m2 of the compost application was added, it increase about 60g/m2 of rice grain yield. This in turn will suggest that the compost applicationincrease gave rise to produce rice yield increase. The grain yield increase was occurred significantly from density effect on the compost application. It was large effect on yield that tiller num...

  7. Essential oil production of lemongrass (Cymbopogon citratus under organic compost containing sewage sludge

    Directory of Open Access Journals (Sweden)

    Júlia V. d'Ávila

    Full Text Available ABSTRACT One of the main urban polluting agents are the sewers, which even with proper treatment end up generating a polluting waste, the sewage sludge. One of the options for the disposal of this sludge is the use in agriculture, due to its high content of organic matter and nutrients. This study aimed to use urban sewage sludge for lemongrass cultivation and essential oil production. The plants were grown in soil containing different organic compost doses (0, 5, 10, 20, 40 and 60 t ha-1, formed from the sewage sludge composting process and waste of urban vegetation pruning. At harvest, plants were analyzed for the concentration of nutrients, chlorophyll content, number of tillers, biomass production, essential oil content and the microbiological quality of the leaves. The results showed that the addition of the compost increased the levels of nutrients in the plants, mainly nitrogen, positively influencing the production of tillers, biomass, chlorophyll contents, yield and essential oil content.

  8. Composting of de-inking sludge from the recycled paper manufacturing industry.

    Science.gov (United States)

    Gea, Teresa; Artola, Adriana; Sánchez, Antoni

    2005-07-01

    Composting of two different types of sludge from the recycled paper manufacturing industry was carried out at laboratory scale. Physico-chemical sludge (PCS) from the de-inking process and biological sludge (BS) from the wastewater treatment plant were composted and co-composted with and without addition of a bulking material. Despite its poor initial characteristics (relatively high C/N ratio, low organic content and moisture), PCS showed excellent behaviour in the composting process, reaching and maintaining thermophilic temperatures for more than 7 days at laboratory scale, and therefore complete hygienization. Pilot scale composting of PCS was also studied, and a respiratory quotient of 1.19 was obtained, indicating a full aerobic biological process. Respiration tests showed a complete stabilization of the material, with final values of the static respiration index in the range of 1.1 mg O2gTOM(-1)h(-1). Composting is proposed as a suitable technology for the effective recycling of this type of sludge from the recycled paper manufacturing industry.

  9. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    Science.gov (United States)

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  10. Soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge

    Directory of Open Access Journals (Sweden)

    Ademir Sérgio Ferreira de Araújo

    2016-06-01

    Full Text Available This study evaluated soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge. The compost was applied annually at 0, 2.5, 5, 10, and 20 Mg ha-1 and at the end of the sixth year, the chemical and physical properties of the soil were evaluated using a randomized block design. The Cr, P, K, Ca, Na and organic C contents and the pH and cation exchange capacity increased linearly after six years of compost amendment. The soil bulk density decreased linearly while the aggregate stability index increased after compost amendment. As a consequence of the changes in the chemical and physical properties of the soil, cowpea yield showed a quadratic response to the tannery rates, with an estimated maximum cowpea yield at 8.3 Mg ha-1. In conclusion, the soil chemical and physical properties improved after six years of composted tannery sludge amendment. However, the soil pH and the Cr and Na contents increased with composted tannery sludge amendment, which influenced the cowpea yield and resulted in a quadratic response to the compost.

  11. The influence of amendment material on biosolid composting of sludge from a waste-water treatment plant

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2010-06-01

    Full Text Available Aerobic composting employing manual turning was evaluated by using the sludge produced by EMCALI EICE ESP's Cañaverlejo wastewater treatment plant (PTAR-C. Compost (in 1,0 ton piles consisted of sludge, a fixed proportion of bulking agent (10% and amendment material. Sugarcane waste and solid organic (marketplace waste were evaluated as amendment material using 20/80 and 40/60 weight/weight (amendment/sludge ratios. Incorporating the amendment material improved the compost, being reflected in a faster start for the thermophilic phase, higher temperatures beign maintained (>55°C and better C/N ratio obtained in the compost in all treatments compared to the pile which had no amendment added to it. Incorporating the bulking agent improved sludge manageability during composting; the best combination was 54% sludge + 10% sugacane bagasse + 36% liquid sugarcane waste.

  12. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge base compost

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M. J.; Ingelmo, F.; Soriano, M. D.; Gallardo, A.; Lapena, L.

    2009-07-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. since the chemical form of the metal in the sewage sludge-based compost depends on the effect of stabilization and maturation of the organic material during composting, the objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals in a mixture of ADSS and wood chips (70:30 on wet basis) with an initial C/N ratio of 30.4, during its aerobic batch composting at 30 degree centigrade of external temperature in an open type lab-scale reactor with-out lixiviation. (Author)

  13. Research on Ammonia and Methane Gas Emission from Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-04-01

    Full Text Available Sewage sludge treatment and disposal are related to climate change. Composting is the oldest and most natural form of recycling organic material. Carbon dioxide (CO2, methane (CH4 and nitrous oxide (NOx are all by-products of the composting process. These three greenhouse gases contribute to global warming by absorbing radiation emitted by the earth. When the natural breakdown of organic materials is happening under optimum conditions, it produces primarily carbon dioxide, water vapour and heat. When the process is unbalanced in some way, other gases begin to be produced, some of which have objectionable odours (NH3. Odour and greenhouse gases management, then, is one of the primary motivators for optimizing our composting process. The article deals with composting sewage sludge from the experimental results of the investigation of CH4 and NH3.Article in Lithuanian

  14. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  15. Heavy metals and yield of cowpea cultivated under composted tannery sludge amendment

    Directory of Open Access Journals (Sweden)

    Iuna Carmo Ribeiro Gonçalves

    2014-04-01

    Full Text Available The study aimed to evaluate the phytoavailability of heavy metals (Cr, Cd, Ni and Pb concentrations in leaves and grains, and yield of cowpea (Vigna unguiculata L grown in soil amended with composted tannery sludge (CTS for two consecutive years. The experiments were carried out in 2009 and 2010 in soil amended with CTS at 0, 5, 10, 20, and 40 Mg ha-1. The CTS amendment rates applied were above 10 Mg ha-1, increased Cr concentrations in cowpea leaves. There were not increases in the heavy metals concentrations in cowpea grains after two years. In 2009, the application of CTS amendment did not promote increase in plant yield. However, in 2010, CTS amendment at 10 and 20 Mg ha-1 increased cowpea yield. The amendment of composted tannery sludge linearly increased linearly the concentration of Cr in the leaves of cowpea after two years. Composted tannery sludge promoted increases in cowpea yield.

  16. Assessment of co-composting of sludge and woodchips in the perspective of environmental impacts (EASETECH)

    DEFF Research Database (Denmark)

    Zhao, Yan; Lu, Wenjing; Damgaard, Anders

    2015-01-01

    To reveal potential impacts to environment and human health quantitatively, co-composting and utilization of sludge and woodchips were investigated using a life-cycle-based model, EASETECH. Three scenarios were assessed through experiments using different material ratios. Emission amounts during ...... rather than farming. Trace gaseous compounds showed marginal impacts to global warming and toxicity categories. The results provide a new perspective and offer evidence for appropriate sludge treatment selection.......To reveal potential impacts to environment and human health quantitatively, co-composting and utilization of sludge and woodchips were investigated using a life-cycle-based model, EASETECH. Three scenarios were assessed through experiments using different material ratios. Emission amounts during co...... of phosphorus substitution. With the application of fewer woodchips, impacts to acidification and terrestrial eutrophication decreased because more ammonium was reserved rather than released. All impacts to human toxicity were not significant (8.2. ±. 0.6 PE) because the compost was used for urban landscaping...

  17. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting.

    Science.gov (United States)

    Yuan, Jing; Chadwick, David; Zhang, Difang; Li, Guoxue; Chen, Shili; Luo, Wenhai; Du, Longlong; He, Shengzhou; Peng, Shengping

    2016-10-01

    This study investigated effects of aeration rate (AR) on maturity and gaseous emissions during sewage sludge composting, sewage sludge and corn stalks as the bulking agent were co-composted at different ARs (0.1, 0.2, 0.3L·kg(-1) dry matter (DM)·min(-1)). The thermophilic phase for the low and moderate AR treatments was able meet sanitation requirements, but too short to meet sanitation requirements in the high AR treatment. The high AR treatment was significantly different from the other treatments, and had the lowest electrical conductivity and highest E4/E6(absorbance ratio of wavelength 465 and 665nm). The AR influences the nitrogen variations; high AR compost had the highest NH4(+)-N content and lowest NOx(-)-N content. The AR was the main factor influencing compost stability, but the AR had little impact on pH and the germination index. The moderate AR treatment had the highest NH3 emissions during composting, while the low AR treatment had the highest CH4 and N2O emissions. Based on our comprehensive investigation, the recommended AR for sludge composting is 0.2L·kg(-1) DM·min(-1). Copyright © 2016. Published by Elsevier Ltd.

  18. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.

    Science.gov (United States)

    Chen, Chuihan; Wu, Hongjuan

    2017-05-24

    Reuse of textile sludge as construction materials has been proved to an economic and environmental friendly strategy to mitigate its disposal problems. Previous studies have illustrated the successful fabrication of common fired bricks using textile sludge as a partial replacement of clay, but no such a specific work was focused on the feasibility of manufacturing lightweight bricks from textile sludge. In this study, a strategy involving the mixing of ground soil, textile sludge, and coal ash as the raw materials for the successful production of lightweight bricks is presented. Coal ash and ground soil have different combustible contents but similar main chemical composition, which facilitates the separable adjustment of these two factors of the raw material mixture to achieve their suitable values at the same time, and thus results in the successful manufacture of lightweight bricks. To meet the requirement for compressive strength and consume textile sludge as more as possible, an optimal ratio of the raw materials was obtained as textile sludge:coal ash:ground soil = 20:20:60. The brick products manufactured from this ratio show a compressive strength of 13.7 MPa, bulk density of 1.47 g cm-3, water absorption of 14.6%, and volumetric shrinkage of 13.61% after sintering. The results of toxicity characteristic leaching procedure test show that the heavy metal concentrations in the leachates of the brick products are very low, which also satisfy the regulations. This study provides a feasible and economical technology for the treatment of textile sludge.

  19. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost.

    Science.gov (United States)

    Fang, Wen; Delapp, Rossane C; Kosson, David S; van der Sloot, Hans A; Liu, Jianguo

    2017-02-01

    Leaching assessment procedures have been used to determine the leachability of heavy metals as input for evaluating the risk from sewage sludge compost land application. However, relatively little attention has been paid to understanding leaching from soils with repeated application of sewage sludge compost with elevated levels of heavy metals. In this paper, leaching assessment is extended to evaluate the potential leaching of heavy metals during repetitive application of composted sewage sludge to soils. Four cycling of compost additions and percolation leaching were conducted to investigate how leaching behavior of heavy metals changed with repeated additions of compost. Results showed that repetitive additions of compost to soil significantly increased the content of organic matter, which favored the formation of reducing condition due to improved microbial activities and oxygen consumption. Establishment of reducing conditions can enhance the leaching concentrations of As by approximately 1 order of magnitude, especially for the soil rich in organic matter. For Cd, Cr, Cu, and Pb, repeated additions of compost will cause accumulation in total contents but not enhancement in leaching concentrations. The infiltration following compost additions will leach out the mobile fraction and the residual fraction might not release in the next cycling of compost addition and infiltration. The cumulative release of Cd, Cr, Cu, and Pb accounted for less than 5% of the total contents during four times of compost applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of different tannery sludge compost amendment rates on growth, biomass accumulation and yield responses of Capsicum plants.

    Science.gov (United States)

    Silva, Jayara D C; Leal, Tamara T B; Araújo, Ademir S F; Araujo, Raul M; Gomes, Regina L F; Melo, Wanderley J; Singh, Rajeev P

    2010-10-01

    Composting has been recognized as one of the most cost effective and environmentally sound alternatives for organic wastes recycling from long and composted wastes have a potential to substitute inorganic fertilizers. We investigated the potential of composted tannery sludge for ornamental purposes and to examine the effects of two different composts and concentrations on ornamental Capsicum growth. The two composts were produced with tannery sludge and the composition of each compost was: compost(1) of tannery sludge (C(1)TS) - tannery sludge+sugarcane straw and cattle manure mixed in the ratio 1:3:1 (v:v:v); compost(2) of tannery sludge (C(2)TS) - tannery sludge+"carnauba" straw and cattle manure in the ratio 1:3:1 (v:v:v). Each compost was amended with soil at rates (% v:v) of 0%, 25%, 50%, 75% and 100% (designation hereafter as T(1)-T(5), respectively). The number of leaves and fruits were counted, and the stem length was also measured. Chlorophyll content was recorded on three leaves of each harvested plant prior to harvest. Number of leaves and fruits, stem length, dry weight of shoot and roots did not vary significantly between the plants grown in two tannery composts. All the treatments with composted tannery sludge application (T(2)-T(5)) significantly increased the number of leaves and fruits, stem length and chlorophyll content compared with the control (T(1)). The chlorophyll content was higher in plants growing in the C(1)TS compared to C(2)TS. The results of the present study further suggest that Capsicum may be a good option to be grown on composted tannery amended soil. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  1. STABILIZATION OF DEWATERED SEWAGE SLUDGE BY AEROBIC COMPOSTING METHOD: USING SAWDUST AS BULKING AGENTS

    Directory of Open Access Journals (Sweden)

    A PARVARESH

    2002-12-01

    Full Text Available Introduction. Sludge production from municipal wastewater treatment plants should have quality standards before disposal in to the environment. Environmental specialists classified sewage sludge as a hazardous waste because of high organic compounds and pathogenic microorganisms. They belive that sewage should be stabilized before disposal and so composting of sewage sludge is an effective and economical method to stabilize. Sewage sludge compost could be used to improve soil structure and enrich the soil with nutrients. Methods. To evaluate the optimum conditions of aerobic compost, the mixture of dewatered sewage sludge from Isfahan municipal waste water treatment plant and sawdust as bulking agent were used. Pilot scale study were performed in Isfahan municipal waste water treatment plant. To perform this research project, the dewatered sewage sludge with humidity between 78 to 82 percent were mixed with sawdust. Turning over method of the piles with one week interval were applied to aerate the mixture. Temperature of the piles were monitored at different depths daily. Other parameters such as N, G, organic matters and pH were determined weekly. Total and fecal coli form, and salmonella were determined at the beginning and end of the composting process, also heavy metals were measured at the same time. Results. The results of this study showed that after days, temperature of the mixture reached up to 55 G, and were stabled for 15 days. Humidity, organic matter, organic carbon and GIN ratio of the mixture decreased over the period of the study, due to increasing the temperature. Also organic matter and humidity mainly decreased in thermofilic phase. The number of total and fecal coliform and also salmonella decreased to A class standards of US.EPA at the end of the operation. Discussion. The results of the study also showed that, this type of composting method is reliable, and simple to schedule, with high flexibility and low odor

  2. Production of Anadenanthera colubrine (Vell. Brenan seedlings using substrates based on composted sewage sludge

    Directory of Open Access Journals (Sweden)

    Maurício Bergamini Scheer

    2012-12-01

    Full Text Available The use of sewage sludge as raw material for forest growing is an alternative for the utilization and disposal of this solid waste. This work aimed at evaluating the use of a substrate based on composted sewage sludge and crushed pruning tree for the production of Anadenanthera colubrina seedlings (monjoleiro using three different fertilization levels. Seedling growth was then compared to growth on a commercial substrate based on composted Pinus bark and vermiculite. Three levels of fertilization (0; 2.7 and 4 g.dm-3 and three types of substrates were used: commercial substrate, and 3:1 (v:v or 2:1 (v:v composted substrate based on aerobic sewage sludge and crushed tree pruning. Seedling height, diameter and aerial dry mass (leaves and branches were measured. Considering seedlings growth without fertilization, the greatest values for all morphological characteristics were obtained using composted substrate based on sewage sludge. Growth rates in all treatments using 2.7 g.dm-3 of fertilizer, in many cases, can be considered sufficient, showing adequate amounts of nutrients to make up Anadenanthera colubrina seedling nutritional requirements and to promote adequate growth, with economy of the fertilizer.

  3. EFFECTS OF SEWAGE SLUDGE AND SEWAGE SLUDGE COMPOST AMENDMENT ON SOIL PROPERTIES AND Zea mays L. PLANTS (HEAVY METALS, QUALITY AND PRODUCTIVITY)

    OpenAIRE

    Rocío VACA

    2011-01-01

    The use of organic wastes in agriculture can improve the soil's productive capacity, and physical and chemical characteristics. This study evaluated the effects of sewage sludge, sewage sludge compost and inorganic fertilizer applications on nickel, copper and zinc contents in soil and corn grains (Zea mays L); maize productivity, and grain nutritional quality. Sewage sludge and sewage sludge compost at 18 Mg ha¿1 and a mineral fertilizer (N-P-K) with a formulation of 150-75-30 were applied. ...

  4. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-01-18

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible

  5. Nursery Growing Media: Agronomic and Environmental Quality Assessment of Sewage Sludge-Based Compost

    Directory of Open Access Journals (Sweden)

    Barbara De Lucia

    2013-01-01

    Full Text Available There is a stringent need to reduce the environmental impact of peat in the plant nursery production chain. In this experiment, the use of different rates of sewage sludge compost in the preparation of growing media for potted Bougainvillea was evaluated to assess its efficiency for the replacement of peat and to quantify the environmental impact of such alternative substrates by the life cycle assessment (LCA method. Five substrates containing increasing proportion of composted sewage sludge to peat (0%, 25%, 40%, 55%, and 70% v/v were used, and their physicochemical properties were measured. Bougainvillea plant growth, biomass production, and macro- and micronutrient absorption were also determined. The main results were that compost addition improved the plant nutrient and increased the substrate pH, electrical conductivity (EC, and dry bulk density values. Globally, the results showed that compost could be used at up to 55% by volume with no negative effects on plant growth. The LCA showed that use of compost reduced the environmental loads of the growth media, except the Global Warming Potential value (GWP100. Environmental implications of the use of compost in the plant nursery chain are discussed.

  6. Oil refinery sludge and green waste simulated windrow composting.

    Science.gov (United States)

    Fountoulakis, M S; Terzakis, S; Georgaki, E; Drakopoulou, S; Sabathianakis, I; Kouzoulakis, M; Manios, T

    2009-04-01

    Oil refinery sludge (ORS) was mixed with shredded green wastes (GW) at ratios of 1:1 v/v (RI) and 1:3 v/v (RII). The mixtures, of approximately volumes of 1,020 l and 990 l respectively, were introduced in metal cubic containers of 1.0 m(3) volume, opened at the top and with small holes punctured in the bottom and the side. The containers were additionally insulated with a layer of rockwool (20 mm). The boxes were emptied, the mixtures were turned and water was added occasionally, in one to two weeks intervals, simulating a windrow composting system. Temperature, physiochemical characteristics, mineral oil and grease (MOG) concentration, polycyclic aromatic hydrocarbons (PAHs) concentration, carbon dioxide emission, methane emission and microorganisms presence were recorded either daily or every time the mixtures were turned, for a period of 120 days. RII recorded temperatures as high as 62 degrees C, reaching 56 degrees C in Day 6 and retained temperatures above 50 degrees C for more than 40 days. RI recorded its highest temperature of 53 degrees C in Day 77. The reason why the two mixtures behaved so differently can be explained by: (i) extended co-digestion phenomena by the microorganisms decomposing the GW in RII, (ii) toxic effect of ORS in RI due to the far larger amounts used (840 kg in RI in comparison with the 460 kg in RII). After Day 36 temperature increased gradually in RI and MOG and PAHs reduction was first noted. At the end of the experiment MOG concentration in RI was 57.2 mg/kg dry weight (dw) (52.1% reduction) where in RII was 34.3 mg/kg dw (62.1% reduction). Emissions of methane and carbon dioxide support the concept of the toxic effect and the delay ignition of the decomposing process in RI. In total, CO(2) and CH(4) emissions from RI were recorded to be 30.8 kg and 18.5 g, respectively, where from RII 59.6 kg of CO(2) and 6.4 g of CH(4) were emitted. An effort was made to determine the effect of temperature alone (as an abiotic treating

  7. Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products.

    Science.gov (United States)

    Sreesai, Siranee; Peapueng, Panadda; Tippayamongkonkun, Taninporn; Sthiannopkao, Suthipong

    2013-09-01

    A study was conducted to investigate the levels of plant nutrients, heavy metals, parasites and fecal coliform bacteria in Bangkok-produced sewage sludge and finished compost products for potential agricultural application, as well as to compare the quality of compost under different composting conditions. The results indicated that digested sewage sludge had high fertilizing values for organic matter (19.01 ± 0.09%), total nitrogen (2.17 ± 0.07%), total phosphorus (2.06 ± 0.06%) and total potassium (1.16 ± 0.22%), but it was contaminated with human pathogens, including fecal coliform bacteria, viable helminthes egg and active forms of parasite cysts. Thus, fresh sewage sludge should not be disposed on land unless it has undergone pathogen reduction. It is proven that the quality of the sludge mixed with grass clippings at a ratio of 6:1 volume/volume after having passed a windrow composting process for 8 weeks can be classified as class A biosolids as the levels of remaining fecal coliforms were compost were 16.53 ± 1.25%, 1.39 ± 0.06%, 0.42 ± 0.10% and 1.53 ± 0.05% respectively. The total copper concentration was rather high (2291.31 ± 121.77 mg kg(-1)), but all heavy metal concentrations were also well below the United States Environmental Protection Agency pollutant limits for land application. The finished compost products can be considered as a soil conditioner as they have relatively low essential plant nutrient concentrations. It is recommended to be initially used for gardening and landscaping to ensure safety utilization.

  8. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  9. Identification and characterisation of oil sludge degrading bacteria isolated from compost

    Directory of Open Access Journals (Sweden)

    Ubani Onyedikachi

    2016-06-01

    Full Text Available Compounds present in oil sludge such as polycyclic aromatic hydrocarbons (PAHs are known to be cytotoxic, mutagenic and potentially carcinogenic. Microorganisms including bacteria and fungi have been reported to degrade oil sludge components to innocuous compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading capabilities from compost prepared from oil sludge and animal manures. These bacteria were isolated on a mineral base medium and mineral salt agar plates. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR of the 16S rRNA gene with specific primers (universal forward 16S-P1 PCR and reverse 16S-P2 PCR. The amplicons were sequenced and sequences were compared with the known nucleotides from the GenBank. The phylogenetic analyses of the isolates showed that they belong to 3 different clades; Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to the genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus. The results showed that Bacillus species were predominant in all composts. Based on the results of the degradation of the PAHs in the composts and results of previous studies on bacterial degradation of hydrocarbons in oil, the characteristics of these bacterial isolates suggests that they may be responsible for the breakdown of PAHs of different molecular weights in the composts. Thus, they may be potentially useful for bioremediation of oil sludge during compost bioremediation.

  10. Effects of applied sewage sludge compost and fluidized bed material on apple seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Korcak, R.F.

    1980-01-01

    Two waste products, composted sewage sludge and fluidized bed material (FBM, a coal/limestone combustion byproduct) were used as soil amendments for apple seedlings (Malus domestica) grown in the greenhouse. Compost was applied at rates equivalent to 0, 25 and 50 dry metric tons/ha and FBM was applied at levels of 1 and 2 times the soil lime requirement on a weight basis (12.5 and 25.0 metric tons/ha). Plant growth was significantly increased by compost or FBM additions. Tissue Ca was increased by both waste, reflecting the high Ca inputs to the low fertility Arendtsville soil. Potentially high soil Mn levels were reduced by both wastes due to their neutralizing effect on soil pH. Root Cd levels were increased by compost additions even though soil pH was maintained above 6.3. Tissue Zn, Cu and Ni were not consistently affected by waste additions.

  11. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.

    Science.gov (United States)

    Villaseñor, J; Rodríguez, L; Fernández, F J

    2011-01-01

    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (zeolites could be separated from the compost prior to application. The different options have been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    Science.gov (United States)

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Textile sludge application to non-productive soil: physico-chemical and phytotoxicity aspects.

    Science.gov (United States)

    Rosa, Edson V C; Mater, Luciana; Souza-Sierra, Maria M; Rörig, Leonardo R; Vieira, Luciane M; Radetski, Claudemir M

    2007-09-01

    As part of an assessment study on the risk of spreading textile sludge onto non-productive soil, the sorption behaviour of some sludge-metal constituents [Cr(VI), Cu(II), Pb(II), and Zn(II)] in the soil was studied. In addition, the sludge stabilization effect was evaluated by the biodegradation of organic compounds and phytotoxicity tests. Metal-soil sorption was assessed using soil columns and by sorption isotherms (i.e., Freundlich and Langmuir). In relation to the phytotoxicity of Eruca sativa L., there was a biomass inhibitory effect for the fresh sludge and a biomass stimulant effect for the stabilized sludge. Thus our results show that after stabilization, the tested loading ratio of 33% sludge: 67% soil (v/v) (equivalent to 85 Mg ha(-1)) did not significantly increase the risk of groundwater contamination since only small amounts of metals applied to the soil underwent percolation and almost all the organic compounds were degraded.

  14. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    Science.gov (United States)

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Impact of the addition of a nitrifying activated sludge on ammonia oxidation during composting of residual household wastes.

    Science.gov (United States)

    Zeng, Y; Dabert, P; Le Roux, S; Mognol, J; De Macedo, F J; De Guardia, A

    2014-12-01

    To investigate the nitrogen-microbial community dynamics during composting of a mixture of nitrifying waste activated sludge (WAS) and fine organic fraction of residual household waste (RHW). To examine whether the addition of nitrifying sludge could promote ammonia oxidation and reduce ammonia emissions. The fine organic fraction of RHW was mixed with the WAS and homogenized. The mixture and each waste alone were loaded in aerobic cells under controlled conditions, respectively. Both nitrogen and microbial community dynamics were monitored during 50 days of composting. The ammonia oxidizers were quantified and identified in the sludge and compost. The changes in ammonia-oxidizing bacteria (AOB) concentrations corresponded to the ammonia oxidation rates calculated from nitrogen balance. The addition of WAS did not efficiently reduce ammonia emissions because the Nitrosomonas oligotropha-like AOB introduced declined during the active stage of composting. Ammonia oxidation was probably limited by the intense heterotrophic activities at the active stage. Nitrosomonas europaea/eutropha and Nitrosomonas nitrosa-like AOB were established only during the maturation stage. They were the main contributors to ammonia oxidation during composting. The mixing of nitrifying WAS with the RHW during the early stages of composting does not promote ammonia oxidation nor reduce ammonia emissions because of limiting biologic factors during the active stage of composting. The mixing of activated sludge with RHW before composting is a common practice on composting plants. This study proved the limitation of this practice to reduce ammonia emissions during composting via bioaugmentation of ammonia-oxidizing organisms. It correlated successfully the ammonia oxidation rate with different groups of ammonia oxidizers and explains the fail of promoting ammonia oxidation during the early stages of composting. It suggests Nit. europaea/eutropha and Nit. nitrosa-like AOB were the main

  16. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  17. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose.

    Science.gov (United States)

    Meng, Liqiang; Zhang, Shumei; Gong, Hainan; Zhang, Xiancheng; Wu, Chuandong; Li, Weiguang

    2018-01-04

    The effects of spent mushroom substrate (SMS) and sucrose (S) amendment on emissions of nitrogenous gas (mainly NH3 and N2O) and end products quality of sewage sludge (SS) composting were evaluated. Five treatments were composted for 20 days in laboratory-scale using SS with different dosages of SMS and S, without additive amended treatment used as control. The results indicated that SMS amendments especially combination with S promoted dehydrogenase activity, CO2 production, organic matter degradation and humification in the composting, and maturity indices of composting also showed that the 30%SMS+2%S treatment could be much more appropriate to improve the composting process, such as total Kjeldahl nitrogen, nitrification index, humic acids/fulvic acids ratio and germination index, while the emissions of NH3 and N2O were reduced by 34.1% and 86.2%, respectively. These results shown that the moderate addition of SMS and S could improve the compost maturity and reduce nitrogenous gas emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Co-composting of organic solid waste and sewage sludge – a waste management option for University Campus

    Directory of Open Access Journals (Sweden)

    Bernard Fei-Baffoe

    2016-02-01

    Full Text Available Co-composting organic solid waste with dewatered sewage sludge was carried out to determine its suitability for managing waste on a University campus. Windrow composting method was employed in which dewatered sewage sludge and organic solid waste were mixed at volume ratios: 1:1, 1:2, 1:3, 0:1 and 1:0 sludge/organic solid waste. Parameters such as pH, percentage N, C, P, K, Ca, Mg, organic matter, ash content and C/N ratio were determined weekly. Total and faecal coliform population were measured biweekly with Pb and Cd levels determined at the beginning and end of the composting. With the exception of ratio 1:0 sludge/organic solid waste, all other ratios attained a favourable Carbon to Nitrogen (C/N ratio both at the start and end of the composting process. Levels of major nutrients measured were found to be favourable for use as organic fertilizer. There was a general decline in carbon and organic matter in all the compost piles except the sewage sludge pile (1:0. Apart from the compost ratio 1:0 sludge/organic solid waste, all other ratios attained a temperature of 55°C within 8 days of composting. Generally the compost ratios 1:2, 1:3 and 0:1 (sludge/organic solid waste were found to be the most suitable for use as organic fertilizer.     International Journal of Environment Vol. 5 (1 2016,  pp: 14-31     

  19. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  20. Short communication. Growth and nodulation of cowpea after 5 years of consecutive composted tannery sludge amendment

    Directory of Open Access Journals (Sweden)

    Ana R. L. Miranda

    2014-10-01

    Full Text Available Tannery industry releases high amounts of tannery sludge which are currently composted and used in agricultural soils. The consecutive amendment of such composted tannery sludge (CTS may affect soil microrganisms, such as rhizobia. In this study, we evaluated the effects of 5-year repeated CTS amendment on growth, nodulation, and yield of cowpea (Vigna unguiculata L. CTS was applied in different amounts (0, 2.5, 5, 10 and 20 Mg/ha to a sandy soil. Amendment of CTS increased soil pH, electrical conductivity (EC, sodium and chromium content. Plant growth, nodulation, N accumulation, and cowpea yield increased up to 10 Mg/ha; however, above this rate, these variables decreased. After 5 years of CTS amendment, the increase in soil chemical properties, particularly EC and Na content, exerted negative effects on the growth, nodulation, and yield of cowpea.

  1. Efficiency of in-vessel composting process in removal of petroleum hydrocarbons from bottom sludge of crude oil storage tanks

    OpenAIRE

    K Naddafi; R Nabizadeh; S Nasseri; K Yaghmaeian; A Koolivand

    2016-01-01

    Background and Objectives: Remaining of crude oil in storage tanks usually results in accumulating oily sludge at the bottom of the tank, which should be treated and disposed of in a suitable manner. The efficiency of in-vessel composting process in removing total petroleum hydrocarbons (TPH) from bottom sludge of crude oil storage tanks was investigated in the present study. Material and methods: The sludge was mixed with immature compost at the ratios of 1:0 (as control), 1:2, 1:4, 1:6,...

  2. Composting Used as a Low Cost Method for Pathogen Elimination in Sewage Sludge in Mérida, Mexico

    Directory of Open Access Journals (Sweden)

    Rafael Rojas-Herrera

    2013-07-01

    Full Text Available Spreading sewage sludge from municipal wastewater (MWW treatment on land is still a common practice in developing countries. However, it is well known that sewage sludge without special treatment contains various pollutants, which are (reintroduced into the environment by sludge landspreading and which might in turn have harmful effects on the environment and human health. This is more dangerous in places like Merida, Mexico, where soil is calcareous with fractures along the ground and thin layers of humus. Consequently, any liquid and semisolid wastes have the potential of percolating to the subsurface and contaminate the aquifer. The main aim of this work was using composting as a low cost process to eliminate pathogens contained in sewage sludge from MWW treatment in order to use the final product for land spreading in a safe way for both environment and human health. Two piles for composting process at real scale were settled using a mixture of sewage sludge from municipal waste water and green waste. Composting was carried out by windrow process and it was monitored during four weeks. Concentration of helminth eggs, salmonella and faecal coliforms were measured twice a week to observe its behavior and, as a control process, Temperature, Moisture Content (MC, and pH were also measured. After 30 days of composting sludge from municipal waste water system, salmonella was eliminated by 99%, faecal coliforms by 96% and helminth eggs by 81%. After 3 months compost reached GI = 160%, so did not show any phytotoxicity to seeds.

  3. Effect of Municipal Solid Waste Compost and Sewage Sludge on yield and Yield Components of Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F Akbarnejad

    2011-02-01

    Full Text Available Abstract In order to investigate the effect of municipal solid waste compost (MSWC and sewage sludge (SS on yield and yield components of black cumin (Nigella sativa L. an experiment was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad. Municipal solid waste compost at 0, 15, 30 ton/ha (C0, C15 and C30 and sewage sludge at 0, 15, 30 ton/ha (S0, S15 and S30 were used in a factorial experiment based on completely randomized design with three replications. Results showed that municipal solid waste compost and sewage sludge and their interaction effects had significant effects on plant height, number of capsule per plant, number of seeds per capsule, number of seeds per plant, seed yield, biomass and 1000 seed weight. Increasing of sewage sludge amount from 15 to 30 ton/ha increased all measured parameters. But with increasing of municipal solid waste compost from 15 to 30 ton/ha, plant height, number of capsule per plant, number of seeds per capsule, number of seeds per plant, seed yield, biomass and 1000 seed weight were decreased. Interaction effects of municipal solid waste compost and sewage sludge showed that yield and yield components in all treatments were increased with the exception of treatment that contained 30 ton/ha municipal solid waste and 0 ton/ha sewage sludge (C30S0. Use of high amounts of municipal solid waste compost (>15 ton/ha had a detrimental effect on yield and yield components of black cumin. Keywords: Nigella sativa, Municipal solid waste compost, Sewage sludge, Yield and yield components

  4. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    Science.gov (United States)

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-05

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  6. Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost.

    Science.gov (United States)

    Huang, Xiangdong; Xue, Dong; Xue, Lian

    2015-08-01

    A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.

  7. Color pollution control in textile dyeing industry effluents using tannery sludge

    Directory of Open Access Journals (Sweden)

    Sajjala Sreedhar Reddy

    2008-12-01

    Full Text Available Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents. As an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge was used as an adsorbent for dyestuff removal from simulated textile dying industry effluent in this study. The color removal performance of tannery sludge derived activated carbon and commercial coal based activated carbon has been investigated using parameters such as adsorbent dosage, initial dye concentration, pH and temperature. It was found that tannery sludge derived activated carbon exhibits dye removal efficiency that is about 80–90 % of that observed with commercial coal based activated carbon. The amount of dye adsorbed on to tannery sludge derived activated carbon is lower compared with commercial activated carbon at equilibrium and dye adsorption capacity increased with increase of initial dye concentration and temperature, and deceasing pH. It was found that the Langmuir isotherm appears to fit the isotherm data better than the Freundlich isotherm. The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances.

  8. CHROMIUM IN SOIL ORGANIC MATTER AND COWPEA AFTER FOUR CONSECUTIVE ANNUAL APPLICATIONS OF COMPOSTED TANNERY SLUDGE

    Directory of Open Access Journals (Sweden)

    Mara Lucia Jacinto Oliveira

    2015-02-01

    Full Text Available Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr, which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L. was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS. Over a four-year period, CTS was applied on permanent plots (2 × 5 m and incorporated in the soil (0-20 cm at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis. These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.

  9. Fecal sludge management in developing urban centers: a review on the collection, treatment, and composting.

    Science.gov (United States)

    Odey, Emmanuel Alepu; Li, Zifu; Zhou, Xiaoqin; Kalakodio, Loissi

    2017-10-01

    The problems posed by fecal sludge (FS) are multidimensional because most cities rapidly urbanize, which results in the increase in population, urban settlement, and waste generation. Issues concerning health and waste treatment have continued to create alarming situations. These issues had indeed interfered with the proper steps in managing FS, which contaminates the environment. FS can be used in agriculture as fertilizer because it is an excellent source of nutrients. The recent decline in crop production due to loss of soil organic component, erosion, and nutrient runoff has generated interest in the recycling of FS into soil nutrients through stabilization and composting. However, human feces are considerably liable to spread microorganisms to other persons. Thus, sanitation, stabilization, and composting should be the main objectives of FS treatment to minimize the risk to public and environmental health. This review presents an improved FS management (FSM) and technology option for soil amendment that is grouped into three headings, namely, (1) collection, (2) treatment, and (3) composting. On the basis of the literature review, the main problems associated with the collection and treatment of FS, such as inadequate tools and improper treatment processes, are summarized, and the trends and challenges that concern the applicability of each of the technologies in developing urban centers are critically reviewed. Stabilization during pretreatment before composting is suggested as the best method to reduce pathogens in FS. Results are precisely intended to be used as a support for decisions on policies and strategies for FSM and investments for improved treatment facilities.

  10. Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings.

    Science.gov (United States)

    Plaza, César; Senesi, Nicola; Brunetti, Gennaro; Mondelli, Donato

    2007-07-01

    Fulvic acids (FAs) were isolated by a conventional procedure from two mixtures of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in open-air pond and tree cuttings (TC) at different stages of the co-composting process. The FAs were analyzed for elemental (C, H, N, S, O) and acidic functional group (carboxylic and phenolic) composition, and by ultraviolet/visible, Fourier transform infrared and fluorescence spectroscopies. At the initial stage of composting, FAs from the OMW sludge-TC mixtures were characterized by a prevalent aliphatic character, large contents of C, S-containing groups, proteinaceous materials and polysaccharide components, extended molecular heterogeneity, small O and acidic functional group contents, and small degrees of aromatic ring polycondensation, polymerization and humification. As composting proceeded, C, H and S contents, C/N ratio, and aliphaticity decreased, whereas N, O, COOH and phenolic OH contents, C/H and O/C ratios, and aromaticity increased. These results suggested that, with increasing the composting time, the chemical and structural properties of the FA components of the two OMW sludge-TC mixtures approached the characteristics typical of native soil FAs. Thus, co-composting of OMW sludge mixed with TC may represent a suitable treatment for enhancing the quality of organic matter in these materials when used as soil amendments.

  11. Heavy Metals Removal from Sewage Sludge and Municipal Solid Waste (MSW by Co-Composting Process

    Directory of Open Access Journals (Sweden)

    Vahid Babaee Darzi

    2017-07-01

    Full Text Available Background & Aims of the Study: One of the most important pollutants in drinking water, air and soils is heavy metals. It is very harmful for humans and other live organisms. The purpose of this study was the usage of a co-composting process for removal of heavy metals from municipal solid waste and sewage sludge. Materials and Methods: This experimental study was a conducted sewage sludge and municipal solid waste. For collection of samples from urban solid waste composting and wastewater treatment plant, a 200 mL polyethylene bottles was used, samples after acidification were stored in a dark place at 4°C temperature until the metals analysis the heavy metals values remaining in the samples was measured by graphite furnace absorption spectrometer method (Varian, SpectrAA 240, Australia. In this study, we used SPSS version 16 for data processing; and they were also analyzed by descriptive statistics. Results: Result of this study showed that values of C/N in the first, second and third stage compost were 31.7, 27.3 and 41.8, respectively. Based on the result of this study the value of removal of Cd with 9.8 mg kg-1 in first stage and Cr, Cu and Zn with 89, 21 and 87.6 mg kg-1 in third stage were highest treatment. Conclusion: Our results show that co-composting process between many treatment processes having to be cost effective for heavy metal removal from solid waste and wastewater treatment.

  12. SEEDLINGS GROWTH OF Prunus brasiliensis (Cham. & Schltdl. D. Dietr. IN SEWAGE SLUDGE-BASED COMPOST AND MINERAL FERTILIZER

    Directory of Open Access Journals (Sweden)

    Maurício Bergamini Scheer

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987555The increasing amount of solid waste generates the need for its use. An opportunity is the use of sewage sludge to attend the demand for alternative inputs in the agricultural and forestry practices. The aim of this study was to evaluate the performance of Prunus brasiliensis (Cham. & Schltdl. D. Dietr. (pessegueiro – bravo grown on substrates prepared from aerobic sewage sludge composted with ground tree pruning and with different levels of a granulated fertilizer, and to compare its performance with those grown on commercial substrate, which is widely used in forest nurseries. The experiment was conducted in a shadehouse (from July/08 to Oct/08 and in an outdoor growing area (from Nov/08 to Feb/09 at Sanitation Company of Paraná State, located in Araucária, southern Brazil. Three different substrates were used: commercial substrate, consisting of composted pine bark and vermiculite, and 3:1 (v:v and 2:1 (v:v composted substrate based on crushed tree pruning and sewage sludge. The following variables were measured: seedling height, diameter and biomass of leaves and branches. The results showed higher growth rates of seedlings grown on substrates containing sewage sludge than on those grown on commercial substrate. Both composts with sewage sludge, using the two levels of fertilization (2,7 and 4 g dm-3, present similar results for the majority of the variables tested.

  13. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Romain [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Staudt, Michael [Departement Fonctionnement des Ecosystemes, Centre d' Ecologie Fonctionnelle et Evolutive (CEFE, UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5 (France); Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Fernandez, Catherine, E-mail: catherine.fernandez@univ-provence.fr [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France)

    2011-04-15

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha{sup -1} and 100 Mg ha{sup -1}, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: > Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. > Compost spreading increased leaf biomass of Q. coccifera. > Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  14. Effect of iron sulphate on the phosphorus speciation from agro-industrial sludge based and sewage sludge based compost.

    Science.gov (United States)

    Grigatti, Marco; Boanini, Elisa; Di Biase, Giampaolo; Marzadori, Claudio; Ciavatta, Claudio

    2017-11-01

    Composting is considered a suitable process for organic waste management, providing stable products that can be safely utilized as fertilizers, but little is still known about the variation of phosphorous (P) extractability during the stabilization process. In this work, sequential chemical extraction (SCE) with increasing strength extractants (H2O; 0.5M NaHCO3 pH 8.5; 0.1M NaOH, 1M HCl) was applied for P speciation over 56days of composting of either agro-industrial or urban wastewater sludge with green waste treated (AICFe+; SSCFe+) or not (AICFe-; SSCFe-) with FeSO4 (2%v/v). Composting strongly reduced the H2O-P, promoting the organic-P (Po) mineralization from the labile fraction (H2O+NaHCO3 40%), in addition to the increases of NaHCO3- and HCl-extractable inorganic-P (Pi) in both AICFe- and SSCFe- (+20% on average). The FeSO4 treatment did not negatively affect the process, reducing the Po mineralization during composting by increasing the NaOH-P, also protecting this fraction from fixation in the sparingly soluble fraction. The final P fractionation (%) was in AICFe-: NaOH (41)=NaHCO3 (38)>HCl (18)>H2O (3); in AICFe+: NaOH (53)>NaHCO3 (24)=HCl (22)>H2O (2); in SSCFe-: NaOH (46)>NaHCO3 (29)>HCl (21)>H2O (4) and in SSCFe+: NaOH (66)>NaHCO3 (13)>HCl (20)>H2O (1). Composting reduced the more easily leachable fraction (labile-Po), reducing the risk of P loss by increasing the long-term available P fraction (NaOH-P). This was enhanced by the FeSO4 addition. Further investigation into soil behaviour and plant availability of P from this source is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  16. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants.

    Science.gov (United States)

    Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2014-07-01

    As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. THE EFFECT OF COMPOST MADE WITH SEWAGE SLUDGE ON HEAVY METAL CONTENT IN SOIL AND IN LOLIUM MULTIFLORUM LAM.

    Directory of Open Access Journals (Sweden)

    Elżbieta Malinowska

    2016-07-01

    Full Text Available The aim of this paper is to assess the effects of different doses of sewage sludge compost mixed with wheat straw on heavy metal content in Italian ryegrass and in soil. A two year experiment with the Italian ryegrass was set up in autumn 2012. The experimental design consisted of a control plot, a plot with NPK fertiliser and three plots with three different doses of municipal sewage sludge compost (5, 10 and 15 Mg of fresh matter·ha-1. Those different compost doses contained the amounts of Nitrogen equivalent to 60, 120 and 180 kg N·ha-1. The two lower doses of compost were supplemented with nitrogen fertiliser so that the amount of this chemical element introduced to the soil of all plots with compost stood at 180 kg·ha-1. During 2013 and 2014 seasons the grass was cut three times a year after about a 30-day growing period. After dry mineralisation the content of Zn, Cu, Ni, Pb and Cd in the plant samples was measured with the ICP-AES method. The fertilisers applied significantly diversified the content of chemical elements in the grass and in the soil. The highest dose of compost resulted in the highest concentration of Zn, Cu and Cd in the grass while the highest concentration of Ni and Pb was in the soil and the grass from the plot where the mid dose of compost had been applied. Cadmium concentration in the soil was the highest in the plot where the mid dose was applied. The experiment proved that compost made with sewage sludge and wheat straw is beneficial for plants.

  18. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    Science.gov (United States)

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha-1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  19. Polychlorinated biphenyl concentration changes in sewage sludge and organic municipal waste mixtures during composting and anaerobic digestion.

    Science.gov (United States)

    Siebielska, Izabela; Sidełko, Robert

    2015-05-01

    We determined the changes in polychlorinated biphenyl (PCB) concentrations in a mixture of sewage sludge and the organic fraction of municipal waste during composting and during anaerobic digestion. The processes were carried out on a laboratory scale. The PCBs were analyzed in the waste samples using gas chromatography-mass spectrometry. We evaluated the rates at which the PCB concentrations decreased during composting and during anaerobic digestion and compared the PCB degradation kinetics during these processes. The most important conclusion of this work is that anaerobic digestion is much more effective than composting at removing PCBs from a mixture of sewage sludge and the organic fraction of municipal waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fate and effect of linuron and metribuzin on the co-composting of green waste and sewage sludge.

    Science.gov (United States)

    Fountoulakis, M S; Makridis, L; Pirounaki, E K; Chroni, C; Kyriacou, A; Lasaridi, K; Manios, T

    2010-01-01

    The fate and effect of the herbicides linuron and metribuzin on the co-composting of sewage sludge and green waste were addressed in this work. The experiments were conducted in metal cubic containers of 1.0m(3) volume simulating a windrow composting system. A mixture of sludge and green waste was prepared at a ratio of 1:5 v/v. The mixture was split in four equal parts and the two herbicides were added, using a pressure sprayer, as sole or mixed pollutant in each of the three mixtures. The forth mixture was composted without any addition of herbicide, to serve as control. Temperature, physicochemical characteristics, herbicide concentration, carbon dioxide emission, methane emission and microbiological parameters were measured either daily or every time the mixtures were turned, for a period of 80 days. Both herbicides' concentration decreased significantly resulting in removal efficiencies of 99.1-99.7% and 95.8-96.0% for linuron and metribuzin, respectively. Incubation of microbiologically inactive mixtures at a temperature schedule following the spontaneous temperature evolution in the composters resulted in very little (1-11%) decomposition for both herbicides. Comparison of the variation of physicochemical parameters and microbial populations during composting indicated that both herbicides did not affect the composting process.

  1. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Science.gov (United States)

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    Science.gov (United States)

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of

  3. Mitigating inhibition of undissociated volatile fatty acids (VFAs) for enhanced sludge-rice bran composting with ferric nitrate amendment.

    Science.gov (United States)

    Shou, Zongqi; Yuan, Haiping; Shen, Yanwen; Liang, Jiayun; Zhu, Nanwen; Gu, Lin

    2017-11-01

    This study investigated the effect of ferric nitrate on mitigating the inhibition of volatile fatty acids (VFAs) during the initial phase of sewage sludge composting amended with rice bran. During the 34-day lab-scale composting, the supplementation of ferric nitrate enhanced the degradation of VFAs by up to 3 times as compared to the control. The organic matters loss (OML) rate in the treatment reactor was almost doubled with supplementation of ferric nitrate as compared to the control reactor during the initial phase. Eventually the treatment reactor achieved a 39.0% OML by the end of composting, which was 22% higher than the control. Ferric nitration addition mitigated the inhibition of VFAs by stimulating denitrification which consumed protons and VFAs. Ferric nitrate addition also decreased the electrical conductivity by 23% in the final compost product, reducing the possibility of phytotoxicity issue upon soil application. In summary, the results demonstrated that ferric nitrate addition could be an effective strategy for enhanced sludge composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impacts upon soil quality and plant growth of bamboo charcoal addition to composted sludge.

    Science.gov (United States)

    Hua, Li; Chen, Yingxu; Wu, Weixiang

    2012-01-01

    In this research, the effects of bamboo charcoal on soil contaminant accumulation, soil fertility and plant growth were investigated. The results indicated that sludge composted with bamboo charcoal (BCS) significantly increased plant growth and decreased the mobility of Zn, Cu and polycyclic aromatic hydrocarbons (PAHs), compared with the composted sludge without bamboo charcoal (CS), with lower absorption and less accumulation of contaminants by the plants. Concentrations of Cu in turfgrass treated with CS were 11.7-23.4% higher than those of turfgrass treated with BCS. Concentrations of Zn in turfgrass treated with CS were 14.2-25.9% higher than those of turfgrass treated with BCS. The concentration of sigma 16PAHs (total contents of 16 PAHs that are listed by USEPA as priority pollutants for remediation based on their persistence and carcinogenic potential) in ryegrass grown in yellow loamy soil amended with CS was 680 microg kg(-1)) and was higher than that of ryegrass treated with BCS (only 439 microg kg(-1)). The biomass of fescue in BCS-treated soils increased by 13-16% compared with that of fescue in CS-treated soil. The biomass of ryegrass in BCS-treated soil was 20-27% higher than that in CS-treated soil. Chlorophyll content in turfgrass grown in CS-treated soil was lower than that in grass grown in BCS-treated soil. Compared with the control, chlorophyll contents in plants grown in soil with CS increased by about 13-22%, whereas those in plants grown in soil with BCS increased by about 20-32%.

  5. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge.

    Science.gov (United States)

    Zhang, Jian-Hao; Zou, Hai-Yuan; Ning, Xun-An; Lin, Mei-Qing; Chen, Chang-Min; An, Tai-Cheng; Sun, Jian

    2017-03-22

    To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H2O2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H2O2 to Fe2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaPeq) concentrations of five CPAHs declined by 81.22-85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.

  6. Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Edson V.C. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Giuradelli, Thayse M. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Correa, Albertina X.R. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Roerig, Leonardo R. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Schwingel, Paulo R. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Resgalla, Charrid [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil); Radetski, Claudemir M. [Universidade do Vale do Itajai, Centro de Ciencias Tecnologicas da Terra e do Mar, Rua Uruguai, 458, Itajai SC 88302-202 (Brazil)]. E-mail: radetski@univali.br

    2007-03-15

    The short term (eco)toxicity potential of fresh and stabilized textile sludges, as well as the short term (eco)toxicity of leachates obtained from both fresh and stabilized textile sludges, was evaluated by a battery of toxicity tests carried out with bacteria, algae, daphnids, fish, earthworms, and higher plants. The (eco)toxicological results showed that, after 120 d of stabilization, the experimental loading ratio of 25% sludge:75% soil (v/v) (equivalent to 64.4 ton/ha) did not significantly increase toxicity effects and increased significantly the biomass yield for earthworms and higher plants. The rank of biological sensitivity endpoints was: Algae {approx} Plant biomass > Plant germination {approx} Daphnids > Bacteria {approx} Fish > Annelids. The lack of short term toxicity effects and the stimulant effect observed with higher plants and earthworms are good indications of the fertilizer/conditioner potential of this industrial waste, which after stabilization can be used in the restoration of a non-productive forest soil. - Short term ecotoxicity evaluation of textile sludge showed that stabilized sludge can be used in the restoration of a non-productive forest soil.

  7. Effects of sawdust-CPAM on textile dyeing sludge dewaterability and filter cake properties.

    Science.gov (United States)

    Luo, Haijian; Ning, Xun-An; Liang, Xiujuan; Feng, Yinfang; Liu, Jingyong

    2013-07-01

    Sawdust was used as a filter aid for the textile dyeing sludge dewatering in this study. Results showed that sawdust conditioning in conjunction with cationic polyacrylamide (CPAM) presented much better dewaterability than CPAM alone. The optimal sawdust and CPAM dosage for the best dewaterability was found to be 60 wt.% (mass percent) and 15 kg/t DS (dry solid), the time to filter (TTF) and the yield at 90% degree of the filtration completion (YN90) were 5s and 15.6 kg/m(2)h under the conditions, respectively. TTF and YN90 were more appropriate parameters than specific resistance to filtration (SRF) for assessing the sludge dewaterability as affected by physical conditioners. The moisture content of various filter cake layers gradually became the same with the increase of sawdust dosage. The flocculated sludge cake became relatively incompressible after sawdust conditioning. Sawdust acts to maintain the permeability during the compressed filtration by resisting cake compression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Composting sewage sludge amended with different sawdust proportions and textures and organic waste of food industry--assessment of quality.

    Science.gov (United States)

    Ammari, Tarek G; Al-Omari, Qusai; Abbassi, Bassim E

    2012-01-01

    The quality of compost made from dewatered sewage sludge, sawdust (SD) and organic wastes of a potato-processing industry (OW), in terms of chemical and biological properties, was assessed. Mixtures of the sludge, SD and OW were composted for 57 days in insulated containers at two C:N ratios (approximately 30 : 1 and approximately 20 : 1) and SD textures (coarse- and fine-textured SD). The parameters monitored over this period were pH, electrical conductivity (EC), C:N ratio, CO2 evolution and two spectrophotometric ratios (Q2/6 and Q2/4). All the studied parameters were in general similarly influenced by initial C:N ratio and texture of SD except for EC, Q2/6 and Q2/4. At high C:N ratio of both textures, the EC of the final products increased but were less than those of low C:N ratio of both textures. Thus, final product can be used alone as growth medium without the need for grinding or blending with other materials. The spectrophotometric ratios (Q2/6 and Q2/4) dramatically decreased two weeks after composting and then slightly increased at the end of composting process. However, coarse-textured SD at the low C:N ratio and fine-textured SD at both C:N ratios resulted in lower Q2/6 and Q2/4 ratios, reflecting a better degree of aromatic condensation and organic matter humification. Considering these parameters, co-composting sludge with fine-textured SD and OW at high initial C:N ratio would represent the best compromise.

  9. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  10. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  11. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    Science.gov (United States)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  12. Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge.

    Science.gov (United States)

    Chen, Xiaoguang; Xiang, Xinyi; Dai, Ruobin; Wang, Yu; Ma, Puyue

    2017-11-01

    The minimization and methane production of textile dyeing sludge (TDS) can be simultaneously attained via anaerobic digestion (AD). However, the possible toxicity and complex recalcitrant organic matters involved in limited the hydrolysis of TDS. Therefore, the low-temperature of thermal pretreatment (LTTP) lasting for 1h at temperatures from 60 to 100°C was employed to accelerate the hydrolysis and subsequent methane generation of TDS. The results showed that LTTP with temperatures higher than 70°C obviously improve the AD performance of TDS. Highest accumulative methane production was achieved for 100°C pretreated TDS and from thermal analysis point of view it was due to the disintegration of some recalcitrant macromolecules in TDS. Nevertheless, 90°C pretreated TDS did not perform favorable methane yield as expected, attributing to the inhibited acetogenesis as well as the hindered methanogenesis which was simultaneously competed by dye reducer for electrons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks.

    Science.gov (United States)

    Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza

    2017-07-31

    In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.

  14. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Huang, Hui; Ren, Xiuna; Lahori, Altaf Hussain; Mahar, Amanullah; Ali, Amjad; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2016-09-01

    This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    Science.gov (United States)

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    Science.gov (United States)

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. © The Author(s) 2014.

  17. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost.

    Science.gov (United States)

    Tambone, Fulvia; Scaglia, Barbara; D'Imporzano, Giuliana; Schievano, Andrea; Orzi, Valentina; Salati, Silvia; Adani, Fabrizio

    2010-10-01

    Digestate, with biogas represents the final products of anaerobic digestion (AD). The methane-rich biogas is used to produce electricity and heat, whereas the digestate could be valorized in agriculture. Contrarily to well-recognized biomasses such as digested sludge and compost, the properties of the digestate are not well known and its agricultural use remains unexplored. In this work, a first attempt to study the agronomic properties of digestates was performed by comparing the chemical, spectroscopic, and biological characteristics of digestates with those of compost and digested sludge, used as reference organic matrices. A total of 23 organic matrices were studied, which include eight ingestates and relative digestates, three composts, and four digested sludges. The analytical data obtained was analyzed using principal component analysis to better show in detail similarities or differences between the organic matrices studied. The results showed that digestates differed from ingestates and also from compost, although the starting organic mix influenced the digestate final characteristics. With respect to amendment properties, it seems that biological parameters, more than chemical characteristics, were more important in describing these features. In this way, amendment properties could be ranked as follows: compost≅digestate>digested sludge≫ingestate. As to fertilizer properties, AD allowed getting a final product (digestate) with very good fertilizing properties because of the high nutrient content (N, P, K) in available form. In this way, the digestate appears to be a very good candidate to replace inorganic fertilizers, also contributing, to the short-term soil organic matter turnover. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Chen, Meixue; Sui, Qianwen; Tong, Juan; Jiang, Chao; Lu, Xueting; Zhang, Yuxiu; Wei, Yuansong

    2016-03-15

    Composting is commonly used for the treatment and resource utilization of sewage sludge, and natural zeolite and nitrification inhibitors can be used for nitrogen conservation during sludge composting, while their impacts on ARGs control are still unclear. Therefore, three lab-scale composting reactors, A (the control), B (natural zeolite addition) and C (nitrification inhibitor addition of 3,4-dimethylpyrazole phosphate, DMPP), were established. The impacts of natural zeolite and DMPP on the levels of ARGs were investigated, as were the roles that heavy metals, mobile genetic elements (MGEs) and the bacterial community play in ARGs evolution. The results showed that total ARGs copies were enriched 2.04 and 1.95 times in reactors A and C, respectively, but were reduced by 1.5% in reactor B due to the reduction of conjugation and co-selection of heavy metals caused by natural zeolite. Although some ARGs (blaCTX-M, blaTEM, ermB, ereA and tetW) were reduced by 0.3-2 logs, others (ermF, sulI, sulII, tetG, tetX, mefA and aac(6')-Ib-cr) increased by 0.3-1.3 logs after sludge composting. Although the contributors for the ARGs profiles in different stages were quite different, the results of a partial redundancy analysis, Mantel test and Procrustes analysis showed that the bacterial community was the main contributor to the changes in ARGs compared to MGEs and heavy metals. Network analysis determined the potential host bacteria for various ARGs and further confirmed our results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hema, E-mail: hhasija@gmail.com [TERI University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi (India); Pandey, Suneel [Centre for Regulatory and Policy Research, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. Black-Right-Pointing-Pointer Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. Black-Right-Pointing-Pointer Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. Black-Right-Pointing-Pointer There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10-25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62-33.62 MPa) and block density (1222.17-1688.72 kg/m{sup 3}) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  20. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    Science.gov (United States)

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Artemia salina as a new index for assessment of acute cytotoxicity during co-composting of sewage sludge and lignocellulose waste.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-04-01

    Considering the necessity to constantly monitor the safety of use of sewage sludge, we have focused on evaluating the toxicity of raw sludge and sludge treated by co-composting with date palm waste using an in vitro assessment of cytotoxicity based on Artemia salina larvae as a simple new sensitive and reliable routine test. The efficiency of co-composting in decreasing sludge toxicity was evaluated in terms of cytotoxicity abatement reaching 100% by the second month of composting for mixture A (1/3 sludge+2/3 date palm waste) and the third month for mixture B (1/2 sludge+1/2 date palm waste). Cytotoxicity abatement was confirmed by the increase of germination index, which reached over 100% with positive correlation for lettuce (R(2)=0.81 and 0.86) and for turnip (R(2)=0.87 and 0.74) for mixtures A and B respectively. A strong correlation between the proposed cytotoxicity test and the evolution of regulatory physical-chemical approaches was found, (R(2)=0.88 and 0.89) for NH4(+)/NO3(-) and (R(2)=0.80 and 0.88) for C/N respectively for mixture A and B. These findings allow the inexpensive bioassay reported to be used as a highly sensitive test to determine the cytotoxicity and maturity of composts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Accelerated solvent extraction combined with solid phase extraction for the determination of organophosphate esters from sewage sludge compost by UHPLC-MS/MS.

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Ge, Liming; Du, Jingjing; Zhang, Hongzhong

    2017-02-01

    Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, are regarded as emerging pollutants. OPEs are prone to concentrate into residual activated sludge, which might cause secondary pollution if not suitably treated. Composting is an economical and effective approach to make sewage sludge stable and harmless. Therefore, it is essential to develop a novel method for analyzing OPEs in sewage sludge compost samples. However, in the composting process, large amounts of amendments are doped into the sludge to adjust the carbon-nitrogen ratio. Amendment has a strong capacity for adsorption and thus induces a decrease of extraction efficiency. This study developed a novel procedure for determining OPEs in compost samples. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used for extracting and concentrating the OPEs from sewage sludge compost samples, and then analyzed by UHPLC-MS/MS. Some parameters were optimized in this study, mainly including the extraction solvent type, extraction temperature, static extraction time, extraction cycles, and flush volume. Under the optimal conditions, the proposed method showed good linearity between 0.50 and 100 μg kg-1 with regression coefficients in the range of 0.9984-0.9998. Detection limits were in the range of 0.02-3 μg kg-1 with standard deviations ranging from 2 to 6%. Acceptable recoveries between 56 and 119% for samples spiked at different concentration levels were achieved. In contrast, the recoveries merely ranged from 24 to 58% by using ultrasonic-assisted extraction. Graphical abstract A comparison of recoveries between ultrasonic-assisted extraction (UAS) and accelerated solvent extraction (ASE) for organophosphate esters from sewage sludge compost samples.

  3. Practical examples and perspectives of the utilisation of bio-compost, sewage sludge and wood ash; Praxisbeispiele und Perspektiven der Verwertung von Bioabfallkomposten und Klaerschlaemmen sowie Holzaschen

    Energy Technology Data Exchange (ETDEWEB)

    Schmeisky, H.; Kunick, M. [Kassel Univ., Witzenhausen (Germany). Fachgebiet Landschaftsoekologie und Naturschutz

    2007-07-01

    Test reactor experiments with ash from power plants with co-combustion of animal meal indicate that phosphate solubilisation by means of mycorrhiza appears feasible. Additions of wood ash or biomass ash to the compost does not have any positive effects. The additional elements contained in these ashes cannot be absorbed and should not be added during composting. In revegetation projects on lime-burdened residues of the soda industry, 200 t/ha of dry matter of composted sewage sludge was found to be optimal. Organic residues are more positive than mineral fertilizers when biogenic cycles are to be established in recultivation areas. (orig.)

  4. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  5. Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors.

    Science.gov (United States)

    Sarvajith, M; Reddy, G Kiran Kumar; Nancharaiah, Y V

    2018-01-15

    Biodecolourization of azo dye and removal of ammonium by aerobic granular sludge (AGS) was investigated under different growth conditions. AGS not previously exposed to azo dye was able to effectively decolourize azo dye under anaerobic and microaerophilic conditions. Azo dye, total organic carbon and ammoniacal nitrogen removal efficiencies of 89-100%, 79-95% and 92-100%, respectively, were achieved in the AGS reactor operated for 80days under microaerophilic conditions. Removal of carbon, nitrogen and phosphorus was not impacted by azo dye loading. Azo dye, organic carbon and ammonium were majorly removed in the anoxic period wherein bulk dissolved oxygen was ranged from 0.5 and <0.08mgL -1 . Removal of 60mgL -1 NH 4 + -N was associated only with smaller amounts of nitrite build-up (∼5mgL -1 NO 2 - -N) and negligible nitrate concentrations. Profiles of nitrogen compounds in individual sequencing batch reactor cycles supported the occurrence of ammonium removal over nitrite pathway. Bacterial community analysis showed enrichment of specific microorganisms capable of decolourizing azo dyes in the dye-decolourizing AGS. Dye decolourization and nutrient removal by AGS under microaerophilic conditions is a novel finding and can be further developed for treating textile wastewaters onsite or after dilution with sewage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration.

    Science.gov (United States)

    Rosa, Edson V C; Giuradelli, Thayse M; Corrêa, Albertina X R; Rörig, Leonardo R; Schwingel, Paulo R; Resgalla, Charrid; Radetski, Claudemir M

    2007-03-01

    The short term (eco)toxicity potential of fresh and stabilized textile sludges, as well as the short term (eco)toxicity of leachates obtained from both fresh and stabilized textile sludges, was evaluated by a battery of toxicity tests carried out with bacteria, algae, daphnids, fish, earthworms, and higher plants. The (eco)toxicological results showed that, after 120 d of stabilization, the experimental loading ratio of 25% sludge:75% soil (v/v) (equivalent to 64.4 ton/ha) did not significantly increase toxicity effects and increased significantly the biomass yield for earthworms and higher plants. The rank of biological sensitivity endpoints was: Algae approximately Plant biomass > Plant germination approximately Daphnids > Bacteria approximately Fish > Annelids. The lack of short term toxicity effects and the stimulant effect observed with higher plants and earthworms are good indications of the fertilizer/conditioner potential of this industrial waste, which after stabilization can be used in the restoration of a non-productive forest soil.

  7. Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption

    Science.gov (United States)

    Chen, Huixia; Dou, Junfeng; Xu, Hongbin

    2017-12-01

    Sewage sludge compost biomass was used as a novel biosorbent to remove hexavalent chromium from water. Surface area analysis, scanning electron microscopy, fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and point zero charge was applied to study the microstructure, compositions and chemical bonding states of the biomass adsorbent. Effects of contact time, biomass dosage, agitation speed, pH, the initial concentration of Cr(VI) and Cr(Ⅲ) on its adsorption removal were also performed in the batch experiments. A model describing adsorption, desorption and reduction phenomena during the sorption process has been referenced to model Cr(VI) sorption onto sewage sludge compost biomass. The result of characterization test shows that adsorption of Cr(VI) onto sewage sludge compost biomass followed by the partial reduction to Cr(Ⅲ) by biomass groups such as hydroxyl, carboxyl, and amino groups. The absorption kinetics model in the description of adsorption-coupled reduction of Cr(VI) fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The study shows that sewage sludge compost biomass could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.

  8. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    Science.gov (United States)

    Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was

  9. Studying the Effects of Two Various Methods of Composting on the Degradation Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Sewage Sludge.

    Science.gov (United States)

    Poluszyńska, Joanna; Jarosz-Krzemińska, Elżbieta; Helios-Rybicka, Edeltrauda

    2017-01-01

    The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.

  10. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment.

    Science.gov (United States)

    Liu, Hong-Tao; Wang, Yan-Wen; Huang, Wei-Dong; Lei, Mei

    2016-12-01

    Sludge is an organic waste after domestic sewage being treated and contains phytonutrients and organic matter. In this study, recycling of sludge compost (SC) and its compound fertilizer (SCF) to wine grape resulted in improvement in vegetative growth, reproductive development of wine grape, and potential wine quality of grape fruit. The amounts of Cu, Pb, and Cd in grape fruit were significantly higher in response to sludge amendment than in the control, but were all below the permissible limits for agricultural product. The contents of Cu and Pb in sludge-amended soil decreased with increasing soil depth, but Cd content increased with soil depth. Ongoing monitoring of on mobility of Cd downward is proposed with sludge recycling to wine grape soil.

  11. Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake

    Directory of Open Access Journals (Sweden)

    Tanawut Nutongkaew

    2014-06-01

    Full Text Available The effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge (POMS mixed with shredded palm empty fruit bunches (PEFB and decanter cake (DC was studied using the mixed culture LDD1 as an inoculum. Three piles of 50 kg mixture (POMS:PEFB:DC = 2:1:1 with different inoculum sizes of 0.0075% (treatment A, 0.015% (treatment B, and 0.030% (treatment C were set up. The physicochemical parameters were measured during the composting. All the compost appeared dark brown in color, crumbly, attained an ambient temperature and had the C/N ratio of 11:1 after 40 days fermentation, indicating the maturity of the compost. The optimal inoculum size was found to be 0.030% (w/w. For enzyme production, the highest carboxymethylcellulase (CMCase activity was 3.23 Unit/g substrates at 12 days incubation whereas the highest xylanase activity was 3.11 Unit/g substrates at 6 days incubation. At the end of 60 days fermentation, the compost (treatment C had a TN-P2O5 -K2O of 3.10-1.29-2.01% (dry basis. Therefore, the compost quality complied with the national compost standard set by the Ministry of Agriculture, Thailand.

  12. Biochar amendment for integrated composting and vermicomposting of sewage sludge - The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost.

    Science.gov (United States)

    Malińska, Krystyna; Golańska, Małgorzata; Caceres, Rafaela; Rorat, Agnieszka; Weisser, Patryk; Ślęzak, Ewelina

    2017-02-01

    Sewage sludge derived biochar (SSDB) was used as a supplementary material for municipal sewage sludge (SS) and wood chips mixtures (WC) treated by combined composting and vermicomposting. SSDB added to the mixture before composting resulted in significantly higher reproduction rate: on week 4 the number of cocoons increased by 213% when compared to the mixture with no biochar. On week 6 the average number of juveniles increased 11-fold in the mixture with biochar added before composting and 5-fold in the mixtures with biochar added after composting when compared to the mixture with no biochar. Biochar added before composting reduced bioavailability of Cd and Zn to E. fetida. The biochar-added vermicomposts showed good fertilizing properties except for elevated concentrations of Cr. The pH of all vermicomposts was in the range of 5.27-5.61. The obtained vermicomposts can be used as a growing medium for horticultural purposes or as an amendment in calcareous soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. SURVIVAL AND GROWTH OF BARU (Dipterix alata Vog. TREATED WITH SEWAGE SLUDGE, COMPOSTED GARBAGE OR CATTLE MANURE ON MINED SPOILS IN THE BRAZILIAN CERRADO

    Directory of Open Access Journals (Sweden)

    Cristiane de Queiroz Pinheiro

    2005-05-01

    Full Text Available Sewage sludge and composted garbage are available in large quantities to be employed assources of organic matter for revegetation projects of mined spoils in the Brazilian FederalDistrict (DF. These sources were used for growing baru (Dipterix alata Vog. on minedspoils in the Brazilian Cerrado and the growth and mortality of 99 seedlings treated with theseorganic matter soruces were measured. In 4 months, rates of survival ranged from 56.7%, fortrees treated with compost, to 96.7% for plants treated with sewage sludge. The compostseems to have toxic effects on seedlings, since the treatments with 35, 45 and 50 L/hollow hadno survivals. After the first period of growth, the study was able to show that the best rate forplant development with sewage sludge was 20 and 30 L/hollow (57% and 47. For plantstreated with compost, the best result was obtained with the smallest dosage (5L/hollow,where the growth is similar to the best results obtained with the sludge (47%. In larger dosesthe growth varied between 6% and 24%, span in which the results obtained in the controltreatments, chemical treatment (16% and no treatment (12% are also found. Therefore, theincrease in growth of the seedlings is a function of the dosage and type of organic materialemployed.

  14. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sludge composting of waste water treatment plant. Compost plant of Vila-Seca (Tarragona); Compostaje de lodos procedentes de la depuracion de aguas residuales. Planta de compostaje de Vila- Seca

    Energy Technology Data Exchange (ETDEWEB)

    Marza Brillas, J.

    1995-12-01

    Composting is a very effective process in waste treatment. Very good results are obtained in mass and volume loss, moisture reduction, organic matter establization as well as making possible agricultural uses for the final product. Some parameters as nutrients (C/N ratio), pH, temperature and oxygen content are pointed as the most important for the process. Some composting systems are mentioned but finally tunnel system is shown as the best. Its great advantage is that measurements from main parameters are given continuously to the control computer, so process optimization is done at the moment. The Vila-Seca sludge composting plant is described. This plant can treat 30.000 tones/year from three water treatment plants. The expected 50% on organic matter reduction and 70% on dry matter content has been achieved after only 3 months since its starting up. Finally, in september 1995 will start the construction of another sludge composting plant were the same technology, belonging to GICOM and represented by G.T.R. in Spain, will be installed.

  16. Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil.

    Science.gov (United States)

    Chu, Shuangshuang; Wu, Daoming; Liang, Liyin L; Zhong, Fengdi; Hu, Yaping; Hu, Xinsheng; Lai, Can; Zeng, Shucai

    2017-10-17

    Application of sewage sludge compost (SSC) as a fertilizer on landscaping provides a potential way for the effective disposal of sludge. However, the response of landscape trees to SSC application and the impacts of heavy metals from SSC on soil are poorly understood. We conducted a pot experiment to investigate the effects of SSC addition on Mangifera persiciforma growth and quantified its uptake of heavy metals from SSC by setting five treatments with mass ratios of SSC to lateritic soil as 0%:100% (CK), 15%:85% (S15), 30%:70% (S30), 60%:40% (S60), and 100%:0% (S100). As expected, the fertility and heavy metal concentrations (Cu, Zn, Pb and Cd) in substrate significantly increased with SSC addition. The best performance in terms of plant height, ground diameter, biomass and N, P, K uptake were found in S30, implying a reasonable amount of SSC could benefit the growth of M. persiciforma. The concentrations of Cu, Pb and Cd in S30 were insignificantly different from CK after harvest, indicating that M. persiciforma reduced the risk of heavy metal contamination of soil arising from SSC application. This study suggests that a reasonable rate of SSC addition can enhance M. persiciforma growth without causing the contamination of landscaping soil by heavy metals.

  17. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  18. Metal availability in technosols prepared with composted sewage sludge and limestone outcrop affected by the presence of barley

    Science.gov (United States)

    Román, Alejandro; Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume

    2017-04-01

    The use of composted sewage sludge (SSC), and limestone outcrop residue (LOR), is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Both wastes are used to improve the physical, chemical, and biological properties of impoverished soils (Karaca 2004; Jordão et al. 2006; Lovieno et al. 2009). However, the use of compost may have some negative effects on the environment (Navarro-Pedreño et al. 2004; Elridge et al. 2009). Moreover, plants cultivated in technosols can produced changes on the availability of essential and harmful metals and, for this reason, is necessary to made studies to evaluate the availability of metals and the effect of plants in their mobility and toxicity. In this experiment, it has been analyzed the effect of barley in metals availability in four technosols prepared mixing volumes of LOR (100, 98, 95 and 90 %) and SSC (0, 2, 5 and 10%). To determine the solubility and availability, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured by Lindsay-Norvell extraction procedure. For each technosoil, tree pots with barley (three plants) and three without barley were checked after 3 months A of them were irrigated with 1.5 L/week of tap water. At the end of this time, the metal solubility and availability were higher in soils with the presence of barley than the others. This was especially notorious for Fe and Zn. The presence of root exudates and the reduction of lixiviation due to plant transpiration can explain the highest presence of metals. This result may be considered in rhizosphere related to possible metal toxicity. Keywords: compost, limestone outcrop residues, heavy metals, barley. References: Eldridge SM, Chan KY, Barchia I, Pengelly PK, Katupitiya S, Davis JM (2009) A comparison of surface applied granulated biosolids and poultry litter in terms of risk to runoff water quality on turf farms in Western Sydney, Australia. Agr Ecosyst Environ doi:10.1016/j.agee.2009.07.007 Iovieno

  19. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  20. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting.

    Science.gov (United States)

    Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar

    2017-01-01

    In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model (R(2) > 0.8006). Degradation of TPH in 1:5 mixing ratio (k2 = 0.0038 gmg (-1)d(-1); half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k2 = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.

  1. Effects of municipal solid waste- and sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars.

    Science.gov (United States)

    Gattullo, Concetta Eliana; Mininni, Carlo; Parente, Angelo; Montesano, Francesco Fabiano; Allegretta, Ignazio; Terzano, Roberto

    2017-11-01

    Compost has been recently suggested as an alternative to peat for the preparation of growing substrates in soilless cultivation systems. However, some physico-chemical properties of compost may reduce plant performance and endanger the quality of productions, in particular for possible heavy metal accumulation in edible parts. This study aims at evaluating the suitability of a municipal solid waste compost (MSWC) and a sewage sludge compost (SSC) as components of growing media for the soilless cultivation of lettuce (Lactuca sativa L.). Heavy metal content of SSC complied with legislation limits but, in MSWC, it exceeded (Cu, Pb) or was very close (Cd, Zn) to safe limits. A greenhouse experiment was carried out by cultivating four lettuce cultivars ("Maximus," "Murai," "Patagonia," and "Aleppo") in pots containing a mixture of MSWC and perlite (MSWC + P), SSC and perlite (SSC + P), or peat and perlite (peat + P), the latter used as control. Plant biometric parameters measured after 72 days of growth revealed that the yield of plants cultivated on SSC + P was similar to control plants, independently of the cultivar. Conversely, MSWC + P suppressed in general the biomass production, especially for Murai and Patagonia cultivars. Compared to peat + P, both compost-based substrates reduced the leaf accumulation of heavy metals, with a major effect in Maximus plants. The levels of Cd and Pb in the edible part were always below the safe limits imposed by European regulation. Therefore, risks of heavy metal intake in food chain associated with the replacement of peat with compost in the growing media are negligible, even when a compost with a significant amount of heavy metals is used. Besides compost quality monitoring, also an appropriate varietal choice is crucial to obtain good yields and safe products.

  2. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost.

    Science.gov (United States)

    Wong, Jonathan W C; Selvam, Ammaiyappan

    2009-10-01

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)--amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg(-1), respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg(-1) for 10% ASC- and 9.4 to 18.6 mg kg(-1) for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. Furthermore, there were fewer plant-available heavy metals in 25% ASC, which decreased the uptake of heavy metals by plants. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting

  3. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N2O emissions and denitrifying gene abundance.

    Science.gov (United States)

    Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli

    2017-12-01

    Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L.

    Science.gov (United States)

    Ostos, J C; López-Garrido, R; Murillo, J M; López, R

    2008-04-01

    In this study, the effect of a partial substitution of peat for compost on the growth and nutrition of a native shrub (Pistacia lentiscus L.) was tested. Composts were prepared from pruning and municipal solid wastes or pruning waste and sewage sludge. For preparing growing media each compost was added at a rate of 40%, fresh pine bark at 20% or 40% and peat at 20%, 40% or 60%. Aqueous extracts from the substrates did not impair germination of cress (germination bioassay). In relation to plants growing in peat-based substrate (used as a control), plants of the compost-based substrates reached better growth and nutrition, especially when using the sewage sludge-based compost, and the P uptake was notably enhanced. The concentrations of trace elements were far lower than the ranges considered phytotoxic for vascular plants. Detrimental effect derived from using fresh pine bark was not observed.

  5. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  6. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition.

    Science.gov (United States)

    Koolivand, Ali; Rajaei, Mohammad Sadegh; Ghanadzadeh, Mohammad Javad; Saeedi, Reza; Abtahi, Hamid; Godini, Kazem

    2017-07-01

    The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d-1 and 0.002-0.165gkg-1d-1, respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen.

    Science.gov (United States)

    Zhang, Lihua; Zeng, Guangming; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Yan, Ming; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Huang, Zhenzhen

    2017-04-01

    This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    Science.gov (United States)

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Study of effect of temperature on burning of textile sludge for use as alternative material on civil building; Estudo do efeito da temperatura na queima de lodo textil para uso como material alternativo na construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, B.F.R.; Morais, C.R.S.; Altidis, M.E.D.; Lira, B.S.; Morais, S.R.A., E-mail: crislene@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2011-07-01

    The waste generated by textile industries has been the target of numerous challenges due to their release to the environment without proper treatment. These problems have led many researchers to seek solutions that enable the use of waste as building materials. This study aimed to heat-treat the textile sludge, and evaluate their chemical, mineralogical and structural properties. The textile sludge was calcined in a muffle furnace, a heating rate of 10°C/min and 2 hours stabilization by the following temperatures 400°C, 450°C, 500°C, 550°C and 600°C. It was observed a reduction between 88 and 90% weight, indicating the presence of a large amount of formation water and organic matter. The sludge after calcinations was characterized by techniques such as X-ray diffraction, infrared and chemical analysis. The x-ray spectra showed predominant peaks of silica, which were confirmed by chemical analysis (86% silica). (author)

  10. Sludge.

    Science.gov (United States)

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  11. Degradation and environmental risk of surfactants after the application of compost sludge to the soil.

    Science.gov (United States)

    González, M M; Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-07-01

    In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7°C) and summer (22.4°C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14days at 12.7°C and between 4 and 7 days at 22.4°C. With regard to NPE compounds, after 8 and 4days from the beginning of the experiment at 12.7 and 22.4°C, respectively, their concentration levels were increased to 6.5 and 13.5mg/kgdm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7°C and 22.4°C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7°C and from 8 to 18 days at 22.4°C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7°C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  13. [Effects of different perlite additions on physical and chemical properties of sewage sludge compost and growth of Tagetes patula].

    Science.gov (United States)

    Hu, Yu-Tong; Shi, Lian-Hui; Liu, Deng-Min; Tong, Shao-Wei; Wei, Mei-Yan; Sun, Jie

    2014-07-01

    In order to resolve the problem of poor permeability of sewage sludge compost (SSC) which was used as the substitution of peat, perlite was used to regulate the permeability of the sewage. The pure SSC was used as control. The proportions of perlite in the mixtures with SSC were 20%, 40%, 60%, 80% and 100% (V/V), respectively. The effects of different perlite ratios on the physical and chemical properties and the growth of Tagetes patula were studied. The bulk density, water holding porosity and water holding porosity to aeration porosity decreased, but the total porosity and aeration porosity increased with the increasing addition of perlite to the SSC. For the chemical properties, the pH increased, and the EC and nutrient contents decreased with the increasing addition of perlite to the SSC. The aboveground biomass and flowers of T. patula were the highest in the 60% perlite treatment, and the lowest in the pure SSC treatment. The root morphology and activity were the best in the 40%, 60% and 80% perlite treatments. Aeration was the strongest factor to impact the maximum root length and average root diameter. Perlite promoted the growth of T. patula mainly through impacting the physical properties of the SSC. The addition of 60% perlite to the SSC could significantly improve the poor aeration and decrease the high salinity greatly in the SSC and regulate the growth of the root and aboveground of T. patula.

  14. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  15. Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage.

    Directory of Open Access Journals (Sweden)

    Iria Villar

    Full Text Available In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v. The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and

  16. Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage.

    Science.gov (United States)

    Villar, Iria; Alves, David; Mato, Salustiano

    2016-01-01

    In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting

  17. Influence of hydraulic retention time in a two-phase upflow anaerobic sludge blanket reactor treating textile dyeing effluent using sago effluent as the co-substrate.

    Science.gov (United States)

    Senthilkumar, M; Gnanapragasam, G; Arutchelvan, V; Nagarajan, S

    2011-05-01

    Textile dyeing and sago industries are the most polluting industries in South India, especially in industrial cities like Salem, Tamil Nadu, where textile dyeing and sago industries are clumped together geographically. Conventional physicochemical treatment followed by biological processes for the effluent generated from these industries are ineffective, costlier and produce huge quantities of hazardous sludge and harmful by-products which requires further treatment and safe disposal. Hence, the development of an alternative treatment method will become important. The main objective of this investigation is to establish a sustainable biotreatment technology for the treatment of textile dyeing effluent using sago effluent as co-substrate in a two-phase upflow anaerobic sludge blanket (UASB) reactor. In this study, influence of hydraulic retention time (HRT) in a two-phase UASB reactor treating textile dyeing effluent using sago effluent as co-substrate was investigated with different HRTs (36, 30, 24 and 18 h) with an optimum mixing ratio of 70:30 (sago to textile dye wastewaters). The results revealed that the HRT had a high influence on the chemical oxygen demand (COD) and colour removal. The maximum COD removal efficiency of 39.4% and 88.5% and colour removal efficiency of 43.7% and 84.4% in the acidogenic and methanogenic reactors, respectively was achieved at 24 h of HRT. The biogas production was 312 L/day. The biphasic UASB reactor could be a very feasible alternative, cost-effective, eco-friendly and sustainable treatment system for textile dyeing effluent with sago effluent as a co-substrate.

  18. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    Science.gov (United States)

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

  19. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Wong, Jonathan W C; Li, Ronghua; Zhang, Zengqiang

    2016-08-01

    This work illustrates the co-composting of gelatin industry sludge (GIS) combined with organic fraction of municipal solid waste (OFMSW) and poultry waste (PW) employing 10% zeolite mixed with enriched nitrifying bacteria consortium (ENBC). Five piles of GIS were prepared mixed with OFMSW and PW at 2:1:0.5, 4:1:0.5, 6:1:0.5 and 8:1:0.5 and without GIS 0:1:0.5 (dry weight basis) served as control, while 10% zeolite mixed with ENBC was inoculated in all piles and composted for 42days. The Pile-4 with GIS, OFMSW and PW ratio 6:1:0.5 and 10% zeolite+ENBC were drastically reduced the nitrogen loss and enhance the mineralization rate as compare to other piles. The co-amendment of 6% GIS effectively buffered the pH between ∼7.5 to 8.0 and shortened the compost maturity period, while lower concentration of GIS was comparatively delayed the early decomposition. Therefore, our results suggested that suitability of 10% zeolite+ENBC with initial feedstock ratio 6:1:0.5 as the best formulation for the composting of GIS into value-added stable product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Composted slaughterhouse sludge as a substitute for chemical fertilizers in the cultures of lettuce (Lactuca sativa L. and radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    José Juscelino de OLIVEIRA

    Full Text Available Abstract Flotation sludge (FS is produced in huge amounts at slaughterhouses in western Santa Catarina, Brazil. This waste is rich in plant nutrients and a valuable resource for soil amendments. Five FS composts were tested as a replacement for chemical fertilizers (QF, namely T1 (75% poultry manure (PM and 25% sawdust (SD; T2 (50% PM and 50% SD; T3 (25% PM and 75% SD; T4 (100% PM and 0% SD; and T5 (0% PM x 100% SD. For lettuce plants, treatments containing composted FS resulted in an increased number of leaves, leaf area and leaf fresh weight (LFW. T1 presented the best results with increases of 1.4 fold in LFW compared to plants supplemented with QF. T2 was the most effective treatment for radish with the best results of root fresh weight and root diameter. Although T4 had the highest nitrogen content, it did not present the best results in growth performance for lettuce or radish. The presence of higher proportions of SD in composts (25% for lettuce and 50% for radish improved the physical characteristics of the soil and proved to be a more balanced compost.

  1. Social and environmental affection due to the smells from sewage works sludge-tunnel composting; Afectacion socioambiental por olores del compostaje en tuneles de lodos de EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Cid, J.; Mocholi, F.

    2008-07-01

    Quantifying the social odor impact in the surroundings of sludge composting plants is the aim of a methodology developed by Socioenginyeria. Three scientific tools are used: diaries of social perception of annoying odors (intensity and type); field olfactometry with the Nasal Ranger and chemical analysis of representative air currents. The environmental quality indicators obtained make it possible to establish the real contribution of the source of the smell to the perceived nuisance and to assess the performance of its deodorising systems. Similar, it is viable to set up a communication programme with the social receivers affected and to implement targeted corrective measures. (Author)

  2. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil.

    Science.gov (United States)

    Méndez, A; Tarquis, A M; Saa-Requejo, A; Guerrero, F; Gascó, G

    2013-10-01

    Biochar is a carbon-rich solid product obtained by the pyrolysis of organic materials. The carbon stability of biochar allows that it can be applied to soil for long-term carbon storage. This carbon stability is greatly influenced by the pyrolysis temperature and the raw material used for biochar production. The aim of the present work is to study the soil carbon sequestration after the application of biochar from sewage sludge (SL) pyrolysis at two different temperatures (400 and 600 °C). For this purpose, soil CO2 emissions were measured for 80 d in an incubation experiment after soil amendment with the SL and each biochar at a dosage of 8 wt%. Biochar reduced the CO2 emissions during incubation between 11% and 32% relative to the SL treatment. The CO2 data were fit to a dual exponential model, and the CO2 emissions were simulated at different times (1, 5 and 10 yr). Additionally, the kinetics of the CO2 evolution from SL, two biochar samples, soil and amended soil were well fit to a dual first-order kinetic model with correlation coefficients greater than 0.93. The simulation of CO2 emissions from the soil by applying the proposed double first-order kinetic model (kg CO2-C ha(-1)) showed a reduction of CO2 emissions between 301 and 932 kg CO2-C ha(-1)with respect to the direct application of raw sewage sludge after 10 yr. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  4. Simultaneous Determination of Fluoroquinolones and Sulfonamides Originating from Sewage Sludge Compost

    Directory of Open Access Journals (Sweden)

    K. Kipper

    2017-01-01

    Full Text Available A simultaneous method for quantitative determination of traces of fluoroquinolones (FQs and sulfonamides (SAs in edible plants fertilized with sewage sludge was developed. The compounds were extracted from the plants by rapid and simple liquid extraction followed by extracts clean-up using solid phase extraction. The eluent additive 1,1,1,3,3,3-hexafluoro-2-propanol was used for liquid chromatographic detection to achieve separation of structurally similar antimicrobials like ciprofloxacin and norfloxacin. Identification and quantification of the compounds were performed using high-performance liquid chromatography with electrospray ionization mass spectrometry in selected reaction monitoring mode. Method was validated and extraction recoveries of FQs and SAs ranged from 66% to 93%. The limit of quantifications was from 5 ng/g in the case of ofloxacin to 40 ng/g for norfloxacin. The method precision ranged from 1.43% to 2.61%. The developed novel method was used to evaluate the plats antimicrobial uptake (potato (Solanum tuberosum L., carrot (Daucus carota L., lettuce (Lactuca sativa L., and wheat (Triticum vulgare L. from soil and migration of the analytes inside the plants.

  5. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis.

    Science.gov (United States)

    Wang, Meijing; Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Zhang, Zengqiang

    2017-11-01

    In this study, the pilot scale co-composting of sewage sludge (SS)+wheat straw amended with 10% (dry weight ratio of basis) of three different additives (zeolite, Ca-bentonite and medical stone) was conducted for 56days to evaluate the greenhouse gases (GHGs) and nitrogen conservation efficacy and its correlation with analyzed physicochemical, gaseous and biological parameters. The results indicated that all of three additives could adequately buffer pH, considerably increase temperature, and enhance organic matter degradation as well as reduce ammonia and GHGs emission. Particularly, zeolite amended treatment showed the maximum reduction of CH 4 emission by 88.45% and less amount of nitrogen loss by 28.80%, meanwhile reduced the maturity period by 2weeks. In addition, the redundancy analysis was confirmed most significant relationship between biological, GHGs, bacterial community and nutrients concentration in 10% zeolite applied treatment than other treatments. The result suggested 10% zeolite could be a suitable additive to improve the quality of sewage sludge composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metais pesados em milho fertilizado com fosfato natural e composto de lodo de esgoto Heavy metals concentrations in corn fertilized with phosphate rock and sewage sludge compost

    Directory of Open Access Journals (Sweden)

    Geraldo R Zuba Junio

    2011-10-01

    Full Text Available Em virtude do elevado teor de nutrientes e matéria orgânica o lodo de esgoto tem sido reportado em diversos trabalhos, como excelente adubo orgânico. Entretanto, a presença de metais pesados pode inviabilizar sua utilização agrícola. Objetivou-se, com este trabalho, avaliar os teores de metais pesados no solo e em folhas de milho fertilizado com fosfato natural e composto de lodo de esgoto. O trabalho foi realizado em área experimental do ICA/UFMG, em CAMBISSOLO HÁPLICO, em Montes Claros, MG. Os tratamentos, em esquema fatorial 2 x 4, foram constituídos de 2 doses de fosfato natural reativo (0 e 90 kg ha-1 de P2O5 e 4 doses de composto de lodo de esgoto (0; 25; 50 e 75 Mg ha-1. O delineamento experimental utilizado foi em blocos casualizados, com 3 repetições dos tratamentos e 180 plantas por parcela. De modo geral, o fosfato natural não influenciou os teores de metais pesados no solo; entretanto, os teores de Cu, Zn e Pb no solo aumentaram com a aplicação de doses de composto de lodo de esgoto. Aplicações de doses de composto de lodo de esgoto de até 75 Mg ha-1 não aumentaram os teores de Cu, Zn, Pb, Cd, Ni e Cr acima dos limites críticos estabelecidos pela legislação. Na planta, os teores de Cu, Zn, Pb, Cd e Cr não foram influenciados pela aplicação de fosfato natural porém o teor de Zn aumentou e o de Pb reduziu com a aplicação de doses de composto de lodo de esgoto.The objective of this study was to evaluate the concentration of heavy metals in soil and leaves of corn fertilized with rock phosphate and sewage sludge compost. The work was conducted at the experimental area of ICA/UFMG, Montes Claros - MG, in Cambisol. The treatments, in factorial 2 x 4, corresponded to two doses of rock phosphate (0 and 90 kg P2O5 ha-1 and four doses of sewage sludge compost (0, 25, 50 and 75 Mg ha-1. The experimental design was randomized blocks with three replications of treatments. The rock phosphate did not affect overall

  7. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect was observed in the case of limestone residue. The presence of metals in SW was the main source (although the composition was under the UE

  8. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum.

    Science.gov (United States)

    Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P

    2016-10-01

    Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L-1) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.

  9. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30C) and thermophilic (55C) treatments for decolourisation of textile wastewaters

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.; Bisschops, I.A.E.; Cervantes, F.J.; Lier, van J.B.

    2004-01-01

    The impact of different redox mediators on colour removal of azo dye model compounds and textile wastewater by thermophilic anaerobic granular sludge (55 C) was investigated in batch assays. Additionally, a comparative study between mesophilic (30 C) and thermophilic (55 C) colour removal was

  10. The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus wastewater.

    Science.gov (United States)

    Manios, T; Stentiford, E I; Millner, P

    2002-09-01

    Typha latifolia plants, commonly known as cattails, were grown in a mixture of sewage sludge compost, commercial compost and perlite. Large 6.5 L pots were used with one well developed plant in each pot, divided in five groups. Four groups were irrigated with a solution containing different concentrations of Cd, Cu, Ni, Pb and Zn for a period of 10 weeks, where the fifth was used as a blank. Changes in the concentration of total protein in the leaves/stems were monitored aiming to study the effect of heavy metals from both the substrate and the wastewater on the plants' development and health. At the end of the experiment in the leaves/stems of Typha latifolia the mean concentration of Ni and Zn reached values of 27.50 and 60.83 mg/kg of d.w. respectively. Similar high concentrations were recorded for all five metals. This, however, did not resulted in an inhibition of the plants development and health in three of the four groups as evidenced by the increasing concentrations of the total protein in the leaves' tissue. Only in the fourth group, where the stronger solution was used, some evidence of inhibition occurred after the 8th week. The presence of NO- as part of the metals' salts (growth factor), the short period of the experiment and the natural tolerance of Typha latifolia in heavy metals toxicity could explain such phenomenon.

  11. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O2-/HO2, and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    Science.gov (United States)

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  13. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    Science.gov (United States)

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule

  14. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    Physical, chemical and biological parameters were optimized during composting to enhance degradation of oil sludge. Mixtures of oil sludge, garden soil, poultry manure and the bulking agents were co-composted in static piles of about 1 m3 on wooden pallets overlaid with nylon fibre sheets. Temperature, moisture ...

  15. Effects of Bio-sludge Concentration and Dilution Rate on the Efficiency of Sequencing Batch Reactor (SBR System for Textile Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Suntud Sirianuntapiboon

    2012-06-01

    Full Text Available The color removal efficiency of a sequencing batch reactor (SBR system with synthetic textile wastewater (STWW containing 80 mg/L disperse dye increased with the increase of mixed liquor suspended solids (MLSS or solids retention time (SRT. The color removal efficiency was over 98% at an MLSS of 4,000 mg/L and SRT of over 25 days. Also, the color removal efficiency decreased with the increase of dye concentration. Both disperse blue 60 and disperse red 60 repressed the growths and activities of both heterotrophic and denitrifying bacteria, but they did not show any effect on nitrifying bacteria. However, the SBR system did not show any change in color removal efficiency of both disperse red 60 and disperse blue 60. The SBR system showed quite low color, COD and BOD5 removal efficiencies with raw textile wastewater (TWW. But, the system removal efficiencies could be increased by dilution of the TWW and supplementation with glucose. The color removal efficiency of the system with four times diluted-TWW containing 1.875 g/L glucose was 69.6±4.0%. Moreover, contaminated-NaCl in STWW could depress color adsorption yields of living as well as dead bio-sludge.

  16. The removal of lead and nickel from the composted municipal waste and sewage sludge using nanoscale zero-valent iron fixed on quartz.

    Science.gov (United States)

    Ghasemzadeh, Parisa; Bostani, Amir

    2017-11-01

    Reducing the concentration of heavy metals including lead (Pb) and nickel (Ni) in organic contaminants such as municipal wastes and sewage sludge is of health and environmental importance. Nanoscale zero-valent iron (NZVI) particles can effectively remove heavy metals from contaminated aqueous and solid media. It was accordingly hypothesized that it is possible to recycle and detoxify organic waste materials containing heavy metals using NZVI and NZVI fixed on quartz (QNZVI). The objective was to investigate the effects of NZVI type, concentration (2% and 5%) and contact time on the removal of Pb and Ni from raw compost, compost fermented with beet molasses, and leachate using a factorial design. The results indicated the significant reduction of DTPA- Pb and DTPA-Ni concentration, in all the organic compounds treated with NZVI and QNZVI (P= 0.01), compared with control. Increased concentration of NZVI in all treatments, increased the rate of DTPA-Pb and DTPA-Ni (P= 0.01) at 113.1% and 180% for Pb (NZVI at 2% and 5%), and at 16.3% and 23.3% for Ni, irrespective of the NZVI type. The reducing trend of extractable Pb and Ni in all the organic compounds was the same, quick reduction at the beginning, followed by a negligible rate. The highest reduction rates for Pb (at one hour) and Ni (at 672h) were equal to 72.93% and 23.27%, respectively. NZVI at 2% was more efficient than NZVI at 5%. There were not any significant differences between NZVI and QNZVI on the removal of Pb and Ni from the organic contaminants. It is possible to immobilize and reduce the concentration of heavy metals such as Pb and Ni in organic contaminants using NZVI, which is affected by NZVI properties, concentration, and contact time, as well as by organic contaminant type. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Assessment of Composting Feasibility at Army Installations

    Science.gov (United States)

    2008-09-01

    centuries. Most people are aware that the use of compost is an effective way to improve plant growth. Compost -enriched soil can also reduce erosion...can be effectively used to remediate this soil. Through this process, contaminated soil is excavated, mixed with other feedstocks, and composted ...as pallets, and dewatered sewage sludge. Effective feedstock management needs to be a critical part of any composting facility’s operational plan

  18. A Study of Rapid Biodegradation of Oily Wastes through Composting.

    Science.gov (United States)

    1979-10-01

    effective method for large-scale composting of organic wastes. This research project was based on the principles of the forced aeration technique. The...Process Parameters Affecting Composting The bioconversion of wastes into compost is greatly affected by several key parameters. These influence the...investigated the effect of composting on the degradation of hydrocarbons in sewage sludge. Sludge extracts were fractionated into classes of compounds and a

  19. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species.

    Science.gov (United States)

    Rorat, Agnieszka; Suleiman, Hanine; Grobelak, Anna; Grosser, Anna; Kacprzak, Małgorzata; Płytycz, Barbara; Vandenbulcke, Franck

    2016-02-01

    Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.

  20. Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method

    Science.gov (United States)

    Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini

    2017-06-01

    The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.

  1. Effect of mixed liquor volatile suspended solids (MLVSS and hydraulic retention time (HRT on the performance of activated sludge process during the biotreatment of real textile wastewater

    Directory of Open Access Journals (Sweden)

    Kapil Kumar

    2014-03-01

    Full Text Available Adequate information is available on colour and organics removal in batch mode using pure microbial cultures from dye contaminated wastewater. There was a need to develop environment friendly and cost effective treatment technique for actual field conditions. Therefore, the present study was undertaken with an aim to evaluate the potential of acclimatized mixed microbial consortia for the removal of colour and organics from real textile wastewater. Experiments were performed in laboratory scale activated sludge process (ASP unit under steady state condition, varying mixed liquor volatile suspended solids (MLVSS (2500, 3500 and 5000 mg/l and hydraulic retention time (HRT (18, 24 and 36 h. The results showed that decolourization and chemical oxygen demand (COD removal increased with increase in MLVSS and HRT. At 18 h HRT, decolourization was found to be 46, 54 and 67%, which increased to 67, 75 and 90% (36 h HRT at 2500, 3500 and 5000 mg/l MLVSS, respectively. COD removal was found to be 62, 73 and 77% (at 18 h HRT which increased to 77, 85 and 91% (36 h HRT at 2000, 3500 and 5000 mg/l MLVSS, respectively. On the basis of the results obtained in this study suitable treatment techniques can be developed for the treatment of wastewater contaminated with variety of dyes in continuous mode of operation. This shall have the advantage of treatment of larger quantity of wastewater in shorter duration.

  2. Effect of Cd stress on the bioavailability of Cd and other mineral nutrition elements in broad bean grown in a loess subsoil amended with municipal sludge compost.

    Science.gov (United States)

    Jin, Cheng; Nan, Zhongren; Wang, Houcheng; Li, Xiaolin; Zhou, Jian; Yao, Xun; Jin, Pen

    2017-12-26

    Municipal sludge compost (MSC) is commonly used as fertilizer or an amendment in barren soils. However, MSC-borne Cd is of great concern in food safety because of its toxicity. Loess subsoil (LS) is barren and lacks nutrients, but it has a strong ability to absorb and stabilize heavy metals. Hence, LS may be amended with MSC and may reduce the bioavailability of Cd. To simulate the dose effect of the accumulated MSC-borne Cd in amended LS, pot experiments were conducted to study the bioavailability of Cd and other mineral nutrition elements in broad bean (Vicia faba L.) under Cd stress. Plant height and dry biomass remarkably increased as the physicochemical properties of LS were significantly improved; however, they were not significantly influenced by the added Cd. The Cd in the plants grown in MSC amended-LS (P2) mainly accumulated in roots (32.12 mg kg-1) and then in stems and leaves (6.00 mg kg-1). Less Cd (0.74 mg kg-1) accumulated in the edible parts, where the Cd concentration was 53% lower than that in the edible parts of plants grown in LS (P1). The decreased Cd concentrations in the P2 beans may be due to the biomass dilution effect. Notably, the Cd concentrations in the beans exceeded the national safety limit value (0.2 mg kg-1) when the Cd treatment levels exceeded 2 mg kg-1 in LS and 6 mg kg-1 in amended LS. The MgCl2 extraction procedures can be used to assess Cd bioavailability in amended soil-plant systems. The potential antagonism of Zn and Cu against Cd toxicity in the soil-plant system may explain why this plant can tolerate higher Cd concentrations after MSC application.

  3. Removal of heavy metals from sewage sludge by extraction with organic acids

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    1999-01-01

    Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable

  4. Property and quinone profile analysis of the compost made in Kuriyama town

    OpenAIRE

    森本, 正則; 桑原, 直美; 田中, 尚道; 駒井, 功一郎

    2006-01-01

    [Synopsis] Application of compost made from garbage and bio-sludge show crop growth promoting effect in the field. We have evaluated to a property of the compost made in Kuriyama town (Hokkaido). Kuriyama town have a compost producing facility established in 2004. Mainly, we have evaluated suppression of the plant disease and plant growth promotion by using this compost. Application of this compost had promoted the cucumber growth in dose dependent manner. Application of native compost ...

  5. Comparison of the physical properties of vermicompost from paper mill sludge and green compost as substitutes for peat-based potting media

    NARCIS (Netherlands)

    Campos Mota, L.; Meeteren, van U.; Blok, C.

    2009-01-01

    The properties of vermicompost, green compost, and their mixes as substitutes for peat were evaluated regarding their recommendation for potting media. The mixes with a maximum of 50% of vermicompost or green compost had acceptable air filled porosity (AFP) and easily available water (EAW). In the

  6. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    user

    2014-02-12

    Feb 12, 2014 ... Mixtures of oil sludge, garden soil, poultry manure and the bulking agents were co-composted in static piles of about 1 m3 on wooden pallets overlaid with nylon fibre sheets. Temperature, moisture, electrical conductivity (EC), pH, total carbon, total N, heterotrophs and respiration of compost microorganisms ...

  7. Waste composts as nitrogen fertilizers for forage leys

    OpenAIRE

    Tontti, T.; A. NYKÄNEN; Kuisma, M.

    2009-01-01

    Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral) or composts. The compost types were municipal biowaste (Biowaste), biowaste + sewage sludge (BioSludge) and cattle manure (Manure). Plant yields and nitrogen (N) uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the...

  8. The role of bulking agent in pile methane and carbon dioxide concentration during wastewater sludge windrow composting.

    Science.gov (United States)

    Georgaki, I; Tsamoukas, A; Sakkas, N; Ververidis, F; Trantas, E; Kyriacou, A; Lasaridi, K E; Manios, T

    2009-01-01

    Wastewater sludge and wood chips were used as feedstock for the construction of two piles, Pile I ("PI") and Pile II ("PII"), at a ratio of 1:1 and 1:2 v/v, respectively. Each pile was originally 1.3-m high, 2.0-m wide, and approximately 9.0-m long. A mechanical turner was used to turn the two windrows every 1 to 2 weeks. Three 500-mL-volume glass funnels were inverted and introduced into each pile: one in the core (named, respectively, "PIC" and "PIIC"), one at the top ("PIT" and "PIIT"), and one at the side ("PIS" and "PIIS"). Every 2 to 3 days, gas samples were collected using gas-tight syringes and analyzed in a gas chromatograph determining carbon dioxide (CO2) and methane (CH4) concentrations. An average gas concentration value between turnings was calculated and a two-way analysis of variance test was used to determine the significance of the differences between piles and pile location, followed by a Post Hoc Tukey test. During the thermophilic period, the mean CO2 concentration in PIC was 103 mL/L, 65 mL/L in PIT, and 24 mL/L in PIS, whereas, for PII, these values were 102mL/L, 59 mL/L, and 24 mL/L, respectively. The mean CH4 concentration between turnings in PIC was 9.2 mL/L, 1.9 mL/L in PIT, and 0.9 mL/L in PIS, whereas, for PII, the corresponding values were 6.4 mL/L, 0.4 mL/L, and 0.1 mL/L. For methane, there were no significant differences between these mean values, not only between the same placement in different piles, but also between different placements and different piles. This is probably due to the relatively frequent turnings (10 turnings during a period of 100 days), which did not allow the development of more anaerobic pockets in PI than in PII, indicating that both piles had similar greenhouse gas impacts. Results for carbon dioxide were similar in both piles, with some differentiation appearing between the core and top placements compared to the side placement. Reduction of the decomposition rate further from the core and a typical windrow

  9. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    Science.gov (United States)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy

  10. [Characteristics of organic nitrogen mineralization in organic waste compost-amended soil].

    Science.gov (United States)

    Zhang, Xu; Xi, Bei-Dou; Zhao, Yue; Wei, Zi-Min; Li, Yang; Zhao, Xin-Yu

    2013-06-01

    A laboratory aerobic incubation experiment was conducted under a constant temperature to investigate the differentiation rule of nitrogen form among soils amended with different organic wastes composted with food waste, chicken manure, cow manure, domestic waste, vegetable residue, sludge, turf and tomato residue. Experiment utilized soils amended with 0%, 5% and 50% (m/m) of eight organic waste composts. The purpose was to understand the effect of different organic wastes on nitrogen mineralization in soil. This study deals with eight organic waste compost treatments could rapidly increase NH4(+) -N concentrations, reduce the NO3(-)-N concentrations and promote nitrogen mineralization in soil after 3-4 weeks incubation. All parameter tended to be stable. The improved amplitude of the same compost-amended soil: 30% compost treatments > 15% compost treatments > 5% compost treatments. Within the same proportion, chicken manure compost, turf compost and sludge compost product treatments' relative N mineralization was higher than other compost product treatments, and the chicken manure compost treatment's relative N mineralization was significantly higher than other compost product treatments. Food waste compost and vegetable residue compost product treatments' mineralization was low, the lowest was domestic waste compost product treatment. All compost treatments could significantly improve the values of potentially mineralizable nitrogen(N(0)), mineralization rate (k), and promote nitrogen mineralization in soil. The results illustrated that the effect of organic waste compost on the mineralization of nitrogen varied with types of compost and the amount of input compost.

  11. Desenvolvimento inicial e estado nutricional do maracujazeiro em resposta à aplicação de lodo têxtil Development and nutritional status of passion fruit cuttings in response to application of textile sludge

    Directory of Open Access Journals (Sweden)

    Renato de Mello Prado

    2005-06-01

    Full Text Available O processo de tratamento de efluentes líquidos da indústria têxtil gera, como resíduo, um lodo de características orgânicas com concentração significativa de sódio e potássio. Objetivou-se quantificar os efeitos da aplicação do lodo ao solo, sobre o desenvolvimento inicial do maracujazeiro, e avaliou-se o crescimento e o estado nutricional das plantas. O delineamento experimental foi em blocos ao acaso, com quatro repetições de cinco tratamentos, que consistiram na aplicação de lodo têxtil, nas doses de 10, 15, 20 e 30 g vaso-1 (base seca, correspondentes a 10, 15, 20 e 30 t ha-1, respectivamente, além da testemunha sem aplicação do resíduo. As mudas receberam adubação básica com N, P, K, Zn e B, nas doses de 300, 450, 150, 5, e 0,5 mg dm-3, respectivamente. A unidade experimental foi constituída por vasos com 2 dm³ de amostra de um Latossolo Vermelho distrófico (V = 29%. Após 100 dias da semeadura, o lodo têxtil corrigiu a acidez do solo. Entretanto, em doses superiores a 10 t ha-1, promoveu a morte das plantas. O lodo têxtil aumentou os teores de N, K, S, B, Mn e Zn, diminuiu os de Ca e Mg e não alterou os de Cu e Fe da parte aérea das mudas.In the treatment of liquid effluents of the textile industry the textile sludge results as residue. This work aimed at evaluating the effect of sludge application to the substrate of production of passion fruit cuttings in the development, and nutritional status of plants. Experimental design used was randomized blocks with five treatments and four replications. The textile sludge was applied in the doses of 10, 15, 20 and 30 g per pot (dry base, corresponding 10, 15, 20 and 30 t ha-1, respectively, and a control without application. Plants were fertilized with N, P, K, Zn and B at 300, 450, 150, 5, and 0.5 mg dm-3, respectively. The experimental unit was represented by pots with 2 dm³ of a Red Latosol (Oxisol (V = 29%. After 100 days the textile sludge corrected soil

  12. Compostagem aeróbia conjugada de lodo de tanque séptico e resíduos sólidos vegetais Conjugated aerobic composting of septic tank sludge and vegetable solid waste

    Directory of Open Access Journals (Sweden)

    André Gustavo da Silva

    2008-12-01

    Full Text Available O lodo sanitário, principal subproduto do tratamento de esgotos, constitui um dos maiores problemas ambientais urbanos da atualidade. Em meio a este contexto, objetivou-se nesse estudo avaliar o processo da compostagem conjugada de lodo de tanque séptico (LS e resíduos sólidos vegetais (RV e determinar a importância da temperatura para o processo de sanitização do substrato tratado. O experimento, inteiramente casualizado com três tratamentos e três repetições, consistiu de nove reatores aeróbios com 100 litros de capacidade. Os resíduos foram utilizados nas seguintes proporções - T1: 100% RV; T2: 5% LS + 95% RV; T3: 10% LS + 90% RV. A compostagem aeróbia conjugada mostrou ser uma alternativa viável para destruição de ovos de helminto e estabilização dos resíduos, sendo fundamentais para tal, a temperatura, o pH e as relações ecológicas presentes nos reatores.The sanitary sludge, principal byproduct of sewage treatment, constitutes one of the major municipal environmental problems of the present time. The present study was aimed to evaluate the composting of septic tank sludge (SS and vegetable solid waste (VW and to determine the importance of the temperature for the process of sanitization of the treated substrate. The experiment, entirely randomized with three treatments and three repetitions, constituted of nine aerobic reactors with 100 L capacity. The proportions of the wastes utilized were T1: 100%VW; T2: 5%SS + 95%VW; T3: 10%SS + 90%VW. The conjugated composting showed to be a feasible alternative for destruction of helminth eggs and stabilization of the wastes. The temperature, pH and ecological relations present in the reactors were fundamental for this purpose.

  13. PCDD/F and dioxin-like PCB profiles in soils amended with sewage sludge, compost, farmyard manure, and mineral fertilizer since 1962.

    Science.gov (United States)

    Umlauf, Gunther; Christoph, Eugen H; Lanzini, Laura; Savolainen, Risto; Skejo, Helle; Bidoglio, Giovanni; Clemens, Joachim; Goldbach, Heiner; Scherer, Heinrich

    2011-03-01

    Biowaste contains compounds of agricultural value such as organic carbon, nutrients, and trace elements and can partially replace mineral fertilizer (MIN) and improve the physical properties of the soil. However, the obvious benefits of land spreading need to be carefully evaluated against potential adverse effects on the environment and human health. Environmental contamination resulting from biowaste application is one of the key variables when assessing cost/benefits. This study provides data on the resulting concentration of polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the soil column as a result of the different types of fertilizers. In a long-term field experiment established in 1962, we investigated the influence of the application of biowaste-derived fertilizers such as sewage sludge (SSL), compost (COM), and farmyard manure (FYM) to a luvisol derived from loess on the contents of PCDD/Fs and DL-PCBs. Control plots amended only with MIN served as a basis to compare the biowaste-amended soils with soils affected only by atmospheric deposition, thus experimentally separating the two pathways of soil contamination. Samples of the soil column down to a depth of 90 cm were taken in 2001 and analyzed for PCDD/Fs and dioxin-like PCBs according to US-EPA methods 1613 and 1668, respectively. Thirty-nine years of experimental SSL and COM applications exceeding four times the maximal amount as laid down in German legislation resulted in a doubling of the international toxicity equivalent (I-TEQ) budget for PCDD/Fs and a threefold increase for DL-PCBs as compared to test plots amended with MIN only. As compared to MIN, the application of FYM had no effect on the PCDD/F and PCB content in soil. The average contribution of the DL-PCBs to the WHO-TEQ was 19% in the MIN and FYM plots and somewhat higher in the COM (23%) and in the SSL (27%) plots. Although the test plots received four times the maximum

  14. Growth and nitrogen fixation in soybean treated with doses of composted sewage sludgeCrescimento e fixação biológica do nitrogênio em soja cultivada com doses de lodo de esgoto compostado

    Directory of Open Access Journals (Sweden)

    Norio Nomiyama Junior

    2012-08-01

    Full Text Available The use of sewage sludge is a highly promising practice for the development of sustainable agricultural systems. The objective of this study was to evaluate doses of sewage sludge composted with and without Rhizobium inoculation in leaf N content, nodule number, nodule dry weight and plant during flowering. The experiment was conducted in the greenhouse of the Department of Soil Science and Natural Resources College of Agricultural Sciences of Botucatu, using as substrate used in vessels of 30 liters a Red Yelow Latosol sandy texture with experimental design adopted was randomized blocks constituted for 10 treatments and five doses of composted sewage sludge (0, 10, 20, 30, 40 t ha-1 with or without inoculation Bradyrhizobium japonic with three replications. There was an increase in the number and dry weight of nodules and shoot dry mass of soybeans due to the increase of the dose of sludge up to a dose of 20 t ha-1 and after this dose there was a decrease of these parameters. At a dose of 10 t ha-1 sludge compost inoculated seeds showed higher for foliar concentrations of N and number of nodules compared with uninoculated seeds. At a dose of 30 t ha-1 inoculated seeds were higher compared to uninoculated in all parameters.A utilização de lodo de esgoto é uma prática altamente promissora para o desenvolvimento de sistemas agrícolas sustentáveis. O objetivo deste trabalho foi avaliar doses de lodo de esgoto compostado, com e sem a inoculação do rizóbio, no teor de N foliar, número de nódulos, massa seca de nódulos e da planta no florescimento. O experimento foi conduzido em casa de vegetação do Departamento de Ciência do Solo e Recursos Naturais da Faculdade de Ciências Agronômicas de Botucatu, utilizando como substrato vasos de 30 litros de um Latossolo Vermelho Amarelo com textura arenosa Foi adotado o delineamento experimental em blocos casualizados constituído por 10 tratamentos, sendo cinco doses de lodo de esgoto

  15. Conservation of ammonia during food waste composting.

    Science.gov (United States)

    Al-Jabi, L F; Halalsheh, M M; Badarneh, D M

    2008-10-01

    An experiment was conducted to quantify ammonia (NH3) losses during food waste composting and to evaluate the effectiveness of mature aerobic sewage sludge/olive pomace compost and phillipsite/chabazite zeolite in reducing NH3 losses during composting. Food waste amended with chopped barley straw was composted for a period of 68 days in three in-vessel reactors. The mature aerobic sewage sludge/olive pomace compost and the zeolite were placed on a mesh tray above the waste mixture in the first and second reactors, respectively. The third reactor contained straw-amended food waste only and served as a control. It was found that the mature aerobic sewage sludge/olive pomace compost reduced NH3-N losses by 36% of initial TN through nitrifying volatilized NH3 into nitrate (NO3-). Zeolite reduced NH3-N losses by 41% of initial total nitrogen due to adsorption of volatilized NH3. The use of mature compost in conservation of nitrogen is a promising cheap method; however, it needs further optimization and research.

  16. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    Science.gov (United States)

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.

  17. Smart textiles.

    Science.gov (United States)

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  18. Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus ...

    African Journals Online (AJOL)

    This study determined the performance and heavy metals uptake of kenaf at different levels of compost application in textile effluent polluted soil. Polluted soil was collected from the vicinity of a textile company in Nigeria. Twelve-litre plastic pots were filled with 10 kg soil. Soil amendments applied were: 0 (control), 60 Kg N ...

  19. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  20. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  1. Waste composts as nitrogen fertilizers for forage leys

    Directory of Open Access Journals (Sweden)

    T. TONTTI

    2008-12-01

    Full Text Available Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral or composts. The compost types were municipal biowaste (Biowaste, biowaste + sewage sludge (BioSludge and cattle manure (Manure. Plant yields and nitrogen (N uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the total N was mainly in organic form and less than 10% was in inorganic form. Along with increasing amount of inorganic N applied in compost, the yield, N uptake and N recovery increased during the application year. The highest compost N recovery in the application year was 12%, found with Biowaste. In the following years the highest N recovery was found where the lowest total N had been applied. Clover performance was improved in the organic grass-clover ley established with BioSludge fertilization, producing total ley yield comparable with Manure compost. High total N application in composts caused high N surplus and low N use efficiency over three years. Generally, moderate compost fertilization is suitable for ley crops when supplemented with mineral N fertilizer or clover N fixation.;

  2. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    Contaminated soil (FAO: Lithosol) containing >380 000 mg kg-1 total petroleum hydrocarbons (TPH) was bioremediated by composting. The soil was inoculated with sewage sludge and incubated for 19 months. The soil was mixed in a ratio of 1:1 (v/v) with wood chips. The soil-wood chips mixture was then mixed in a ratio ...

  3. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-02-03

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of composting and vermicomposting on properties of particle size fractions.

    Science.gov (United States)

    Hanc, Ales; Dreslova, Marketa

    2016-10-01

    The objectives of the study were to compare the effects of the composting and the vermicomposting processes on the distribution of particles into three size fractions, and to assess the agrochemical properties of the size fractions of the composts and the vermicomposts. Three different mixtures of biowaste were subjected to two thermophilic pre-composting, and then the mixtures were subsequently subjected to 5months composting and vermicomposting under laboratory conditions. Vermicomposting was able to achieve the finer and more homogeneous final product compared to composting. For compost, the highest portion of the finest fraction was achieved from products which originated from kitchen waste containing used paper, followed by digestate with straw, and finally sewage sludge with garden biowaste. In most cases, compost particles which were less than 5mm exhibited the better agricultural potential than coarser compost. However, agrochemical properties of the finest vermicompost exceeded classical compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. CHANGES IN THE CONTENTS OF SELECTED HEAVY METALS IN TEST PLANTS FERTILISED WITH SEWAGE SLUDGE AND HARD COAL ASH

    OpenAIRE

    Agnieszka Godlewska

    2017-01-01

    The study aimed at determining changes in the contents of selected metals in the biomass of test plants due to fertilisation with fresh and composted sewage sludge, hard coal ash, and sludge-ash mixture, as well as liming at a background of mineral nutrition. The experimental design was a completely randomised arrangement with three replicates. The following factors were examined: fertilisation with organic and mineral materials (fresh sewage sludge; composted sewage sludge; hard coal ash; ca...

  6. Textile dyes

    OpenAIRE

    Guaratini, Cláudia C. I. [UNESP; Zanoni, Maria Valnice Boldrin [UNESP

    2000-01-01

    A dye is a colored substance used to impart permanent color to other substances. Its most important use is in coloring textile fibers and fabrics. The removal of colour from dyehouse waste waters is currently a major problem in the textile sector. This paper provides an overview of the treatment technologies that can currently be used by the textile processor and the developments over the past decade with respect to the toxicological and ecotoxicological properties of synthetic organic dyes.

  7. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  8. Use of composts in revegetating arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  9. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  10. Textile Architecture

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2010-01-01

    Textiles can be used as building skins, adding new aesthetic and functional qualities to architecture. Just like we as humans can put on a coat, buildings can also get dressed. Depending on our mood, or on the weather, we can change coat, and so can the building. But the idea of using textiles...

  11. Antibacterial textiles

    NARCIS (Netherlands)

    Amrit, Usha

    2015-01-01

    The aim of this thesis was the antibacterial functionalization of textiles and its application in professional laundries. The antibacterial functionalization was meant for the various textile packages lent out by the laundry companies to their customers from hotels, hospital or food industries. The

  12. Future Textiles

    DEFF Research Database (Denmark)

    Hansen, Anne-Louise Degn; Jensen, Hanne Troels Fusvad; Hansen, Martin

    2011-01-01

    Magasinet Future Textiles samler resultaterne fra projektet Future Textiles, der markedsfører området intelligente tekstiler. I magasinet kan man læse om trends, drivkræfter, udfordringer samt få ideer til nye produkter inden for intelligente tekstiler. Områder som bæredygtighed og kundetilpasning...

  13. Color pollution control in textile dyeing industry effluents using ...

    African Journals Online (AJOL)

    Color pollution control in textile dyeing industry effluents using tannery sludge derived activated carbon. ... The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances. KEY WORDS: Adsorption ...

  14. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    The meeting of architecture and textiles is a continuous but too often forgotten story of intimate exchange. However, the 2nd Ventulett Symposium hosted by the College of Architecture, within Georgia Institute of Technology, Atlanta, GA, was one of these precious moments celebrating such a marriage....... Organized by Lars Spuybroeck, principal of Nox, Rotterdam, and current Thomas W. Ventulett III distinguished chair of Architectural Design, the event was embracing the textile tectonics as a core topic, praising textiles as the key component of architecture, relying on Gottfried Semper’s understanding...... of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  15. Textile Supercapacitors

    Science.gov (United States)

    Jost, Kristy Alana

    Innovative and interdisciplinary solutions to wearable textile energy storage are explored as power sources for wearable electronics and smart textiles. Due to their long cycle life, non-toxic and inexpensive materials, supercapacitors were converted into textiles. Textile supercapacitors were developed using scalable fabrication methods including screen-printing, yarn making, and 3D computerized knitting. The electrode materials reported in this thesis undergo thorough electrochemical analysis, and are capable of storing up to 0.5 F/cm2 which is on par with conventionally solid supercapacitors (0.6 F/cm2). Capacitive yarns are capable of storing up to 37 mF/cm and are shown to be knittable on industrial knitting equipment. Both are some of the highest reported capacitance for all-carbon systems in the field. Yet both are the only systems composed of inexpensive and non-toxic activated carbon, the most commonly used electrode material used in supercapacitors, opposed to carbon nanotubes or graphene, which are typically more 10-100 times more expensive. However, all of the fabrication techniques reported here are also capable of incorporating a wide variety of materials, ultimately broadening the applications of textile energy storage as a whole. Fully machine knitted supercapacitors are also explored and electrochemically characterized in order to determine how the textile structure affects the capacitance. In conclusion, a wide variety of fabrication techniques for making textile supercapacitors were successfully explored.

  16. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  17. COLOR POLLUTION CONTROL IN TEXTILE DYEING INDUSTRY ...

    African Journals Online (AJOL)

    a

    E-mail: ssreedharreddy@yahoo.com. COLOR POLLUTION CONTROL IN TEXTILE DYEING INDUSTRY EFFLUENTS. USING TANNERY SLUDGE DERIVED ACTIVATED CARBON. Sajjala Sreedhar Reddy1∗, Bijjam Kotaiah2 and Nanaga Siva Prasad Reddy3. 1Adama University, Faculty of Technology, Post Box No. 1888 ...

  18. Potential utilisation of sewage sludge and paper mill waste for biosorption of metals from polluted waterways.

    Science.gov (United States)

    Lister, S K; Line, M A

    2001-08-01

    The adsorption of cadmium, copper(II), lead and zinc ions from aqueous solution by sewage sludge, paper mill waste (PMW) and composted PMW was investigated along with the influence of pre-treatment on composted PMW. Langmuir adsorption isotherms were fitted where appropriate. Sewage sludge was the most effective biosorbent of the waste products for all metal ions examined, adsorbing, for example, up to 39.3 mg/g of Pb at an initial concentration of 77.8 mg/l. PMW was a less effective biosorbent than sewage sludge. However, it was found that composting the PMW resulted in an increase in metal uptake capacity and both sewage sludge and composted PMW have potential for low-cost remediation of high leachate wastewaters. The desorption of metal ions from PMW compost was most effective using 0.1 N H2SO4 and 1 mM nitrilotriacetic acid (NTA).

  19. Land application of sewage sludge: A soil columns study | Gascó ...

    African Journals Online (AJOL)

    Land application of sewage sludge: A soil columns study. G Gascó, MC Lobo, F Guerrero. Abstract. A column study was conducted to assess the potential Cr, Ni, Cu, Zn, Cd and Pb movement through a reconstructed soil profile to which surface composted sewage sludge was applied. Sewage sludge was mixed into the top ...

  20. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  1. Textile terminologies

    OpenAIRE

    Michel, Cécile; Nosch, Marie Louise Bech

    2010-01-01

    International audience; Written sources from the ancient Near East and eastern Mediterranean, from the third to the first millennia BC, provide a wealth of terms for textiles. The twenty-two chapters in the present volume offer the first comprehensive survey of this important material, with special attention to evidence for significant interconnections in textile terminology among languages and cultures, across space and time. For example, the Greek word for a long shirt, khiton , ki-to in Li...

  2. Textile Architecture

    OpenAIRE

    Maurin, Bernard; Motro, René

    2013-01-01

    The basic idea for a textile architecture project originates during early meetings between the architect and the engineer. The morphologic richness of such projects is provided by the varying curvatures of shapes, in contradiction with a classical straight line and orthogonal architecture. However the rules of construction are quite different in terms of realisation and of mechanical behaviour: textile membranes are subjected to a pre-stress conferring them their rigidity, and a major objecti...

  3. Quality evaluation of compost produced from agro-industrialbyproducts of sugar cane

    Directory of Open Access Journals (Sweden)

    Alexander Bohórquez

    2014-01-01

    Full Text Available Fresh by products of the sugar industry (sugarcane sludge, bagasse and vinasse incorporated into the soil generate a negative impact on plants. Therefore, compost is an alternative solution to the use of sugarcane byproducts, which must meet the requirements of the Colombian technical standard 5167 for use as biofertilizer. This study aimed to evaluate the quality of compost made from different combinations of products of the milling process of sugar cane (Saccharum officinarum L.. Composting piles were established in the Ingenio Riopaila-Castilla, Valle del Cauca, Colombia, using a complete randomized block design with five treatments and four replications. 100% sugarcane sludge (T1, 75% sugarcane sludge and 25% bagasse (T2, 50% bagasse and 50% sugarcane sludge (T3, 25% sugarcane sludge and 75% bagasse (T4 and 100% bagasse (T5, all supplemented with 2 m3 of vinasse. The response variables: pH, electrical conductivity, moisture, ash, organic matter, moisture retention, the carbon-nitrogen ratio, the total oxidizable organic carbon, total nitrogen, phosphorus, calcium, magnesium, potassium, iron, copper, manganese and zinc, were evaluated at the time when the initial compost piles were prepared, and the 42, 51, 59, 73 and 90 days after beginning the process. The results showed that the carbon-nitrogen mixtures initial ratio is critical for obtaining a good quality of compost. The T3 provided the best quality with the highest content of nutrients. The composting time ensuring adequate maturation levels for nutrients in the compost was 90 days.

  4. [Physico-chemical and microbial properties in thermophilic composting processes of different biological solid wastes].

    Science.gov (United States)

    Tang, Jing-chun; Zhou, Qi-xing; Zhang, Guan-hui

    2007-05-01

    Characterization on the physico-chemical and microbial properties were carried out in thermophilic composting processes of 3 different biological solid wastes: manure, garbage and sludge. pH increased to above 8 and C/N ratio decreased during the process. The effect of different bulking agents on the composting process is smaller compared to different raw materials. Among the 3 different materials, garbage composting shows highest composting activity, and the mass reduction rate is 47.2%-56.8% after 14 days. Quinone content, representative of microbial biomass, increases to 359.7-472.3 mol x kg(-1) at the late composting period. However quinone diversity index only increases to 6.1-6.7, suggesting lower microbial diversity. The composting activity of cattle manure is only high at initial period and then decreases. The quinone content is high at middle period of cattle manure composting with the value of 36.3-117.0 molx kg(-1). DQ is 10.3-12.8 at initial, and increases to 18.1-22.7 during cattle manure composting. The properties of sludge composting fall in the range between cattle manure and garbage. It is suggested that the differences of the composting processes are mainly caused by organic component level in different raw materials. Suggestions on the control of composting process are also proposed based on this study.

  5. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  6. Remediation of metal contaminated soil with mineral-amended composts

    Energy Technology Data Exchange (ETDEWEB)

    Herwijnen, Rene van [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom); Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hutchings, Tony R. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Al-Tabbaa, Abir [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Moffat, Andy J. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Johns, Mike L. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Ouki, Sabeha K. [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: s.ouki@surrey.ac.uk

    2007-12-15

    This study examined the use of two composts derived from green waste and sewage sludge, amended with minerals (clinoptilolite or bentonite), for the remediation of metal-contaminated brownfield sites to transform them into greenspace. Soils contaminated with high or low levels of metals were mixed with the mineral-enhanced composts at different ratios and assessed by leaching tests, biomass production and metal accumulation of ryegrass (Lolium perenne L.). The results showed that the green waste compost reduced the leaching of Cd and Zn up to 48% whereas the composted sewage sludge doubled the leachate concentration of Zn. However, the same soil amended with composted sewage sludge showed an efficient reduction in plant concentrations of Cd, Cu, Pb or Zn by up to 80%. The results suggest that metal immobilisation and bioavailability are governed by the formation of complexes between the metals and organic matter. The amendment with minerals had only limited effects. - Composts can increase or decrease the bioavailability of metals in soil.

  7. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring. PMID:27854280

  8. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  9. Kinetic study of compost liquor nitrification.

    Science.gov (United States)

    Gagnaire, J; Wang, X Y; Chapon, L; Moulin, P; Marrot, B

    2011-01-01

    This study is a first kinetic approach about the compost liquor treatment by activated sludge. This industrial wastewater is highly loaded in organic and nitrogen compounds (COD≈12,000 mg L(-1) and NH(4)(+)-N≈4,000 mg L(-1)). The possibility of its treatment in an urban WWTP is studied measuring ammonia oxidation rate with non-acclimated sludge to the industrial effluent. Compost liquor appears as an inhibitor substrate. The ammonia oxidation rate can be modelled by the Haldane model: U(MAX)=0.180 d(-1), K(S)=12.0 mgN.L(-1) and K(I)=26.0 mgN.L(-1). The ammonia oxidation rate also follows for a synthetic substrate which has the same pollutant load as the real substrate. In this case, the ammonia oxidation rate can be modelled by the Monod model: U(MAX)=0.073 d(-1) and K(S)=4.3 mgN.L(-1). This result confirms that the ammonia oxidising bacteria are inhibited by the real wastewater. The following-up of nitrate production shows also the inhibition of nitrite oxidising bacteria. The compost liquor treatment seems not possible in an urban WWTP (<50,000 p.e.). That's why a specific WWTP is recommended and an acclimation step of activated sludge is essential.

  10. Textile Dampfbremse

    OpenAIRE

    Saur, A.; Holm, A.

    2006-01-01

    DE 102005020295 A1 UPAB: 20061218 NOVELTY - Manufactured from a textile membrane and made airtight and wind-proof, a vapor barrier seal is attached as an outermost layer on a room side and/or external side of walls, ceilings or floors. It is designed as a carpet or is integrated in a carpet. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a means of transport with a vapor barrier seal. USE - As a vapor barrier seal manufactured from textile for an interior space/indoors to be...

  11. Growth, yield and fruit quality of pepper plants amended with two sanitized sewage sludges

    OpenAIRE

    Pascual Elizalde, Inmaculada; Azcona, Iñaki; Aguirreolea, Jone; Morales Iribas, Fermín; Corpas, Francisco Javier; Palma, José Manuel; Rellán-Álvarez, Rubén; Sánchez-Díaz, Manuel

    2010-01-01

    Organic wastes such as sewage sludge have been successfully used to increase crop productivity of horticultural soils. Nevertheless, considerations of the impact of sludges on vegetable and fruit quality have received little attention. Therefore, the objective of the present work was to investigate the impact of two sanitized sewage sludges, autothermal thermophilic aerobic digestion (ATAD) and compost sludge, on the growth, yield, and fruit quality of pepper plants (Capsicum annuum L. cv. Pi...

  12. EPR and DRIFT spectroscopic characterization of humic fractions during composting of sawdust and paper mill sludge Caracterização espectroscópica (RPE e DRIFT das frações húmicas durante a compostagem de lodo de fábrica de papel e serragem

    Directory of Open Access Journals (Sweden)

    Claudia Maria Branco de Freitas Maia

    2012-06-01

    Full Text Available

    The spectroscopic characteristics (DRIFT, UV-visible and EPR of humic fractions were studied during composting of sawdust and paper mill sludge. Infrared spectroscopy reveals a compost rich in hydroxyl and alkyl groups and carboxylates and carbohydrates. The alkyl fraction is abundant in the humic acids and humin. The decreasing of the E4/E6 ratio during composting indicates an enhancement of the organic chains number, with conjugated double bonds. This decreasing would correspond to a reduction of the lignin content and/or formation of porphyrins. The EPR shows that humin presents the highest concentration of free radical and the lowest intensities of the Fe3+.

    doi: 10.4336/2012.pfb.32.70.01

    The spectroscopic characteristics (DRIFT, UV-visible and EPR of As características espectroscópicas (DRIFT, UV-visível e RPE das frações húmicas foram estudadas durante a compostagem de serragem e lodo de fábrica de papel. A espectroscopia de infravermelho (DRIFT revelou um composto rico em hidroxilas, carboxilatos, alquilas e carboidratos. A fração alifática está concentrada nos ácidos húmicos e na humina. A diminuição da razão E4/E6 durante a compostagem indica um aumento de cadeias orgânicas com ligações duplas conjugadas. Esta redução corresponderia a uma diminuição do teor de lignina e/ou a formação de porfirinas. O RPE mostrou que a humina apresenta a concentração mais alta de radicais livres e a menor concentração de Fe3+ livre.

    doi: 10.4336/2012.pfb.32.70.01

  13. Changes in physical properties of sandy soil after long-term compost treatment

    Science.gov (United States)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  14. Effects of compost media on growth and flowering of parviflorous garden pansy (Viola x wittrockiana Gams.. Part II. Plant flowering and decorative value

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawadzińska

    2012-12-01

    Full Text Available The purpose of the studies was to determine the effects of media containing composts from sewage sludge and potato pulp on the flowering and decorative value of 'Butterfly Yellow with Blotch' parviflorous pansy. In the experiment 14 potting media, including 12 media made of 4 composts, were tested. The percentage of compost mixed with sphagnum peat was 25%, 50% and 75%. The components of particular composts were as follows: I - municipal sewage sludge 70% and straw 30%; II - municipal sewage sludge 70% and sawdust 30%; III - municipal sewage sludge 35%, potato pulp 35% and straw 30%; IV - municipal sewage sludge 35%, potato pulp 35% and sawdust 30%. Two control potting media were used: 1 - sphagnum peat with Osmocote Exact Lo-Start at the dose 5 g×dm-3 and 2 - sphagnum peat with Azofoska at the dose 2.5 g×dm-3. There was no top-dressing during cultivation. The pansies for whose cultivation a slow-release fertiliser was used turned out to have most flowers, but the plants cultivated in compost with peat at the ratio 1:1 had equally abundant flowering. At the generative stage, the pansies in control media were the most decorative and those growing in 25% of compost I, 75% of compost II and 50% of compost III and IV. On the basis of plant valuation scale, quality assessment and the abundance of flowering it was found that the media containing 50% of composts were optimal for pansy cultivation.

  15. Growth of apple seedlings on sludge-amended soils in the greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Korcak, R.F.

    1986-01-01

    Open pollinated York Imperial apple (Malus domestica Borkh.) seeds were germinated and grown for a period of 7 months in: (1) sand with complete nutrient solutions added; (2) limed and unlimed soil, (3) limed and unlimed soil amended with two different sewage sludges at rates of 25, 50 or 100 dry kg ha/sup -1/. A third composted, lime stabilized sludge was added either sieved or non-sieved at the same rates. The sludge materials used were: (1) a high metal, composted sludge from Baltimore, MD (BALT); (2) a high Cd sewage sludge (CITY) and (3) a low metal, composted sewage sludge from Washington, D.C. (DC). Germination was unaffected by treatments. After 7 months, the best growth was obtained from the sand plus nutrient solution media. Two of the three sludge materials increased seedling growth over that of the soil, either limed or unlimed. The BALT compost treated soils produced the lowest growth, particularly when unlimed. Elevated tissue metal levels indicated that Mn, Zn, Cu and Ni were the probable causes of reduced growth noted from the BALT compost treatment. The use of soil with or without low metal sludges as media for early apple seedling growth when compared to standard sand culture is not recommended.

  16. TEXTILE SALVAGE

    CERN Multimedia

    Relations with the Host States Service

    2002-01-01

    Readers are reminded that Geneva's agency for salvaging used clothing, other textiles and old shoes (Coordination d'oeuvres d'entraide pour la récupération de vêtements, textiles et chaussures usagés dans le canton de Genève) has a container in the car park outside CERN's Meyrin site. In 2001, 1000 tonnes of such items were collected in the Canton of Geneva (as compared with 840 tonnes in 2000), of which 4460 kg came from the container outside the Meyrin site. The operation's organisers (Caritas, Centre Social Protestant, the Geneva Section of the Swiss Red Cross, Terre des Hommes, the Geneva branch of Terre des Hommes Suisse and Emmaüs, Geneva) would like to thank all those who have donated clothing or otherwise supported their campaign. Relations with the Host States Service Tel. 72848 http://www.cern.ch/relations/

  17. Textile Technology Analysis Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Textile Analysis Labis built for evaluating and characterizing the physical properties of an array of textile materials, but specifically those used in aircrew...

  18. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  19. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  20. Wastewater and sludge management and research in Oman: An overview.

    Science.gov (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  1. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  2. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  3. Successful School Composting.

    Science.gov (United States)

    Mahar, Rhea Dawn

    2001-01-01

    School composting programs that have met the challenges inherent in long-term composting have several traits in common: a supportive educational program, schoolwide participation, and a consistent maintenance program. Examines the elements of success, offers examples of incorporating composting into the curriculum, and describes three methods of…

  4. Enhanced compositing of radiation disinfected sewage sludge

    Science.gov (United States)

    Kawakami, W.; Hashimoto, S.

    Studies on isothermal composting of radiation disinfected sewage sludge and liquid chromatography of water extracts of the products were carried out. The optimum temperature and pH were around 50 °C and 7-8, respectively. The repeated use of products as seeds increased the rate of CO 2 evolution. The rate reached a maximum within 10 hours and decreased rapidly, and the CO 2 evolution ceased after about 3 days. The conversion of organic carbon to carbon dioxide attained to about 40% for the repeated use of products as seeds at the optimum conditions. As long as seeds in available were used, no remarkable difference was found in the composting of unirradiated and irradiated sludges. The composting process using radiation, however, can be carried out at the optimum conditions and is expected to shorten the composting period, because it is not necessary to keep fermentation temperature higher to reduce pathogen in sludge. Liquid chromatographic studies of the products showed that low molecular components decreased and higher molecular ones increased with fermentation. An index expressing the degree of reduction of easily decomposable organics was presented. The index also showed that the optimum temperature for fermentation was 50 °C, and that the easily decomposable organics disappeared above 30% of the conversion of organic carbon.

  5. Biliary sludge.

    Science.gov (United States)

    Ko, C W; Sekijima, J H; Lee, S P

    1999-02-16

    Biliary sludge was first described with the advent of ultrasonography in the 1970s. It is defined as a mixture of particulate matter and bile that occurs when solutes in bile precipitate. Its composition varies, but cholesterol monohydrate crystals, calcium bilirubinate, and other calcium salts are the most common components. The clinical course of biliary sludge varies, and complete resolution, a waxing and waning course, and progression to gallstones are all possible outcomes. Biliary sludge may cause complications, including biliary colic, acute pancreatitis, and acute cholecystitis. Clinical conditions and events associated with the formation of biliary sludge include rapid weight loss, pregnancy, ceftriaxone therapy, octreotide therapy, and bone marrow or solid organ transplantation. Sludge may be diagnosed on ultrasonography or bile microscopy, and the optimal diagnostic method depends on the clinical setting. This paper proposes a protocol for the microscopic diagnosis of sludge. There are no proven methods for the prevention of sludge formation, even in high-risk patients, and patients should not be routinely monitored for the development of sludge. Asymptomatic patients with sludge can be managed expectantly. If patients with sludge develop symptoms or complications, cholecystectomy should be considered as the definitive therapy. Further studies of the pathogenesis, natural history, and clinical associations of biliary sludge will be essential to our understanding of gallstones and other biliary tract abnormalities.

  6. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management.

    Science.gov (United States)

    Mininni, G; Blanch, A R; Lucena, F; Berselli, S

    2015-05-01

    This paper presents the current sewage sludge legislation in Europe and expected developments regarding the coming directives on the application of the "End-of-waste" criteria and on fertilizers. Discussion on sludge production and processing is also included. The Directive 86/278 has regulated the use in agriculture of residual sludge from domestic and urban wastewater. After 1986, this directive was transposed in the different member state legislation and currently the national limit values on heavy metals, some organic micropollutants and pathogens are placed in a rather wide range. This seems the inevitable consequence of different attitudes towards sludge management practices in the member states. The discussion by the European Joint Research Center (JRC) in Seville regarding application of end-of-waste criteria for compost and digestate has produced a final document (IPTS 2014) where sludge was excluded from the organic wastes admitted for producing an end-of-waste compost. Sludge processing in Europe seems addressed to different goals: sludge minimization, full stabilization and hygienization by thermal hydrolysis processes before anaerobic digestion, and on-site incineration by fluidized bed furnace. Thermophilic anaerobic digestion was applied with success on the Prague WWTP with a preliminary lysimeter centrifugation. Coming techniques, like wet oxidation and pyrolysis, are applied only on very few plants.

  7. Approach on environmental risk assessment of nanosilver released from textiles

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Doris, E-mail: doris.voelker@uba.de [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Schlich, Karsten [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany); Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Polleichtner, Christian; Kussatz, Carola [Federal Environment Agency Germany, Section IV 2.4, Schichauweg 58, 12307 Berlin (Germany); Hund-Rinke, Kerstin [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)

    2015-07-15

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  8. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  9. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola.

    Science.gov (United States)

    Craft, C M; Nelson, E B

    1996-05-01

    Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease

  10. FERTILISER VALUE AND TRACE ELEMENT CONTENT OF COMPOSTS PRODUCED FROM DIFFERENT WASTES

    Directory of Open Access Journals (Sweden)

    Edward Meller

    2015-09-01

    Full Text Available Composting process provides a valuable material improving physical and chemical properties of soil. The quality of the obtained compost depends to a great extent on the kind of material subjected to stabilisation. Composting biodegradable products may result in the end product exceeding heavy metal limits that cannot be used in agriculture. The studies included composts produced in the compost plant in Kołobrzeg, the Municipal Waste Recovery and Storage Plant in Leśno Górne and the Waste Managemant Plant in Wardyń Górny. Composts were made from municipal solid waste, sewage sludge with straw and sawmill waste, and from urban green waste. The following determinations were determined: morphological composition, total content of macroelements and microelements and the level of these elements soluble in HCl at the concentration of 0.5 mol∙dm-3. The examined composts contained the amounts of total Pb, Ni and Cd allowing for their use in agriculture and the compost from sewage sludge, straw and sawmill waste, turned out to have the best utilisation properties.

  11. Biological degradation of oil sludge: A review of the current state of ...

    African Journals Online (AJOL)

    tscience

    2013-11-20

    Nov 20, 2013 ... These microorganisms can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. Compost ... wastewater treatment plants (Shie et al., 2004; Wang et al., 2010). Oil sludge found in crude oil ... habitats, lethal and sub-lethal toxic effects on aquatics and terrestrial ecosystem.

  12. Treatment of sewage sludges reduction of pollutants; Tratamiento de lodos residuales reduccion de contaminantes

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1991-06-15

    Considering the experiences of the Nuclear Research National Institute (ININ) in the treatment of sewage sludge, using gamma radiation it pretends to develop on a laboratory level and to propose the treatment: irradiation-composting of sewage sludge in order to degrade chemical toxic and destruction or inactivation of pathogenic organisms. (Author)

  13. Advanced treatment of textile wastewater for reuse using ...

    African Journals Online (AJOL)

    driniev

    2005-01-01

    Jan 1, 2005 ... 31 No. 1 January 2005. 132. Available on website http://www.wrc.org.za. LIN S and PENG C (1996) Continuous treatment of textile wastewater by combined coagulation electrochemical oxidation and activated sludge. Water Res. 30 (3) 587-592. NAOHIDE T, YUKIO M, MASATAKA Y, SHIN-ICHI W, SAHORI.

  14. Decolourisation and degradation of textile dyes using a sulphate ...

    African Journals Online (AJOL)

    Successful decolourisation and degradation of textile dyes was achieved in a biosulphidogenic batch reactor using biodigester sludge from a local municipality waste treatment plant as a source of carbon and microflora that augmented a sulphate reducing bacteria (SRB) consortium. Orange II (O II) was decolourised by ...

  15. Decolourisation and degradation of textile dyes using a sulphate ...

    African Journals Online (AJOL)

    Other azo dyes, Reactive black 5 (RB 5), Reactive red 120 ... successfully degraded with the exception of Amido black 10B (AB 10B). The Orange II ... Therefore bioremediation of textile effluent with sludge and SRB can concomitantly treat two wastes while providing a cheaper alternative of the carbon source. However, the ...

  16. A field investigation of sewage sludge treatments on agricultural production areas at DeSoto National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Fish and Wildlife Service and the City of Omaha participated in a six year study (1985-1990) to evaluate the environmental impacts of sewage sludge, composted...

  17. Compost Compaction Evaluation.

    Science.gov (United States)

    1993-10-01

    aerated static pile composting ) has been shown to be most effective at reducing the explosives levels in the soils (4). As a result, it is anticipated...y ■,... tiiii silsis H-ifjfe Compost Compaction Evaluation Report No. ENAEC-TS-CR-93110 Contract No. DACA31-9-D-0079 Task Order No. 01...Leave blank) 2. REPORT DATE October 1993 3. REPORT TYPE AND DATES COVERED Final Report 4. TITLE AND SUBTITLE Compost Compaction Evaluation 6

  18. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  19. Compost als onkruidonderdrukker

    NARCIS (Netherlands)

    Smits, M.; PPO Akkerbouw, Groene Ruimte en Vollegrondsgroente

    2008-01-01

    Een deklaag van 2 centimeter compost vermindert de onkruiddruk tot 80 procent. Biologisch akkerbouwer Anton van Vilsteren uit Marknesse (Flevoland) heeft de eerste compoststrokenlegger voor uien en peen

  20. Effects of compost media on growth and flowering of parviflorous garden pansy (Viola x wittrockiana Gams.. Part I. Plant growth and conformation

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawadzińska

    2012-12-01

    Full Text Available The aim of the studies was to determine the effects of media with composts, based on sewage sludge and potato pulp, on the growth and conformation of the cultivar 'Butterfl y Yellow with Blotch'. In the experiment 14 potting media, including 12 media made of 4 composts, were tested. The percentage of compost mixed with sphagnum peat was 25%, 50% and 75%. The components of particular composts were as follows: I - municipal sewage sludge 70% and straw 30%; II - municipal sewage sludge 70% and sawdust 30%; III - municipal sewage sludge 35%, potato pulp 35% and straw 30%; IV - municipal sewage sludge 35%, potato pulp 35% and sawdust 30%. Two control potting media were used: 1 - sphagnum peat with Osmocote Exact Lo-Start at the dose 5 g×dm-3, and 2 - sphagnum peat with Azofoska at the dose 2.5 g×dm-3. There was no top-dressing during cultivation. The potting media used for pansy cultivation were rich in essential nutrients and in certain media macroelement content exceeded the limits recommended for the species with great nutrient requirements. The effects of the media on the growth, conformation and foliage of pansies depended on compost composition and its pecentage in a medium. The composts used for the media were found to be suitable for pansy cultivation. Despite smaller leaf rosettes in comparison with control plants, the pansies from compost media grew well and showed no disease symptoms.

  1. Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting.

    Science.gov (United States)

    Sayara, Tahseen; Sarrà, Montserrat; Sánchez, Antoni

    2009-12-30

    The feasibility of using different organic amendments of different origin and properties in the bioremediation of pyrene-contaminated soil by means of composting has been tested. The selected pyrene concentration was 1g of pyrene per kg of dry soil. The organic amendments used include: raw organic fraction of municipal solid wastes (OFMSW), industrial compost from OFMSW composting (COFMSW), compost derived from home composting of OFMSW (HCOFMSW), anaerobically digested sludge (ADS), non-digested activated sludge (NDS) and centrifuged non-digested activated sludge (CNDS). The degradation rate was related to the amendment properties that directly affected the composting process. Raw OFMSW was not capable to enhance pyrene degradation in comparison to control, but stable HCOFMSW exhibited the highest removal rate (69%). The amendments stability and the temperatures reached as a consequence influenced the process, and thermophilic temperatures showed an inhibition effect on the microbial activity related to pyrene degradation. Some of the tested wastes need to be further investigated to find inexpensive organic amendments for soil bioremediation.

  2. Urban Sewage Sludge, Sustainability, and Transition for Eco-City

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Chan, Felix T. S.

    2017-01-01

    criteria. Three MCDM methods including the sum weighted method, digraph model, and TOPSIS were used to determine sustainability sequence of the alternative technologies for the treatment of urban sewage sludge. Three technologies including landfilling, composting, and drying incineration have been studied...

  3. Use of urban composts for the regeneration of a burnt Mediterranean soil: a laboratory approach.

    Science.gov (United States)

    Cellier, Antoine; Francou, Cédric; Houot, Sabine; Ballini, Christine; Gauquelin, Thierry; Baldy, Virginie

    2012-03-01

    In Mediterranean region, forest fires are a major problem leading to the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined under laboratory conditions the effects of three urban composts and their mode of application (laid on the soil surface or mixed into the soil) on soil restoration after fire: a municipal waste compost (MWC), a compost of sewage sludge mixed with green waste (SSC) and a green waste compost (GWC). Carbon (C) and nitrogen (N) mineralisation, total microbial biomass, fungal biomass and soil characteristics were measured during 77-day incubations in microcosms. The impact of composts input on hydrological behaviour related to erodibility was estimated by measuring runoff, retention and percolation (i.e. infiltration) of water using a rainfall simulator under laboratory conditions. Input of composts increased organic matter and soil nutrient content, and enhanced C and N mineralisation and total microbial biomass throughout the incubations, whereas it increased sporadically fungal biomass. For all these parameters, the MWC induced the highest improvement while GWC input had no significant effect compared to the control. Composts mixed with soil weakly limited runoff and infiltration whereas composts laid at the soil surface significantly reduced runoff and increased percolation and retention, particularly with the MWC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Composting Begins at Home.

    Science.gov (United States)

    Dreckman, George P.

    1994-01-01

    Reports the results of a year-long home composting pilot program run by the city of Madison, Wisconsin. The study was designed to gather data on the amount and type of materials composted by 300 volunteer households and to determine the feasibility of a full-scale program. (LZ)

  5. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    Science.gov (United States)

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil.

    Science.gov (United States)

    Rossini-Oliva, S; Mingorance, M D; Peña, A

    2017-02-01

    The effect of the addition (0-10%) of two types of sewage sludge composts (composted sewage sludge [CS] and sewage sludge co-composted with olive prune wastes [CSO]) on a polymetallic acidic soil from the Riotinto mining area was evaluated by i) a soil incubation experiment and ii) a greenhouse pot experiment using tomato (Solanum lycopersicum Mill.), ryegrass (Lolium perenne L.) and ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Compost addition improved the soil organic carbon content, increased the pH and the electrical conductivity and enhanced enzyme activities and soil respiration, more for CSO than for CS. Plant growth was generally enhanced after compost addition, but not proportionally to the dose. Foliar concentrations of some hazardous elements (As, Cr, Fe) in tomato growing in non-amended soil were above the thresholds, questioning the adequacy of using this plant species. However, leaf concentrations of essential and potentially toxic elements (Fe, As, Cr and Pb) in tomato and/or ryegrass were reduced after the amendment with both composts, generally more for CSO than for CS. Conversely, foliar concentrations in ahipa, a plant species which is able to grow without the need of compost addition, were safe except for As and were only slightly affected by compost addition. This plant species would be a suitable candidate due to its low requirements and due to the limited element translocation to the leaves. Concerning the composts, amelioration of plant and soil properties was better accomplished when using CSO, a compost of sewage sludge and plant remains, than when using CS, which only contained the sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  9. Solar-thermic sewage sludge treatment in extreme alpine environments.

    Science.gov (United States)

    Becker, W; Schoen, M A; Wett, B

    2007-01-01

    In the framework of a program for environmental protection conducted by the German mountaineers' club (DAV) problems emerging from residual solids accumulating in on-site wastewater treatment plants of mountain refuges were investigated. To handle these problems in an ecologically and economically reasonable way two devices for solar-supported treatment of sludge and bio-solids have been developed. These units support gravity-filtration and evaporation of liquid sludge as well as thermal acceleration of composting processes. Two solar sludge dryers were installed and operated without external energy supply at alpine refuges treating primary and secondary sludge, respectively. Batch-filling during the season could increase load capacity and a total solids concentration of up to 40% could be achieved before discharge at the beginning of the next season. The promising results from the solar sludge dryer encouraged for the development of a solar composter. The period of temperature levels suitable for composting biosolids in mountain areas can be extended considerably by application of this technology--measured temperature distribution indicated no freezing at all.

  10. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  11. Análise da contaminação parasitária em compostos orgânicos produzidos com biossólidos de esgoto doméstico e resíduos agropecuários Analysis of parasitological contamination in organic composts with sewage sludge and agricultural residues

    Directory of Open Access Journals (Sweden)

    Eduardo Robson Duarte

    2008-08-01

    Full Text Available Este estudo avaliou a contaminação por ovos de helmintos, cistos e oocistos de protozoários em compostos orgânicos utilizando lodo de esgoto doméstico e resíduos agropecuários. Foram realizadas análises parasitológicas em amostras de 25 diferentes compostos orgânicos, antes e após tratamento térmico a 60°C durante 12 horas. Os resultados demonstraram elevada contaminação parasitária em todos os compostos analisados antes do tratamento e a não redução dessa contaminação após o tratamento térmico. A identificação das larvas obtidas em coproculturas antes e após o tratamento térmico dos compostos indicou que os gêneros mais freqüentemente observados foram Cooperia e Trichostrongylus, que são nematóides gastrintestinais de ruminantes. Estes resultados demonstram que ovos de helmintos podem permanecer viáveis mesmo após o processo de compostagem e o tratamento térmico. Os compostos produzidos com lodo de esgoto doméstico e resíduo agropecuários, utilizando esses processos de tratamentos, podem constituir riscos de contaminação para humanos e animais.This research aimed at evaluating the cysts, oocysts and eggs contamination before and after thermal treatment of 60°C for 12 hours, in 25 different organic composts produced with biosolids from domestic waste-water treatment and animal and agricultural residues. The results showed high parasitological contamination for all organic composts before the treatment and these contaminations were not reduced after thermic treatment. The larva identification in coprocultures before and after thermic treatment showed Cooperia spp. and Trichostrongylus spp. were the most prevalent nematodes. These results demonstrated that helmintus’ eggs can remain viable even after the composing and thermic treatment. The obtained composition with sewage sludge and agricultural residues through these treatment processes can establish contamination risks for humans and animals.

  12. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  13. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    Science.gov (United States)

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  15. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill.

    Science.gov (United States)

    Song, Uhram

    2017-04-03

    To increase the remediation ability and life expectancy of a leachate channel in a sanitary landfill, the plants used for remediation were composted as a post-remediation management technique. Phragmites australis or Typha angustifolia used for phytoremediation in a landfill leachate channel was harvested and used as a co-composting material with sewage sludge. The macrophyte compost was applied to the slope of a landfill on which plants were introduced for revegetation and to plants grown in pots to test for acute effects of the compost. The compost of the macrophytes successfully increased soil moisture and nutrient contents both on the landfill slope and in the soil of the pot experiment. Additionally, the rates of photosynthesis and the nutrient contents increased for plants grown in macrophyte compost. Thus, the revegetation or restoration management of the landfill would improve with the macrophyte compost used as a soil conditioner. The harvest of the macrophytes has the additional benefit of improving the remediation function of the leachate channel. Therefore, to sustainably manage both the leachate channel and the landfill, the composting of post-remediation macrophytes is an environmentally friendly and economically affordable method.

  16. Bacterial community structure transformed after thermophilically composting human waste in Haiti.

    Directory of Open Access Journals (Sweden)

    Yvette M Piceno

    Full Text Available Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip. Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence, Ruminococcaceae (98-99%, Lachnospiraceae (83-94%, primarily unclassified taxa remained, Escherichia and Shigella (100%. Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited.

  17. Bacterial community structure transformed after thermophilically composting human waste in Haiti.

    Science.gov (United States)

    Piceno, Yvette M; Pecora-Black, Gabrielle; Kramer, Sasha; Roy, Monika; Reid, Francine C; Dubinsky, Eric A; Andersen, Gary L

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98-99%), Lachnospiraceae (83-94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited.

  18. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  19. ENGINEERING BULLETIN: COMPOSTING

    Science.gov (United States)

    Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...

  20. Composting: Great Rotten Idea.

    Science.gov (United States)

    Chemecology, 1992

    1992-01-01

    To help students investigate both the advantages and disadvantages of composting, various activities are presented dealing with the definitions and the applications of the concepts of recyclable and biodegradable. (MCO)

  1. The Science of Composting.

    Science.gov (United States)

    Swarthout, Flora L.

    1993-01-01

    Students are able to experience cellular respiration in action and become more informed about the environment by creating compost. This article describes an activity that brings a natural process into the classroom. (ZWH)

  2. Compost biofiltration of ammonia gas from bin composting.

    Science.gov (United States)

    Hong, J H; Park, K J

    2005-04-01

    The effects of the manure compost/coconut peels on the ammonia removal efficiency were examined from dairy manure composting mixed with crop residues. The high rapid composting and manure compost biofiltration experiments consisted of three biofilter vessels with one composter. Dairy manure amended with rice hulls and sawdust was composted in 605 L pilot-scale composter using continuous aeration for 19 days. Three pilot-scale manure compost biofilter amended with media bed 500 mm in depth and 300 mm in diameter were built to clean ammonia emission from composter, respectively. The manure compost biofilter media in the three experimental vessels was using a 50:50 by weight mixture of manure compost and coconut peels (MC/CP). The ammonia concentrations at the inlet and outlet biofilter media were measured by boric acid traps as described by Hong et al. [Hong, J.H., Keener, H.M., Elwell, D.L., 1998. Preliminary study of the effect of continuous and intermittent aeration on composting hog manure amended with sawdust. Compost Science and Utilization 6 (3), 74-88]. Results indicated that the mixture of MC/CP performed well as a biofilter media and the ammonia removal efficiency was 100% for the filter depth of 500 mm.

  3. The efficiency of home composting programmes and compost quality.

    Science.gov (United States)

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    , and application. These stabilization techniques include dewatering, drying, anaerobic digestion, composting, and reed bed sludge treatment. However, very few studies have investigated the effect of these techniques after the sludge has been applied to agricultural land. The objective of the current study...... was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques...

  5. Initial fermentation of sea sludge using aerobic and thermophilic microorganisms in a mangrove soil.

    Science.gov (United States)

    Ando, Y; Mitsugi, N; Yano, K; Hasebe, Y; Karube, I

    2001-10-01

    As sea sludge has the potential to cause eutrophication and red tide resulting in the death of shellfish and offensive odors, an effective method to treat it is needed. It was found that adding soil taken from a mangrove swamp to sea sludge promoted an initial fermentation of the sludge constituents. The result suggested that certain microorganisms that were thought to inhabit the sub-tropical mangrove soil had the potential to play a significant role in the fermentation and that the use of the microorganisms in the mangrove soil might be useful for composting sea sludge.

  6. Experiments as to the influence of heat recovery from a bioreactor on sewage sludge disinfecting

    Energy Technology Data Exchange (ETDEWEB)

    Tarjanyi, J.; Strauch, D.; Philipp, W.

    The influence of heat recovery on the disinfecting effect of composting of sewage sludge in a bio-reactor (in-vessel-composting) was investigated in a reactor type Weiss-system Kneer. As test agents 3 different serovars of salmonella, Parvo- and Poliovirus and eggs of Ascaris suum were used. The experiments were done in a reactor which was fed with dewatered municipal sewage sludge mixed with waste-paper as C-carrier for better composting. Even under winter conditions the test agents were inactivated within the time which is characteristic for the passage of the composting material through the plug-flow reactor. These results cannot simply be applied without further investigation to other reactors of the same type but with different ways of operation. (orig.)

  7. Biomanagement of sago-sludge using an earthworm, Eudrilus eugeniae.

    Science.gov (United States)

    Banu, J Rajesh; Yeom, Ick Tae; Esakkiraj, S; Kumar, Naresh; Logakanthi, S

    2008-03-01

    Sago, the tapioca starch is manufactured by over 800 small-scale units located in the Salem district, Tamil Nadu, India. During the processing of sago it generates huge quantities of biodegradable solid waste, as crushed tubers. In present study an attempt was made to convert these biodegradable solid sago tubers into value added compost using an exotic earthworm, Eudrilus eugeniae. The experiments were carried out in a plastic tray at various concentrations of sago-sludge (50% 75% and 100%) for a period of 90 days. During the vermicomposting, data were collected on life form (cocoon, non clitellates, clitellates) of earthworm and it was found to be high in 50% followed by 75% and 100% concentrations. Chemical analysis of worked substrates showed a step wise increase of nitrogen and phosphorus. The fold increase of phosphorus and nitrogen were found to be high for sago-sludge undergoing vermicomposting than the control. During the composting period the organic carbon decreased from its initial value of 58, 76 and 107 mg/kg to 21, 24 and 65 mg/kg for 50, 70 and 100%, respectively The microbial analysis showed that after 75 days of composting, their population stabilized and further increase in composting period did not increase their population size. The results indicate that 50% and 75% concentration of sludge mixed with bedding material was ideal for the vermicomposting.

  8. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  9. Smart Electronic Textiles.

    Science.gov (United States)

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Handbook for composting and compost use in organic horticulture

    NARCIS (Netherlands)

    Wurff, van der A.W.G.; Fuchs, J.G.; Raviv, Michael; Termorshuizen, Aad

    2016-01-01

    Compost, as a product of recycling processes, can be a very appropriate input material for organic farming, provided the composting process is well-managed, the input materials are free of contaminants, and the resulting product is applied according to the system’s ecological needs. Compost is a

  11. Experimental evaluation of compost leachates.

    Science.gov (United States)

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  12. Compost voor biggen met diarree

    NARCIS (Netherlands)

    Gommers, T.

    1990-01-01

    Het geven van compost aan biggen met diarree zorgt op het Proefstation voor de Varkenshouderij voor minder medicijngebruik. De biggen krijgen de compost van groente-, fruit- en tuinafval vanaf de tweede dag na de geboorte, zodra de diarreeverschijnselen zichtbaar zijn.

  13. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  14. Approach on environmental risk assessment of nanosilver released from textiles.

    Science.gov (United States)

    Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin

    2015-07-01

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  15. Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Ros, Margarita; Pascual, Jose Antonio

    2015-05-01

    The lack of reliable prediction tools for evaluation of the level and specificity of compost suppressiveness limits its application. In our study, different chemical, biological and microbiological parameters were used to evaluate their potential use as a predictor parameter for the suppressive effect of composts against Fusarium oxysporum f. sp. melonis (FOM) and Phytophthora capsici (P. capsici) in muskmelon and pepper seedlings respectively. Composts were obtained from artichoke sludge, chopped vineyard pruning waste and various agro-industrial wastes (C1: blanched artichokes; C2: garlic waste; C3: dry olive cake). Compost C3 proved to offer the highest level of resistance against FOM, and compost C2 the highest level of resistance against P. capsici. Analysis of phospholipid fatty acids isolated from compost revealed that the three composts showed different microbial community structures. Protease, NAGase and chitinase activities were significantly higher in compost C3, as was dehydrogenase activity in compost C2. The use of specific parameters such as general (dehydrogenase activity) and specific enzymatic activities (protease, NAGase and chitinase activities) may be useful to predict compost suppressiveness against both pathogens. The selection of raw materials for agro-industrial composts is important in controlling Fusarium wilt and Phytophthora root rot. © 2014 Society of Chemical Industry.

  16. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  17. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings.

    Science.gov (United States)

    Morales, Ana Belen; Ros, Margarita; Ayuso, Luis Miguel; Bustamante, Maria de Los Angeles; Moral, Raul; Pascual, Jose Antonio

    2017-02-01

    Environmental concerns about peat extraction in wetland ecosystems have increased. Therefore, there is an international effort to evaluate alternative organic substrates for the partial substitution of peat. The aim of this work was to use different composts (C1-C10) obtained from the fruit and vegetable processing industry (pepper, carrot, broccoli, orange, artichoke residues, sewage sludge (citric and pepper) and vineyard pruning wastes) to produce added-value composts as growing media with suppressive effect against Fusarium oxysporum f.sp. melonis (FOM) in muskmelon. Composts showed values of water-soluble carbon fractions and dehydrogenase activity that allowed them to be considered mature and stabilized. All compost treatments produced significantly (F = 7.382; P pepper wastes and high content of pruning waste as initial raw materials. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Innovations in composting pig manure

    NARCIS (Netherlands)

    Rudrum, D.P.

    2005-01-01

    Composting manure on farm can emit large quantities of ammonia and smell. This thesis focuses on improving the compost process by analysis of the process control, the feed composition and the bed structure. A low cost solution to the ammonia emission was developed. By composting at low oxygen

  19. CONTAINER FOR USED TEXTILES

    CERN Document Server

    Relation with the Host States

    2001-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site. The Association has informed us that 3 306 kg of textiles were deposited in the container in 2000 and wishes to convey its warm gratitude to all donors.

  20. NIR Analysis for Textiles

    Science.gov (United States)

    Near Infrared (NIR) spectroscopy has been found to be a useful technique to characterize raw materials and finished textile products, and NIR methods and techniques continue to find increasingly diverse and wide-ranging quantitative and qualitative applications in the textile industry. NIR methods ...

  1. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Textile Space

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    Textile has within the last decade increasingly been regarded as an architectural material. Many new textiles have been developed and this has increased its applications in architecture. But how do textile and space meet and which spatial qualities can arise in this meeting? The paper describes...... a series of practical studies of the spatial qualities that can be established through the design of three very different fabrics. The topic is part of an ongoing Ph.D. project at The Danish Design School in Copenhagen. The main theme of the Ph.D. is the inter-play between textile, space and sound. Space...... and it has a special poetry which is not to be found in any other material. Which spatial qualities can be obtained with these textile properties? Contemporary conception of space in architecture can be said still to rely on the modernist conception. In practical experiments it is investigated how...

  3. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    Science.gov (United States)

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-11-01

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Degradation of textile dyes by cyanobacteria

    Directory of Open Access Journals (Sweden)

    Priscila Maria Dellamatrice

    Full Text Available Abstract Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black, and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds.

  5. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  7. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    Science.gov (United States)

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  8. The use of compost. Its effects on heavy metal levels in soil and plants

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, F.; Stringari, G.; Gasperi, F.; Zorzi, G. [Istituto Agrario di San Michele, San Michele all`Adige (Italy)

    1997-10-01

    Three organic soil conditioners were tested in 14 different Malus domestica orchards: cattle manure, SB compost (from sewage sludge and poplar barks) and MSW compost (from municipal solid waste not source separated). These materials differed notably in their heavy metal content: the SB compost contained greater amounts of Zn, Cu and Pb than did the cattle manure, while the MSW compost had higher concentrations of all the metals studied. For 6 years the Zn, Cu, Ni, Pb, Cd and Cr content were monitored in the soil- both in `total` and EDTA extractable form - and in leaves and fruits. The resulting data demonstrate that the SB compost did not cause any significant increase in heavy metal levels in soil and plants; this compost can thus be used to fertilise the soil with no danger in the short/medium term either to the environment or to crops. In contrast, the experiment clearly demonstrates that the MSW compost, used over a 6 year period, increased concentrations of Zn, Cu, Ni, Pb, Cd and Cr in the soil - both in `total` and EDTA extractable form - and in the case of Pb and Cd also in the vegetation and the fruits

  9. Smart textiles: Challenges and opportunities

    Science.gov (United States)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  10. Co-compostage de boues de laiterie et de fumier de bovins à l'Ile de la Réunion : hygiénisation, pertes de nutriments et homogénéité du compost produit

    Directory of Open Access Journals (Sweden)

    Rafolisy, T.

    2015-01-01

    Full Text Available Co-composting of sludge and dairy cattle manure in Réunion (France: sanitization, nutriment losses and compost homogeneity. Description of the subject. Nutrient balance, windrow homogeneity and the sanitization of composts obtained from the co-composting of dairy sludge and cattle manure were investigated in Réunion at the request of the island's dairy industry, which wants both to develop the agronomic valorization of dairy sludge and to satisfy regulatory constraints on the island. Objectives. The aims of this experiment were to evaluate the feasibility of co-composting cattle manure with dairy sludge and to determine the quality of the compost produced. Method. Three heaps of manure with two doses of dairy sludge were established (on a mass basis: manure alone (T, manure ⅔ + sludge ⅓ (B1 and manure ½ + sludge ½ (B2, with a bulk density of 305, 566 and 630 kg·m-3 and a free air space of 72%, 48% and 42%, respectively. The heaps were turned after 21 days. Total composting time was 142 days. Results. During the experimentation, the temperature remained high and above 55°C for 40 days for the pure manure heap T, for 29 days for heap B1 and for 34 days for heap B2. During composting, heap T lost 69% of its wet mass and 64% of its initial volume, while heap B1 lost 71% and 44% and B2 lost 68% and 49%, respectively. Heap T lost 54% of its organic matter (OM and 15% of its initial nitrogen (N; the respective levels of loss for B1 were 51% and 42% and for B2 56% and 50%. The heterogeneity of the dry matter (DM and N content decreased during composting for heaps T and B1, whereas it increased for heap B2. Conclusions. The composts obtained were in accordance with the French standard NFU 44-51 (T and the French standard NFU 44-95 (B1 and B2, except for the DM content criterion for B1 and B2. Relative to bovine manure compost, compost with the addition of sludge (⅓ was found to be enriched (on a fresh weight basis in N (+ 15%, in P (+ 40

  11. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  12. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    Four compost types (vermi-compost, conventional compost, farmers' compost and community nursery compost) with three replications were used in this study. ..... Edwards, C.A. 1998. The use of earthworm in the break down and management of organic wastes. In: C.A. Edwards (ed.) Earthworm Ecology. St. Lucie Press ...

  13. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    The use of vermi-compost in northern Ethiopia is not a common practice. It is, therefore, important to understand the possible impediments through studying its chemical and biological properties and its extra contribution compared to other composting techniques. Four compost types (vermi-compost, conventional compost, ...

  14. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  15. Composting of a solid olive-mill by-product ("alperujo") and the potential of the resulting compost for cultivating pepper under commercial conditions.

    Science.gov (United States)

    Alburquerque, J A; Gonzálvez, J; García, D; Cegarra, J

    2006-01-01

    A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.

  16. Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludges.

    Science.gov (United States)

    Pascual, Immaculada; Azcona, Iñaki; Aguirreolea, Jone; Morales, Fermín; Corpas, Francisco Javier; Palma, José Manuel; Rellán-Alvarez, Rubén; Sánchez-Díaz, Manuel

    2010-06-09

    Organic wastes such as sewage sludge have been successfully used to increase crop productivity of horticultural soils. Nevertheless, considerations of the impact of sludges on vegetable and fruit quality have received little attention. Therefore, the objective of the present work was to investigate the impact of two sanitized sewage sludges, autothermal thermophilic aerobic digestion (ATAD) and compost sludge, on the growth, yield, and fruit quality of pepper plants ( Capsicum annuum L. cv. Piquillo) grown in the greenhouse. Two doses of ATAD (15 and 30% v/v) and three of composted sludge (15, 30, and 45%) were applied to a peat-based potting mix. Unamended substrate was included as control. ATAD and composted sludge increased leaf, shoot, and root dry matter, as well as fruit yield, mainly due to a higher number of fruits per plant. There was no effect of sludge on fruit size (dry matter per fruit and diameter). The concentrations of Zn and Cu in fruit increased with the addition of sewage sludges. Nevertheless, the levels of these elements remained below toxic thresholds. Pepper fruits from sludge-amended plants maintained low concentrations of capsaicin and dihydrocapsaicin, thus indicating low pungency level, in accordance with the regulations prescribed by the Control Board of "Lodosa Piquillo peppers" Origin Denomination. The application of sludges did not modify the concentration of vitamin C (ASC) in fruit, whereas the highest doses of composted sludge tended to increase the content of reduced (GSH) and oxidized (GSSG) glutathione, without change in the GSH/GSSG ratio. There were no effects of sludge on the transcript levels of enzymes involved in the synthesis of vitamin C, l-galactono-1,4-lactone dehydrogenase (GLDH) or in the ascorbate-glutathione cycle, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR). Results suggest that the synthesis and degradation of ASC and GSH were compensated for in most of the

  17. Sludge processing and storage facilities in the Bages region (Catalonia Spain); Instalaciones de transformacion y almacenaje de fangos del Bages

    Energy Technology Data Exchange (ETDEWEB)

    Carruza Perz, T.; Tomas i Puig, R.; Sana i Vilaseca, J.; More Ramos, J.C.

    1996-03-01

    The increasing number of waste water treatment plants means that there is a growing need to find solutions for the by-products they generate, particularly sludge. This article describes the sludge processing facilities of the Manresa-Sant Joan de Vilatorrada waste water treatment system. They are designed to convert the dehydrated sludge into easily handled products for use on the land in farming, gardening or other applications. The sludge is transformed by a composting process which is regulated to suit the particular end-use required. The values of the key characteristics of the treated products and their evolution during the process are presented an discussed. (Author)

  18. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  19. CONTAINER FOR USED TEXTILES

    CERN Multimedia

    Relations avec les Pays hôtes

    2000-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site.The Association has informed us that 2 530 kg of textiles were deposited in the container in 1998 and wishes to convey its warm gratitude to all donors.Relations with the Host StatesTel. 75152

  20. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m3 of closed anaerobic methane digested tank on pressed-shredded empty fruit bunch (EFB) composting process. AS Baharuddin, LS Hock, MZ Yusof, NAA Rahman, UK Shah, MA Hassan, M Wakisaka, K Sakai, Y Shirai ...

  1. Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process.

    Science.gov (United States)

    Maeda, Koki; Morioka, Riki; Osada, Takashi

    2009-01-01

    To control ammonia (NH(3)) volatilization from the dairy cattle (Bos taurus) manure composting process, a compost pile was covered with mature compost and the gas emissions evaluated using the dynamic chamber system. The peak of NH(3) volatilization observed immediately after piling up of the compost was reduced from 196 to 62 mg/m(3) by covering the compost pile with mature compost. The accumulation of NH(4)-N to the covered mature compost was also observed. Covering and mixing the compost with mature compost had no effect on the microbial community structure. However, over time the microbial community structure changed because of a decrease in easily degradable organic compounds in the compost piles. The availability of volatile fatty acids (VFA) was considered to be important for microbial community structure in the compost. After the VFA had disappeared, the NO(3)-N concentration increased and the cellulose degrading bacteria such as Cytophaga increased in number.

  2. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  3. Synergy of Uli Symbols and Textiles: An Exploration in Textile ...

    African Journals Online (AJOL)

    In this study explorative experiments were carried out in sculptural form using textile and textile related materials (Textile Sculpture) in order to invigorate these symbols adopting their meanings but giving them different place through innovative and creative process. Uli, a symbolic painting of female body provides unique ...

  4. Compost duurzaam ingezet. De Compost Scorekaarten: een instrument voor het afwegen van de waarde van compost

    OpenAIRE

    Schrik, Yannick; Koopmans, Chris

    2015-01-01

    Het duurzame gebruik van een reststof zoals compost hangt sterk samen met de waarde die de compost heeft bij toepassing. Deze publicatie geeft via heldere Compost Score Kaarten inzicht in het vinden van de juiste compostsoort voor het gewenste doel. Of het nu gaat om organischestofvoorziening, verbetering van de bodemstructuur of de nutriëntenvoorziening van gewassen: een bewuste keuze voor de compostsoort en –kwaliteit draagt bij aan een duurzame inzet en duurzaam hergebruik van reststoffen.

  5. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    The aerobic composting potential and quality of Source Separated Municipal Solid Waste (SSMSW) was studied using four different treatments for over 80 days. Four different types of treatments using different inoculums were used for the composting of source separated municipal solid waste. The phytotoxicity tests of the ...

  6. Temperature and final characteristics of composting process of the Municipal solid wastes; Evolucion de la temperatura y caracteristicas finales del co-compostaje de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, O.; Leon, J.J. de; Revilla, J.; Dobao, M.M.; Ruiz, J.L. [Departamento de Quimica Agricola y Edafologia, Universidad de Cordoba, cordoba (Spain)

    1996-06-01

    In this paper it has been studied the evolution of temperature in two depth of three piles during the composting process using the organic matter of the Municipal Solid Waste from Cordoba (Spain) from the selective harvest. The cited mixtures were composed of organic matter (<50 mm), sludge from the water treatment plant, pruning garden and bark of pine (bunking). Almost it has been obtained the yield of the composting piles and the agronomic quality of the compost obtained. The mixture organic matter <50 mm+pruning arden+bunking (M.P.B.) shoved the best index. (Author) 15 refs.

  7. Sustainability in the textile industry

    CERN Document Server

    2017-01-01

    This book examines in detail key aspects of sustainability in the textile industry, especially environmental, social and economic sustainability in the textiles and clothing sector. It highlights the various faces and facets of sustainability and their implications for textiles and the clothing sector.

  8. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  9. Phytosanitary risk assessment of composts

    NARCIS (Netherlands)

    Termorshuizen, A.J.; Rijn, van E.; Blok, W.J.

    2005-01-01

    Assessment of phytosanitary risks associated with application of composts in agriculture generally has focused on the sanitation (self-heating) phase during composting when most plant pathogens are inactivated due to lethal temperatures. However, a few plant pathogens are heat resistant and they may

  10. Innovation, entrepreneurship and textiles

    Science.gov (United States)

    Blanton Godfrey, A.; Pourmojib, S.

    2017-10-01

    Innovation and entrepreneurship have become increasingly important parts of economic development in almost every country, region, and community. In this research we investigate the reasons people become entrepreneurs in the textile and apparel industries and compare entrepreneurship in these industries with other industries looking also at the success factors for start up companies. During our research we found many disrupters, people entering the textile and apparel industries from outside often having no prior experience in textiles or apparel. We also investigate the impact of government intervention on entrepreneurship. In recognition of the large economic impact entrepreneurial companies have on economic development and job growth, almost all federal governments, regional governments, and community governments have created support for innovation and entrepreneurship.

  11. Strike It Rich with Classroom Compost.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  12. The Compost Pile Meets the 1990's.

    Science.gov (United States)

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  13. State of art and prospectives of composting; Stato dell`arte e prospettive del compostaggio

    Energy Technology Data Exchange (ETDEWEB)

    Canditelli, M. [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dip. Ambiente

    1995-10-01

    The report illustrates the importance of composting, as a technology for wastes disposal and resource recovery. The process of aerobic stabilization, microbial mechanisms and physic-chemical parameters characterizing such activities, have been described. Importance of separate collection and compost able compound selection in the optimization of this spontaneous biotechnology for biodegradable wastes and sludge treatment, is emphasized. It is to be noted that residues that it can be used as an appropriate management process that allow the utilization of different types of wastes, converting them into a good compost, a product seems to be fit both from agronomic and environmental point of view. Regulations in force both at national and regional levels (Lombardia, Piemonte, Veneto) as well as a course to revise the present legislation, particularly suggestion to introduce a certification system, identified by an agronomic-environmental quality-mark, have also been reported.

  14. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO2-C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C0 and k1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...... these issues and being able to account for them is a prerequisite in compost engineering and for establishing and running a successful composting facility. Of specific importance is the final use of the compost product. Use in agriculture is described in Chapter 9.10 and the use of compost in soil amendment...

  16. Energy Effectiveness Assessment of Composting Technologies

    OpenAIRE

    Plūme, I.

    2006-01-01

    The incorrect biomass composting improperly results in considerable emission of greenhouse gases, loss of effluent and composting heat into environment. The composting heat and gases utilisation is especially suitable for plant enrichment and heating of greenhouses. The mathematical model is worked out for assessment of energy effectiveness and sustainability of biomass composting process. Coefficient of energy effectiveness for traditional litter manure composting technologies is 0.45 and ca...

  17. Hemp for textiles

    NARCIS (Netherlands)

    Westerhuis, W.

    2016-01-01

    Abstract Key words: Cannabis sativa L., day length sensitivity, fibre hemp, genotype, harvest time, plant density, plant weight, primary fibres, secondary fibres, sowing date, textiles. Westerhuis, W. (2016)

  18. Novel antimicrobial textiles

    Science.gov (United States)

    Cho, Unchin

    2003-10-01

    Many microorganisms can survive, and perhaps proliferate on textiles, generating adverse effects such as: disease transmission, odor generation, pH changes, staining, discoloration and loss of performance. These adverse effects may threaten users' health, deteriorate textile properties and degrade service quality. It may, therefore, be desirable to incorporate antimicrobials on textiles for controlling the growth of microorganisms. This dissertation focuses on the development of antimicrobial fibers and fabrics by integration of antimicrobials with these textiles. The applications of hydantoin-based halamines were mainly investigated in the research. The typical process is that hydantoin containing compounds are grafted onto textiles and transformed to halamine by chlorination. Hydantoin-based halamines are usually chloramines that release chlorine (Cl+) via cleavage of the -NCl functional group which attacks and kills microbes. The antimicrobial behavior is rechargeable many times by rinsing the fiber or fabric with chlorine-containing solution. Some quaternary ammonium type antimicrobials were also investigated in this research. The choice of integrating techniques is dependant on both the textile and antimicrobial compounds. In this dissertation, the nine approaches were studied for incorporating antimicrobial with various textiles: (1) co-extrusion of fibers with halamine precursor additive; (2) grafting of the quaternary ammonium compounds onto ethylene-co-acrylic acid fiber for creating quaternary ammonium type antimicrobial fiber; (3) entrapment of the additives in thermally bonded bicomponent nonwoven fabrics; (4) attaching antimicrobial additives to surfaces with latex adhesive coating; (5) grafting of antimicrobial compounds onto rubber latex via UV exposure; (6) reaction of halamine with needle-punched melamine formaldehyde nonwoven fabric and laminates; (7) coating melamine resin onto tent fabrics and laminates; (8) synthesis of super absorbent polymer

  19. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices

    National Research Council Canada - National Science Library

    Jieying Huang; Zixuan Yu; Hongjian Gao; Xiaoming Yan; Jiang Chang; Chengming Wang; Jingwei Hu; Ligan Zhang

    2017-01-01

    Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated...

  20. Efficacy of microorganisms selected from compost to control soil-borne pathogens.

    Science.gov (United States)

    Pugliese, M; Gullino, M L; Garibaldi, A

    2010-01-01

    Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results

  1. Textile industry and occupational cancer.

    Science.gov (United States)

    Singh, Zorawar; Chadha, Pooja

    2016-01-01

    Thousands of workers are engaged in textile industry worldwide. Textile industry involves the use of different kinds of dyes which are known to possess carcinogenic properties. Solvents used in these industries are also associated with different health related hazards including cancer. In previous studies on textile and iron industries, the authors have reported genotoxicity among them and observed occurrence of cancer deaths among textile industry workers. Thus, an attempt has been made to compile the studies on the prevalence of different types of cancers among textile industry workers. A wide literature search has been done for compiling the present paper. Papers on cancer occurrence among textile industry workers have been taken from 1976 to 2015. A variety of textile dyes and solvents, many of them being carcinogenic, are being used worldwide in the textile industry. The textile industry workers are therefore, in continuous exposure to these dyes, solvents, fibre dusts and various other toxic chemicals. The present study evaluates the potential of different chemicals and physical factors to be carcinogenic agents among occupationally exposed workers by going through various available reports and researches. Papers were collected using different databases and a number of studies report the association of textile industry and different types of cancer including lung, bladder, colorectal and breast cancer. After going through the available reports, it can be concluded that workers under varied job categories in textile industries are at a higher risk of developing cancer as various chemicals used in the textile industry are toxic and can act as potential health risk in inducing cancer among them. Assessing the cancer risk at different job levels in textile industries may be found useful in assessing the overall risk to the workers and formulating the future cancer preventive strategies.

  2. LCA case study on lawn establishment and maintenance with various peat and compost contents in substrates.

    Science.gov (United States)

    Silvenius, Frans; Niemeläinen, Oiva; Kurppa, Sirpa

    2016-07-01

    The environmental impacts of the establishment and maintenance of lawn, including the production and use of various substrates, were analyzed by life cycle assessment (LCA). The project focused on comparing substrates with different peat and compost contents using pilot substrates and developed a calculation tool to optimize landscaping from an ecological perspective. The impact categories were climate change, aquatic eutrophication, acidification, and use of primary energy. Life cycle assessment methodology and ISO standards 14040 and 14044 were used. Two thousand tons of substrates per hectare of lawn area were assumed to be needed; this large amount explains the importance of the substrate properties for all of the impact categories. Degradation of peat was the most significant factor of the influence of climate; thus, the most effective means of reducing the impact of landscaping on climate is to replace peat with compost. Nitrous oxide and methane emissions were related to the use of compost, but most of these emissions will occur regardless of how the sludge or biowaste is treated. Ammonia emissions from composting were the most important factor for acidification. The significance of fuel consumption by machinery in lawn establishment and mowing was low. The high contents of N and P in compost-based substrates may lead to high nutrient emissions into water systems, which can have significant local impact. The tool helps optimize substrate contents to minimize the environmental effects. Integr Environ Assess Manag 2016;12:459-464. © 2016 SETAC. © 2016 SETAC.

  3. Aplicação conjunta de tratamento anaeróbio termofílico por lodo granular e de mediadores redox na remoção de cor de águas residuárias têxteis Applicability of both thermophilic treatment by anaerobic granular sludge and redox mediators on colour removal of textile wastewaters

    Directory of Open Access Journals (Sweden)

    André Bezerra dos Santos

    2005-09-01

    Full Text Available Investigou-se o efeito de diferentes mediadores redox na remoção de cor de corantes azo pelo uso de lodo granular anaeróbio sob condições mesofílicas (30ºC e termofílicas (55ºC. Adicionalmente, estudou-se em ambas temperaturas, o efeito de diferentes doadores de elétrons nos processos de descoloração. Comprovou-se em tais processos um impacto marcante da adição de concentrações catalíticas de mediadores redox, aumentando a cinética da reação em até 1 ordem de magnitude. Comparado com tratamento mesofílico, remoções de cor sob condições termofílicas foram extremamente aceleradas, além de o impacto dos mediadores redox ser consideravelmente diminuído à 55ºC. Por exemplo, em experimento de fluxo contínuo, eficiências de remoção em torno de 95% e 56% foram obtidas à 55ºC e 30ºC, respectivamente, na ausência de qualquer mediador redox. Hidrogênio se mostrou extremamente efetivo como doador de elétrons para o processo de descoloração redutiva de corantes azo quando comparado com glicose, formiato e acetato. Os resultados obtidos nesta investigação trazem boas perspectivas para o uso conjunto de reatores anaeróbios sob condições termofílicas e de mediadores redox no pré-tratamento das águas residuárias de indústrias têxteis.The use of different redox mediators on colour removal of azo dyes by anaerobic granular sludge was investigated under mesophilic (30ºC and thermophilic (55ºC conditions. Additionally, the use of different electron donors on the reductive decolourisation was studied in both temperatures. The addition of catalytic concentrations of redox mediators had an evident impact on the decolourisation process, enhancing the rates up to one order of magnitude. Compared to mesophilic conditions, colour removal under thermophilic conditions was extremely accelerated, and the impact of redox mediators on the decolourisation rates was considerably decreased at 55ºC. For instance, in a

  4. Compost for steep slope erosion.

    Science.gov (United States)

    2008-06-01

    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  5. Emotional Value of Applied Textiles

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2011-01-01

    textiles. 2) Understanding and exploring emotional value related to design of applied textiles. In chapter four I argue – based on Jesse Prinz’s and Antonio Damasio’s emotion research – for a perception of emotional value of applied textiles which acknowledges bodily feedback as a core concept...... at Gabriel face while trying to implement an innovative and process-oriented business strategy. The focal point has been the section of the strategy which aims at developing Blue Ocean products, which have a functional and an emotional value for the user. The thesis examines and explores emotional value...... of applied textiles. The objective is to operationalise the strategic term ‘emotional value’ as it relates to applied textiles. The procedure includes the development of user- and stakeholder-centred approaches, which are valuable for the textile designer in the design process. The research approach...

  6. Treatment of textile wastes

    OpenAIRE

    Srebrenkoska, Vineta; Krsteva, Silvana; Golomeova, Saska

    2013-01-01

    The production of a textile requires several stages of mechanical processing such as spinning, weaving, knitting, and garment production, which seem to be insulated from the wet treatment processes like pretreatment, dyeing, printing, and finishing operations. Тhere is a strong interrelation between treatment processes in the dry state and consecutive wet treatments. Most of the processes and products have a negative impact on the environment. Laws and standards for environmental protection a...

  7. CHANGES IN THE CONTENTS OF SELECTED HEAVY METALS IN TEST PLANTS FERTILISED WITH SEWAGE SLUDGE AND HARD COAL ASH

    Directory of Open Access Journals (Sweden)

    Agnieszka Godlewska

    2017-03-01

    Full Text Available The study aimed at determining changes in the contents of selected metals in the biomass of test plants due to fertilisation with fresh and composted sewage sludge, hard coal ash, and sludge-ash mixture, as well as liming at a background of mineral nutrition. The experimental design was a completely randomised arrangement with three replicates. The following factors were examined: fertilisation with organic and mineral materials (fresh sewage sludge; composted sewage sludge; hard coal ash; calcium carbonate and mineral fertilisation (no fertilisation; NPK fertilisation. An application of sewage sludge, hard coal ash, and sludge-ash mixture significantly increased maize content of barium. Addition of hard coal ash into sewage sludge contributed to an increase in lead content determined in cocksfoot biomass harvested from the first and second cut, and barium in maize biomass. Soil liming significantly affected barium content the biomass of plants harvested from the first and second cut, as well as in maize biomass. NPK nutrition significantly increased barium concentrations in the biomass of test plants and maize.

  8. 21 CFR 177.2800 - Textiles and textile fibers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Textiles and textile fibers. 177.2800 Section 177.2800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use...

  9. Textiles and clothing sustainability recycled and upcycled textiles and fashion

    CERN Document Server

    2017-01-01

    This book discusses in detail the concepts of recycling and upcycling and their implications for the textiles and fashion sector. In addition to the theoretical concepts, the book also presents various options for recycling and upcycling in textiles and fashion. Although recycling is a much-developed and widely used concept, upcycling is also gaining popularity in the sector.

  10. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  11. Effect of sludges on bacteria in agricultural soil. Analysis at laboratory and outdoor lysimeter scale.

    Science.gov (United States)

    Kuntz, Jérôme; Nassr-Amellal, Najat; Lollier, Marc; Schmidt, Jens Ejbye; Lebeau, Thierry

    2008-02-01

    The effect of composted (CS), digested (DS) and liquid raw (LRS) sludges unspiked or spiked with benzo[a]pyrene(BaPYR), dibuthyl phthalate (DBP) or nonyl phenol (NP) on the structure of the bacterial communities of an agricultural soil was estimated by using thermal temporal gel electrophoresis (TTGE). At the laboratory scale, DS and especially LRS modified the composition of the bacterial communities (irrespective of the addition of BaPYR, DBP or NP or not). Sludges, especially LRS, very probably acted both as a bacterial inoculum and a nutrient source. The combined effect was transient in the laboratory conditions probably due to the favorable conditions of mineralization. The results observed with soil amended with the same sludges and cultivated or not with carrots in outdoor lysimeters were similar to those observed in the laboratory experiments. Thus, this bioassay allowed predicting the potential effect of various sludges on the structure of the bacterial communities within a few days.

  12. Problems of sewage sludge combustion; Problemas sobre la incineracion de lodos de depuradora

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, O.

    2002-07-01

    From the 55 million Mg sewage sludge (5% solids (Ds) 2,7 Mg DS/a), produced per year in the FRG out of 10.273 sewage plants 13% are dumped, 68% agricultural used or composted the remaining 19% treated (data 1997). Municipal sludge which has been pre-treated in different way is currently being incinerated on its town (mono) in third teen fluidized bed incinerators and one multi stage furnace as well as one combination of these two types. Another fluidized bed incinerator is planned for the near future. Domestic refuse and sewage sludge are co-incinerated (mixed) in twelve grate fired incineration plants in Germany. The combined incineration of sewage sludge and brown or hard cola as an acceptable solution for a high throughput is practised in 3 power plants and planned in another 11 plants. (Author)

  13. FACTORS INFLUENCING COMPOSTING POULTRY WASTE

    Directory of Open Access Journals (Sweden)

    Michał Kopeć

    2015-11-01

    Full Text Available Organic recycling of waste, taking into account sanitary safety, should be a fundamental method for recovering the nutrients present in the waste for plants and organic matter. It also refers to by-products of animal origin, which are not intended for consumption by humans. In the present research , composting of hydrated poultry slaughterhouse waste with maize straw was carried out. A combination with fodder yeast and post-cellulose lime was also introduced, which modified chemical and physico-chemical properties of the mixtures. The experiment was carried out by recording the biomass temperature for 110 days in 1.2×1.0×0.8 m reactors with perforated bottoms enabling active aeration. The following parameters were taken into consideration in the composted material: carbon, nitrogen, sulfur, respiratory activity, microorganisms, fractions of compost obtained after washing on sieves. Small amounts of fodder yeast favoured the development of microorganisms and caused a sanitary risk in the final product. At the initial stage, the temperature of raw compost in that object was several degrees lower than in the case of the composted mass without yeast addition. The addition of post-cellulose lime at ratios 6.5:1:6.5 (maize straw: poultry slaughterhouse waste: post-cellulose lime caused a change in the time of microbiological activity, and led to its inhibition in the final process. In comparison to objects with poultry waste, the highest degree of hygienization was found in the compost with post-cellulose lime (with pH close to neutral. By adjusting the ratios of substrates we can influence the microbiological activity, but the amounts of individual substrates should be determined taking into account the quality of the obtained compost.

  14. CO2 emission from soil after reforestation and application of sewage sludge

    Directory of Open Access Journals (Sweden)

    Janaina Braga Carmo

    2014-09-01

    Full Text Available This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE, sewage sludge compost (CLE, mineral fertilizer (AM and no fertilization (T0. The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0 with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae. Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001, as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005. The AM treatment (4.96±1.61 g C m- 2 day- 1 had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1. CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.

  15. Greening textile industry in Vietnam

    NARCIS (Netherlands)

    Nguyen Thi Phuong, L.

    2011-01-01

        The textile and garment industry has made a remarkable contribution to the economic development of Vietnam and employs currently a large labor force of 2.5 million people.However, the textile industry is also seen as a most polluting and unsustainable industry due to the use of

  16. Chemical transformations of organic matter during the composting of wood industry wastes (residues); Transformacoes quimicas da materia organica durante a compostagem de residuos da industria madeireira

    Energy Technology Data Exchange (ETDEWEB)

    Budziak, Cristiane R.; Maia, Claudia M.B.F.; Mangrich, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: mangrich@quimica.ufpr.br

    2004-06-01

    Composting of sawdust and paper mill sludge, using a 'Kneer' process reactor, was studied in an attempt to elaborate upon organic matter transformation during the process and to define parameters to measure the compost maturity level. Temperature, electron paramagnetic resonance data, ash and C, H, N and S contents, and a spectroscopic method using ultraviolet-visible (UV-VIS) for alkaline (pH = 8.5) and solid samples was used to study the maturity of the compost samples. These parameters were measured in 6 humic acids extracted from the compost samples during 29 days. The results of this work show that the 'Kneer' process is efficient in transforming ligno-celulitic residues in a short time (29 days), into an organic fertilizer material with application perspectives (author)

  17. Identificación de hongos fitopatógenos y presencia de salmonella sp en compost de plantas de tratamiento de aguas residuales

    Directory of Open Access Journals (Sweden)

    Jorge Antonio Silva-Leal

    2007-01-01

    Full Text Available This study shows adapted methodologies to identify of phytopathogens fungi (Botrytis spp, Fusarium sp., Phytophthora sp., Rhizoctonia sp and bacteria as Salmonella sp. Presence of mentioned microorganism was evaluated in compost samples produced from dewatering primary sludge, generated in Cañaveralejo Wastewater Treatment Plant -WWTPC. The adapted methodologies shown that the appropriate dilutions for isolation of phytopathogens fungi in compost are 10-3,10-4and 10-5 and the most appropriated selective culture medium for the salmonella sp identification is the Salmonella-Shigella agar. Fusarium sp was the only phytopathogens fungi founded in compost; Salmonella sp was also founded. Therefore, it is recommended the quantification in order to define the concentrations that can cause health problems; additionally, it is necessary sanitization of compost for use in agriculture, mainly in industrial crops.

  18. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Figure 3. Changes in the respiration rates of compost inhabiting microorganisms during composting. Values are means of three replicates ± 1 Standard Error. Table 1. Changes in the C:N ratios of compost mixture during incubation. Treatment. 0. 6 Months. 12 Months. 18 Months. Contaminated soil (control ...

  19. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    Science.gov (United States)

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  20. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture,

  1. Modeling composting kinetics: A review of approaches

    NARCIS (Netherlands)

    Hamelers, H.V.M.

    2004-01-01

    Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and

  2. Management of sewage sludge and mineral nitrogen in soil fertility over time

    Directory of Open Access Journals (Sweden)

    Thomaz Figueiredo Lobo

    2013-12-01

    Full Text Available The use of sewage sludge is a practice highly promising for the development of sustainable agricultural systems. The objective of this study was to assess the improvement in soil fertility management strategies on different sewage sludge and mineral nitrogen after seven application of this residue. The experiment was carried at the São Manuel Experimental Farm belonging to the faculty of Agronomic Sciences of UNESP, Botucatu, located in the county of São Manuel. It was adopted the experimental design in a randomized blocks consisting of six treatments and five repetitions defined as follows: T0 – without nitrogen fertilizer, T1 – mineral fertilizer nitrogen according to the crop needs, T2 – 50% nitrogen from sewage sludge and 50% in the form of chemical fertilizer, T3 – 100% of nitrogen recommended by the culture, from sewage sludge, T4 - 150% of nitrogen recommended by the culture, from sewage sludge and T5 – 200% of the nitrogen from the sewage sludge. It has done seven application of sewage sludge in crop (year 1 – sunflower, year 2 sunflower, year 3 – oats and bean, year 4 – triticale and sunflower, year 5 – wheat and the first three applications were treated with sewage sludge and the other applications were composted sludge. In the depth 0-20 cm, the sewage sludge promoted an increase in levels of organic matter, P, S, H+Al, CEC and decreased in soil pH. In the depth of 20 to 40 cm the sewage sludge promoted a decrease in pH and increase in soil organic matter, P, H+Al, K, Ca, SB, CEC and S. Mineral N influence the increase in the depth S of 20-40 cm.

  3. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms.

    Science.gov (United States)

    Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish

    2010-10-01

    Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.

  4. Presence of helminth eggs in sewage sludge from waste water plants; Presencia de huevos de helmintos en lodos procedentes de la depuracion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Muro, J. L.; Garcia Orenes, F.; Nieto Asensio, N.; Bonora, I. B.; Morenilla Martinez, J. J.

    2003-07-01

    Land application of sewage sludge is a usual practice in wide areas of the Comunidad Valencia, due the low organic contents and nutrients of the soils, and the sewage sludge is a suitable material to use os organic amendment of soils. However the use of sewage sludge involves a very detailed characterization of sewage, to avoid sanitary hazards as the presence of helminth eggs and its high resistant to most of the treatment used to stabilize sewage sludge. The aim of this work was determine the parasitic contamination of helminths found in sewage sludge, stabilized by anaerobic digestion, from two waste water plants of Alicante (Alcoy y Benidorm) destined to agricultural land. Also it was studies the evolution of helminth eggs content of a sewage sludge subjected to composting process. (Author) 12 refs.

  5. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  6. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Polina Galitskaya

    Full Text Available Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil and one discriminate component (sewage sludges of different origin were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2 x 106 and (0.4±0.0 x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0 x105 and (6.1±0.2 x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was

  7. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Physical tools for textile creativity and invention

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen; Lenau, Torben Anker

    2010-01-01

    Two textile research projects (one completed and one ongoing) are described, where physical inspirational tools are developed and tested with the aim of stimulating textile creativity and invention, i.e. the use of textile materials in new kinds of products, thus bringing textiles into new contexts...

  9. The Mycenaean Palace-Organised Textile Industry

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    2008-01-01

    Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings.......Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings....

  10. K basins sludge removal sludge pretreatment system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.

  11. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  13. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...

  14. In situ modeling of PAH dynamics in agricultural soils amended with composts using the "VSOIL" platform

    Science.gov (United States)

    Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Deschamps, Marjolaine; Benoit, Pierre; Garnier, Patricia

    2017-04-01

    Numerous studies have shown the presence of organic pollutants (OPs) in composts. Compost application in agricultural soil generates flux of OPs and among them polycyclic aromatic hydrocarbons (PAHs). A potential accumulation of PAHs in soils from successive compost applications could imply risks to environment. To explore and design scenarios that help land managers in their impact evaluations when composts are added in soils, there is a need to a new generation of models built from multi-modules that mimic the whole interactions between the different processes describing OP dynamic in soil. Our work is based on the implementation of an interdisciplinary global model for PAHs in soil by coupling modules describing the major physical, biochemical and biological processes influencing the fate of PAHs in soil, with modules that simulate water transfer, heat transfer, solute transport, and organic matter transformation under climatic conditions. The coupling is being facilitated by the «VSOIL» modeling platform. The steps of our modelling study are the following: 1) calibrate the field model using parameters previously estimated in laboratory completed with field data on a short period, 2) test the simulations using field experimental data, 3) build scenarios to explore the impact of PAHs accumulation in a long term (40 years). Our results show that the model can adequately predict the fate of PAHs in soil and can contribute to clarify some of unexplored aspects regarding the behavior of PAHs in soil like their mineralization and stabilization. Scenarios that predict the dynamic of PAHs in soil at long terms show a low PAH accumulation in soil after 40 years due to a high sequestration of the PAH in soils that is slightly higher for municipal solid waste composts than for green waste sludge composts.

  15. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    Science.gov (United States)

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage...

  17. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Tong, Juan; Buhe, Chulu; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2016-12-01

    Sewage sludge is considered as one of major contributors to the increased environmental burden of ARGs. Sludge bio-drying was increasingly adopted due to its faster sludge reduction compared with composting. The fate of ARGs during full-scale sludge bio-drying was investigated to determine whether it could effectively reduce ARGs, and the contributions of bacterial community, horizontal gene transfer (HGT) through mobile genetic elements (MGEs) and co-selection from heavy metals to ARGs profiles were discussed in detail. Two piles with different aeration strategies (Pile I, the improved and Pile II, the control) were operated to elucidate effects of aeration strategy on ARGs profiles. Results showed that sludge bio-drying could effectively reduce both most of targeted ARGs (0.4-3.1 logs) and MGEs (0.8-3.3 logs) by the improved aeration strategy, which also enhanced both the sludge bio-drying performance and ARGs reduction. The enrichment of ARGs including ermF, tetX and sulII could be well explained by the evolution of bioavailable heavy metals, not HGT through MGEs, and their potential host bacteria mainly existed in Bacteroidetes. Although changes of bacterial community contributed the most to ARGs profiles, HGT through MGEs should be paid more attention especially in the thermophilic stage of sludge bio-drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties are not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges.

  19. Evaluation of Composting Process and Quality of Compost from ...

    African Journals Online (AJOL)

    Coffee pulp and husk are the main by-products generated by the coffee processing station and are disposed into arable land and surface water. Due to the contribution of these by-products to environmental pollution, environmentally friendly disposal methods are necessary. Therefore, composting as environmental friendly ...

  20. Assessment of bacterial diversity during composting of agricultural byproducts

    OpenAIRE

    Chandna, Piyush; Nain, Lata; Singh, Surender; Kuhad, Ramesh Chander

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of differen...

  1. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    Science.gov (United States)

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  2. Textile production in Quartier Mu

    DEFF Research Database (Denmark)

    Cutler, Joanne Elisabeth; Andersson Strand, Eva Birgitta; Nosch, Marie-Louise Bech

    2013-01-01

    , geographical and chronological factors.  In contrast, recent research has considered some aspects of shape as an expression of loom weight function. This new approach, which draws on experimental archaeology, has made it possible to render textile craft visible, even if the textiles themselves...... are not preserved (Mårtensson et al. 2009). It is this approach that has been adopted in the following analysis of the loom weights from Quartier Mu. The chapter divided into four parts. The first part gives an outline of general textile techniques and presents the methodology. The second part consists...

  3. Auxetic warp knit textile structures

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, Kim; Alderson, Andrew; Anand, Subhash; Simkins, Virginia; Nazare, Shonali; Ravirala, Naveen [Institute for Materials Research and Innovation, The University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom)

    2012-07-15

    The design, manufacturing and characterization of warp knit textile structures with enhanced drapeability and energy absorption is reported in this paper. Four textile structures were produced, all based on a triangular or double arrowhead structure, which is known to lead to a negative Poisson's ratio {nu}. Mechanical testing has confirmed that textile structures can be produced which are auxetic at {+-} 45 to the warp direction, with {nu} of up to -0.22 {+-} 0.03. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    Science.gov (United States)

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  5. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  6. Compared Biochar and Compost effects on plant growth and soil factors as reported for three consequent greenhouse trial setups

    Science.gov (United States)

    Schulz, H. S.; Glaser, B. G.

    2012-04-01

    sand control (factor: 0.8) and the highest biochar applications yielded 13.8 times the seed harvest of the sand compost (10.4 times sand control). We will try to present possible explanations for those results based on TOC, TN, pH, NO3, NH4 and electrical conductivity data. - Bridle, T.R., Pritchard, D., 2004. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology 50, 169-175. - Glaser, B.; Lehmann, J.; Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 35, 219-230. - Lehmann, J. and Joseph, S. (eds.) (2010): Biochar for environmental management. Science and technology. Earthscan. London.

  7. Moisture relationships in composting processes

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.

    2002-01-01

    Moisture is a key environmental factor that affects many aspects of the composting process. Biodegradation kinetics are affected by moisture through changes in oxygen diffusion, water potential and water activity, and microbial growth rates. These relationships are made more complex by the dynamic

  8. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  9. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Nawaz

    2014-09-01

    Full Text Available Toxic organic dye removal from the textile wastewater is a serious concern. It is difficult to choose a single or a combination of treatment techniques between various available options; each with certain advantages and drawbacks. Six different techniques were applied on the same textile wastewater to evaluate the most effective in terms of treatment efficiency. The three most important textile wastewater quality parameters of chemical oxygen demand (COD, total suspended solids (TSS and color were made the basis of the comparison of different treatment techniques. Other critical parameters such as treatment time, ease of operation and chemical cost employed were also considered. No single biological or physico-chemical treatment technique was found capable of removing up to 80% of the influent COD, TSS and color simultaneously from the textile wastewater. The conventional activated sludge (CAS treatment followed by effluent polishing with the sand filtration (SF and activated carbon adsorption columns was proved to be the most promising with COD, TSS and color removal efficiencies of 81.6%, 88.5% and 94.5% respectively. Moreover this combination of techniques enjoys lower chemical cost, medium operation time and fewer difficulties in the process control. Hence, the combination is recommended for the treatment of the textile effluents.

  10. TEXTILE IMPACT PLATES FOR NANOPARTICLES

    National Research Council Canada - National Science Library

    VISILEANU Emilia; DUMITRESCU Iuliana; VARZARU Elena; MITRAN Cornelia; CHIRIAC Laura

    2017-01-01

    The paper presents textile materials with destination impact plates, having different surface architectures and active treatments for functionalization, with influence upon the aging process of nano-Ag and nano-CeO2...

  11. Textile Manufacturing Sector (NAICS 313)

    Science.gov (United States)

    Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.

  12. Toepassingsmogelijkheden van compostering in de ecologische varkenshouderij : een milieutechnische benadering

    NARCIS (Netherlands)

    Hilkens, W.

    1993-01-01

    Student report in which the possibilities of composting for a pig farming system in Gemert, The Netherlands, with an ecological basis, are investigated. The process of composting and different composting systems were evaluated

  13. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  14. Remediation of metal polluted mine soil with compost: co-composting versus incorporation.

    Science.gov (United States)

    Tandy, Susan; Healey, John R; Nason, Mark A; Williamson, Julie C; Jones, Davey L

    2009-02-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.

  15. The effects of compost and compost extract on soil properties and lettuce growth.

    OpenAIRE

    CAVOSKI, Ivana

    2004-01-01

    The work was conducted at the experimental field of the Mediterranean Agronomic Institute of Bari, Italy in 2004. The aim was to study the effects of compost and compost extract on soil properties and lettuce growth. The chemical, biological and phytotoxic tests of compost extract proved its high selected soil properties (pH, EC, Organic matter, available nutrients, cations and anions contents) markedly with depth and time, the most prominent changes showed by compost extract application. Th...

  16. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  17. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility.

    Science.gov (United States)

    Alburquerque, J A; de la Fuente, C; Bernal, M P

    2011-03-01

    Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Compost spreading in Mediterranean shrubland indirectly increases biogenic emissions by promoting growth of VOC-emitting plant parts

    Science.gov (United States)

    Olivier, Romain; Lavoir, Anne-Violette; Ormeño, Elena; Mouillot, Florent; Greff, Stéphane; Lecareux, Caroline; Staudt, Michael; Fernandez, Catherine

    2011-07-01

    We investigated the effect of sewage sludge compost spreading on plant growth and leaf terpene emissions and content of Quercus coccifera, Rosmarinus officinalis and Cistus albidus in a Mediterranean shrubland. Measurements were performed during 3 consecutive summers on 2 different plots treated in 2002 or 2007 with 50 or 100 tons of compost per hectare, corresponding to observations carried out 2 months to 7 years after spreading. A slight nutrient enrichment of soil and leaves ( R. officinalis and C. albidus) was observed, especially for phosphorous. Terpene emissions were not affected by compost spreading, although they tended to increase on treated plots after 6 and 7 years for R. officinalis and C. albidus respectively. Terpene content was not affected by any compost treatment. Leaf and stem growth were significantly enhanced by compost spreading after 2 and/or 7 years in all species with little difference between doses. Total leaf biomass on the last growth units was increased by more than 50% in C. albidus and more than 90% in Q. coccifera. The results suggest that compost spreading in Meditteranean shrublands has no or little direct effect on leaf terpene emissions, but indirectly leads to their increase through leaf biomass enhancement. Simulation of terpene emissions at stand level revealed an increase of terpene fluxes ranging between 6 and 13%, depending on the plant species. Overall, compost spreading was assessed to result in an emission rate of 1.1 kg ha -1 y -1 for a typical Q. coccifera shrubland, but can reach 2.6 kg ha -1 y -1 for a typical R. officinalis shrubland.

  19. Sludge treatment studies

    Energy Technology Data Exchange (ETDEWEB)

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  20. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  1. Degradation rates in thermophilic sludge processing - the liquid and the solid way

    Energy Technology Data Exchange (ETDEWEB)

    Mihaltz, P.; Kovacs, R.; Csikor, Zs.; Dahab, M.F.

    2003-07-01

    Two promising and well known techniques for sludge stabilization and pathogen destruction, the composting and autothermal thermophilic aerobic digestion (ATAD, often referred to as ''liquid composting'') have not yet undergone a comparative parallel study. This comparison is presented in this paper to identify - sometimes unusually (e.g. up to 30 mg O{sub 2} /gVS h) high - degradation rates, their main influencing parameters. For the ATAD we developed a well fitting modified two-substrate kinetic model quantitatively describing this process feature too - the clear signs of two substrate degradation also appears in most own and literature composting records. However compost process modelling needs as a prerequisite the clarification of the controlling transport mechanisms. Experimental conclusions suggest the dual role of local VS limitation closely connected with, but being behind the strong observed oxygen limitation, what is proposed for the explanation of composting process rates - essentially based on specific surface area controlled transport phenomena, justifying efforts to conduct the process at lower (<20 to 25%) moisture content and higher (>1000 1/m) specific surface area levels. (author)

  2. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  4. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus

    NARCIS (Netherlands)

    Jurak, E.; Kabel, M.A.; Gruppen, H.

    2014-01-01

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore,

  5. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    Science.gov (United States)

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  6. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    Science.gov (United States)

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  7. Sludge Stabilization Campaign blend plan

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, M.L.

    1994-10-04

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material.

  8. Phthalic acid and benzo[a]pyrene in soil-plant-water systems amended with contaminated sewage sludge

    DEFF Research Database (Denmark)

    Mougin, C.; Dappozze, F.; Brault, A.

    2006-01-01

    We studied the fate of C-14-labelled phthalic acid and benzo[a]pyrene applied to the soil by the way of contaminated sewage sludge in model ecosystems allowing the simultaneous assessment of physicochemical and biological descriptors. Here we show that the mineralisation of phthalic acid is higher...... than 30% after 90 days in the situation of direct soil contamination, amendment with contaminated digested or composted sludge. It is reduced to 10% in the presence of the raw sludge. In that case, the values of phospholipidic fatty acids and dehydrogenase activity are the highest. By contrast, benzo......[a]pyrene is recalcitrant to biodegradation whatever the type of soil contamination. We show also that the chemicals present in the sludge are poorly transferred to soil leachates and plant seedlings....

  9. The presence of insect at composting

    Science.gov (United States)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  10. An Overview of Organic Waste in Composting

    OpenAIRE

    Kadir Aeslina Abdul; Azhari Nur Wahidah; Jamaludin Siti Noratifah

    2016-01-01

    This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organi...

  11. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  12. Optimization of Composting for Explosives Contaminated Soil

    Science.gov (United States)

    1991-09-30

    required for implementation of j composting as a cost- effective alternative to incineration. All three explosives present at UMDA demonstrated...into the mixture to be composted and/or the contaminants must be degraded at a higher rate. To increase the rates of degradation either more effective ...microorganisms with more effective metabolic pathways/enzymes are available and will function well in a compost matrix), optimizing the composition of the

  13. Composting of Explosives-Contaminated Soil Technology

    Science.gov (United States)

    1989-10-01

    dinitrotoluenes) and to evaluate the influence of temperature upon composting effectiveness . This study demonstrated that the bioconversion of explosives under... effected primarily by mechanical turning of the compost , clcsely regulated temperature regimes in such a system may be difficult to achieve. In aerated...treatment processes, the feasibility and economics of composting will be directly influenced by the length of time required for treatment. Treatment

  14. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  15. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    Science.gov (United States)

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  16. Compostability of bioplastic packaging materials: an overview.

    Science.gov (United States)

    Kale, Gaurav; Kijchavengkul, Thitisilp; Auras, Rafael; Rubino, Maria; Selke, Susan E; Singh, Sher Paul

    2007-03-08

    Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost

  17. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  18. The Learning of Compost Practice in University

    Science.gov (United States)

    Agustina, T. W.; Rustaman, N. Y.; Riandi; Purwianingsih, W.

    2017-09-01

    The compost as one of the topics of the Urban Farming Movement in Bandung city, Indonesia. The preliminary study aims to obtain a description of the performance capabilities and compost products made by students with STREAM (Science-Technology-Religion-Art-Mathematics) approach. The method was explanatory sequential mixed method. The study was conducted on one class of Biology Education students at the one of the universities in Bandung, Indonesia. The sample was chosen purposively with the number of students as many as 44 people. The instruments were making Student Worksheets, Observation Sheets of Performance and Product Assessment, Rubric of Performance and Product, and Field Notes. The indicators of performance assessment rubrics include Stirring of Compost Materials and Composting Technology in accordance with the design. The product assessment rubric are a Good Composting Criteria and Compost Packaging. The result of can be stated most students have good performance. However, the ability to design of compost technology, compost products and the ability to pack compost are still lacking. The implication of study is students of Biology Education require habituation in the ability of designing technology.

  19. EXERGY OF TEXTILE MATERIALS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The article presents solution for the task of evaluating exergy of the substance in the flow for textile and woven fabrics based on thermodynamic analysis of the corresponding technical systems. The exergy method allows estimating the energy effectiveness for the most problematic heat-technological systems of substance transformation and thus outlining the ways for decreasing the electric-power component in the production prime cost. The actuality of the issue stems from the renowned scenario alteration on the world energy market and is aggravated by necessity of retaining and building up the export potential of the light industry as an important component of the republic national-economic complex. The exergy method has been here for quite a long time and saw the interest fading and appearing again with periodicity of the research-generations alternation. Cooling down of every new generation towards the specified method is explained mostly by unresolved problem of the exergy evaluation for diverse materials, which poses a problem in the course of analysis of the substance transformation systems. The specified problem as a general rule does not create obstacles for energyconversion systems. However, the situation with substance-transformation systems is by far more complicated primarily due to diversity of the materials and respectively of the specification peculiarities of such component of the substance exergy in the flow as chemical component. Abeyance of conclusion in finding the chemical component of the substance exergy does not allow performing thermodynamic valuation of the energy provision for the heat-technological process in full measure. Which complicates the matters of decision-making and finding a medium for reduction of their energy consumption. All stated above relates to the textile industry and in the first instance to the finishing production departments.The authors present the exergy-evaluation problem solution for the

  20. North European Symposium for Archaeological Textiles X

    DEFF Research Database (Denmark)

    Proceedings of the Tenth North European Symposium for Archaeological Textiles, held in Copenhagen, 14-17 May 2008......Proceedings of the Tenth North European Symposium for Archaeological Textiles, held in Copenhagen, 14-17 May 2008...

  1. Scope of nanotechnology in modern textiles

    Science.gov (United States)

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  2. Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth.

    Science.gov (United States)

    Reeve, Jennifer R; Carpenter-Boggs, Lynne; Reganold, John P; York, Alan L; Brinton, William F

    2010-07-01

    Biodynamic (BD) agriculture, a form of organic agriculture, includes the use of specially fermented preparations, but peer-reviewed studies on their efficacy are rare. Composting of a grape pomace and manure mixture was studied in two years (2002 and 2005) with and without the BD compost preparations. Water extracts of finished composts were then used to fertigate wheat seedlings, with and without added inorganic fertilizer. BD-treated mixtures had significantly greater dehydrogenase activity than did untreated (control) mixtures during composting, suggesting greater microbial activity in BD-treated compost. In both years there was a distinct compost effect on wheat shoot and root biomass irrespective of supplemental fertilizer. Shoot biomass was highest in all treatments receiving 1% compost extract. Wheat seedlings that received 1% compost extract in 2005 grew similar root and shoot biomass as fertilized seedlings, despite only containing 30% as much nitrogen as the fertilizer treatment. In both years seedlings that received fertilizer plus 1% compost extract produced 22-61% more shoot biomass and 40-66% more root biomass than seedlings that received fertilizer alone, even at higher rates. In 2002 a 1% extract of BD compost grew 7% taller wheat seedlings than did 1% extract of untreated compost. At 0.1% only BD extract grew taller plants than water, but in 2002 only. No effect on shoot or root biomass was seen at 0.1%. Our results support the use of compost extracts as fertilizer substitutes or supplements, testimonial reports on the growth promoting effects of compost extracts, and the occasional superiority of BD compost to untreated compost. Copyright (c) 2010. Published by Elsevier Ltd.

  3. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    Science.gov (United States)

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds.

    Science.gov (United States)

    Troesch, S; Liénard, A; Molle, P; Merlin, G; Esser, D

    2009-01-01

    French legislation requires the control of private on-site sanitation systems by local authorities. This will result in a large increase of the quantity of sludge from septic tanks to be treated. Nevertheless, large wastewater treatment plants are not systematically able to treat this sludge because they may have reached their nominal load or they are not so numerous in rural zone to avoid too long transportation. The study concerns both the feasibility of sludge reed beds devoted to the treatment of septage and the assessment of a simultaneous treatment with aerated sludge. The experiments have been carried out on eight pilot-scale drying reed beds (2 m(2)) planted with Phragmites australis. Two filtration layers of either vegetal compost or sand were tested. The study is focused on the commissioning period (first vegetative year) with a loading rate of 30 kg SS m(-2) yr(-1). According to these operational conditions, dewatering efficiencies reached approx. 30% DM during summer but less than 20% DM in winter for each filtration layer and sludge. High removal efficiencies, with an average of 96%, 92% and 89% for SS, COD and TKN respectively, were achieved with septage whereas they were lower for the mixture of aerated sludge and septage. The dewaterability of septage and its filtration behaviour were assessed by several parameters (Capillary Suction Time, bound water) which may be some interesting tools for an optimised loading strategy.

  5. Acid-base properties of humic and fulvic acids formed during composting.

    Science.gov (United States)

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  6. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  7. Textile paper as a circular material

    OpenAIRE

    Ashok, Archana

    2017-01-01

    Increasing resource efficiency by utilising secondary raw material is one of the key characteristics of a circular economy. Textile dust fibre, a waste generated from textile mechanical recycling has the prospect to be utilised as secondary raw material for producing novel material: textile paper suitable for packaging and other applications. A comparative Life Cycle Assessment (LCA) of carrier bags made from one ton of virgin paper, recycled paper and novel textile paper (~22584paper bags wi...

  8. Textiles for protection against microorganism

    Science.gov (United States)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  9. Bioremediation of textile effluent using Phanerochaete chrysosporium

    African Journals Online (AJOL)

    Enormous volumes of effluent are generated at different stages of textile manufacturing, as a result of the use of copious amounts of chemicals and dyes. Several tons of textiles required to meet up with societal demands are produced daily in this industry. Effluent derived from the textile and dyestuff activities can provoke ...

  10. Emerging research trends in medical textiles

    CERN Document Server

    Gokarneshan, N; Rajendran, V; Lavanya, B; Ghoshal, Arundhathi

    2015-01-01

    This book provides a comprehensive review of the significant researches reported during the recent years in the field of medical textiles. It also highlights the use of new types of fibres in developing medical textile products and their promising role in the respective areas of application. Considerable developments have taken place in the development of medical textiles for varied applications.

  11. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    Science.gov (United States)

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO4, it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL(-1) + 3 ml FeSO4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  12. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices.

    Directory of Open Access Journals (Sweden)

    Jieying Huang

    Full Text Available Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different.

  13. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices

    Science.gov (United States)

    Huang, Jieying; Yu, Zixuan; Gao, Hongjian; Yan, Xiaoming; Chang, Jiang; Wang, Chengming; Hu, Jingwei

    2017-01-01

    Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different. PMID:28604783

  14. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  15. A review on paint sludge from automotive industries: Generation, characteristics and management.

    Science.gov (United States)

    Salihoglu, Guray; Salihoglu, Nezih Kamil

    2016-03-15

    The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors

  16. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies

    Directory of Open Access Journals (Sweden)

    S. Sathian

    2014-06-01

    Full Text Available In this work, sequential batch reactor (SBR was employed for the treatment of textile dye wastewater. The performance of four white rot fungi (WRF viz. Coriolus versicolor, Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was evaluated in pure and mixed combinations in terms of decolorization. From the results it was found that the combination of Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was best and they were used in the SBR. The process parameters like air flow rate, sludge retention time (SRT and cycle period were optimized using response surface methodology (RSM. At these optimized conditions, treatment of textile dye wastewater was carried out at various initial dye wastewater concentration and hydraulic retention time. The performance of SBR was analyzed in terms of decolorization, COD reduction and sludge volume index (SVI. From the results it was found that a maximum decolorization and COD reduction of 71.3% and 79.4%, respectively, was achieved in the SBR at an organic loading rate of 0.165 KgCOD/m3 d. The sludge volume index (SVI was found to be low in the range of 90–103 mL/g. The kinetic study was carried out using a first order based model and the degradation follows the first order system.

  17. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  18. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    Science.gov (United States)

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  19. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Directory of Open Access Journals (Sweden)

    Deborah A Neher

    Full Text Available Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here

  20. Effectiveness of combined thermophilic composting and ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... in affecting survival of Salmonella enteritidis ser. Typhimurium. Pedobiology, 22: 434-438. Castaldi P, Alberti G, Merella R, Melis P (2005). Study of organic matter evolution during municipal solid waste composting aimed at indentifying suitable parameters for evaluation of compost maturity. Waste Manage.

  1. Influence of Fresh, Composted and Vermicomposted Parthenium ...

    African Journals Online (AJOL)

    MICHAEL

    manure + RDF recorded highest LAI,photosynthetic rate and grain yield with better partitioning efficiency .The next best treatment was RDF in combination with Parthenium compost which had on par yield with poultry manure. Composts prepared from weed species before flowering stage had more beneficial effects than the ...

  2. Production of organic compost for Agaricus bisporus

    NARCIS (Netherlands)

    Loon, van P.C.C.; Baar, J.; Straatsma, G.

    2009-01-01

    The increased demand for organic foods has increased the need for organic compost for the cultivation of Agaricus bisporus. The traditional ingredients for Dutch compost production are horse and chicken manures and wheat straw. These ingredients are not sufficiently abundant in organic form in The

  3. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  4. Compostwijzer compost maken in vier stappen

    NARCIS (Netherlands)

    Iepema, G.; Louis Bolk,

    2008-01-01

    Voor het in stand houden van veel natuurgebieden is maaien en afvoeren van het maaisel van belang. Het maaisel wordt vaak over grotere afstanden vervoerd om verwerkt te worden tot compost. In de directe nabijheid van het natuurgebied is in de landbouw in toenemende mate behoefte aan compost. In deze

  5. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    Het onderhavige onderzoek is een eerste verkenning geweest naar de aanwezigheid van organische microverontreinigingen in gft-compost. In deze rapportage is een indicatieve vergelijking van de gehalten in compost met de streefwaarden voor bodem (H=20%) gemaakt. Mede op basis van dit onderzoek

  6. Compost: Brown gold or toxic trouble?

    Science.gov (United States)

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  7. School Compost Programs: Pathways to Success

    Science.gov (United States)

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    After the oft-repeated three Rs (reduce, reuse, recycle) comes the lesser-known but equally important fourth R: rot. In this case, rot means compost. Classrooms, schools, and school districts can use a number of methods to establish a compost program. The finished product is a valuable soil amendment that adds fertility to local farmland, school…

  8. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    Nowadays, the use of earthworms as a composting technique is also gaining popularity. This method is commonly known as vermi-composting (Edwards, 1998), the process by which worms are used to convert organic materials ..... were taken. The experimental design applied was a completely randomized block, with 4 ...

  9. Electrical Conductivity in Textiles

    Science.gov (United States)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  10. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  11. Design Management in the Textile Industry

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2013-01-01

    In this paper we explore textile design activities and textile design management from an industrial network perspective. The textile industry is probably one of the most globalized manufacturing industries in the world and thus one of the most dispersed industries on the globe. Most studies...... on design management are framed inside the organisational context of the firm. In this study the role and practice of textile design is addressed in perspective of the global textile production network. The empirical data stems from six case studies exploring how different types of enterprises are organised...

  12. Los textiles rituales de Nasca en Cahuachi

    OpenAIRE

    Bastiand Atto, María Soledad

    2010-01-01

    El estudio de los textiles arqueológicos nos conduce a entender a una de las actividades productivas de mayor antigüedad en nuestro país, la actividad productiva textil, desarrollada durante 5 000 años. Tal es el caso, de la producción textil de la cultura Nasca desarrollada en el período Intermedio Temprano, de la época prehispánica. Una de las culturas más conocidas por su cerámica polícroma y sus complejos textiles. El presente estudio muestra una Colección Textil de Nasca Temprano,...

  13. Textile effluent biodegradation potentials of textile effluent-adapted ...

    African Journals Online (AJOL)

    Environmental pollution has been recognized as one of the major problems of the modern world. The increasing demand for water and the dwindling supply has made the treatment and reuse of industrial effluents an attractive option. Textile effluents are of concern because they colour the drains and ultimately the water ...

  14. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  15. TEXTILE STRUCTURES FOR AERONAUTICS (PART II

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The second part of this paper deals with our know-how in the manufacturing and assessing of three-dimensional textile structures during this last five years in the field of textile structures for composites but also in the development of structures for other applications. In the field of composites for aeronautic sector we have developed textile structures using the main methods of textile production, that is to say, weaving, warp knitting, weft knitting and braiding. Comparing the advantages and disadvantages it could be said that braided fabrics, with a structure in the three space axes are the most suitable for fittings and frames.

  16. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  17. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  18. Textile allergic contact dermatitis: current status.

    Science.gov (United States)

    Coman, Garrett; Blattner, Collin M; Blickenstaff, Nicholas R; Andersen, Rosa; Maibach, Howard I

    2014-01-01

    We conducted a thorough review of Pubmed search results for "textile percutaneous penetration" and "textile absorption". We also determined relevant articles that discussed percutaneous penetration of textiles into the skin and their associated disease states. Due to limitations in current and past publications, we are uncertain of the extent of the clinical problem; however, for patients allergic to textile dye, it is of practical importance, both clinically and in their everyday life. There are many challenges to correctly identifying the offending textile products in a patient with suspected textile dye dermatitis. Different populations may exhibit varying degrees of allergic contact dermatitis (ACD), but more studies must be done to draw further conclusions. This is further complicated when counseling the patient on how to avoid the textile products most likely to cause a recurrence of ACD skin lesions.

  19. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  20. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity

    NARCIS (Netherlands)

    Steel, H.; Peña, de la E.; Fonderie, P.; Willekens, K.; Borgonie, G.; Bert, W.

    2010-01-01

    One of the key issues in compost research is to assess when the compost has reached a mature stage. The maturity status of the compost determines the quality of the final soil amendment product. The nematode community occurring in a Controlled Microbial Composting (CMC) process was analyzed with the

  2. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework.

    Science.gov (United States)

    Putranto, Aditya; Chen, Xiao Dong

    2017-05-01

    During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu; Wu, Jer-Horng, E-mail: enewujh@mail.ncku.edu.tw; Lin, Shih-Chiang; Chang, Juu-En

    2016-07-15

    Highlights: • We developed a new hypoxic reactor system for remediating PCDD/Fs. • We demonstrated effects of compost on the degradation of PCDD/Fs. • We uncovered microbial compositions and dynamics during the degradation of PCDD/Fs. - Abstract: Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37–1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  4. Perception of naturalness in textiles

    NARCIS (Netherlands)

    Overvliet, Krista E.; Karana, Elvin; Soto-Faraco, Salvador

    2016-01-01

    In many daily contexts, we prefer natural 'materials' over un-natural ones. Textiles embodied in garments that are worn on the body all day, or in bed sheets slept under every night touch us literally, on a daily basis. Hence among all other materials, 'naturalness perception' has a strong impact on

  5. NICE3: Textile Brine Separation

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    The goal of this project is to demonstrate the significant energy and waste savings that can be realized by using nanofiltration technology to reuse textile dyebath brines. Read this new fact sheet to learn how this new membrane technology can benefit your business.

  6. Stalled ERP at Random Textiles

    Science.gov (United States)

    Brumberg, Robert; Kops, Eric; Little, Elizabeth; Gamble, George; Underbakke, Jesse; Havelka, Douglas

    2016-01-01

    Andre Raymond, Executive Vice President of Sales and Marketing for Random Textiles Co. Inc. (RTC), stood in front of the podium to address his team of 70 sales consultants in Las Vegas, NV. The organization had increased market share and achieved record sales over the past three years; however, in the shadow of this success lurked an obstacle that…

  7. Durable and Rechargeable Antimicrobial Textiles

    Science.gov (United States)

    2013-12-01

    textiles, to achieve powerful antimicrobial effiacy (see the following tasks). Reaction conditions have significant effects on grafting yields and...efficacy tests, all the microbial species were provided by the American Type Culture Collection (ATCC). Staphylococcus epidermidis (S. epidermidis...non-resistant bacteria. Candida albicans (C. albicans, ATCC 10231, fungi), a diploid fungus , was used as a representative example of fungi. As shown

  8. Textiles and Training in Portugal.

    Science.gov (United States)

    Andrez, Jaime Serrao; Dias, Mario Caldeira

    Analyzing the role of vocational training in an economic sector that is declining in Portugal, this document consists of five chapters, a bibliography, and a list of training organizations. An introduction tells why the study is important and explains that the major obstacles to development of the Portuguese textile and clothing sector are the…

  9. Integrated microelectronics for smart textiles.

    Science.gov (United States)

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  10. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Science.gov (United States)

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  11. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails

    Energy Technology Data Exchange (ETDEWEB)

    Scheifler, R.; Brahim, M.B.; Gomot-de Vaufleury, A.; Carnus, J.-M.; Badot, P.-M

    2003-04-01

    Helix aspersa snails exposed in field microcosms were used to evaluate metallic trace elements transfer from forest soil amended with composted and liquid sewage sludge. - Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  12. Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material.

    Science.gov (United States)

    Hait, Subrata; Tare, Vinod

    2011-03-01

    An integrated composting-vermicomposting system has been developed for stabilization of waste activated sludge (WAS) using matured vermicompost as bulking material and Eisenia fetida as earthworm species. Composting was considered as the main processing unit and vermicomposting as polishing unit. The integrated system was optimized by successive recycling and mixing of bulking material with WAS during composting and examining the effects of environmental condition (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) on vermicomposting. The composting stage resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with WAS and produced materials acceptable for vermicomposting. Vermicomposting of composted material caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total carbon (TC), total organic carbon (TOC), C/N ratio and pathogens and a substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP). The environmental conditions (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) have profound effects on vermicomposting. Temperature of 20°C with high humidity is the best suited environmental condition for vermicomposting employing E. fetida. The favorable stocking density range for vermiculture is 0.5-2.0 kg/m(2) (optimum: 0.5 kg/m(2)) and for vermicomposting is 2.0-4.0 kg/m(2) (optimum: 3.0 kg/m(2)), respectively. The integrated composting-vermicomposting system potentially stabilizes and converts the hazardous WAS into quality organic manure for agronomic applications without any adverse effects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  14. TEXTILE STRUCTURES FOR AERONAUTICS (PART I

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The first part of this paper deals with the introduction of our Textile Research Centre in the field of composites and carbon fiber as a main material to produce three – dimensional textile structures. The use of composite materials in aerospace structures has increased over the past decades. Our contribution related to this field consists of the development of three- dimensional textile structures and even the adaptation and improvement of machinery to do it possible. Carbon fiber provides advantages as volumetric fraction and minimum fault occurrence. However carbon fiber has also disadvantages as uncomfortable handling delamination and high cost of material and processing.

  15. Influence of agricultural wastes and a finished compost on the decomposition of slaughterhouse waste composts.

    Science.gov (United States)

    Price, G W; Zeng, Jian; Arnold, Paul

    2013-11-30

    The objective of this study was to evaluate the efficacy of combining agricultural wastes or a finished compost (wheat straw, horse manure and bedding, sheep manure, and a wheat straw-SHW finished compost) as compost feedstocks with cattle slaughterhouse wastes (SHW) on a field-scale. The composts were managed in covered bins over 200 days and physico-chemical parameters related to organic matter bio-degradation were measured over time. Thermophilic temperatures were maintained above 55 °C for 12-46 days to meet the Canadian Council of Ministers of the Environment (CCME) guidelines for pathogen control. Final C:N ratios were highest in a horse manure and bedding:SHW compost at 23:1 but ranged from 18.5 to 20.5:1 for the remaining three treatments, representing a wheat straw:SHW compost and different combinations of horse manure and bedding, SHW, and/or sheep manure. Average reduction in mass of total carbon across all the composts in the current study was 54.2%. Maturity tests at the end of the study determined that the CO2-C evolution rate in all compost products was less than 1 mg g(-1) organic matter day(-1) suggesting highly stable final compost products. Compost mass reductions all responded as exponential decay functions with R(2) values ranging from 0.84 to 0.99 regardless of compost feedstock composition. Agricultural by-products and composts are suitable feedstocks for use with SHW to generate a stable final product while meeting regulatory parameters to achieve conventional pathogen control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The use of urban sewage sludge on pastures: the cysticercosis threat.

    Science.gov (United States)

    Cabaret, Jacques; Geerts, Stanny; Madeline, Marylin; Ballandonne, Céline; Barbier, Dominique

    2002-01-01

    Urban sewage production is increasing and its agronomical use as a fertiliser has been advocated. Considerable defiance is prevalent in consumers and among farmers on the use of such fertilisers due to unknown pathological or environmental risks. The aim of the present review was to consider which pathological risk is major. Cysticercosis due to Taenia saginata appears to be one of the major pathological threats when sewage sludge is used to fertilise cattle pastures in temperate areas. The situation is different in Africa (Taenia solium and T. saginata are both highly prevalent) and Asia (Taeniasaginata-like are prevalent). The processing of sludge and the delay between its application onto a pasture and grazing are probably major risk factors. Little data are available on the influence of processing, delay between processing and the use of sludge on the pathogenic risk. Producers and consumers will be more confident on the use of sludge if objective data are gained on risk. Most of the cases of cysticercosis (North America, United-Kingdom, Germany or Denmark) are related to poor human hygiene or accidental overflooding of sewage plants onto pastures. The standard application of sludge on pastures is apparently at low risk. This low risk does not mean that surveillance should cease since outbreaks of cysticercosis have been reported. Future investigations should concentrate on the most sustainable means of reducing risk (length of storage before use, composting, other treatments).

  17. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.

    Science.gov (United States)

    Ben Rebah, F; Prévost, D; Yezza, A; Tyagi, R D

    2007-12-01

    Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production.

  18. Bacterial communities associated with sulfonamide antibiotics degradation in sludge-amended soil.

    Science.gov (United States)

    Yang, Chu-Wen; Hsiao, Wan-Chun; Fan, Chu-Hsih; Chang, Bea-Ven

    2016-10-01

    This study investigated the degradation of sulfonamide antibiotics (SAs) and microbial community changes in sludge-amended soil. In batch experiments, SA degradation was enhanced by addition of spent mushroom compost (SMC), SMC extract, and extract-containing microcapsule, with SMC showing higher SA degradation rate than the other additives in soil-sludge mixtures. In bioreactor experiments, the degradation of SAs in soil-sludge mixtures was in the order of sulfamethoxazole > sulfadimethoxine > sulfamethazine during four times of SA addition. SA removal was higher in soil-sludge mixtures than in soil alone. The bacterial composition differed in soil-sludge mixtures with and without SMC. In total, 44 differentially distributed bacterial genera were identified from different experimental settings and stages. Four bacterial genera, Acinetobacter, Alcaligenes, Brevundimonas, and Pseudomonas, were previously found involved in SA degradation, and 20 of the 44 bacterial genera were previously found in aromatic hydrocarbon degradation. Therefore, these bacteria have high potential to be SA degradation bacteria in this study.

  19. Recycling of lime sludge emanating from tannery industry through vermicomposting using Eisenia foetida.

    Science.gov (United States)

    Subash, Anitha; Gomathi, M; Kanagavalli, M; Sindhiya, D

    2012-07-01

    The research was focused on the control of pollution, which is caused due to tannery waste disposal, through the process of vermicomposting. Earthworms have increasingly been used for waste management. Therefore, the main aim of this study was to recycle the lime sludge emanating from a selected tannery industry through vermicomposting. Tannery solid waste was allowed to compost for 60 days, and then the composts were harvested and analyzed for selected physio-chemical and biochemical parameters. A flowering plant namely Tagets erecta Linn was grown in soil mixed with the vermicomposts obtained, and was studied for its growth attributes and compared with the control plant growth on soil alone. The attributes studied were biometric parameters, like root length, shoot length, plant height, plant weight, number of leaves, flowers and buds. The alkaline nature of the lime sludge was reduced to neutral range on vermicomposting. The electrical conductivity of the lime sludge was also reduced on vermicomposting which might be due to the transformation of complex organic compounds into simpler forms. The biochemical parameters, such as nitrogen and carbon were also reduced on vermicomposting.

  20. Disposal of domestic sludge and sludge ash on volcanic soils.

    Science.gov (United States)

    Escudey, Mauricio; Förster, Juan E; Becerra, Juan P; Quinteros, Magdalena; Torres, Justo; Arancibia, Nicolas; Galindo, Gerardo; Chang, Andrew C

    2007-01-31

    Column leaching experiments were conducted to test the ability of Chilean volcanic soils in retaining the mineral constituents and metals in sewage sludge and sludge ash that were incorporated into the soils. Small or negligible amounts of the total content of Pb, Fe, Cr, Mn, Cd, and Zn (0 to soils and leached with 12 pore volumes of water over a 3 month period of time, less than 0.1% of the total amount of heavy metals and PO4 in the sludge and sludge ash were collected in the drainage water. Cation exchange selectivity, specific anion adsorption and solubility are the processes that cause the reduction of leaching. The volcanic soils were capable of retaining the mineral constituents, P, and metals in applied sewage sludge and sludge ash and gradually released them as nutrients for plant growth.

  1. Sludge treatment by integrated ultrasound-Fenton process: Characterization of sludge organic matter and its impact on PAHs removal.

    Science.gov (United States)

    Ke, Yaowei; Ning, Xun-An; Liang, Jieying; Zou, Haiyuan; Sun, Jian; Cai, Hualing; Lin, Meiqing; Li, Ruijing; Zhang, Yaping

    2018-02-05

    In this work, the impact of organic matter on the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge by ultrasound-Fenton process has been studied. Sludge organic matter (SOM) was characterized and the degradation efficiencies of PAHs at various oxidation intensities (Fenton's reagent of 20, 70, and 140mmol/L, ultrasonic densities of 0.36, 0.90, and 1.80W/cm(3), and reaction time of 15, 25, and 40min) were determined. The results showed that 75.52-84.40% of PAHs and 16.32-31.13% of SOM had degraded after ultrasound-Fenton treatment, confirming the competitive relation between both of them for degradation. The aliphatic SOM fractions were preferentially oxidized owing to their easily degradable properties, while equimolar amounts of the aromatic moieties would require more oxidant compared to the aliphatic fractions. Correlation analysis demonstrated that SOM with its lower content, stronger polarity, and a higher proportion of labile organic fraction was more favourable for PAHs degradation. In addition, the SOM fractions were decomposed to biodegradable matter after treatment, which further enhance the biodegradability of sludge. This study provides insights into the role of SOM in PAHs removal by AOPs, and confirms that the ultrasound-Fenton treatment could not only effectively degrade PAHs, but also modify SOM. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of microbial methods to detect fecal coliforms, E. coli and Salmonella spp. in finished compost

    Science.gov (United States)

    Introduction: Compost provides nutrients for produce crops. Improperly composted feedstocks can harbor pathogens which can be transferred to produce crops. The US Environmental Protection Agency (EPA) and US Composting Council (USCC) provide methods to test biosolids and compost, respectively, fo...

  3. Polluted land areas purified by composting

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.L.; Nikula, A.

    1996-11-01

    Restoration of polluted land and development of purification methods are among the most topical environment protection issues, IVO, too, has participated in research on microbiological purification methods. The biodegrability of creosote, and agent used for impregnation of wooden power line poles, was tested in the laboratory in 1993-94. The tests revealed that soil polluted by creosote can be cleansed efficiently. In Petaejaevesi, central Finland, the results are being applied in the composting of land masses polluted by creosote. The composting, which began in summer 1995, has succeeded in line with expectations: The content of deleterious compounds fell by half after only a couple of months of composting. (orig.)

  4. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    Science.gov (United States)

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Textile Industry at Thebes in the Light of the Textile Industries at Pylos and Knossos

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    2001-01-01

    The paper investigates the textile production at Thebes, Greece, according to the Linear B tablets......The paper investigates the textile production at Thebes, Greece, according to the Linear B tablets...

  6. Thermoset composites reinforced with recycled cotton textile residues

    National Research Council Canada - National Science Library

    Zonatti, Welton Fernando; Guimarães, Bárbara Maria Gama; Duleba, Wânia; Ramos, Júlia Baruque

    2015-01-01

    The recycling of textiles is an issue that requires immediate attention in order to address the management of textiles derived from household waste, as well as scraps generated throughout manufacturing textile processes...

  7. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  8. Textile electrodes and integrated smart textile for reliable biomonitoring.

    Science.gov (United States)

    Paradiso, R; Pacelli, M

    2011-01-01

    Since birth the first and the most natural interface for the body is fabric, a soft, warm and reassuring material. Cloth is usually covering more than 80 % of the skin; which leads us to consider textile material as the most appropriate interface where new sensorial and interactive functions can be implemented. The new generation of personalised monitoring systems is based on this paradigm: functions like sensing, transmission and elaboration are implementable in the materials through the textile technology. Functional yarns and fibres are usable to realise garments where electrical and computing properties are combined with the traditional mechanical characteristics, giving rise to textile platforms that are comparable with the cloths that are normally used to produce our garments. The feel of the fabric is the same, but the functionality is augmented. Nowadays, consumers demand user-friendly connectivity and interactivity; sensing clothes are the most natural and ordinary interface able to follow us, everywhere in a non-intrusive way, in natural harmony with our body.

  9. Compost-based growing media: influence on growth and nutrient use of bedding plants.

    Science.gov (United States)

    Grigatti, Marco; Giorgioni, Maria Eva; Ciavatta, Claudio

    2007-12-01

    The agronomic performance and the mineral composition and trace element content in Begonia semperflorens "Bellavista F1", Mimulus "Magic x hybridus", Salvia splendens "maestro", and Tagete patula xerecta "Zenith Lemon Yellow", were tested by growing the plants on substrates of white peat and 25-50-75-100% green waste and sewage sludge (80%+20%v/v) compost (CP). A commercial peat medium of black and white peat (2:1v/v) was used as control. At flowering, the agronomic parameters were compared by ANOVA and plant nutritional status was compared by vector analysis. Substrate-species interactions (PBegonia grown in 25% CP, showed the highest dry weight (DW) and number of flowers. Other treatments were comparable to the control. Mimulus and Salvia showed the highest DW in the 25-50% CP. Mimulus, after a DW increase up to 50% CP, showed the steepest reduction as the CP increased further. Tagete showed no differences in DW up to 50% CP, or in flower number up to 25% CP, compared to the control. The additional increases of CP in the medium showed a DW decrease similar to that of Salvia. Vector analysis showed the use of compost mainly induced a decrease of P concentration in tissues, except for Begonia which remained unchanged. Plant tissues showed a general P reduction due to a dilution effect in the low compost mixtures (25-50%) and a deficiency in the higher CP mixtures. In contrast, an increase of Mg in the aboveground tissues of all species was detectable as compost usage increased, with the exception of Salvia which suffered a Mg deficiency. Vector analysis also highlighted a Ni and partial Fe deficiency in Tagete and Salvia.

  10. Characterization of the denitrifying bacterial community in a full-scale rockwool biofilter for compost waste-gas treatment.

    Science.gov (United States)

    Yasuda, Tomoko; Waki, Miyoko; Fukumoto, Yasuyuki; Hanajima, Dai; Kuroda, Kazutaka; Suzuki, Kazuyoshi

    2017-09-01

    The potential denitrification activity and the composition of the denitrifying bacterial community in a full-scale rockwool biofilter used for treating livestock manure composting emissions were analyzed. Packing material sampled from the rockwool biofilter was anoxically batch-incubated with 15 N-labeled nitrate in the presence of different electron donors (compost extract, ammonium, hydrogen sulfide, propionate, and acetate), and responses were compared with those of activated sludge from a livestock wastewater treatment facility. Overnight batch-incubation showed that potential denitrification activity for the rockwool samples was higher with added compost extract than with other potential electron donors. The number of 16S rRNA and nosZ genes in the rockwool samples were in the range of 1.64-3.27 × 10 9 and 0.28-2.27 × 10 8 copies/g dry, respectively. Denaturing gradient gel electrophoresis analysis targeting nirK, nirS, and nosZ genes indicated that the distribution of nir genes was spread in a vertical direction and the distribution of nosZ genes was spread horizontally within the biofilter. The corresponding denitrifying enzymes were mainly related to those from Phyllobacteriaceae, Bradyrhizobiaceae, and Alcaligenaceae bacteria and to environmental clones retrieved from agricultural soil, activated sludge, freshwater environments, and guts of earthworms or other invertebrates. A nosZ gene fragment having 99% nucleotide sequence identity with that of Oligotropha carboxidovorans was also detected. Some nirK fragments were related to NirK from micro-aerobic environments. Thus, denitrification in this full-scale rockwool biofilter might be achieved by a consortium of denitrifying bacteria adapted to the intensely aerated ecosystem and utilizing mainly organic matter supplied by the livestock manure composting waste-gas stream.

  11. The effect of an organic waste compost on the agro-chemical characteristics of the soil, and the mineral composition of the sunflower leaves

    Directory of Open Access Journals (Sweden)

    Lăcătușu Radu

    2017-06-01

    Full Text Available Aiming to increase the use of natural resources and unexplored opportunities in industrial and agricultural practices, the marine algae biomass, that causes serious environmental problems in the Romanian Black Sea coast, was used in association with another two organic wastes, farmyard manure from cattle-breeding farms and sewage sludge resulted from the waste water treatment, to produce a compost suitable as organic fertilizer for plant cultivation in ecologic farming systems. Four variants of compost, first representing equal parts (33.33% of those three components, and the other three proportions of 50% of each component, the difference being ensured in a ratio of 25% of each of the other two components, have been tested in a field experiment to assess their effects, both on the agro-chemical properties of the soil and on the sunflower plants development and crops. Until the phase of sunflower calathidia formation, the compost containing 50% farmyard manure influenced the best plant development in terms of height and number of leaves, then, at the end of vegetation period, the best plant development took place under the influence of compost prevalent in marine algae. The mobile forms of N and P were statistically differentiated depending on the dose of compost, the maximum dose generating the lowest content levels in the soil, as a result of higher absorption of these chemical elements in plants. The content of P and Ca in sunflower leaves recorded significant differences.

  12. Textiles and clothing sustainability nanotextiles and sustainability

    CERN Document Server

    2017-01-01

    This book highlights the sustainability aspects of textiles and clothing sector in light of nanomaterials and technologies. The invasion of nano in every industrial sector has been important and has made remarkable changes as well as posed new challenges, including the textiles and clothing sector. There is quite a great deal of research happening in terms of nano materials for textiles across the globe, some of which are covered in this book. .

  13. Bespoke Materials For Bespoke Textile Architecture

    DEFF Research Database (Denmark)

    Tamke, Martin; Baranovskaya, Yuliya; Holden Deleuran, Anders

    2016-01-01

    Membrane architecture uses currently off the shelf materials and produces the shapes and details through cutting and laborsome joining of textile patterns. This paper discusses investigations into an alternative material practice - knit - which engages bespoke membrane materials. A practice which...... how design and engineering practices change, when material properties move from given and constant into the area of design and gradient. Bespoke materials for bespoke textile architecture. Available from: https://www.researchgate.net/publication/306401612_Bespoke_materials_for_bespoke_textile...

  14. Treatment of effluent textiles with ultraviolet light

    OpenAIRE

    Tinoco Gómez, Oscar Rafael; UNMSM; Medina Escudero, Ana María; UNMSM; Zapata Gamarra, Hernán

    2014-01-01

    The use of clean technologies for the treatment of textile effluents is essential to achieve a significant contribution by the textile industry, environmental treatment of them. According to the literature, the dyes used in textile industry are hardly degradable and have strong opposition to biological treatments are subjected to appropriate wastewater. At lower concentrations of hydrogen peroxide (oxygenated water) leads to better dye fading. It also shows that lower concentrations of titani...

  15. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    Science.gov (United States)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    substrates amended with compost produced from locally available sewage sludge and saw dust can be improved. The metal content of grass grown in the various treatments was considered to be elevated compared to normal contents. However, metal uptake in compost treatments was lower than in untreated plots. A preliminary cost assessment, comparing the remediation technology tested on site Divkovici with a standard soil covering technique revealed financial benefits for the compost method due to significant lower application rates.

  16. Coagulant Recovery from Waterworks Sludge

    OpenAIRE

    Keeley, James

    2014-01-01

    Coagulation is a ubiquitous process in the treatment of raw surface water for eventual potable use. Despite its capabilities, the sheer scale of its use is manifested in the volumes of chemicals it demands and waste sludge it produces. Recovering and reusing the chemical activity of the coagulant sludge in water treatment is a logical solution but this practice has been restricted by the presence of contaminants within the sludge. This thesis has investigated methods that ca...

  17. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    of sound. This issue is a part of a Ph.D. study at The Danish Design School in Copenhagen. Sound diffusion in architecture is a complex phenomenon. From the sound source the sound spreads in all directions as a sphere of wave fronts. When the sound is reflected from room boundaries or furniture, complex...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form.......Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...

  18. [When textiles help your recovery].

    Science.gov (United States)

    Martel, Bernard; Campagne, Christine; Behary Massika, Nemeshwaree

    2017-01-01

    Textiles are widely used in the biomedical domain, particularly in wound dressings or as implantable devices for strengthening or even replacing some damaged organs. Nowadays they present more and more sophisticated functionalities contributing to the healing process, to the organs regeneration, and fight against infection or thrombosis. Advanced spinning technologies of biostable or bioresorbable polymers and surface treatment technologies are often used, as well as nanotechnologies, to implement two main strategies for development of bio-active textiles. A long or medium term technology is obtained by grafting the bio-active molecule through stable chemical bonds while a short term activity is produced by using "reservoir" systems such as hydrogels and cyclodextrins that release the active agents in situ. ‡. © 2017 médecine/sciences – Inserm.

  19. Compost-amended biofiltration swale evaluation.

    Science.gov (United States)

    2011-09-01

    From May 2009 through June 2010, Herrera Environmental Consultants conducted hydrologic : and water quality monitoring of a compost-amended biofiltration swale and a standard (control) : biofiltration swale in the median of State Route 518 for the Wa...

  20. Composting in advanced life support systems

    Science.gov (United States)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.