WorldWideScience

Sample records for textile fabrics

  1. Robust fabric substrates for photonic textile applications

    NARCIS (Netherlands)

    Van Pieterson, L.; Bouten, P.C.P.; Kriege, J.C.; Bhattacharya, R.

    2010-01-01

    A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. The fabric's robustness, as a function of the electrical reliability of its conductive yarn connections, is shown to hold over large deformations.This fabric is then used to

  2. Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.

    Science.gov (United States)

    Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A

    2017-01-01

     Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.

  3. Assessing the Suitability of Woven Fabric and Composite Textile ...

    African Journals Online (AJOL)

    This art studio experimental study explored the suitability of woven cotton fabric as alternative material for creating pictorial designs for murals based on the batik, tie-and-dye, screen printing, appliqué and embroidery techniques in textiles. While painted and sculpted murals abound in Ghana, the study found textile murals a ...

  4. Smart fabric sensors and e-textile technologies: a review

    Science.gov (United States)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  5. Detecting Defects in Textile Fabrics with Optimal Gabor Filters

    OpenAIRE

    K. L. Mak; P. Peng

    2008-01-01

    This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor...

  6. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    Science.gov (United States)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  7. 16 CFR 1610.35 - Procedures for testing special types of textile fabrics under the standard.

    Science.gov (United States)

    2010-01-01

    ... textile fabrics under the standard. 1610.35 Section 1610.35 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Rules and Regulations § 1610.35 Procedures for testing special types of textile fabrics under the standard. (a) Fabric...

  8. Colour Fading of Textile Fabric by Plasma Treatment

    OpenAIRE

    H. F. Cheung; C. W. Kan; C. W. M. YUEN; J. Yip; Law, M.C.

    2013-01-01

    Colour fading of a reactive dye (C.I. Reactive Blue 19) dyed textile fabric was performed by atmospheric pressure plasma (APP) treatment with the use of plasma jet. Under the APP treatment condition of treatment time = 5 sec/mm; ignition power = 160 W; oxygen concentration = 1%; jet distance = 3 mm, significant colour-fading effect was achieved. For comparison purpose, the reactive dye dyed textile fabric was subjected to conventional enzymatic colour-fading process. Experimental results reve...

  9. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  10. Automated pilling detection and fuzzy classification of textile fabrics

    Science.gov (United States)

    Dar, Iqbal M.; Mahmood, Waqar; Vachtsevanos, George

    1997-04-01

    In the textile industry, the degree of fabric pilling is subjectively determined by human inspectors resulting in inconsistent quality control. The observed resistance to pilling is reported on an arbitrary scale ranging from No. 5 (no pillings) to No. 1 (very severe pilling). This paper presents a system and a methodology that counts the number of pillings on textile fabric samples automatically and classifies them into one of the pre-defined classes with repeatable accuracy while accounting for the human judgment by allowing the determination of the degree of confidence assigned to the sample's membership in each class. The system consists of an apparatus; an imaging and data processing software procedure for counting the number of pillings; and a methodology for classifying the fabric samples into one of the pre-defined classes with repeatable accuracy while accounting for human judgment. A CCD camera is used to capture successive gray scale images of the fabric sample. A series of segmentation, Radon transform, morphological filtering, and detrending operations are applied to the fabric images to determine the true pilling count. The structuring element for the morphological operations is designed such that fuzz balls (which are not pillings) are filtered. Using fuzzy membership functions, the fabric pilling count is mapped to fabric pilling resistance rating. The system has been successfully tested on a large number of fabric samples with different shades and textures provided by the textile industry.

  11. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    Science.gov (United States)

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  12. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  13. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  14. Flow resistance of textile materials. Part I: Monofilament fabrics

    NARCIS (Netherlands)

    Gooijer, H.; Gooijer, H.; Warmoeskerken, Marinus; Groot Wassink, J.

    2003-01-01

    This paper describes the relation between the flow resistance of a textile material and its geometry. A literature survey reveals that the orifice model is most suited to modeling the flow resistance of woven fabrics, but applications of this model were, until now, restricted to relatively open

  15. assessing the suitability of woven fabric and composite textile

    African Journals Online (AJOL)

    User

    ASSESSING THE SUITABILITY OF WOVEN FABRIC AND. COMPOSITE TEXTILE TECHNIQUES FOR MURAL. PRODUCTION. E. K. Howard1 and N. A. Opoku-Asare2. 1 Department of Industrial Art, KNUST, Kumasi. 2 Department of General Art Studies, KNUST, Kumasi. ABSTRACT: This art studio experimental study ...

  16. Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures.

    Science.gov (United States)

    Kwak, Sung Soo; Kim, Han; Seung, Wanchul; Kim, Jihye; Hinchet, Ronan; Kim, Sang-Woo

    2017-11-28

    Harvesting human-motion energy for power-integrated wearable electronics could be a promising way to extend the battery-operation time of small low-power-consumption electronics such as various sensors. For this purpose, a fully stretchable triboelectric nanogenerator (S-TENG) that has been fabricated with knitted fabrics and has been integrated with the directly available materials and techniques of the textile industry is introduced. This device has been adapted to cloth movement and can generate electricity under compression and stretching. We investigated plain-, double-, and rib-fabric structures and analyzed their potentials for textile-based energy harvesting. The superior stretchable property of the rib-knitted fabric contributed to a dramatic enhancement of the triboelectric power-generation performance owing to the increased contact surface. The present study shows that, under stretching motions of up to 30%, the S-TENG generates a maximum voltage and a current of 23.50 V and 1.05 μA, respectively, depending on the fabric structures. Under compressions at 3.3 Hz, the S-TENG generated a constant average root-mean square power of up to 60 μW. The results of this work show the feasibility of a cloth-integrated and industrial-ready TENG for the harvesting of energy from human biomechanical movements in cloth and garments.

  17. FUNCTIONALIZATION OF TEXTILE FABRICS WITH MICROENCAPSULATED VITAMIN E

    Directory of Open Access Journals (Sweden)

    POPESCU Alina

    2017-05-01

    Full Text Available In this study the experimental deposition of vitamin E microcapsules by padding technique on the textile support made of 50% cotton and 50% polyamide high tenacity Nm 50/1 were performed. The preliminary preparation of textile materials has been made in four consecutive sequences: hot alkaline treatment in absence of NaOH, bleaching, drying and curing. In the pretreatment of textile materials the crosslinking agent Itobinder AG is used, which is an anionic emulsion based on the acrylic copolimer, being followed by the application of a dispersion with content of vitamin E microcapsules. In the present raport the evaluation of obtained performances was made through SEM, GC and FTIR-ATR analysis. By SEM has been determined the wash durability of deposition of vitamin E microcapsules before and after one washing cycle. Following qualitative analysis by Gas-Chromatography coupled with Mass Spectrometry and Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection absorption the related compoundes presents on the surface of the textile materials were identified. After retention time the vitamin E acetate is found with preponderance in all chromatograms at 15, 70 min with aproximation. Also by FTIR-ATR the presence of vitamin E acetate is confirmed by the apparition of a new peak at 1731 cm-1 and changes of intensity of various peaks, especially in the fingerprint region of the spectra of the functionalized fabrics.

  18. Composites of 3D-Printed Polymers and Textile Fabrics*

    Science.gov (United States)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  19. METHOD OF MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A TEXTILE FABRIC ASSEMBLY

    DEFF Research Database (Denmark)

    2017-01-01

    of manufacturing a composite structure (10). The method may comprise providing a form (8) that has a shape corresponding to a desired shape of an internal cavity in the composite structure (10) to be manufactured. The textile fabric assembly (1) is arranged around the form (8), and a curable material (9) is filled......The invention relates to a textile fabric assembly (1) comprising at least two textile layers (2). The textile layers (2) are joined at a plurality of points (3) and/or along a plurality of lines (6) so that they form inner and outer walls, respectively. The invention also relates to a method...... into the at least one inner space (4) between the textile layers (2). The form (8) may be inflatable. Alternatively, the method may comprise arranging the textile fabric assembly (1) around an initial structure and/or mechanically fastened to a surface of an initial structure to be reinforced and then filling...

  20. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  1. Projection of Sciences Onto Textile and Fashion: Nano-Technology and Chargeable Fabric Example

    OpenAIRE

    ÇOBANOĞLU, Özgür; Eryilmaz, Jitka; ATAŞALAN, Mehmet; KAZANÇ, Semih

    2015-01-01

    This proceeding provides readers with an overview of our multidisciplinary approach to technical textile research through reviewing recent preliminary results of an example project aiming at developing super-capacitor fabric structures. The fundamental idea of the project is based on, production of graphene nano-sheets and their application onto textile fabric, growing the oxides of manganese on graphene coating and utilization of the final fabric within a suitable electrolyte as electrode ma...

  2. A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics.

    Science.gov (United States)

    Yun, Yong Ju; Hong, Won G; Kim, Wan-Joong; Jun, Yongseok; Kim, Byung Hoon

    2013-10-25

    Conductive, flexible, and durable reduced RGO textiles with a facile preparation method are presented. BSA proteins serve as universal adhesives for improving the adsorption of GO onto any textile, irrespective of the materials and the surface conditions. Using this method, we successfully prepared various RGO textiles based on nylon-6 yarns, cotton yarns, polyester yarns, and nonwoven fabrics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chao-Hua, E-mail: xuech@zju.edu.cn [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China); Shaanxi Research Institute of Agricultural Products Processing Technology, Shaanxi University of Science and Technology, Xi’an 710021 (China); Ji, Peng-Ting; Zhang, Ping; Li, Ya-Ru; Jia, Shun-Tian [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2013-11-01

    Superhydrophobic and superoleophilic textiles were fabricated by a simple sol–gel coating using tetraethoxysilane and 1,1,1,3,3,3-hexamethyl disilazane as precursors. After coating, the fibers were decorated with -Si(CH{sub 3}){sub 3} functionalized SiO{sub 2} nanoparticles, complimenting the microscale roughness inherent in the textile weave and lowering the surface energy. The textiles indicated superhydrophobic and superoleophilic property simultaneously. Utilizing these properties, a setup was designed using the textile as a screen mesh to filter oil through down to a collector and leave water drops rolling over, realizing continuous oil–water mixture separation.

  4. Fabrication of superhydrophobic and superoleophilic textiles for oil-water separation

    Science.gov (United States)

    Xue, Chao-Hua; Ji, Peng-Ting; Zhang, Ping; Li, Ya-Ru; Jia, Shun-Tian

    2013-11-01

    Superhydrophobic and superoleophilic textiles were fabricated by a simple sol-gel coating using tetraethoxysilane and 1,1,1,3,3,3-hexamethyl disilazane as precursors. After coating, the fibers were decorated with sbnd Si(CH3)3 functionalized SiO2 nanoparticles, complimenting the microscale roughness inherent in the textile weave and lowering the surface energy. The textiles indicated superhydrophobic and superoleophilic property simultaneously. Utilizing these properties, a setup was designed using the textile as a screen mesh to filter oil through down to a collector and leave water drops rolling over, realizing continuous oil-water mixture separation.

  5. Simple and eco-friendly fabrication of superhydrophobic textile for oil/water separation.

    Science.gov (United States)

    Wang, Jintao; Geng, Guihong

    2016-01-01

    Superhydrophobic and superoleophilic material was successfully prepared by the coating of Polyvinyl alcohol (PVA) onto the surface of cotton textile and subsequent hydrophobic modification. The formation of PVA with rough structure and hydrophobicity was confirmed with scanning electron microscopy and investigation of the wetting behavior of water on the textile. The coated textile is water repellant and can be used as a material for separating various oil/water mixture with a high separation efficiency up to 91%. Due to its simple fabrication process, low cost, excellent recyclability and durability, and high separation efficiency, the as-prepared textile can be considered as promising material for practical oil/water separation.

  6. Effect of fabric mounting method and backing material on bloodstain patterns of drip stains on textiles.

    Science.gov (United States)

    Chang, J Y M; Michielsen, S

    2016-05-01

    Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.

  7. Compliance Timeline for Printing, Coating, and Dyeing of Fabrics and Other Textiles National Emission Standards

    Science.gov (United States)

    This August 2003 document contains a diagram of dates and events for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Printing, Coating, and Dyeing of Fabrics and Other Textiles.

  8. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  9. Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics.

    Science.gov (United States)

    Anderson, David M; Fessler, John R; Pooley, Matthew A; Seidel, Scott; Hamblin, Michael R; Beckham, Haskell W; Brennan, James F

    2017-03-01

    The infrared optical properties of textiles are of great importance in numerous applications, including infrared therapy and body thermoregulation. Tuning the spectral response of fabrics by the engineering of composite textile materials can produce fabrics targeted for use in these applications. We present spectroscopic data for engineered polyester fabric containing varying amounts of ceramic microparticles within the fiber core and report a spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal transport model is subsequently implemented to study the effect of these modified properties on the spectral distribution of infrared radiation incident upon the wearer of a garment constructed of this fabric.

  10. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905 (United States)

    2016-01-15

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform and conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.

  11. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  12. A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles.

    Science.gov (United States)

    Ismailov, Usein; Ismailova, Esma; Takamatsu, Seiichi

    2017-03-13

    Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.

  13. Textile heart valve prosthesis: from fabric design criteria to early in-vivo performances.

    Science.gov (United States)

    Heim, Frederic; Durand, Bernard; Chafke, Nabil

    2013-05-01

    Percutaneous aortic valve implantation has become an alternative technique to surgical valve replacement in patients at high risk for open-chest surgery. Biological valve tissue is, however, a fragile material when folded for small-diameter catheter insertion purposes. Textile polyester is a less fragile material, and could be an alternative replacement for the valve leaflets. The dynamic performances obtained in vitro with a valve prosthesis made from textile have proven in previous studies to be satisfactory. However, as textile is a porous material the interaction processes between the fabric leaflet surfaces and living tissues remain unknown. The study aim was to discuss the fabric design criteria which are best suited to clinical application. An appropriate design provided strength, limited porosity and low bulk to the fabric, which was particularly suited for small-diameter catheter insertion purposes. The in-vivo behavior of a non-coated polyester textile valve prototype was then studied in the mitral position in a sheep model. The results showed that limited tissue ingrowth occurred, and Ca deposits tended to stiffen the fabric leaflets after a two-month implantation period, which was not compatible with the survival of the animal. The initial results obtained with this non-coated polyester textile valve confirmed that this revolutionary fabric is worthy of further investigation.

  14. An improved extraction method for surface dosage of insecticides on treated textile fabrics.

    Science.gov (United States)

    Dieval, Florence; Bouyer, Jérémy; Fafet, Jean-François

    2017-01-04

    Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. The use of insecticide-treated textiles is one of the most widespread control measures. This includes bed nets, battle clothing or, more generally, textiles use for clothing. These textiles are generally treated with permethrin as active ingredient, which is dosed after extraction of the active molecule present throughout the fabric (measured in mg permethrin/g of fabric) and does not take the effective concentration on the textile surfaces into account. The objective of this study was to propose an improved dosage method that enables measurement of the bioavailable or effective part of active ingredients on the surface of textile treated with insecticides. The proposed method relies on mechanical extraction of active molecules on the surface of the textile in direct contact with either the skin or with the targeted arthropod. The results showed that the amount of permethrin measured using the current method is about 200 times higher than the effective surface concentration of the insecticide. In addition, the type of weave or knit influences the effective concentrations of permethrin on the surface of the textile. With the current dosage method, the variation in the concentration of permethrin depending on the type of weave is maximum 8%, whereas with the proposed method, it varies by about 50%. These results were confirmed by bioassays, in which the type of weave significantly affected (p fabrics is directly correlated with the effective concentration of insecticide on the textile surface, which can be quantified using the method proposed. This improved method could be used to redefine the limits of actual concentrations of active substance after assessment of the bioefficacy of the treatment and the risk to human health. Further, it enables assessments of the kinetics of insecticide

  15. Fabrication of biodegradable textile scaffold based on hydrophobized hyaluronic acid.

    Science.gov (United States)

    Zapotocky, Vojtech; Pospisilova, Martina; Janouchova, Katerina; Svadlak, Daniel; Batova, Jana; Sogorkova, Jana; Cepa, Martin; Betak, Jiri; Stepankova, Veronika; Sulakova, Romana; Kulhanek, Jaromir; Pitucha, Tomas; Vranova, Jana; Duffy, Garry; Velebny, Vladimir

    2017-02-01

    In this work, we report on the preparation of a novel biodegradable textile scaffold made of palmitoyl-hyaluronan (palHA). Monofilament fibres of palHA with a diameter of 120μm were prepared by wet spinning. The wet-spun fibres were subsequently processed into a warp-knitted textile. To find a compromise between swelling in water and degradability of the final textile scaffold, a series of palHA derivatives with different degrees of substitution of the palmitoyl chain was synthesized. Freeze-drying not only provided shape fixation, but also speeded up scaffold degradation in vitro. Fibronectin, fibrinogen, laminin and collagen IV were physically adsorbed on the textile surface to enhance cell adhesion on the material. The highest amount of adsorbed cell-adhesive proteins was achieved with fibronectin (89%), followed by fibrinogen (81%). Finally, textiles modified with fibronectin or fibrinogen both supported the adhesion and proliferation of normal human fibroblasts in vitro, proving to be a useful cellular scaffold for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Arslantepe, Malatya (Turkey): Textiles, Tools and Imprints of Fabrics from the Fourth to the Second Millennium BCE

    DEFF Research Database (Denmark)

    Frangipane, Marcella; Andersson Strand, Eva Birgitta; Laurito, Romina

    2009-01-01

    Interdisciplinary investigation at Arslantepe, Malatya (Turkey): Textiles, Tools and Imprints of Fabrics from the Fourth to the Second Millennium BCE......Interdisciplinary investigation at Arslantepe, Malatya (Turkey): Textiles, Tools and Imprints of Fabrics from the Fourth to the Second Millennium BCE...

  17. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties

    Science.gov (United States)

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-01-01

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199

  18. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    Science.gov (United States)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

  19. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring.

    Science.gov (United States)

    Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan

    2018-02-07

    A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  20. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Amale Ankhili

    2018-02-01

    Full Text Available A medical quality electrocardiogram (ECG signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras, by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  1. Flow resistance of textile materials. Part II: Multifilament Fabrics

    NARCIS (Netherlands)

    Gooijer, H.; Gooijer, H.; Warmoeskerken, Marinus; Groot Wassink, J.

    2003-01-01

    Part I of this series presented a new model for predicting the flow resistance of monofilament fabrics. In this part, the model is applied to the flow resistance of multi filament fabrics. Experiments show that flow resistance in multifilament fabrics can be modeled in general, but it appears that

  2. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    Science.gov (United States)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  3. Sensing of electrically conductive textiles and capacitance sensor-embedded fabrics for parachutes

    Science.gov (United States)

    Damplo, Mark; Niezrecki, Christopher; Willis, David; Chen, Julie; Niemi, Eugene; Agnihotra, Srikanthrao; Manohar, Sanjeev K.; Desabrais, Kenneth; Charette, Christine

    2012-04-01

    This paper evaluates the conductive properties and sensing capabilities of various smart materials being considered for enhancing parachute performance. In a previous review of sensing technologies, several materials showed potential for parachute implementation - specifically, electrically conductive textiles and dielectric electro-active polymers (DEAPs). Past efforts have been focused on mechanically testing and evaluating the sensing performance of conductive fabrics (coated with carbon nanotubes, polypyrrole and polyaniline) and DEAPs. While some of the conductive fabrics demonstrated sufficient sensing capability, they were not conductive enough to implement into an intelligent parachute sensor network for transmitting power or data. Also, attaching or stitching DEAPs to the parachute fabric has proven to be a challenge. The primary goal of this paper is to investigate the use of highly-conductive textiles in an intelligent textile sensor network for sensing and as a means to transmit power or electrical signals. The applications of the materials investigated in this paper may also extend beyond parachutes to any large-scale textile structure.

  4. Integration of textile fabric and coconut shell in particleboard

    Science.gov (United States)

    Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.

    2013-08-01

    In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.

  5. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    Science.gov (United States)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  6. Model-based determination of the influence of textile fabric on bioassay analysis and the effectiveness of a textile slow-release system of DEET in mosquito control.

    Science.gov (United States)

    Malengier, Benny; Goessens, Tineke; Mafo, Flora F; De Vrieze, Mike; Van Langenhove, Lieva; Wanji, Samuel; Lynen, Frederic

    2015-08-01

    Determining the effectiveness of a product in repelling mosquitoes or other flying insects is a difficult task. One approach is to use a bioassay with textile fabric. We investigated the role of the textile substrate in a bioassay with a numerical model, and compared the outcome with known results for DEET. The model was then used to determine the effectiveness of textile slow-release formulations based on coatings, and results were compared with those of a field study in the Cameroon. Slow-release formulations are difficult to evaluate with standard tests, as the compound needs a build-up time not present in these tests. We found excellent correspondence between the model and the known DEET results without matching parameters. Slow-release approaches are deemed possible but have several drawbacks. Modelling can help in identifying optimal use conditions. The field test with a slow-release system performed better than anticipated by the model, with initially more than 90% repellency. DEET-coated textile was considered not to be marketable, however. We advise that bioassays characterise in more detail the type of textile fabric used so as to allow conclusions to be drawn by textile modelling. As regards coated-textile slow-release systems, more research is needed. We nevertheless advise usage mainly at entry points, e.g. as scrims. © 2014 Society of Chemical Industry.

  7. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    Science.gov (United States)

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  8. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  9. Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Ibănescu, Mariana [Centre of Nanostructures and Functional Materials-CNMF, Faculty of Materials and Environment Engineering, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi (Romania); Muşat, Viorica, E-mail: viorica.musat@ugal.ro [Centre of Nanostructures and Functional Materials-CNMF, Faculty of Materials and Environment Engineering, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi (Romania); Textor, Torsten [Deutsches Textilforschungszentrum Nord-West gGmbH, DTNW, Adlerstr. 1, 47798 Krefeld (Germany); CENIDE, Center for Nanointegration Duisburg-Essen (Germany); Badilita, Viorel [National R and D Institute for Non-ferrous and Rare Metals Nanostructured Materials Laboratory, Ilfov (Romania); Mahltig, Boris [Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2014-10-15

    Highlights: • Higher silver doping smaller nanoparticles size and weaker agglomeration. • Higher silver concentration higher optical absorbance and band gap energy. • Small amouts of silver have considerably increased the antimicobial activity. • The photocatalytic activity is consistent with the increase of antimicrobial activity. - Abstract: The utilization of ZnO nanoparticles with photocatalytic and antimicrobial activity for textile treatment has received much attention in recent years. Since silver is a well-known but more expensive antibacterial material, it is of interest to study the extent to which a small amount of silver increases the photocatalytic and antimicrobial activity of the less expensive zinc oxide nanoparticles. This paper reports on the preparation of Ag/ZnO composite nanoparticles by reducing silver on the surface of commercial ZnO nanoparticles dispersed in isopropanol. Crystalline structure, particle size and band gap energy of as-prepared composite nanoparticles were investigated by X-ray diffraction and UV–Vis absorption measurements. Long term stable sols of ZnO and Ag/ZnO nanoparticles were prepared and applied as liquid coating agent for textile treatment, in combination with inorganic–organic hybrid polymer binder sols prepared from the precursors 3-glycidyloxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). The coating process was carried out on cotton fabrics and cotton/polyester blended fabrics using the pad–dry–cure method. The photocatalytic activity of the nanoparticles, as prepared or applied on textile fabrics, was studied through the degradation of the dye methylene blue (MB) in water under the UV irradiation. The antimicrobial activity of the nanoparticles applied on textile fabrics, was tested against the Gram-negative bacterium Escherichia coli and Gram-positive Micrococcus luteus.

  10. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  11. Fabrication of a Textile-Based Wearable Blood Leakage Sensor Using Screen-Offset Printing.

    Science.gov (United States)

    Nomura, Ken-Ichi; Horii, Yoshinori; Kanazawa, Shusuke; Kusaka, Yasuyuki; Ushijima, Hirobumi

    2018-01-15

    We fabricate a wearable blood leakage sensor on a cotton textile by combining two newly developed techniques. First, we employ a screen-offset printing technique that avoids blurring, short circuiting between adjacent conductive patterns, and electrode fracturing to form an interdigitated electrode structure for the sensor on a textile. Furthermore, we develop a scheme to distinguish blood from other substances by utilizing the specific dielectric dispersion of blood observed in the sub-megahertz frequency range. The sensor can detect blood volumes as low as 15 μL, which is significantly lower than those of commercially available products (which can detect approximately 1 mL of blood) and comparable to a recently reported value of approximately 10 μL. In this study, we merge two technologies to develop a more practical skin-friendly sensor that can be applied for safe, stress-free blood leakage monitoring during hemodialysis.

  12. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    Science.gov (United States)

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  13. FUNCTIONALISATION OF TEXTILE FABRICS WITH STABILIZED TiO2 DISPERSIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Alina

    2016-05-01

    Full Text Available This study approached the experimentation of deposition by padding of some TiO2 P25 dispersed photocatalytic systems on RIPSTOP fabric, made of 100% cotton yarns Nm 70/1 and a network of polyester filament yarns 330 dtex, both in warp and weft directions. As stabilizers for photocatalytic dispersions the following products have been used: dodecyltrimethylamonnium bromide (DTAB, 2-[2-(2-methoxyethoxyethoxy] acetic acid (TODA and poly(ethyleneglycol (PEG. Prior to functionalisation treatment, preliminary preparation in three successive steps were applied on textile materials (enzymatic desizing, hot alkaline treatment and bleaching, being followed by cationisation with a polyethylene polyamine resin or a pre-treatment with different crosslinking agents based on acrylic copolymer, polycarbonate urethane polymer or urethane resin. The photocatalytic activity of the textile materials treated with synthesized dispersions was investigated using methylene blue as pollutant. The evaluation was made before and after one washing cycle, in order to determine the durability to washing of applied treatments. Electron microscopy was used for viewing the distribution of TiO2 particles on the surface of textile materials treated with the photocatalytic dispersions. Ti content existing on the surface of the textile materials was performed by energy dispersive X-ray spectroscopy. The sample treated with photocatalytic dispersion stabilized with TODA showed the higher photocatalytic activity, for which the greatest degree of discoloration was achieved after six hours UV irradiation. Pre-treatment with crosslinking type urethane resin offers good durability to washing of photocatalytic dispersions stabilized with TODA and PEG, confirmed by obtaining a discoloration after washing comparable to that obtained for the unwashed sample.

  14. Study on textile comfort properties of polypropylene blended stainless steel woven fabric for the application of electromagnetic shielding effectiveness

    Science.gov (United States)

    Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.

    2017-10-01

    In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.

  15. Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases.

    Science.gov (United States)

    Smith, Merry K; Mirica, Katherine A

    2017-11-22

    Wearable electronics have the potential to advance personalized health care, alleviate disability, enhance communication, and improve homeland security. Development of multifunctional electronic textiles (e-textiles) with the capacity to interact with the local environment is a promising strategy for achieving electronic transduction of physical and chemical information. This paper describes a simple and rapid approach for fabricating multifunctional e-textiles by integrating conductive two-dimensional (2D) metal-organic frameworks (MOFs) into fabrics through direct solution-phase self-assembly from simple molecular building blocks. These e-textiles display reliable conductivity, enhanced porosity, flexibility, and stability to washing. The functional utility of these integrated systems is demonstrated in the context of chemiresistive gas sensing, uptake, and filtration. The self-organized frameworks on textiles (SOFT)-devices detect and differentiate important gaseous analytes (NO, H2S, and H2O) at ppm levels and maintain their chemiresistive function in the presence of humidity (5000 ppm, 18% RH). With sub-ppm theoretical limits of detection (LOD for NO = 0.16 ppm and for H2S = 0.23 ppm), these constitute the best textile-supported H2S and NO detectors reported and the best MOF-based chemiresistive sensors for these analytes. In addition to sensing, these devices are capable of capturing and filtering analytes.

  16. Fact Sheets: Final Rule to Reduce Toxic Air Pollutants from Printing, Coating, and Dyeing of Fabrics and Other Textiles

    Science.gov (United States)

    This page contains the February 2003 and the October 2004 final rule fact sheet that contain information on the NESHAP for Printing, Coating, and Dyeing of Fabrics and Other Textiles. These documents provide a summary of the information for this NESHAP.

  17. The Fabric of the Universe: Exploring the Cosmic Web in 3D Prints and Woven Textiles

    Science.gov (United States)

    Diemer, Benedikt; Facio, Isaac

    2017-05-01

    We introduce The Fabric of the Universe, an art and science collaboration focused on exploring the cosmic web of dark matter with unconventional techniques and materials. We discuss two of our projects in detail. First, we describe a pipeline for translating three-dimensional (3D) density structures from N-body simulations into solid surfaces suitable for 3D printing, and present prints of a cosmological volume and of the infall region around a massive cluster halo. In these models, we discover wall-like features that are invisible in two-dimensional projections. Going beyond the sheer visualization of simulation data, we undertake an exploration of the cosmic web as a three-dimensional woven textile. To this end, we develop experimental 3D weaving techniques to create sphere-like and filamentary shapes and radically simplify a region of the cosmic web into a set of filaments and halos. We translate the resulting tree structure into a series of commands that can be executed by a digital weaving machine, and present a large-scale textile installation.

  18. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.

    Science.gov (United States)

    De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio

    2017-10-26

    A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Textile dyes

    OpenAIRE

    Guaratini, Cláudia C. I. [UNESP; Zanoni, Maria Valnice Boldrin [UNESP

    2000-01-01

    A dye is a colored substance used to impart permanent color to other substances. Its most important use is in coloring textile fibers and fabrics. The removal of colour from dyehouse waste waters is currently a major problem in the textile sector. This paper provides an overview of the treatment technologies that can currently be used by the textile processor and the developments over the past decade with respect to the toxicological and ecotoxicological properties of synthetic organic dyes.

  20. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    Science.gov (United States)

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  1. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  2. Textile Supercapacitors

    Science.gov (United States)

    Jost, Kristy Alana

    Innovative and interdisciplinary solutions to wearable textile energy storage are explored as power sources for wearable electronics and smart textiles. Due to their long cycle life, non-toxic and inexpensive materials, supercapacitors were converted into textiles. Textile supercapacitors were developed using scalable fabrication methods including screen-printing, yarn making, and 3D computerized knitting. The electrode materials reported in this thesis undergo thorough electrochemical analysis, and are capable of storing up to 0.5 F/cm2 which is on par with conventionally solid supercapacitors (0.6 F/cm2). Capacitive yarns are capable of storing up to 37 mF/cm and are shown to be knittable on industrial knitting equipment. Both are some of the highest reported capacitance for all-carbon systems in the field. Yet both are the only systems composed of inexpensive and non-toxic activated carbon, the most commonly used electrode material used in supercapacitors, opposed to carbon nanotubes or graphene, which are typically more 10-100 times more expensive. However, all of the fabrication techniques reported here are also capable of incorporating a wide variety of materials, ultimately broadening the applications of textile energy storage as a whole. Fully machine knitted supercapacitors are also explored and electrochemically characterized in order to determine how the textile structure affects the capacitance. In conclusion, a wide variety of fabrication techniques for making textile supercapacitors were successfully explored.

  3. Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges.

    Science.gov (United States)

    Lymberis, A; Paradiso, R

    2008-01-01

    Smart fabrics and interactive textiles (SFIT) are fibrous structures that are capable of sensing, actuating, generating/storing power and/or communicating. Research and development towards wearable textile-based personal systems allowing e.g. health monitoring, protection & safety, and healthy lifestyle gained strong interest during the last 10 years. Under the Information and Communication Programme of the European Commission, a cluster of R&D projects dealing with smart fabrics and interactive textile wearable systems regroup activities along two different and complementary approaches i.e. 'application pull' and 'technology push'. This includes projects aiming at personal health management through integration, validation, and use of smart clothing and other networked mobile devices as well as projects targeting the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable personal applications such as protection/safety, emergency and healthcare. The integration part of the technologies into a real SFIT product is at present stage on the threshold of prototyping and testing. Several issues, technical as well user-centred, societal and business, remain to be solved. The paper presents on going major R&D activities, identifies gaps and discuss key challenges for the future.

  4. Parameters optimization of fabric finishing system of a textile industry using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    Rajiv Kumar

    2017-07-01

    Full Text Available In the present work, a recently developed advanced optimization algorithm named as teaching–learning-based optimization (TLBO is used for the parameters optimization of fabric finishing system of a textile industry. Fabric Finishing System has four main subsystems, arranged in hybrid configuration. For performance modeling and analysis of availability, a performance evaluating model of fabric finishing system has been developed with the help of mathematical formulation based on Markov-Birth-Death process using Probabilistic Approach. Then, the overall performance of the concerned system has first analyzed and then, optimized by using teaching–learning-based optimization (TLBO. The results of optimization using the proposed algorithm are validated by comparing with those obtained by using the genetic algorithm (GA on the same system. Improvement in the results is obtained by the proposed algorithm. The results of effect of variation of the algorithm parameters on fitness values of the objective function are reported.

  5. Sonochemical fabrication of edible fragrant antimicrobial nano coating on textiles and polypropylene cups.

    Science.gov (United States)

    Tzhayik, O; Lipovsky, A; Gedanken, A

    2017-09-01

    We report on a simple and effective ultrasound-assisted deposition of vanillin nanoparticles (∼50nm in size), raspberry ketone (RK) nanoparticles (∼40nm in size) and camphor nanoparticles (width ∼30nm, length ∼40nm in size) on textiles and on polypropylene surfaces. The excellent antibacterial and antifungal activity of the fragrant coatings on cotton bandages, and polypropylene surface against Escherichia coli (E. coli), Salmonella paratyphi A (S. paratyphi A) and the yeast Candida albicans (C. albicans) cultures was demonstrated. It is worth pointing out that these fragrant materials are edible, making them very useful for packaging. The mechanism of the edible fragrant coating formation and adhesion to the textile was discussed, and finally an up-scaling of the sonochemical process for textile coating was carried out. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications

    Science.gov (United States)

    Tadesse, Melkie Getnet; Dumitrescu, Delia; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Nierstrasz, Vincent

    2017-12-01

    Electroluminescence (EL) is the property of a semiconductor material pertaining to emitting light in response to an electrical current or a strong electric field. The purpose of this paper is to develop a flexible and lightweight EL device. Thermogravimetric analysis (TGA) was conducted to observe the thermal degradation behavior of NinjaFlex. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)—PEDOT:PSS—with ethylene glycol (EG) was coated onto polyester fabric where NinjaFlex was placed onto the coated fabric using three-dimensional (3D) printing and phosphor paste, and BendLay filaments were subsequently coated via 3D printing. Adhesion strength and flexibility of the 3D-printed NinjaFlex on textile fabrics were investigated. The TGA results of the NinjaFlex depict no weight loss up to 150°C and that the NinjaFlex was highly conductive with a surface resistance value of 8.5 ohms/sq.; the coated fabric exhibited a uniform surface appearance as measured and observed by using four-probe measurements and scanning electron microscopy, respectively, at 60% PEDOT:PSS. The results of the adhesion test showed that peel strengths of 4160 N/m and 3840 N/m were recorded for polyester and cotton specimens, respectively. No weight loss was recorded following three washing cycles of NinjaFlex. The bending lengths were increased by only a factor of 0.082 and 0.577 for polyester and cotton samples at 0.1-mm thickness, respectively; this remains sufficiently flexible to be integrated into textiles. The prototype device emitted light with a 12-V alternating current power supply.

  7. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  8. Smart textiles: Challenges and opportunities

    Science.gov (United States)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  9. 3D-Printed Graphene Antennas and Interconnections for Textile RFID Tags: Fabrication and Reliability towards Humidity

    Directory of Open Access Journals (Sweden)

    Han He

    2017-01-01

    Full Text Available We present the possibilities of 3D direct-write dispensing in the fabrication of passive UHF RFID graphene tags on a textile substrate. In our method, the graphene tag antenna is deposited directly on top of the IC strap, in order to simplify the manufacturing process by removing one step, that is, the IC attachment with conductive glue. Our wireless measurement results confirm that graphene RFID tags with printed antenna-IC interconnections achieve peak read ranges of 5.2 meters, which makes them comparable to graphene tags with epoxy-glued ICs. After keeping the tags in high humidity, the read ranges of the tags with epoxy-glued and printed antenna-IC interconnections decrease 0.8 meters and 0.5 meters, respectively. However, after drying, the performance of both types of tags returns back to normal.

  10. Representación paramétrica de la transformada de Fourier de tejidos textiles Implementation of the parametric representation of the Fourier transform in fabrics

    Directory of Open Access Journals (Sweden)

    Yezid Torres Moreno

    2007-06-01

    Full Text Available La naturaleza periódica de las imágenes de tejido textil permite el uso de las técnicas de la transformación de Fourier rápida para su clasificación. Debido a los patrones de repetición dentro de las imágenes del tejido textil, es posible encontrar una forma relativamente fácil de descripción para su densidad espectral de energía. Un trabajo previamente publicado permite mostrar el uso de descriptores para el espectro de Fourier de las imágenes, en particular su eficiencia a la invarianza a la rotación, traslación y cambio de escala [1].Dichos descriptores mostraron ser muy efectivos para representar un tejido textil y pueden ser utilizados para caracterizar texturas cuasi¿periódicas mediante técnicas no destructivas en tiempo real e in situ. Muestras de texturas textiles son evaluadas con esta técnica de representación paramétrica con el propósito de analizar su robustez y reproducibilidad. Finalmente, un conjunto de tejidos textiles es sometido a este modelo con el objetivo de evaluar la posibilidad de utilizarlo para la clasificación, verificación y reconocimiento de formas.The periodic nature of the fabric images allows using fast Fourier transform techniques in image processing for its characterization. Due to the repetition of patterns inside the images of textile, is possible to find a form relatively easy of description in their energy spectrum. A recent work outlines a group of geometric descriptors for the Fourier spectrum of the images; looking for this efficiency to rotation, translation and scale change invariance [1]. These descriptors showed to be very effective to represent a textile fabric and can be used to characterize the quasi periodic textures in real time and in situ non destructive techniques. Samples of textile textures are tested to this technique of parametric representation with the purpose of analyzing their robustness and reproducibility. Finally, a set of textile fabrics is subjected to

  11. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Han, Qiming [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); and others

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  12. Decomposition of indoor ammonia with TiO 2-loaded cotton woven fabrics prepared by different textile finishing methods

    Science.gov (United States)

    Dong, Yongchun; Bai, Zhipeng; Liu, Ruihua; Zhu, Tan

    Addition of urea-based antifreeze admixtures during cement mixing in construction of buildings has led to increasing indoor air pollution due to continuous transformation and emission of urea to gaseous ammonia in indoor concrete wall. In order to control ammonia pollution from indoor concrete wall, the aqueous dispersion was firstly prepared with nano-scale TiO 2 photocatalysts and dispersing agent, and then mixed with some textile additives to establish a treating bath or coating paste. Cotton woven fabrics were used as the support materials owing to their large surface area and large number of hydrophilic groups on their cellulose molecules and finished using padding and coating methods, respectively. Two TiO 2-loaded fabrics were obtained and characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Moreover, a specifically designed ammonia photocatalytic system consisting of a small environmental chamber and a reactor was used for assessing the performance of these TiO 2-loaded fabrics as the wall cloth or curtains used in house rooms in the future and some factors affecting ammonia decomposition are discussed. Furthermore, a design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air stream. The results indicated that increasing dosage of the TiO 2 aqueous dispersion in treating bath or coating paste improved the ammonia decomposition. And ammonia was effectively removed at low ammonia concentration or gas flow rate. When relative humidity level was 45%, ammonia decomposition was remarkably enhanced. It is the fact that ammonia could be significantly decomposed in the presence of the TiO 2-padded cotton fabric. Whereas, the TiO 2-coated cotton fabric had the reduced photocatalytic decomposition of ammonia and high adsorption to ammonia owing to their acrylic binder layer. Finally, the reaction rate constant k and the adsorption equilibrium constant K values were determined through a

  13. USE OF A NATURAL DYE FROM SERRATIA MARCESCENS SUBSPECIES MARCESCENS IN DYEING OF TEXTILE FABRICS

    OpenAIRE

    Ravindra Adivarekar; Jyoti Vaidyanathan; Madhura Nerurkar

    2013-01-01

    A strain of Serratia marcescens subspecies marcescens capable of producing a novel rose red pigment with a mass of 112 Da has been isolated from Mahim Mangroove soil. Studies regarding the growth conditions of bacteria, partial characterization of the produced pigment and use of this rose red pigment to dye natural fabrics has been studied and described. Dyeing of wool, cotton and silk fabrics with this rose red microbial pigment as natural dye indicated that the colour strength values and t...

  14. Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    G. Rosace

    2016-01-01

    Full Text Available The aim of this work is to investigate the influence of weave structures and silica coatings obtained via sol-gel process on the thermal insulation properties of cotton samples. For this reason three main weave structures (plain, satin, and piqué of cotton fabric were selected with different yarn count, threads per cm, and mass per square meter values. Thereafter, only for the plain weave, the samples were padded using silica sol formed by hydrolysis and subsequent condensation of 3-glycidoxypropyltrimethoxysilane under acidic conditions. The silanized plain weave samples were characterized by TGA and FT-IR techniques. The thermal properties were measured with a home-made apparatus in order to calculate thermal conductivity, resistance, and absorption of all the treated fabric samples. The relationship between the thermal insulation properties of the plain weave fabrics and the concentration of sol solutions has been investigated. Fabrics weave and density were found to strongly influence the thermal properties: piqué always shows the lowest values and satin shows the highest values while plain weave lies in between. The thermal properties of treated high-density cotton plain weave fabric were proved to be strongly influenced by finishing agent concentration.

  15. EVALUATION OF ANTIBACTERIAL ACTIVITY OF ZnO NANOPARTICLES COATED SONOCHEMICALLY ONTO TEXTILE FABRICS

    Directory of Open Access Journals (Sweden)

    James Beddow

    2012-08-01

    Full Text Available Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their nano-composites as an alternative. In the present work studies have been carried out to investigate the antibacterial properties of ZnO nanoparticles (NPs. Various tests were performed to assess the antibacterial activity of cotton fabrics coated with ZnO nanoparticles against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The antibacterial activities of the fabrics were assessed semi-quantitatively by the agar diffusion method and the shake flask method (nutrient broth and quantitatively by the shake flask method (saline and the absorption method (ISO 20743:2007. The results showed a significant antibacterial activity of ZnO nanoparticles coated onto fabrics against both bacteria, with a slightly higher activity against Staphylococcus aureus as compared to Escherichia coli.

  16. Analysis of Two Methods for Characterization of Flame Resistant Military Fabrics and Commercial Textile Fibers: Simultaneous DSC-TGA and Pyrolysis GCMS

    Science.gov (United States)

    2014-04-04

    and high performance fibers such as meta- aramid (Nomex®) and para- aramid (Kevlar®, Twaron®) for decades. It is reported that pyrolysis measurements...no distinguishable difference between the Kevlar® and Twaron® fibers in the SDT results; both were para- aramid fibers processed differently from...FOR CHARACTERIZATION OF FLAME RESISTANT MILITARY FABRICS AND COMMERCIAL TEXTILE FIBERS : SIMULTANEOUS DSC-TGA AND PYROLYSIS GCMS by Pearl W

  17. Alternative to Water Based Fabric Cleaner in Textile and Detergent Processes

    Directory of Open Access Journals (Sweden)

    Arpan Jain

    2017-01-01

    Full Text Available Three different detergent formulations, (1 ethyl-hydro-oxides (EHOs, using ethanol + H2O2 + KOH + water, without pH adjustment, at 60°C for 1 h, (2 modified EHOs (using ethanol + H2O2 + KOH + water, with pH adjustment, at 40°C for 1 h, and (3 water based detergent (WBD, using commercial detergent T + water, at 40°C for 1 h, were analyzed for cleaning of dried biodiesel soaked cotton cloth (DBSCC samples. The effects of detergent formulations were analyzed based on cloth sample weights (residual and intact and visual (through photographic images examinations. With EHOs formulations, the increasing concentration of KOH and H2O2 had a significant effect on increasing both brightness and residual content of DBSCC samples. On the contrary, the controlled pH environments (as with modified EHOs formulations had a significant effect in decreasing residual content and increasing brightness of DBSCC samples. The implications of EHOs formulations (with and without modification are discussed with respect to current water based textile and detergent industries practices.

  18. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  19. Multifunctionalization of wool fabrics through nanoparticles: A chemical route towards smart textiles.

    Science.gov (United States)

    Mura, Stefania; Greppi, Gianfranco; Malfatti, Luca; Lasio, Barbara; Sanna, Vanna; Mura, Maria Elena; Marceddu, Salvatore; Lugliè, Antonella

    2015-10-15

    A new approach towards the design of smart nanotextiles with innovative properties is presented. Silica (SiO2), titania (TiO2), and silver (Ag) nanoparticles (NPs), were synthesized without the use of any toxic organic compound and then were used, alone and in combination, to functionalize wool fabrics. Electrostatic forces, influenced by a low pH of the solutions, allowed the interactions between wool fabrics and NPs, enabling a robust functionalization. This was verified by X-ray microfluorescence and visualized by scanning electron microscopy measurements. The antibacterial Ag NPs were embedded in a polymer, alginic acid, to reduce the possible side effect due to their direct contact with the skin. SiO2 NPs, instead, were used to change the hydrophilicity of wool while the functionalization with TiO2 NPs was chosen to provide self-cleaning properties. The antibacterial activity of the fabrics was studied against the bacteria Escherichia coli, while the hydrophilicity of wool was studied by contact angle measurements and the self-cleaning properties were tested by estimating the visible discoloring of a dye stain under sunlight irradiation. Interestingly the combination of three different types of NPs provided the best results. SiO2 and Ag made the wool superhydrophilic providing at the same time the best antibacterial properties, while fabrics with titania (alone or in combination) were hydrophobic and showed the best self-cleaning properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    Science.gov (United States)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  1. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    Science.gov (United States)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  2. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Science.gov (United States)

    Durán, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Da Silva, João P. S.; De Souza, Gabriel I. H.; Rodrigues, Flávio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  3. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Nelson, E-mail: duran@iqm.unicamp.br; Marcato, Priscyla D. [Universidade Estadual de Campinas, Biological Chemistry Laboratory, Instituto de Quimica (Brazil); Alves, Oswaldo L. [Universidade Estadual de Campinas, Solid State Chemistry Laboratory, Instituto de Quimica (Brazil); Silva, Joao P. S. Da; Souza, Gabriel I. H. De [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil); Rodrigues, Flavio A. [Universidade de Mogi das Cruzes, Material Chemistry Laboratory, Biochemical Research Center (Brazil); Esposito, Elisa [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil)

    2010-01-15

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  4. Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabrics.

    Science.gov (United States)

    Hebeish, A; El-Shafei, A; Sharaf, S; Zaghloul, S

    2014-11-26

    Cationization of cotton fabric form was effected by reacting the cellulose with 3-chloro-2 hydroxypropyl trimethyl ammonium chloride in presence of sodium hydroxide as per the pad dry cure method. Thus obtained cationized cotton cellulose was reacted with a reactive copolymer, namely, reactive β-cyclodextrin grafted with polyacrylic acid (MCT-βCD-g-PAA).Bridging of another copolymer, namely, β-cyclodextrin grafted with polyacrylic acid (βCD-g-PAA) to the cationized fabric using epichlorohydrin crosslinker was also performed. Inclusion of Ag nanoparticles in these three cotton substrates via treatment of the latter with colloid of Ag nanoparticles or through in situ formation of the former was exercised. Characterization of cotton fabric before and after being chemically modified was carried out using FTIR, XRD and SEM. Bacterial examination of the cationized cotton containing either (MCT-βCD-g-PAA) or (βCD-g-PAA) incorporated with Ag nanoparticles showed these substrates function against G+ve and G-ve bacteria. Ability of (MCT-βCD-g-PAA) modified cotton to include hydrophobic molecules was examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics.

    Science.gov (United States)

    Wang, Jiping; Chen, Yangyi; An, Jie; Xu, Ke; Chen, Tao; Müller-Buschbaum, Peter; Zhong, Qi

    2017-04-19

    Comfort regulation and inhibition of bacterial adhesion to textiles is realized by cross-linking thermoresponsive random copolymer to the cotton fabrics. By introduction of ethylene glycol methacrylate (EGMA) monomers into n-isopropylacrylamide (NIPAM) with a molar ratio of 2:18, the obtained random copolymer poly(n-isopropylacrylamide-co-ethylene glycol methacrylate), abbreviated as P(NIPAM-co-EGMA), presents a transition temperature (TT) of 40 °C in an aqueous solution with a concentration of 1 mg/mL. Because of the additional EGMA in the copolymer, the obtained P(NIPAM-co-EGMA) shows a glass transition temperature (T g ) of 0 °C, which is much lower than that of pure PNIPAM (T g = 140 °C). Therefore, the introduction of P(NIPAM-co-EGMA) into the cotton fabrics will have little influence on the softness of the fabrics. Due to the cross-linked P(NIPAM-co-EGMA) layer on the cotton fabrics, the porosity of the polymer layer can be adjusted by varying the external temperature below or above TT, showing that regulation of the air and moisture permeability as well as the body comfort are feasible in the cotton fabrics cross-linked with P(NIPAM-co-EGMA). In addition, the cross-linked P(NIPAM-co-EGMA) layer is capable of absorbing moisture in the ambient atmosphere to form a hydrated layer on top, which can inhibit bacterial adhesion to the textiles.

  6. Three-Dimensionally Conformal Porous Microstructured Fabrics via Breath Figures: A Nature-Inspired Approach for Novel Surface Modification of Textiles.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming

    2017-05-24

    Breath figures (BFs) are a kind of water droplet arrays that can be formed by condensing aqueous vapor onto a cold surface, such as dewy phenomenon on a spider web. This study developed a BF-inspired approach for direct introduction of desired materials onto the textile surfaces with three-dimensionally conformal porous microstructures by the evaporation of solution-coated fabric under high humidity environment, which brings a brand-new kind of modified textiles, three-dimensionally conformal porous microstructured fabrics (CPMFs). Such kind of CPMFs can possess customized multifunctional properties of introduced materials, and meanwhile maintain the inherent properties and unique texture features of fabrics. This nature-inspired BF approach is robust and versatile for customized preparation of CPMFs based on different fabrics with different common polymers. Moreover, it is also feasible for one-step functionalization of CPMFs by the incorporation of nanoparticles (such as titanium dioxide nanoparticles, TiO2 NPs) into the porous microstructures during the BF process. Comparing to the sample modified without porous microstructures, the resultant TiO2 NPs-incorporated CPMFs show an obviously enhanced performance on photocatalytic degradation of pollutants under the same ultraviolet irradiation conditions.

  7. Creating tissues from textiles: scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds.

    Science.gov (United States)

    Tuin, S A; Pourdeyhimi, B; Loboa, E G

    2016-02-23

    Electrospun nonwovens have been used extensively for tissue engineering applications due to their inherent similarities with respect to fibre size and morphology to that of native extracellular matrix (ECM). However, fabrication of large scaffold constructs is time consuming, may require harsh organic solvents, and often results in mechanical properties inferior to the tissue being treated. In order to translate nonwoven based tissue engineering scaffold strategies to clinical use, a high throughput, repeatable, scalable, and economic manufacturing process is needed. We suggest that nonwoven industry standard high throughput manufacturing techniques (meltblowing, spunbond, and carding) can meet this need. In this study, meltblown, spunbond and carded poly(lactic acid) (PLA) nonwovens were evaluated as tissue engineering scaffolds using human adipose derived stem cells (hASC) and compared to electrospun nonwovens. Scaffolds were seeded with hASC and viability, proliferation, and differentiation were evaluated over the course of 3 weeks. We found that nonwovens manufactured via these industry standard, commercially relevant manufacturing techniques were capable of supporting hASC attachment, proliferation, and both adipogenic and osteogenic differentiation of hASC, making them promising candidates for commercialization and translation of nonwoven scaffold based tissue engineering strategies.

  8. Printing, Coating, and Dyeing of Fabrics and Other Textiles: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Learn more about the NESHAP for the surface coating of textiles and apparel. On this page you can read the rule summary and history, as well as find supporting documents, including a fact sheet and a compliance timeline.

  9. Scope of nanotechnology in modern textiles

    Science.gov (United States)

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  10. The Textile Space

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    Textile has within the last decade increasingly been regarded as an architectural material. Many new textiles have been developed and this has increased its applications in architecture. But how do textile and space meet and which spatial qualities can arise in this meeting? The paper describes...... a series of practical studies of the spatial qualities that can be established through the design of three very different fabrics. The topic is part of an ongoing Ph.D. project at The Danish Design School in Copenhagen. The main theme of the Ph.D. is the inter-play between textile, space and sound. Space...... and it has a special poetry which is not to be found in any other material. Which spatial qualities can be obtained with these textile properties? Contemporary conception of space in architecture can be said still to rely on the modernist conception. In practical experiments it is investigated how...

  11. Plasma enhanced CVD of SiO{sub x}C{sub y}H{sub z} thin film on different textile fabrics: Influence of exposure time on the abrasion resistance and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Rosace, Giuseppe, E-mail: giuseppe.rosace@unibg.it [Dipartimento di Ingegneria Industriale, Universita degli Studi di Bergamo, viale Marconi, 5, 24044 Dalmine (Italy); Canton, Roberto [Moma srl, POINT, via Pasubio, 5, 24044 Dalmine (Italy); Colleoni, Claudio [Dipartimento di Ingegneria Industriale, Universita degli Studi di Bergamo, viale Marconi, 5, 24044 Dalmine (Italy)

    2010-02-01

    In order to improve textile fabric abrasion resistance, in this work a SiO{sub x}C{sub y}H{sub z} thin film was realized by low pressure plasma chemical vapour deposition (PCVD) at room temperature, using hexamethyldisiloxane (HMDSO) as precursor compound. To test changes in the performance properties of the surface finished samples as a function of the type of the substrate, the deposition was carried out on different textile fabrics. The polymerization processes were followed by weight measurements of textile fabrics. It was found that, after PCVD, a significantly lower fabric weight loss was observed on treated samples after rubbing than on the untreated samples. The morphology, elemental composition and type of chemical bonding present in the film applied on textile fabrics were also investigated using electron scanning microscopy (SEM), energy dispersive X-ray (EDX) and infrared spectroscopy techniques (FT-IR (ATR)). The results showed a substantial enhancement of wear resistance for the surfaces modified with the presented process, while tensile and tearing strength were adversely affected.

  12. Smart textiles.

    Science.gov (United States)

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  13. Textile Manufacturing Sector (NAICS 313)

    Science.gov (United States)

    Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.

  14. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel antimicrobial textiles

    Science.gov (United States)

    Cho, Unchin

    2003-10-01

    Many microorganisms can survive, and perhaps proliferate on textiles, generating adverse effects such as: disease transmission, odor generation, pH changes, staining, discoloration and loss of performance. These adverse effects may threaten users' health, deteriorate textile properties and degrade service quality. It may, therefore, be desirable to incorporate antimicrobials on textiles for controlling the growth of microorganisms. This dissertation focuses on the development of antimicrobial fibers and fabrics by integration of antimicrobials with these textiles. The applications of hydantoin-based halamines were mainly investigated in the research. The typical process is that hydantoin containing compounds are grafted onto textiles and transformed to halamine by chlorination. Hydantoin-based halamines are usually chloramines that release chlorine (Cl+) via cleavage of the -NCl functional group which attacks and kills microbes. The antimicrobial behavior is rechargeable many times by rinsing the fiber or fabric with chlorine-containing solution. Some quaternary ammonium type antimicrobials were also investigated in this research. The choice of integrating techniques is dependant on both the textile and antimicrobial compounds. In this dissertation, the nine approaches were studied for incorporating antimicrobial with various textiles: (1) co-extrusion of fibers with halamine precursor additive; (2) grafting of the quaternary ammonium compounds onto ethylene-co-acrylic acid fiber for creating quaternary ammonium type antimicrobial fiber; (3) entrapment of the additives in thermally bonded bicomponent nonwoven fabrics; (4) attaching antimicrobial additives to surfaces with latex adhesive coating; (5) grafting of antimicrobial compounds onto rubber latex via UV exposure; (6) reaction of halamine with needle-punched melamine formaldehyde nonwoven fabric and laminates; (7) coating melamine resin onto tent fabrics and laminates; (8) synthesis of super absorbent polymer

  16. Submicrometre particle filtration with a dc activated plasma textile

    Science.gov (United States)

    Rasipuram, S. C.; Wu, M.; Kuznetsov, I. A.; Kuznetsov, A. V.; Levine, J. F.; Jasper, W. J.; Saveliev, A. V.

    2014-01-01

    Plasma textiles are novel fabrics incorporating the advantages of cold plasma and low-cost non-woven or woven textile fabrics. In plasma textiles, electrodes are integrated into the fabric, and a corona discharge is activated within and on the surface of the fabric by applying high voltages above 10 kV between the electrodes. When the plasma textile is activated, submicrometre particles approaching the textile are charged by the deposition of ions and electrons produced by the corona, and then collected by the textile material. A stable plasma discharge was experimentally verified on the surface of the textile that was locally smooth but not rigid. A filtration efficiency close to 100% was observed in experiments conducted on salt particles with diameters ranging from 50 to 300 nm. Unlike conventional fibrous filters, the plasma textile provided uniform filtration in this range, without exhibiting a maximum particle penetration size.

  17. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65MPa and tensile strength 180.36MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Textile Architecture

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2010-01-01

    Textiles can be used as building skins, adding new aesthetic and functional qualities to architecture. Just like we as humans can put on a coat, buildings can also get dressed. Depending on our mood, or on the weather, we can change coat, and so can the building. But the idea of using textiles...

  19. Antibacterial textiles

    NARCIS (Netherlands)

    Amrit, Usha

    2015-01-01

    The aim of this thesis was the antibacterial functionalization of textiles and its application in professional laundries. The antibacterial functionalization was meant for the various textile packages lent out by the laundry companies to their customers from hotels, hospital or food industries. The

  20. Future Textiles

    DEFF Research Database (Denmark)

    Hansen, Anne-Louise Degn; Jensen, Hanne Troels Fusvad; Hansen, Martin

    2011-01-01

    Magasinet Future Textiles samler resultaterne fra projektet Future Textiles, der markedsfører området intelligente tekstiler. I magasinet kan man læse om trends, drivkræfter, udfordringer samt få ideer til nye produkter inden for intelligente tekstiler. Områder som bæredygtighed og kundetilpasning...

  1. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    The meeting of architecture and textiles is a continuous but too often forgotten story of intimate exchange. However, the 2nd Ventulett Symposium hosted by the College of Architecture, within Georgia Institute of Technology, Atlanta, GA, was one of these precious moments celebrating such a marriage....... Organized by Lars Spuybroeck, principal of Nox, Rotterdam, and current Thomas W. Ventulett III distinguished chair of Architectural Design, the event was embracing the textile tectonics as a core topic, praising textiles as the key component of architecture, relying on Gottfried Semper’s understanding...... of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  2. TEXTILE STRUCTURES FOR AERONAUTICS (PART II

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The second part of this paper deals with our know-how in the manufacturing and assessing of three-dimensional textile structures during this last five years in the field of textile structures for composites but also in the development of structures for other applications. In the field of composites for aeronautic sector we have developed textile structures using the main methods of textile production, that is to say, weaving, warp knitting, weft knitting and braiding. Comparing the advantages and disadvantages it could be said that braided fabrics, with a structure in the three space axes are the most suitable for fittings and frames.

  3. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  4. Textile terminologies

    OpenAIRE

    Michel, Cécile; Nosch, Marie Louise Bech

    2010-01-01

    International audience; Written sources from the ancient Near East and eastern Mediterranean, from the third to the first millennia BC, provide a wealth of terms for textiles. The twenty-two chapters in the present volume offer the first comprehensive survey of this important material, with special attention to evidence for significant interconnections in textile terminology among languages and cultures, across space and time. For example, the Greek word for a long shirt, khiton , ki-to in Li...

  5. Textile Architecture

    OpenAIRE

    Maurin, Bernard; Motro, René

    2013-01-01

    The basic idea for a textile architecture project originates during early meetings between the architect and the engineer. The morphologic richness of such projects is provided by the varying curvatures of shapes, in contradiction with a classical straight line and orthogonal architecture. However the rules of construction are quite different in terms of realisation and of mechanical behaviour: textile membranes are subjected to a pre-stress conferring them their rigidity, and a major objecti...

  6. Properties of Matter of Awa Textile from Linden Bark

    OpenAIRE

    宮本, 栞; 山下, そのみ

    2003-01-01

    The fabric structure, the mechanical properties and the sanitary properties of Awa textile from linden bark were compared with those of shirting and linen cloth. The form of fiber of weaving yarns of Awa textile from linden bark was observed by a scanning electron microscope. The change in whiteness of Awa textile with washing times through colorimetry. The results obtained were as followed. 1) Awa textile resembled linen cloth in the fiber surface and shirting in the fiber cross section. But...

  7. 78 FR 52907 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2013-08-27

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a... Implementation of Textile Agreements (``CITA'') has determined that certain polyester/nylon cut corduroy fabric...

  8. Simulation of magnetic coatings on textile fibers

    Science.gov (United States)

    Blachowicz, T.; Ehrmann, A.

    2016-08-01

    While the properties of conductive fibres and coatings on textiles can easily be measured and calculated, magnetic coatings of fibres, yarns and fabrics still lack descriptions of their physical properties. Since magnetic textiles can be used for a variety of applications, from magnetic filters to invisible water-marks to magnetic coils and sensors, simulations would be supportive to understand and utilize their properties. The article gives an overview of different coatings on textile fibres, varying the magnetic materials as well as the fibre composition, giving rise to the interactions between neighbouring coated fibres. In this way, it is possible to understand the strong shape anisotropy which must be taken into account when the magnetic properties of textiles are to be tailored. Additionally, the differences between several possible magnetic coating materials become visible. This study can help adjusting the magnetic properties of textile fabrics to a desired application.

  9. Integrated microelectronics for smart textiles.

    Science.gov (United States)

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  10. Textile Dampfbremse

    OpenAIRE

    Saur, A.; Holm, A.

    2006-01-01

    DE 102005020295 A1 UPAB: 20061218 NOVELTY - Manufactured from a textile membrane and made airtight and wind-proof, a vapor barrier seal is attached as an outermost layer on a room side and/or external side of walls, ceilings or floors. It is designed as a carpet or is integrated in a carpet. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a means of transport with a vapor barrier seal. USE - As a vapor barrier seal manufactured from textile for an interior space/indoors to be...

  11. Green piezoelectric for autonomous smart textile

    Science.gov (United States)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  12. Textiles for protection against microorganism

    Science.gov (United States)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  13. TEXTILE SALVAGE

    CERN Multimedia

    Relations with the Host States Service

    2002-01-01

    Readers are reminded that Geneva's agency for salvaging used clothing, other textiles and old shoes (Coordination d'oeuvres d'entraide pour la récupération de vêtements, textiles et chaussures usagés dans le canton de Genève) has a container in the car park outside CERN's Meyrin site. In 2001, 1000 tonnes of such items were collected in the Canton of Geneva (as compared with 840 tonnes in 2000), of which 4460 kg came from the container outside the Meyrin site. The operation's organisers (Caritas, Centre Social Protestant, the Geneva Section of the Swiss Red Cross, Terre des Hommes, the Geneva branch of Terre des Hommes Suisse and Emmaüs, Geneva) would like to thank all those who have donated clothing or otherwise supported their campaign. Relations with the Host States Service Tel. 72848 http://www.cern.ch/relations/

  14. Textile Technology Analysis Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Textile Analysis Labis built for evaluating and characterizing the physical properties of an array of textile materials, but specifically those used in aircrew...

  15. Superoleophobic Textiles

    Science.gov (United States)

    2011-06-01

    different techniques to achieve superhydrophobicity and superoleophobicity using nylon/cotton woven fabric (nyco) and hydroentangled nylon nonwoven ...13 4.4. Modeling and Preparation of Superhydrophobic and Superoleophobic Nonwoven Fabric...19 4.4.2. Geometrical Modification of Nonwoven Fabric

  16. Role of alginate in antibacterial finishing of textiles.

    Science.gov (United States)

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. NANOTECHNOLOGY IN TEXTILE INDUSTRY [REVIEW

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2015-05-01

    Full Text Available Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanotechnology overcomes the limitation of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of the textile industry. Nanotextiles are nanoscale fibrous materials that can be fictionalized with a vast array of novel properties, including antibiotic activity, self-cleaning and the ability to increase reaction rates by providing large surface areas to potential reactants. These materials are used not only as cloth fabric, but as filter materials, wound-healing gauzes and antibacterial food packaging agents in food industry. World demand for nano-materials will rise more than two-and-a-half times to $5.5 billion in 2016 driven by a combination of increased market penetration of existing materials, and ongoing development of new materials and applications. In recent years was demonstrated that nanotechnology can be used to enhance textile attributes, such as fabric softness, durability and breathability, water repellency, fire retardancy, antimicrobial properties in fibers, yarns and fabrics. The development of smart nanotextiles has the potential to revolutionize the production of fibers, fabrics or nonwovens and functionality of our clothing and all types of textile products and applications. Nanotechnology is considered one of the most promising technologies for the 21st century. Today is said that if the IT is the wave of the present, the nanotechnology is the wave of the present, the nanotechnology is the wave of the future.

  18. Preparation of antibacterial textile using laser ablation method

    Science.gov (United States)

    Shahidi, Sheila; Rashidian, M.; Dorranian, D.

    2018-02-01

    A facile in situ laser ablation synthesis of Copper nanoparticles on cotton fabric is reported in this paper. This synthetic method is a laser ablation based fabrication of Cu nanoparticles on cotton fabric for improved performance and antibacterial activity. The treated cotton fabric was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Visible spectroscopic techniques and antibacterial counting test. Very good antibacterial behavior of treated fabrics achieved. This fabric can be used as medical and industrial textiles.

  19. 76 FR 14575 - Country of Origin of Textile and Apparel Products

    Science.gov (United States)

    2011-03-17

    ... considered textile and apparel products (e.g., valves with mesh fabric filters, jump ropes, hats, and... (Formerly RIN 1505-AB60) Country of Origin of Textile and Apparel Products AGENCY: U.S. Customs and Border...'') regulations relating to the country of origin of textile and apparel products. The regulatory amendments...

  20. Interwoven Story: A Narrative Study of Textiles as Educators

    Science.gov (United States)

    Tremblay-Dion, Catherine-Laura

    2017-01-01

    Drawing from both narrative research and Joe Kincheloe's work of research bricolage this study inquired into how textiles have served as educator throughout my life. Weaving, as the earliest and most integral of textile fabrications, is particularly featured in this narrative inquiry. A loom, in its most basic form, consists of three components; a…

  1. Industrial Design Management: The Focal Development for Textile ...

    African Journals Online (AJOL)

    The Nigerian textiles are on the downward trend for the past ten years. This had been blamed on the importation of second hand clothing and the inability of the textile industry to adjust to the technological growth. This has affected designs, productions, fastness of fabrics and the market forces. This paper suggest possible ...

  2. Development of smart conductive 2D-3D textile grid

    NARCIS (Netherlands)

    Agrawal, P. (Pramod); Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Gooijer, H. (Henk)

    2013-01-01

    The conductive textile grid is a large-scale (226 x 115 cm) multi-layer demonstrator exhibiting different conductive textile materials with certain outputs (such as LEDs, thermo-chromic ink and shape memory alloy) can be connected onto a base conductive fabric. Various conductive materials such as

  3. Identification and Characterization of Textile Fibers by Thermal Analysis

    Science.gov (United States)

    Gray, Fiona M.; Smith, Michael J.; Silva, Magda B.

    2011-01-01

    Textile fibers are ubiquitous in the sense that they are present in the fabric of clothing, furniture, and floor and wall coverings. A remarkable variety of textile fibers with different chemical compositions are produced for many different commercial applications. As fibers are readily transferred, they are frequently recovered from crime scenes…

  4. Possibilities and applications of smart textiles

    Directory of Open Access Journals (Sweden)

    Rotari Elena

    2017-01-01

    Full Text Available In the process of creating of new clothing products, the designers choose textiles which have: appearance, comfort, durability, shape retention, protection from bad weather, etc. These aspects not fully satisfy the new factors, such automatic regulation of body temperature; signs of heart attack; fever and others. Smart textiles possess such advanced properties. The functionality of smart textiles consists in informing, protecting and relaxing the wearer. In this research, we approached and revealed the application of e-textile materials and their importance in clothing. The research methodology consists in the efficacy of applying Cu wires to the fabric and the result obtained. The results obtained are positive and they are revealed in the research.

  5. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  6. Textile electrodes and integrated smart textile for reliable biomonitoring.

    Science.gov (United States)

    Paradiso, R; Pacelli, M

    2011-01-01

    Since birth the first and the most natural interface for the body is fabric, a soft, warm and reassuring material. Cloth is usually covering more than 80 % of the skin; which leads us to consider textile material as the most appropriate interface where new sensorial and interactive functions can be implemented. The new generation of personalised monitoring systems is based on this paradigm: functions like sensing, transmission and elaboration are implementable in the materials through the textile technology. Functional yarns and fibres are usable to realise garments where electrical and computing properties are combined with the traditional mechanical characteristics, giving rise to textile platforms that are comparable with the cloths that are normally used to produce our garments. The feel of the fabric is the same, but the functionality is augmented. Nowadays, consumers demand user-friendly connectivity and interactivity; sensing clothes are the most natural and ordinary interface able to follow us, everywhere in a non-intrusive way, in natural harmony with our body.

  7. Dermatophyte susceptibility varies towards antimicrobial textiles.

    Science.gov (United States)

    Hammer, Timo R; Mucha, Helmut; Hoefer, Dirk

    2012-07-01

    Dermatophytoses are a widespread problem worldwide. Textiles in contact with infected skin can serve as a carrier for fungus propagation. Hitherto, it is unknown, whether antifungal textiles could contribute in controlling dermatophytes e.g. by disrupting the chain of infection. Testing of antimicrobial fabrics for their antifungal activities therefore is a fundamental prerequisite to assess the putative clinical relevance of textiles for dermatophyte prevention. Fabrics finished with either didecyldimethylammonium chloride (DDAC), poly-hexamethylenbiguanide, copper and two silver chloride concentrations were tested for their antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes and Candida albicans. To prove dermatophyte susceptibility towards the textiles, swatches were subjected to DIN EN 14199 (Trichophyton sp.) or DIN EN ISO 20743 (C. albicans) respectively. In addition, samples were embedded, and semi-thin sections were analysed microscopically. While all samples showed a clear inhibition of C. albicans, activity against Trichophyton sp. varied significantly: For example, DDAC completely inhibited T. rubrum growth, whereas T. mentagrophytes growth remained unaffected even in direct contact to the fibres. The results favour to add T. mentagrophytes as a test organism in textile dermatophyte efficacy tests. Microscopic analysis of swatches allowed detailed evaluation of additional parameters like mycelium thickness, density and hyphae penetration depth into the fabric. © 2011 Blackwell Verlag GmbH.

  8. The Potential of Improving Medical Textile for Cutaneous Diseases

    Science.gov (United States)

    Radu, C. D.; Cerempei, A.; Salariu, M.; Parteni, O.; Ulea, E.; Campagne, Chr

    2017-10-01

    The paper dwells on the prospect of medical textiles designed to release a drug/active principle to the dermis of patients suffering from cutaneous disease (allergic dermatitis, psoriasis, bacterial/infectious conditions and inflammatory conditions). The paper is an overview of general and experimental data from textile applications. An adequate medical textile may have a cellulosic structure, mainly knitted cotton fabric. In special cases, one may use woven fabric for multilayer drug-releasing systems. As far as controlled release systems are concerned, we carried out a critical comparison between the systems described in literature and our experimental findings as concerns cyclodextrin, hydrogel, film charged with active principles and multilayer system.

  9. Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile.

    Science.gov (United States)

    Rastgoo, Madine; Montazer, Majid; Malek, Reza M A; Harifi, Tina; Mahmoudi Rad, Mahnaz

    2016-07-01

    A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe(2+) to Fe(3+) via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Strain mapping analysis of textile composites

    NARCIS (Netherlands)

    Ivanov, Dimitry; Ivanov, S.; Lomov, Stepan; Verpoest, Ignaas

    2009-01-01

    The focus of the work is meso-scale analysis (scale level of the fabric unit cell) of textile composite deformation and failure. The surface strain measurement is used for: (1) experimental investigation, which includes study of strain distribution at various stages of deformation, plasticity

  11. Textile finishing chemicals: an industrial guide

    National Research Council Canada - National Science Library

    Flick, Ernest W

    1990-01-01

    ..., hand modifiers, antistatic agents, biocides, fixatives, scouring agents, leveling agents, dispersants, defoamers, anticracking agents, binders, lubricating agents, stiffeners, and sequestering agents. The chemicals may constitute a substantial portion of the finished textile. In many cases 10% or more of the fabric's final weight may derive fro...

  12. Characterization of Textile-Insulated Capacitive Biosensors

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  13. Characterization of Textile-Insulated Capacitive Biosensors.

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  14. Development and characterization of textile batteries

    Science.gov (United States)

    Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.

    2017-02-01

    During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

  15. RECYCLED TEXTILES USED IN AUTOMOTIVE INTERIORS. CASE STUDY- FORD MOTOR COMPANY

    Directory of Open Access Journals (Sweden)

    CUC Sunhilde

    2017-05-01

    Full Text Available The environmental movement is affecting all industries, but the textile and automotive industries are two of the few that are constantly being criticized. The automotive industry is the subject of much research, it is the largest manufacturing activity, there is a complex supply chain, is resource intensive and emits various hazardous gases and waste products. The article reviews the current state of automotive industry regarding the textile application. Automotive textiles have been classified as belonging to a category called “Mobiltech” which is one of the main streams of technical textiles. The term means all type of textile components e.g. fibers, filaments, yarns and the fabric used in automobiles. They are classed as technical textile because of the very high performance specifications and special properties required, different from those used in clothing and other applications. The performance of the automotive textiles depends on the fibre properties, fabric structures and various finishes used in the manufacturing processes. After a short presentation of used fibres in car interiors, with advantages and disadvantages it is presented the sustainable textile solutions for the automotive industry. The paper focuses in particular of the use of recycling of textile waste to highlight how the processes of recycled textiles and sustainable textiles production are linked in the automotive sector. A case study with Ford Motor Company outlines and examines their design, development and manufacture process for automotive textiles for car seat coverings and interiors

  16. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    Science.gov (United States)

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-01-01

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078

  17. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.

    Science.gov (United States)

    Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. EXERGY OF TEXTILE MATERIALS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The article presents solution for the task of evaluating exergy of the substance in the flow for textile and woven fabrics based on thermodynamic analysis of the corresponding technical systems. The exergy method allows estimating the energy effectiveness for the most problematic heat-technological systems of substance transformation and thus outlining the ways for decreasing the electric-power component in the production prime cost. The actuality of the issue stems from the renowned scenario alteration on the world energy market and is aggravated by necessity of retaining and building up the export potential of the light industry as an important component of the republic national-economic complex. The exergy method has been here for quite a long time and saw the interest fading and appearing again with periodicity of the research-generations alternation. Cooling down of every new generation towards the specified method is explained mostly by unresolved problem of the exergy evaluation for diverse materials, which poses a problem in the course of analysis of the substance transformation systems. The specified problem as a general rule does not create obstacles for energyconversion systems. However, the situation with substance-transformation systems is by far more complicated primarily due to diversity of the materials and respectively of the specification peculiarities of such component of the substance exergy in the flow as chemical component. Abeyance of conclusion in finding the chemical component of the substance exergy does not allow performing thermodynamic valuation of the energy provision for the heat-technological process in full measure. Which complicates the matters of decision-making and finding a medium for reduction of their energy consumption. All stated above relates to the textile industry and in the first instance to the finishing production departments.The authors present the exergy-evaluation problem solution for the

  19. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  20. Textile sustainability: reuse of clean waste from the textile and apparel industry

    Science.gov (United States)

    Broega, A. C.; Jordão, C.; Martins, S. B.

    2017-10-01

    Today societies are already experiencing changes in their production systems and even consumption in order to guarantee the survival and well-being of future generations. This fact emerges from the need to adopt a more sustainable posture in both people’s daily lives and productive systems. Within this context, textile sustainability emerges as the object of study of this work whose aim is to analyse which sustainability dimensions are being prioritized by the clean waste management systems of the textile and garment industries. This article aims to analyse solutions that are being proposed by sustainable creative business models in the reuse of discarded fabrics by the textile industry. Search also through a qualitative research by a case study (the Reuse Fabric Bank) understand the benefits generated by the re-use in environmental, economic, social and ways to add value.

  1. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.

    Science.gov (United States)

    Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G

    2010-10-01

    Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  2. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  3. Smart Electronic Textiles.

    Science.gov (United States)

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Micromagnetic Simulation of Fibers and Coatings on Textiles

    Science.gov (United States)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2015-10-01

    Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.

  5. Deformability of a textile reinforcement modified with nanofibres

    OpenAIRE

    Koysin, V.; Kotanjac, Zeljko; Lomov, S.V.; Gorbatikh, L.; Warnet, Laurent; Akkerman, Remko; Binetruy, C.; F. Boussu

    2010-01-01

    Deformability of a textile fabric is studied experimentally using a) friction test, b) out-of-plane compression, and c) bending. These tests reveal that a grafting of the fabric with carbon nano-fibres can significantly deteriorate its deformability. Therefore an optimal CNF mass fraction should be chosen for a particular production case, to obtain a compromise between improved strength and decreased drapability.

  6. Deformability of a textile reinforcement modified with nanofibres

    NARCIS (Netherlands)

    Koysin, V.; Kotanjac, Zeljko; Lomov, S.V.; Gorbatikh, L.; Warnet, Laurent; Akkerman, Remko; C. Binetruy,; F. Boussu,

    2010-01-01

    Deformability of a textile fabric is studied experimentally using a) friction test, b) out-of-plane compression, and c) bending. These tests reveal that a grafting of the fabric with carbon nano-fibres can significantly deteriorate its deformability. Therefore an optimal CNF mass fraction should be

  7. Electrical Textile Valves for Paper Microfluidics.

    Science.gov (United States)

    Ainla, Alar; Hamedi, Mahiar M; Güder, Firat; Whitesides, George M

    2017-10-01

    This paper describes electrically-activated fluidic valves that operate based on electrowetting through textiles. The valves are fabricated from electrically conductive, insulated, hydrophobic textiles, but the concept can be extended to other porous materials. When the valve is closed, the liquid cannot pass through the hydrophobic textile. Upon application of a potential (in the range of 100-1000 V) between the textile and the liquid, the valve opens and the liquid penetrates the textile. These valves actuate in less than 1 s, require low energy (≈27 µJ per actuation), and work with a variety of aqueous solutions, including those with low surface tension and those containing bioanalytes. They are bistable in function, and are, in a sense, the electrofluidic analog of thyristors. They can be integrated into paper microfluidic devices to make circuits that are capable of controlling liquid, including autonomous fluidic timers and fluidic logic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of textiles structural parameters on surgical healing; a case study

    Science.gov (United States)

    Marwa, A. Ali

    2017-10-01

    Medical Textiles is one of the most rapidly expanding sectors in the technical textile market. The huge growth of medical textiles applications was over the last 12 years. “Biomedical Textiles” is a subcategory of medical textiles that narrows the field down to those applications that are intended for active tissue contact, tissue regeneration or surgical implantation. Since the mid-1960s, the current wave of usage is coming as a result of new fibers and new technologies for textile materials construction. “Biotextiles” term include structures composed of textile fibers designed for use in specific biological environments. Medical Textile field was utilizing different materials, textile techniques and structures to provide new medical products with high functionality in the markets. There are other processes that are associated with textiles in terms of the various treatments and finishing. The aim of this article is to draw attention to the medical field in each of Vitro and Vivo trend, and its relation with textile structural parameters, with regard to the fiber material, production techniques, and fabric structures. Also, it is focusing on some cases studies which were applied in our research which produced with different textile parameters. Finally; an overview is presented about modern and innovative applications of the medical textiles.

  9. Antimicrobial Approaches for Textiles: From Research to Market

    Directory of Open Access Journals (Sweden)

    Diana Santos Morais

    2016-06-01

    Full Text Available The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics.

  10. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-01

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  11. CONTAINER FOR USED TEXTILES

    CERN Document Server

    Relation with the Host States

    2001-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site. The Association has informed us that 3 306 kg of textiles were deposited in the container in 2000 and wishes to convey its warm gratitude to all donors.

  12. NIR Analysis for Textiles

    Science.gov (United States)

    Near Infrared (NIR) spectroscopy has been found to be a useful technique to characterize raw materials and finished textile products, and NIR methods and techniques continue to find increasingly diverse and wide-ranging quantitative and qualitative applications in the textile industry. NIR methods ...

  13. Nylon fabric reinforced natural rubber compound

    Science.gov (United States)

    Kamal, Mazlina Mustafa; Ismail, Ismaliza

    2017-12-01

    Rubber fabric coated is a unique rubber-textile composite, in which technical textile acts as reinforcing material and strength providing material. In rubber textile composite, rubber to fabric adhesion plays the most critical role for determining assembly process and ultimate strength of product. A vulcanisable adhesive for rubber to fabric fabrication of composite material was developed which compatible with rubber as well as fabric. Evaluation of bonding system with respect to peel strength, shear adhesion strength and weave pattern of fabrics were the major determining criteria for selection and optimization of fabric for rubber hose application. Thus adhesive Cohedure with characteristics of high adhesive strength in Natural Rubber Polyester Fabric compound has been developed.

  14. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  15. Nanolevel Functionalization of Natural Fiber Textiles

    Science.gov (United States)

    Vihodceva, S.; Kukle, S.; Barloti, J.

    2011-06-01

    One of the main tasks of presented research are to impact the additional value on natural fabrics by adding them new properties with a metal nano-level coating, evaluate coating technologies. Having the ability to control the surface of a natural fiber offers great rewards that go far beyond pure economics as natural fibers are renewable and biodegradable. The paper describes the process of vacuum evaporation and magnetron sputtering of copper coatings on cotton textile materials, analysis of the metal coated textile surface by laser laboratory complex and SEM. The investigation results evince that laser laboratory complex measurements of reflected and through covered material transmitted light can be applied to trace the unevenness of deposited metal film on the covered fabric surface and its changes from exploitation impacts without samples destruction.

  16. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    Directory of Open Access Journals (Sweden)

    Youn Kim

    2016-08-01

    Full Text Available Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET textile in association with embedding Ag nanoparticles (AgNPs to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles. We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes.

  17. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    Science.gov (United States)

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  18. Influence of textile properties on thermal comfort

    Science.gov (United States)

    Marolleau, A.; Salaun, F.; Dupont, D.; Gidik, H.; Ducept, S.

    2017-10-01

    This study reports on the impact of textile properties on thermal comfort. The fabric weight, thickness, porosity, moisture regain, air permeability and density have been considered and correlated to the thermal and water vapour resistance, permeability index, thermal conductivity and effusivity, and moisture management capacity. Results suggest that moisture transfer is affected by thickness, density and moisture regain whereas thermal transfer by air permeability and density.

  19. Functional Textiles – From Research and Development to Innovations and Industrial Uptake

    Directory of Open Access Journals (Sweden)

    Kiekens Paul

    2014-12-01

    Full Text Available Functional textiles are one of the most important fields in textile industry and textile materials science. They include breathable, heat and cold-resistant materials, ultra-strong fabrics (e.g. as reinforcement for composites, new flameretardant fabrics (e.g. intumescent materials, optimisation of textile fabrics for acoustic properties, etc. Functional textiles became more and more important materials for various applications and interest in them grew year by year; and more and more conferences are focused on functional textiles, as well as the events which are not only textile conferences but encompass various fields of Material Science. This paper presents a short overview about the European Materials Research Society 2014 Fall meeting conference Symposium M “Functional textiles - from research and development to innovations and industrial uptake” and the projects which participated as symposium co-organisers: the European Coordination Action 2BFUNTEX funded by the EC 7th Framework Programme NMP, the COST Action MP1105 on “Sustainable flame retardancy for textiles and related materials based on nanoparticles substituting conventional chemicals (FLARETEX” and the COST Action MP1206 on “Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications”.

  20. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  1. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing.

    Science.gov (United States)

    Feng, Jicheng; Hontañón, Esther; Blanes, Maria; Meyer, Jörg; Guo, Xiaoai; Santos, Laura; Paltrinieri, Laura; Ramlawi, Nabil; Smet, Louis C P M de; Nirschl, Hermann; Kruis, Frank Einar; Schmidt-Ott, Andreas; Biskos, George

    2016-06-15

    A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm

  2. 78 FR 35875 - Proposed Extension of Approval of Information Collection; Comment Request: Clothing Textiles...

    Science.gov (United States)

    2013-06-14

    ... Standard for the Flammability of Clothing Textiles (16 CFR part 1610) and the Standard for the Flammability... and fabrics intended for use in clothing (except children's sleepwear in sizes 0 through 14) are subject to the Standard for the Flammability of Clothing Textiles (16 CFR part 1610). Clothing made from...

  3. Flexural Behavior of Textile-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Volkova Anna

    2016-01-01

    Full Text Available This paper deals with the flexural behaviour of textile-reinforced concrete (TRC. Two samples of TRC made of high strength reinforcing fabrics made of glass and carbon rovings were produced. Three-point bending test was carried out to examine the flexural performance of the developed samples. The maximum flexural strength and reinforcement efficiency were calculated. Experimental results showed that that all types of applied fabric reinforcement contributed to increases strength as compared to nonreinforced concrete. Furthermore, the deformation behavior of reinforced concrete was analyzed. The advantage is in higher residual load-bearing capacity, which allows maintaining the integrity of the structure.

  4. CONTAINER FOR USED TEXTILES

    CERN Multimedia

    Relations avec les Pays hôtes

    2000-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site.The Association has informed us that 2 530 kg of textiles were deposited in the container in 1998 and wishes to convey its warm gratitude to all donors.Relations with the Host StatesTel. 75152

  5. Antioxidant cosmeto-textiles: skin assessment.

    Science.gov (United States)

    Alonso, Cristina; Martí, Meritxell; Martínez, Vanessa; Rubio, Laia; Parra, José L; Coderch, Luisa

    2013-05-01

    Resveratrol, a natural product, has been reported to have antioxidant activities such as the scavenging of free radicals. This compound could be used in the dermocosmetic field to protect the skin from oxidative stress. In this work, the percutaneous profile of resveratrol in ethanol solutions through pig skin was determinated by an in vitro methodology. The percutaneous absorption of resveratrol was measured and compared with trolox, an analogous of Vitamin E. Both antioxidants were found in all skin sections (stratum corneum, epidermis, and dermis). Besides, the free radical scavenging activity of resveratrol and trolox has been evaluated using DPPH method. The effective dose (ED₅₀) of compounds and DPPH radical inhibition in each skin layer were evaluated. Under the conditions used for these experiments, it can be deduced that resveratrol is more efficient than trolox as an antioxidant, also in the inner skin layers. The cosmeto-textiles with an active substance incorporated into their structure are increasingly used in the cosmetics and pharmaceutical industries. The action of several cosmeto-textiles on the skin was assessed by in vitro and in vivo methodologies. Samples of these cosmeto-textiles were prepared with resveratrol incorporated into cotton and polyamide fabrics. An in vitro percutaneous absorption was used to demonstrate the delivery of the resveratrol from the textile to the different skin layers (stratum corneum, epidermis, and dermis). Additionally, these cosmeto-textiles containing the antioxidant were applied onto the forearms of volunteers to evaluate the textiles' efficacy in skin penetration. The antioxidant's antiradical capacity was evaluated using the DPPH method. Results showed that resveratrol could be detected in the dermis, epidermis, and stratum corneum (SC) by an in vitro percutaneous absorption method and was also detected in the outermost layers of the SC by an in vivo method (stripping). A smaller amount of resveratrol was

  6. Energy and environmental nanotechnology in conductive paper and textiles

    KAUST Repository

    Hu, Liangbing

    2012-01-01

    Paper and textiles have been used ubiquitously in our everyday lives, such as books and newspapers for propagating information, clothing and packaging. In this perspective, we will summarize our recent efforts in exploring these old materials for emerging energy and environmental applications. The motivations and challenges of using paper and textiles for device applications will be discussed. Various types of energy and environmental devices have been demonstrated including supercapacitors, Li-ion batteries, microbial fuel cells and water filters. Due to their unique morphologies, paper and textile-based devices not only can be fabricated with simple processing, but also show outstanding device performance. Being renewable and earth-abundant materials, paper and textiles could play significant roles in addressing future energy and environmental challenges. © 2012 The Royal Society of Chemistry.

  7. E-textiles in Clinical Rehabilitation: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Amanda Fleury

    2015-02-01

    Full Text Available Electronic textiles have potential for many practical uses in clinical rehabilitation. This scoping review appraises recent and emerging developments of textile-based sensors with applications to rehabilitation. Contributions published from 2009 to 2013 are appraised with a specific focus on the measured physiological or biomechanical phenomenon, current measurement practices, textile innovations, and their merits and limitations. While fabric-based signal quality and sensor integration have advanced considerably, overall system integration (including circuitry and power has not been fully realized. Validation against clinical gold standards is inconsistent at best, and feasibility with clinical populations remains to be demonstrated. The overwhelming focus of research and development has been on remote sensing but the opportunity for textile-mediated feedback to the wearer remains unexplored. Recommendations for future research are provided.

  8. Development of a luminous textile for reflective pulse oximetry measurements

    Science.gov (United States)

    Krehel, Marek; Wolf, Martin; Boesel, Luciano F.; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.

    2014-01-01

    In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The “light-in light-out” properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation. PMID:25136484

  9. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of chemicals to substrates without the use of liquids: Proof of concepts for powder spray gun and fluidized bed solid-on- solid (SOS) processing of textiles, and continued research in textile xerography printing, solid shade coloration and electrostatic liquid spray SOS finishing of fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Cook, F.L.; Carr, W.W.; Tincher, W.C.; Sikorski, M.

    1990-09-28

    The first two years of research under DOE Contract No. FG05-84CE40702 were devoted toward developing processes whereby certain chemicals could be applied to textiles without the use of water, mainly concentrating on powder deposition techniques. The approach was to identify powder-based processes in other industry sectors (mainly the metals and paper industries) that possessed the potential to be adapted to continuous textile manufacturing lines. The adapted textile processes were classified under the general category of solid-on-solid (SOS) processes, since no liquid water was required, and 100% of the chemical materials applied to the substrate remained with it into final product manufacture. The current research focused on several areas of chemical treatment: yarn slashing, textile xerography printing, binding of nonwovens, fluoropolymer barrier finishing, and liquid spray and finishing. Several of these areas were sufficiently developed in the first phase to allow full-scale, proof-of-concept trials to be conducted at industrial sites in the third and fourth years of the project. Other areas were identified and preliminary investigations conducted in the first phase, but were largely left for full development in the reported phase, e.g., liquid spray finishing of 100% solids formulations. This report discusses work in each area of chemical treatment.

  11. TEXTILE IMPACT PLATES FOR NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    VISILEANU Emilia

    2017-05-01

    Full Text Available The paper presents textile materials with destination impact plates, having different surface architectures and active treatments for functionalization, with influence upon the aging process of nano-Ag and nano-CeO2. The woven and knitted samples from 100% cotton, cotton/PES blend and 100% PES were treated by impregnation on the laboratory padding machine, drying and condensing on the machine for drying-condensing-heat setting, with the following recipes: 50g/l RUCOSTAR EEE6+20 ml 5% nano-Ag dispersion, or 10% nano-CeO2 in ethylene glycol, respectively water and 0,5ml acetic acid 60% for products from 100% cotton and PES/cotton and 50g/l NUVA N 2114 liquid with the same percent of nanoparticles but with 1 ml/l acetic acid 60%, in case of 100% PES samples. The samples were treated in 2 steps – hydrophobic/ oleo phobic in the first stage and hydrophobic/ oleo phobic/ functionalization with nano-Ag and nano-CeO2 in the second stage. The complex characterization of both type of materials : hydrophobic and oleo phobic properties, color change, whitening degree, DCS, FT-IR, SEM and microbiology, evidenced through the obtained results the justness of the selection for: the raw materials (100% cotton, cotton/PES, 100% PES, the weave (plain, twill, rib, pique, the fabric tightness and fabric cover etc. These data allowed the elaboration of textile material’s specifications for impact plates.

  12. Novel Deployable High Frequency Antennas Using Composite Electro-Textiles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I program, the Infoscitex (IST) team focused primarily on the design and fabrication of a prototype high accuracy electro-textile mesh leading to a...

  13. Carbon nanotubes polymer nanoparticles inks for healthcare textile

    Science.gov (United States)

    Rai, Pratyush; Lee, Jungmin; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-10-01

    Healthcare textiles are ambient health monitoring systems that can contribute towards medical aid as well as general fitness of the populace. These are textile based products that have sensor systems mounted on them or are electrically functionalized to act as sensors. While embedded sensor chipsets and connection wires have been shown as working prototypes of this concept, there is a need for seamless integration of sensor technologies without hindering the inherent properties of the textile. Screen printing or stamping with electrically conductive inks have been demonstrated as technologies for fabricating electronics on flexible substrates. They are applicable to textile manufacturing as well. Printing technology allows for fabrication of nanocomposite based electronics elements in a bottom-up fashion. This has advantages such as low material consumption, high speed fabrication and low temperature processing. In this research, Multi-Wall Carbon Nanotubes (MWCNTs) and polyaniline nanoparticles (PANP) core shell based nanocomposites were synthesized and formulated into colloidal ink. Printed MWCNTs-PANP traces were electrically characterized and compared with traces made with those made by other composites such as Silver, and Carbon Black. The nanocomposite based inks are compared for proposed applications as sensor systems and conductive tracks on smart textile for pervasive wireless healthcare system that can be mass produced using low cost printing processes.

  14. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles

    Science.gov (United States)

    Xue, Chao-Hua; Chen, Jia; Yin, Wei; Jia, Shun-Tian; Ma, Jian-Zhong

    2012-01-01

    Silver nanoparticles (Ag NPs) were produced on cotton fibers by reduction of [Ag(NH3)2]+ complex with glucose. Further modification of the fibers coated by Ag NPs with hexadecyltrimethoxysilane led to superhydrophobic cotton textiles. Scanning electron microscopy images of the textiles showed that the treated fibers were covered with uniform Ag NPs, which generate a dual-size roughness on the textiles favouring the formation of superhydrophobic surfaces, and the Ag NPs formed dense coating around the fibers rendering the intrinsic insulating cotton textiles conductive. Antibacterial test showed that the as-fabricated textiles had high antibacterial activity against the gram-negative bacteria, Escherichia coli. These multifunctional textiles might find applications in biomedical electronic devices.

  15. A review of stimuli-responsive polymers for smart textile applications

    Science.gov (United States)

    Hu, Jinlian; Meng, Harper; Li, Guoqiang; Ibekwe, Samuel I.

    2012-05-01

    Stimuli-responsive polymers (SRPs) are smart materials which can show noticeable changes in their properties with environmental stimulus variations. Novel functionalities can be delivered to textiles by integrating smart SRPs into them. SRPs inclusive of thermal-responsive polymers, moisture-responsive polymers, thermal-responsive hydrogels, pH-responsive hydrogels, and light-responsive polymers have been applied in textiles to improve or achieve textile smart functionalities. The functionalities include aesthetic appeal, comfort, textile soft display, smart controlled drug release, fantasy design with color changing, wound monitoring, smart wetting properties and protection against extreme variations in environmental conditions. In this review, the applications of SRPs in the textile and clothing sector are elucidated; the associated constraints in fabrication processes for textiles and their potential applications in the near future are discussed.

  16. Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles.

    Science.gov (United States)

    Reed, Robert B; Zaikova, Tatiana; Barber, Angela; Simonich, Michael; Lankone, Ronald; Marco, Michelle; Hristovski, Kiril; Herckes, Pierre; Passantino, Laurel; Fairbrother, D Howard; Tanguay, Robert; Ranville, James F; Hutchison, James E; Westerhoff, Paul K

    2016-04-05

    For textiles containing nanosilver, we assessed benefit (antimicrobial efficacy) in parallel with potential to release nanosilver (impact) during multiple life cycle stages. The silver loading and method of silver attachment to the textile highly influenced the silver release during washing. Multiple sequential simulated household washing experiments for fabric swatches in deionized water with or without detergent showed a range of silver release. The toxicity of washing experiment supernatants to zebrafish (Danio rerio) embryos was negligible, with the exception of the very highest Ag releases (∼1 mg/L Ag). In fact, toxicity tests indicated that residual detergent exhibited greater adverse response than the released silver. Although washing the fabrics did release silver, it did not affect their antimicrobial efficacy, as demonstrated by >99.9% inhibition of E. coli growth on the textiles, even for textiles that retained as little as 2 μg/g Ag after washing. This suggests that very little nanosilver is required to control bacterial growth in textiles. Visible light irradiation of the fabrics reduced the extent of Ag release for textiles during subsequent washings. End-of-life experiments using simulated landfill conditions showed that silver remaining on the textile is likely to continue leaching from textiles after disposal in a landfill.

  17. Smart Textiles for Strengthening of Structures

    Science.gov (United States)

    Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao

    2016-11-01

    This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.

  18. Fabrication of Superhydrophilic Wool Fabrics By Nanotechnology

    Science.gov (United States)

    Chen, Dong

    Because of the fatty layer on its surface, wool fiber is hydrophobic, which results in poor water absorption and wicking properties that affect the comfort of wool textiles. The purpose of this research is to improve the wettability and comfort of wool textiles using nanotechnology. To reveal the knowledge gaps and ensure the originality of this study, a critical review of literature was conducted in relevant areas. To achieve the objectives of the research, a simple method for fabricating environmentally stable superhydrophilic wool fabrics was developed. Silica sols with diameters of 27 nm were prepared and then coated on the surface of pristine wool fibers to form an ultrathin layer, increasing both the surface roughness and energy. The morphology and composition of silica-sol-coated wool fabrics were characterized by a combination of SEM, TEM, FTIR, and XPS measurements. After evaluating the wettability and washing durability of the silica-sol-coated wool fabrics, it was found that the durability of these wool fabrics needed to be improved. To achieve superhydrophilic wool fabrics with good washing durability, reactive siloxane was functionalized on wool fiber surface, and an ultrathin silica nanoparticles layer was grafted on the surface by in-situ growth method. To evaluate the wettability change of silica grafted wool fabric, in addition to the contact angle, in-depth characterizations of water absorbing and drying properties of wool fabrics were measured. According to Chinese National Standard (GB/T 21655.1-2008 and GB/T 21655.2-2009), the prepared silica grafted wool fabric has excellent water absorbing and quick drying properties that can be maintained after washing 20 times in a washing machine. The strategy of siloxane bonding and in-situ growth was successfully extended to durable multifunctional wool fabrics combined with superhydrophilic, self-cleaning, and antibacterial properties. To study the relationships between functional properties and nano

  19. Synergy of Uli Symbols and Textiles: An Exploration in Textile ...

    African Journals Online (AJOL)

    In this study explorative experiments were carried out in sculptural form using textile and textile related materials (Textile Sculpture) in order to invigorate these symbols adopting their meanings but giving them different place through innovative and creative process. Uli, a symbolic painting of female body provides unique ...

  20. Indoor Decontamination Textiles by Photocatalytic Oxidation: A Review

    Directory of Open Access Journals (Sweden)

    Hafeezullah Memon

    2015-01-01

    Full Text Available A large number of researches have been made to make the textile intelligent and smarter; this is achieved by imparting functionality to the textile materials. The indoor environment possesses a variety of pollutants which do not come from the outer environment, but they come from the inner environment itself. Today, the smarter fabrics that may clean the indoor air have been studied by various researchers. The smarter fabrics contain the nanocoating of semiconductor oxides, mostly TiO2; thus the synthesis and application of these nanoparticles on the textile material have been reviewed in this paper. Moreover, there are lots of environmental and health issues regarding nanoparticles that have also been discussed in brief.

  1. Applications of cyclodextrins in medical textiles - review.

    Science.gov (United States)

    Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara

    2016-02-28

    This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Development of test methods for textile composites

    Science.gov (United States)

    Masters, John E.; Ifju, Peter G.; Fedro, Mark J.

    1993-01-01

    NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.

  3. Parametric Models of NIR Transmission and Reflectivity Spectra for Dyed Fabrics

    Science.gov (United States)

    2015-07-29

    considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models...within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles , for purposes of...direct modeling [1]. The fabrics considered are camouflage textiles characterized by color variations. The dyes considered for prototype analysis

  4. Influence of finishing textile materials on the reduction of skin irritations.

    Science.gov (United States)

    Strese, Helene; Kuck, Monika; Benken, Rainer; Fluhr, Joachim W; Schanzer, Sabine; Richter, Heike; Meinke, Martina C; Beuthan, Jürgen; Benderoth, Christian; Frankowski, Gottfried; Sterry, Wolfram; Lademann, Jürgen

    2013-02-01

    An increasing number of people is reported to have sensitive skin. Consequently, the development of textile materials with comfortable wearing properties has become a major interest. One method to create a pleasant sensation of textile materials on the skin is to coat them with silk proteins. This technologically complex procedure requires both optimization and control. The present study was aimed to characterize the subjective perception of different textiles and to objectively assess their influence on skin morphology with non-invasive optical techniques like optical coherence tomography (OCT), laser scanning microscopy (LSM) and optical surface profilometry (OP). Furthermore, optical methods were used to characterize surface properties of different textile fabrics. In the present study it could be shown that optical non-invasive methods, as applied in cosmetology and dermatology are suited to characterize the structural properties of fabrics and the effects that textile materials have on the skin. Here, both unfinished textile materials and fabrics finished with silk protein coating were investigated by OCT, LSM and OP. In addition, volunteers were interviewed about their subjective sensation when these fabrics were in contact with their skin. The study showed that optical methods could be applied to compare textile materials in vitro, which permit the wearing comfort to be predicted and in vivo perception on the skin. © 2012 John Wiley & Sons A/S.

  5. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART I

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2015-05-01

    Full Text Available Unconventional textiles are manufactured different from those obtained by the classic spinning weaving and knitting. They are obtained by mechanical or chemical consolidation of a textile backing up of fibrous layers or combinations of layers of fiber and yarn, fabrics and yarns, fabrics or knitted fabrics and fibers. The non-conventional textiles can be obtained by mechanical or chemical consolidation of a system or several systems of wires. The increasing trend of chemical fiber production compared to natural fibers found also in the unconventional fabrics. In addition emphasis is laid increasingly on the use of recyclable materials recovered fibers and preforms or debris resulting from a regular textile processing. Processing unconventional fibers that are recovered from such materials are best suited for the production of unconventional textile. The production of unconventional textile fiber made from layers have the largest share. The fiber layers may have fibers oriented in a single direction, in two or more directions. The fiber layers can enhance mechanical, chemical and mixed. This produces textile auxiliaries for clothing, replacement canvas for buckram wadding, sanitary ware carpet filters, support for synthetic leather, cloth, wallpapers.

  6. Sustainability in the textile industry

    CERN Document Server

    2017-01-01

    This book examines in detail key aspects of sustainability in the textile industry, especially environmental, social and economic sustainability in the textiles and clothing sector. It highlights the various faces and facets of sustainability and their implications for textiles and the clothing sector.

  7. MALDI-TOF mass spectrometry in textile industry

    OpenAIRE

    Munteanu, Florentina-Daniela; Dinca, Nicolae; Paulo, Artur Cavaco

    2008-01-01

    In this paper are presented the possibilities of using matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry in textile industry. MALDI-TOF mass spectrometry it is a convenient, versatile method for characterization and identification of dyes and pigments, and also for characterization of fibers and contaminants of the fabrics.

  8. Facilitated Articulation of Implicit Knowledge in Textile Design

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2009-01-01

    This is a report from an ongoing research project and as such it is work in progress. The paper proposes an exploratory approach in order to enable end-users to contribute with their experiences of emotional values of fabrics in use. It is suggested that the textile designer with her repertoire o...

  9. Innovation, entrepreneurship and textiles

    Science.gov (United States)

    Blanton Godfrey, A.; Pourmojib, S.

    2017-10-01

    Innovation and entrepreneurship have become increasingly important parts of economic development in almost every country, region, and community. In this research we investigate the reasons people become entrepreneurs in the textile and apparel industries and compare entrepreneurship in these industries with other industries looking also at the success factors for start up companies. During our research we found many disrupters, people entering the textile and apparel industries from outside often having no prior experience in textiles or apparel. We also investigate the impact of government intervention on entrepreneurship. In recognition of the large economic impact entrepreneurial companies have on economic development and job growth, almost all federal governments, regional governments, and community governments have created support for innovation and entrepreneurship.

  10. The Academic, Administrative, Economic, Social, and Psychological Problems Faced by Students of Textile and Clothing Major at King Abdul-Aziz University

    Science.gov (United States)

    Alsubyani, Noor Abdulhadi

    2017-01-01

    The purpose of this study is to investigate the academic, administrative, economic, social, and psychological problems faced by students of Textile and fabric major at King Abdul-Aziz University. To achieve this purpose, a questionnaire was designed and distributed to a sample of students in the Textile and fabric major, after the use of…

  11. Smart textile device using ion polymer metal compound.

    Science.gov (United States)

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  12. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  14. Improving the appearance of all textile products from clothing to home textile using laser technology

    Science.gov (United States)

    Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif

    2005-11-01

    Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a

  15. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  16. Hemp for textiles

    NARCIS (Netherlands)

    Westerhuis, W.

    2016-01-01

    Abstract Key words: Cannabis sativa L., day length sensitivity, fibre hemp, genotype, harvest time, plant density, plant weight, primary fibres, secondary fibres, sowing date, textiles. Westerhuis, W. (2016)

  17. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    Science.gov (United States)

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y.

    2015-06-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  18. Sensing textile seam-line for wearable multimodal physiological monitoring.

    Science.gov (United States)

    McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A

    2016-08-01

    This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.

  19. Copper oxide resistive switching memory for e-textile

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2011-09-01

    Full Text Available A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  20. Textile industry and occupational cancer.

    Science.gov (United States)

    Singh, Zorawar; Chadha, Pooja

    2016-01-01

    Thousands of workers are engaged in textile industry worldwide. Textile industry involves the use of different kinds of dyes which are known to possess carcinogenic properties. Solvents used in these industries are also associated with different health related hazards including cancer. In previous studies on textile and iron industries, the authors have reported genotoxicity among them and observed occurrence of cancer deaths among textile industry workers. Thus, an attempt has been made to compile the studies on the prevalence of different types of cancers among textile industry workers. A wide literature search has been done for compiling the present paper. Papers on cancer occurrence among textile industry workers have been taken from 1976 to 2015. A variety of textile dyes and solvents, many of them being carcinogenic, are being used worldwide in the textile industry. The textile industry workers are therefore, in continuous exposure to these dyes, solvents, fibre dusts and various other toxic chemicals. The present study evaluates the potential of different chemicals and physical factors to be carcinogenic agents among occupationally exposed workers by going through various available reports and researches. Papers were collected using different databases and a number of studies report the association of textile industry and different types of cancer including lung, bladder, colorectal and breast cancer. After going through the available reports, it can be concluded that workers under varied job categories in textile industries are at a higher risk of developing cancer as various chemicals used in the textile industry are toxic and can act as potential health risk in inducing cancer among them. Assessing the cancer risk at different job levels in textile industries may be found useful in assessing the overall risk to the workers and formulating the future cancer preventive strategies.

  1. Textiles Objective and Sensory Evaluation in Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Eugenija STRAZDIENE

    2011-11-01

    Full Text Available Most consumer purchases nowadays are driven by sensory attraction and good feeling. From this standpoint textile and fashion industries need new methods to evaluate fabric quality and to respond to consumer expectations. Recently the implementation of sensory analysis in the process of material characterization has drawn much international attention. So, the aim of the research was to find dependencies between the results of sensory analysis and objective fabric behaviour evaluation performed using KES-F and Griff-Tester devices. The later method was developed at Kaunas University of Technology and is based on fabric extraction through a rounded hole, thus describing the behaviour of textile materials and their tactile properties by one complex criterion.http://dx.doi.org/10.5755/j01.ms.17.4.778

  2. Emotional Value of Applied Textiles

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2011-01-01

    textiles. 2) Understanding and exploring emotional value related to design of applied textiles. In chapter four I argue – based on Jesse Prinz’s and Antonio Damasio’s emotion research – for a perception of emotional value of applied textiles which acknowledges bodily feedback as a core concept...... at Gabriel face while trying to implement an innovative and process-oriented business strategy. The focal point has been the section of the strategy which aims at developing Blue Ocean products, which have a functional and an emotional value for the user. The thesis examines and explores emotional value...... of applied textiles. The objective is to operationalise the strategic term ‘emotional value’ as it relates to applied textiles. The procedure includes the development of user- and stakeholder-centred approaches, which are valuable for the textile designer in the design process. The research approach...

  3. Antimicrobial finish of textiles by chitosan UV-curing.

    Science.gov (United States)

    Ferrero, Franco; Periolatto, Monica

    2012-06-01

    The purpose of this research work was to develop a textile finish based on the radical UV-curing of chitosan on textiles to confer antimicrobial properties. Chitosan is a biopolymer with unique properties such as biodegradability, non-toxicity, antimicrobial activity. In this work cotton or silk fabrics and synthetic filter fabrics were impregnated with an acid solution of chitosan added of the photoinitiator in the proper amount and cured at room temperature by exposure to UV lamp. Process conditions such as percentage add-on, dilution, chitosan-fabric contact time, irradiation time and power, were optimized. The antimicrobial activity of finished fabrics was tested according to ASTM E 2149-01 standard test performed with Escherichia Coli ATCC 8739. Moreover dyeing test with Turquoise Telon dye were carried out to evaluate the treatment homogeneity while the amino group content was determined by ninhydrin assay. Moreover on cotton and silk fabrics the treatment fastness to domestic laundering was tested, according to UNI EN ISO105-C01. Obtained results showed a strong antimicrobial activity conferred by the treatment, homogeneous on fabric surface. It is evident already at low add-on, without affecting the hand properties of natural fabrics and the filtration characteristics of the synthetic filter fabrics. Finally, washing fastness was better for samples prepared with a better penetration of chitosan inside the fibers.

  4. Production of anticandidal cotton textiles treated with oak gall extract

    Directory of Open Access Journals (Sweden)

    Ahmed A. Tayel

    Full Text Available Candida albicans, one of the most dreadful fungal pathogens threatening humans, could not be easily prevented. The anticandidal activity of oak gall extract, Quercus infectoria (QIE, was investigated as a potential natural alternative to synthetic and chemical fungicides. QIE anticandidal potentiality was confirmed using both qualitative and quantitative assays. Cotton textiles were treated with QIE and then evaluated as anticandidal fabrics. QIE-treated textiles had a potent anticandidal activity, which could completely inhibit the inoculated C. albicans cells. The durability of anticandidal activity in QIE-treated textiles almost completely disappeared after the fourth laundering cycle. QIE could be recommended, however, as a potent anticandidal agent for preparing antiseptic solutions and emulsions and as a finishing agent for manufacturing anticandidal disposable diapers and hygienic clothes.

  5. Flammability on textile of flight crew professional clothing

    Science.gov (United States)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  6. Implementing traceability using particle randomness-based textile printed tags

    Science.gov (United States)

    Agrawal, T. K.; Koehl, L.; Campagne, C.

    2017-10-01

    This article introduces a random particle-based traceability tag for textiles. The proposed tag not only act as a unique signature for the corresponding textile product but also possess the features such as easy to manufacture and hard to copy. It seeks applications in brand authentication and traceability in textile and clothing (T&C) supply chain. A prototype has been developed by screen printing process, in which micron-scale particles were mixed with the printing paste and printed on cotton fabrics to attain required randomness. To encode the randomness, the image of the developed tag was taken and analyzed using image processing. The randomness of the particles acts as a product key or unique signature which is required to decode the tag. Finally, washing and abrasion resistance tests were conducted to check the durability of the printed tag.

  7. Flexible fiber batteries for applications in smart textiles

    CERN Document Server

    Qu, Hang; Rolland, Julien; Vlad, Alexandru; Gohy, Jean-François; Skorobogatiy, Maksim

    2013-01-01

    Here we discuss two alternative approaches for building flexible batteries for applications in smart textiles. The first approach uses well-studied inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in order to produce batteries in a slender and flexible fiber form that can be further weaved directly into the textiles. During fabrication process the battery electrodes are co-drawn within a microstructured polymer fiber, which is later filled with liquid electrolyte. The second approach describes Li-ion chemistry within solid polymer electrolytes that are used to build a fully solid and soft rechargeable battery that can be furthermore stitched onto a textile, or integrated as stripes during weaving process.

  8. Production of anticandidal cotton textiles treated with oak gall extract.

    Science.gov (United States)

    Tayel, Ahmed A; El-Tras, Wael F; Abdel-Monem, Omnia A; El-Sabbagh, Sabha M; Alsohim, Abdullah S; El-Refai, Elham M

    2013-01-01

    Candida albicans, one of the most dreadful fungal pathogens threatening humans, could not be easily prevented. The anticandidal activity of oak gall extract, Quercus infectoria (QIE), was investigated as a potential natural alternative to synthetic and chemical fungicides. QIE anticandidal potentiality was confirmed using both qualitative and quantitative assays. Cotton textiles were treated with QIE and then evaluated as anticandidal fabrics. QIE-treated textiles had a potent anticandidal activity, which could completely inhibit the inoculated C. albicans cells. The durability of anticandidal activity in QIE-treated textiles almost completely disappeared after the fourth laundering cycle. QIE could be recommended, however, as a potent anticandidal agent for preparing antiseptic solutions and emulsions and as a finishing agent for manufacturing anticandidal disposable diapers and hygienic clothes. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  9. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  10. Study of the behaviour of silk pongee used for the consolidation of historical textiles

    OpenAIRE

    ARBUES FANDOS, NATALIA CONCEPCIÓN; Bonet Aracil, María Angeles; Yusa Marco, Dolores Julia; Monllor Pérez, Pablo; Vicente Palomino, Sofía

    2010-01-01

    Consolidation is one of the most delicate and decisive process to preserve any fabric. The addition of new sewed fabrics such as `silk pongee¿ to the original textiles is a common practice nowadays to consolidate, reinforce and compensate losses in historic textiles. Pongee is a plane weave silk used as reinforcement fabric due to its low density of the yarns in both the weft and warp directions that provides a considerable transparency as well. Results obtained from this research focus on th...

  11. Treatment of textile wastes

    OpenAIRE

    Srebrenkoska, Vineta; Krsteva, Silvana; Golomeova, Saska

    2013-01-01

    The production of a textile requires several stages of mechanical processing such as spinning, weaving, knitting, and garment production, which seem to be insulated from the wet treatment processes like pretreatment, dyeing, printing, and finishing operations. Тhere is a strong interrelation between treatment processes in the dry state and consecutive wet treatments. Most of the processes and products have a negative impact on the environment. Laws and standards for environmental protection a...

  12. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    Science.gov (United States)

    Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  13. Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers

    Directory of Open Access Journals (Sweden)

    Stepan Gorgutsa

    2014-10-01

    Full Text Available The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  14. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  15. Design and Integration of Wearable Devices in Textiles

    Directory of Open Access Journals (Sweden)

    Isabel G. TRINDADE

    2014-12-01

    Full Text Available In this article, the design, production method, integration and characterization of textile sensors for the continuous monitoring of cardiac and respiration vital signals are presented. Textile electrodes, capacitive and piezoresistive sensors and respective interconnect plate were developed and integrated in elastic and adjustable chest bands, using a 6-needle digital embroidery machine and electrically conductive commercial threads. The signal's waveforms were recorded via PC with a data acquisition module and a LabView program. The signal to noise ratio of textile electrodes, having distinctive surface morphologies, that were either textured or smooth accordingly with the embroidery pattern used, were analyzed with Matlab. The quantitative method indicated differences between the two types of textile electrodes but performances comparable to standard Ag/AgCl gel electrodes. The sensors and interconnect plate were fully realized with the embroidery stitching method with textile fabrics and threads, and have a compact design, are lightweight and washable. The method offers great versatility for custom demand, in terms of sensor design and materials.

  16. Supercritical carbon dioxide for textile applications and recent developments

    Science.gov (United States)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  17. Nanomaterials for Functional Textiles and Fibers

    Science.gov (United States)

    Rivero, Pedro J.; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J.

    2015-12-01

    Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.

  18. 21 CFR 177.2800 - Textiles and textile fibers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Textiles and textile fibers. 177.2800 Section 177.2800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use...

  19. Textiles and clothing sustainability recycled and upcycled textiles and fashion

    CERN Document Server

    2017-01-01

    This book discusses in detail the concepts of recycling and upcycling and their implications for the textiles and fashion sector. In addition to the theoretical concepts, the book also presents various options for recycling and upcycling in textiles and fashion. Although recycling is a much-developed and widely used concept, upcycling is also gaining popularity in the sector.

  20. An Investigation of the Design Potential of Thermochromic Home Textiles Used with Electric Heating Techniques

    Directory of Open Access Journals (Sweden)

    Hung-Jen Chen

    2015-01-01

    Full Text Available Thermochromic colorants have been developed since before the 1900s. There are a large number of patents in different applications of thermochromic textiles, but many innovations leave the field of aesthetic and functional textile design unexplored in the area of smart materials. This study aims to develop thermochromic home textiles that change colors and patterns by integrating thermochromic pigments and electric conductive yarns into textile structures. Stainless steel conductive yarns were sewed on textile substrates to enable heat generation to increase fabric temperature. The heat generation and temperature rise could be controlled by monitoring the voltage applied. The experiments of this study focused on analyzing electric resistance and heating properties of the conductive yarns and observing color changing time and color changing effects of the thermochromic textiles. By using the technique in this research, an image of “tai chi” was designed and implemented in a backlighting thermochromic fabric. It illustrates a range of opportunities for thermochromic textiles in new design research directions of Chinese calligraphy and traditional Chinese painting.

  1. Recent researches concerning the obtaining of functional textiles based on conductive yarns

    Science.gov (United States)

    Leon, A. L.; Manea, L. R.; Hristian, L.

    2016-08-01

    Modem textile industry is influenced both by consumers' lifestyle and by novel materials. Functional textiles can be included into the group of technical textiles. The functional activity can be shortly interpreted as "sense - react - adapt" to the environment while traditional materials meet only passive protective role, a barrier between body and environment. Functional materials cross the conventional limits because they are designed for specific performances, being part of domains as: telemedicine, medicine, aeronautics, biotechnology, nanotechnology, protective clothes, sportswear, etc. This paper highlights the most recent developments in the field of using conductive yarns for obtaining functional textiles. Conductive fabrics can be done by incorporating into the textile structure the conductive fibers / yarns. The technologies differ from embroidering, sewing, weaving, knitting to braiding and obtaining nonwovens. The conductive fabrics production has a quickly growth because it is a high demand for these textiles used for data transfer in clothing, monitoring vital signs, germ-free garments, brain-computer interface, etc. Nowadays it is of high interest surface treatments of fibers/yarns which can be considered as a novel kind of textile finishing. There are presented some researches related to obtaining conductive yarns by coating PET and PP yarns with PANi conductive polymer.

  2. Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications

    Science.gov (United States)

    Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.

    2017-10-01

    In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.

  3. Valorisation of Moringaoleifera waste: treatment and reuse of textile dye effluents

    OpenAIRE

    Vilaseca Vallvé, M. Mercedes; López Grimau, Víctor; Gutiérrez Bouzán, María Carmen

    2015-01-01

    This work is focused on the valorisation of an agricultural waste as natural coagulant to treat wastewater from the textile industry. In this paper, the waste of Moringaoleifera oil extraction is used as coagulant to remove five reactive dyes from synthetic textile effluents. Moringaoleifera shows better results for dye removal than conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high...

  4. Dyeing fabrics with metals

    Science.gov (United States)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  5. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  6. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  7. Application of FT-Raman spectroscopy for in situ detection of microorganisms on the surface of textiles.

    Science.gov (United States)

    Rygula, Anna; Jekiel, Katarzyna; Szostak-Kot, Jadwiga; Wrobel, Tomasz P; Baranska, Malgorzata

    2011-11-01

    In this work we present the usefulness of FT-Raman spectroscopy for microbiological analysis of textiles. This technique was used for non-destructive identification of Escherichia coli bacteria on cotton and polyester fabrics. It was possible to discriminate between infected and non-infected materials. Moreover, this technique allowed detection of detergent traces as well as investigation of the influence of microorganisms on different textiles. Raman analysis supported by chemometrics (cluster analysis and principal component analysis) was shown to be a method for identification of textiles with inoculum of microorganisms in a short time. The results can be potentially used in the fabric industry and related areas.

  8. Wearable Electronics and Smart Textiles: A Critical Review

    Science.gov (United States)

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-01-01

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy. PMID:25004153

  9. Wearable electronics and smart textiles: a critical review.

    Science.gov (United States)

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-07-07

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  10. Greening textile industry in Vietnam

    NARCIS (Netherlands)

    Nguyen Thi Phuong, L.

    2011-01-01

        The textile and garment industry has made a remarkable contribution to the economic development of Vietnam and employs currently a large labor force of 2.5 million people.However, the textile industry is also seen as a most polluting and unsustainable industry due to the use of

  11. Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles.

    Science.gov (United States)

    Perelshtein, Ilana; Lipovsky, Anat; Perkas, Nina; Tzanov, Tzanko; Аrguirova, M; Leseva, M; Gedanken, Aharon

    2015-07-01

    The ability to scale-up the sonochemical coating of medical textiles with antibacterial nanoparticles is demonstrated in the current paper. A roll-to-roll pilot installation to coat textiles was built taking into consideration the requirements of the sonochemical process. A long-run experiment was conducted in which 2500 m of fabric were coated with antibacterial ZnO nanoparticles (NPs). The metal oxide NPs were deposited from an ethanol:water solution. In this continuous process a uniform concentration of coated NPs over the length/width of the fabric was achieved. The antibacterial efficiency of the sonochemically-coated textiles was validated in a hospital environment by a reduction in the occurrence of nosocomial infections. NP-coated bed sheets, patient gowns, pillow cover, and bed covers were used by 21 patients. For comparison 16 patients used regular textiles. The clinical data indicated the reduced occurrence of hospital-acquired infections when using the metal oxide NP-coated textiles. In order to reduce the cost of the coating process and considering safety issues during manufacturing, the solvent (ethanol:water) (9:1 v:v) used for the long-run experiment, was replaced by water. Although lesser amounts of ZnO NPs were deposited on the fabric in the water-based process the antibacterial activity of the textiles was preserved due to the smaller size of the particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.

    Science.gov (United States)

    Zhang, Huihui; Qiao, Yan; Lu, Zhisong

    2016-11-30

    Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm-2 at a current density of 1 mA cm-2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.

  13. Physical tools for textile creativity and invention

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen; Lenau, Torben Anker

    2010-01-01

    Two textile research projects (one completed and one ongoing) are described, where physical inspirational tools are developed and tested with the aim of stimulating textile creativity and invention, i.e. the use of textile materials in new kinds of products, thus bringing textiles into new contexts...

  14. The Mycenaean Palace-Organised Textile Industry

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    2008-01-01

    Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings.......Investigation of the textile production in af tekstilprodutionen in Linear B archives. The administration of the textile prodution is compared to the administration of land holdings....

  15. Investigation of Thermo-regulating Properties of Multilayer Textile Package

    Directory of Open Access Journals (Sweden)

    Julija Baltušnikaitė

    2015-09-01

    Full Text Available Thermal comfort of a clothing system is one of the important goals of the developer that require an engineering approach. In this research work a thermo-regulating textile packages were developed and a wearing comfort of protective clothing consisting from those packages was improved. The microcapsules were added on the fabric surface using pad-dry-cure method. The thermal properties and stabilities were measured using differential scanning calorimetry. The results suggest that higher values of thermal resistance were obtained after incorporation of fabric, coated by PCMs, into inert layer of multilayer textile package. DOI: http://dx.doi.org/10.5755/j01.ms.21.3.6920

  16. Functionality and sustainability of peat fiber-based textile

    OpenAIRE

    Čepukonė, Lina; Daiva MIKUČIONIENĖ

    2017-01-01

    Textiles from natural fibres have exclusive properties as no release substances harmful for health, do not cause allergy effect, have got high heat absorption, high air permeability, high hygroscopicity. Thus, importance and impact of fibres of natural origin grows and stimulates demand for them by promoting their efficiency and sustainability. Majority of mechanical and physical properties of knitted fabrics depend on technical characteristics of knitting machine, on properties of yarns, as ...

  17. Storage solutions for excavated textiles tending to their recalcitrant behaviour

    DEFF Research Database (Denmark)

    Margariti, Christina; Loukopoulou, Polytimi

    2016-01-01

    This paper discusses the selection of packaging and storage means that facilitate the preservation, protection andmanagerial needs for a group of excavated textiles where their physical and chemical properties have been unrecognisably altered as a result of the burial process (in this case minera...... foam, copolymer polyethylene and polypropylene board, non-woven polyethylene fabric and the antistatic type of polyester film. All materials and methods applied exhibit great versatility and are potentially useful for conservators in similar situations....

  18. A flexible inkjet printed inverted-F antenna on textile

    KAUST Repository

    Karimi, Muhammad Akram

    2016-12-19

    This is an era of wearable gadgets which demands flexible and wearer friendly wireless components. This paper presents a modified inverted-F antenna (IFA) which has seamlessly been integrated with the fabric through inkjet printing. Surface roughness of the textile has been reduced using a rapid UV curable flexible interface layer. Smooth interface layer helps achieving very fine features which may be required for complicated antenna and circuit traces.

  19. Development of active porous medium filters based on plasma textiles

    Science.gov (United States)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  20. Biocomplex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds.

    Science.gov (United States)

    Choi, Hyungjoo; Ryu, Hee Wook; Cho, Kyung-Suk

    2018-02-01

    Space-saving biocomplex textiles, which can be used as covers or rolled up as needed, have been demonstrated as alternative daily covers for the simultaneous mitigation of greenhouse gases (GHGs) and odors in landfills. The biocomplex textiles were made by inserting inorganic biocarriers (perlite (P), tobermolite (T) and their mixture (P/T)) between nonwoven fabrics. Methane (CH 4 ) and dimethyl sulfide (DMS) were used as model compounds for GHGs and odors, and a CH 4 and DMS co-degrading microbial consortium was used as an inoculum source. CH 4 and DMS could be biologically degraded by methanotrophs and sulfur-oxidizing bacteria in the biocomplex textiles. Both biocomplex textiles made with either P or T were able to maintain the removability for CH 4 and DMS after storage for 70 days, although their removal efficiencies for CH 4 and DMS were 70-71% and 62-65% of those before storage, respectively. CH 4 and DMS were simultaneously removed in lab-scale landfill simulation reactors employed with the biocomplex textiles. After 17 days of starvation, only 2-3 days were needed to recover their removability. Among the 3 kinds of biocarriers evaluated, the biocomplex textile generated using the P/T showed the highest removability and was the most stable. The maximum elimination capacities of the biocomplex textile generated with the P/T were 11.5 g-CH 4 ·m -2 -fabric·d -1 and 0.5 g-DMS·m -2 -fabric·d -1 , respectively. These results suggest that the biocomplex textiles are promising alternative daily covers to mitigate the emission of greenhouse gas and odor in operational landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. MILITARY TEXTILE MATERIALS FOR EXTREME WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    TSOUTSEOS Athanasios

    2017-05-01

    Full Text Available Despite the leaps in technology in warfare and modern weaponry, the human soldier remains the most important aspect of a competitive army. Military textile materials are an essential, yet often neglected, factor that protect the soldier and enable his or her actions in varying fields around the globe. The participation of most countries in larger military or peacekeeping organisations like the NATO and the UN involves the extension of the geographical areas of activity in environments varying greatly from the soldiers’ country of origin. Protection from the varying weather conditions and comfort are important factors for the optimal operational ability of a person in humanitarian actions or at combat field. Research in performance textiles has given rise to various forms of multilayered clothing and functional membranes with several commercial tradenames. These performance textiles aim at specialized sports and recreational activities as mountain climbing, hiking and cycling, among others. Additional advancements involve even more specialized function like the incorporation of microelectronics monitoring of vital signals of the human body or for the control of equipment. The incorporation of such technological advancements is a current challenge for the national and international military forces that inherit a set of strict procedures. These procedures involve standardization, detailed technical descriptions, cost and of course customs particular to each force. On the other hand, the advancements cannot be neglected and the numbers of soldiers involved are significant to enable the need for change. Current paper is concentrated on the clothing and fabric developments relating to the protection of the soldiers from extreme weather conditions.

  2. Textile production in Quartier Mu

    DEFF Research Database (Denmark)

    Cutler, Joanne Elisabeth; Andersson Strand, Eva Birgitta; Nosch, Marie-Louise Bech

    2013-01-01

    , geographical and chronological factors.  In contrast, recent research has considered some aspects of shape as an expression of loom weight function. This new approach, which draws on experimental archaeology, has made it possible to render textile craft visible, even if the textiles themselves...... are not preserved (Mårtensson et al. 2009). It is this approach that has been adopted in the following analysis of the loom weights from Quartier Mu. The chapter divided into four parts. The first part gives an outline of general textile techniques and presents the methodology. The second part consists...

  3. Auxetic warp knit textile structures

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, Kim; Alderson, Andrew; Anand, Subhash; Simkins, Virginia; Nazare, Shonali; Ravirala, Naveen [Institute for Materials Research and Innovation, The University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom)

    2012-07-15

    The design, manufacturing and characterization of warp knit textile structures with enhanced drapeability and energy absorption is reported in this paper. Four textile structures were produced, all based on a triangular or double arrowhead structure, which is known to lead to a negative Poisson's ratio {nu}. Mechanical testing has confirmed that textile structures can be produced which are auxetic at {+-} 45 to the warp direction, with {nu} of up to -0.22 {+-} 0.03. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Experimental investigation of braided fabric forming

    Science.gov (United States)

    Wang, Peng; Soulat, Damien; Legrand, Xavier; Zemni, Lilia; Jacquot, Pierre-Baptiste

    2016-10-01

    Woven and braided textile structures are largely used as the composite reinforcements. Forming of the continuous fibre reinforcements and thermoplastic resin commingled yarns can be performed at room temperature. The "cool" forming stage is well-controlled and more economical compared to thermoforming. Many studies have been addressed for carbon and glass fibres / thermoplastic commingled yarns reinforced composite forming for woven structure. On the contrary, few research works has deal with the natural fibre reinforced textile forming and none concerns the braided fabrics forming. In this present work, the Flax/Polyamide 12 commingled yarns are used to produce braided fabric and then to analyze their deformability behaviour.

  5. Tubular Steel Arch Stabilized by Textile Membranes

    Directory of Open Access Journals (Sweden)

    Ondrej Svoboda

    2016-10-01

    Full Text Available Tubular steel arch supporting textile membrane roofing is investigated experimentally and numerically. The stabilization effects of the textile membrane on in-plane and out-of-plane behavior of the arch is of primary interest. First a model of a large membrane structure tested in laboratory is described. Prestressed membranes of PVC coated polyester fabric Ferrari® Précontraint 702S were used as a currently standard and excellent material. The test arrangement, loading and resulting load/deflection values are presented. The supporting structure consisted of two steel arch tubes, outer at edge of the membrane and inner supporting interior of the membrane roofing. The stability and strength behavior of the inner tube under both symmetrical and asymmetrical loading was monitored and is shown in some details. Second the SOFiSTiK software was employed to analyze the structural behavior in 3D, using geometrically nonlinear analysis with imperfections (GNIA. The numerical analysis, FE mesh sensitivity, the membrane prestressing and common boundary conditions are validated by test results. Finally a parametrical study concerning stability of mid arch with various geometries in a membrane structure with several supporting arches is presented, with recommendations for a practical design.

  6. A review on utilization of textile composites in transportation towards sustainability

    Science.gov (United States)

    Aly, Nermin M.

    2017-10-01

    Transportation industry is rapidly developing owing to its size and importance which affects on various aspects of life. It includes all the transport means that facilitate mobility of people or goods either by air, land or sea like aircrafts, automotives, ships, trains, etc. The utilization of textiles in this industry is increasing as a result of moving towards achieving sustainability and enhancing performance, comfort and safety. Through substituting heavier materials with textiles of high performance specifications and textile reinforced composites to reduce weight, fuel consumption and CO2 emissions. Composite materials can fulfil the demands for sustainability in the transportation sector through using renewable, recycled and lightweight materials, considering the requirements of each category of transport vehicles. Textiles used in reinforcing composites are diverse including fibers, yarns or fabric preforms such as woven, nonwoven, knitted, braided which varies from 2D to complex 3D structures. This paper presents a brief review on the utilization of textiles in reinforcing composites for various transportation applications to achieve sustainability. Also, discussing the influence of textiles structural parameters like fiber material properties, fabric production technique and construction on their mechanical behaviour. Focusing on researches findings in this area and highlighting some prospects for further developments domestically.

  7. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile.

    Science.gov (United States)

    Pang, Sumiao; Gao, Yang; Choi, Seokheun

    2018-02-15

    We built a flexible, stretchable microbial fuel cell (MFC) by laminating two functional components: a bioanode textile with a conductive and hydrophilic polymer coating and a solid-state cathode textile loaded with silver oxide. The textile MFC used Pseudomonas aeruginosa PAO1 as a biocatalyst to generate the maximum power and current density of 1.0µW/cm 2 and 6.3µA/cm 2 , respectively, which are comparable with or even higher than other flexible MFCs such as paper-based devices (~ a few µW/cm 2 ). Additionally, the textile MFC generated consistent power even with repeated 70 cycles of 50% stretching. A simple batch fabrication method simultaneously produced 20 individual 2cm × 2cm devices by using brushing, spraying, ironing, and computerized sewing, a process that will revolutionize the mass production of textile MFCs. This achievement is scientifically meaningful because developing textile MFCs requires integration of both electronic and fluidic components into the textile three-dimensionally. This flexible and stretchable energy harvesting device is expected to be easily integrated with the next generation stretchable electronics for realizing low-power, stand-alone, self-sustainable systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. TEXTILE IMPACT PLATES FOR NANOPARTICLES

    National Research Council Canada - National Science Library

    VISILEANU Emilia; DUMITRESCU Iuliana; VARZARU Elena; MITRAN Cornelia; CHIRIAC Laura

    2017-01-01

    The paper presents textile materials with destination impact plates, having different surface architectures and active treatments for functionalization, with influence upon the aging process of nano-Ag and nano-CeO2...

  9. Synthesis of Tungsten Oxide Nanorod, Its Application on Textile Material, and Study of Its Functional Properties

    Directory of Open Access Journals (Sweden)

    Abdul Azeem

    2016-01-01

    Full Text Available Nanomaterial and its application in textiles are emerging as vast and diverse field due to enhanced functionalized characteristics. This study emphasizes the fabrication of tungsten trioxide nanostructured rods and analyzes its electrostatic and ultraviolet resistance properties. These nanorods are synthesized by hydrothermal method. Through hydrothermal method rod like nanostructures were grown on polyester fabric as it withstands curing temperature easily. The growth mechanism of the film is investigated. Electrostatic analysis of treated polyester fabric was failed but the analysis of seeded solution revealed that it has tunable transmittance modulation under different voltages and repetitive cyclic between the clear and blue states. Ultraviolet resistance of 100% seeded polyester fabric was higher than untreated fabric with respect to increasing concentration of nanorods. Results show that although the seeded solution is perfect, the conductivity of tungsten trioxide cannot be achieved on textiles.

  10. Self-Folding Textiles through Manipulation of Knit Stitch Architecture

    Directory of Open Access Journals (Sweden)

    Chelsea E. Knittel

    2015-12-01

    Full Text Available This research presents a preliminary study on finding predictable methods of controlling the self-folding behaviors of weft knit textiles for use in the development of smart textiles and garment devices, such as those with shape memory, auxetic behavior or transformation abilities. In this work, Shima Seiki SDS-One Apex computer-aided knitting technology, Shima Seiki industrial knitting machines, and the study of paper origami tessellation patterns were used as tools to understand and predict the self-folding abilities of weft knit textiles. A wide range of self-folding weft knit structures was produced, and relationships between the angles and ratios of the knit and purl stitch types were determined. Mechanical testing was used as a means to characterize differences produced by stitch patterns, and to further understand the relationships between angles and folding abilities. By defining a formulaic method for predicting the nature of the folds that occur due to stitch architecture patterns, we can better design self-folding fabrics for smart textile applications.

  11. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy

    KAUST Repository

    Chen, Jun

    2016-09-12

    Developing lightweight, flexible, foldable and sustainable power sources with simple transport and storage remains a challenge and an urgent need for the advancement of next-generation wearable electronics. Here, we report a micro-cable power textile for simultaneously harvesting energy from ambient sunshine and mechanical movement. Solar cells fabricated from lightweight polymer fibres into micro cables are then woven via a shuttle-flying process with fibre-based triboelectric nanogenerators to create a smart fabric. A single layer of such fabric is 320 μm thick and can be integrated into various cloths, curtains, tents and so on. This hybrid power textile, fabricated with a size of 4 cm by 5 cm, was demonstrated to charge a 2 mF commercial capacitor up to 2 V in 1 min under ambient sunlight in the presence of mechanical excitation, such as human motion and wind blowing. The textile could continuously power an electronic watch, directly charge a cell phone and drive water splitting reactions. In light of concerns about global warming and energy crises, searching for renewable energy resources that are not detrimental to the environment is one of the most urgent challenges to the sustainable development of human civilization1,2,3. Generating electricity from natural forces provides a superior solution to alleviate expanding energy needs on a sustainable basis4,5,6,7,8,9. With the rapid advancement of modern technologies, developing lightweight, flexible, sustainable and stable power sources remains both highly desirable and a challenge10,11,12,13,14,15,16. Solar irradiance and mechanical motion are clean and renewable energy sources17,18,19,20,21,22,23,24. Fabric-based materials are most common for humans and fibre-based textiles can effectively accommodate the complex deformations induced by body motion25,26,27,28,29,30,31,32. A smart textile that generates electrical power from absorbed solar irradiance and mechanical motion could be an important

  12. Production and Characterisation of Multifunctional Textile for Masonry Retrofitting and Health Monitoring

    Directory of Open Access Journals (Sweden)

    Angela CORICCIATI

    2010-12-01

    Full Text Available Composite materials are recently used in civil applications, in strengthening of masonry and concrete structures. They offer many advantages, in comparison with traditional techniques, mainly related to the favourable strength to weight ratio. Besides, monitoring the structure during its lifetime is very important, in order to detect possible anomalous situations. The innovative and original multifunctional textile, described in this work, is conceived to perform both these functions: thanks to a tube woven inside the fabric during manufacturing process, a fibre optical sensor can be inserted successively inside this tube, directly on the reinforced structure, allowing the structural health monitoring. Tensile tests on composite material performed with the textile allowed the mechanical characterization and the identification of the gage factor of the embedded sensor. Moreover, flexural tests, carried out on small scale samples reinforced with the textile, allowed to test the measuring performance of the textile in possible real applications.

  13. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  14. Generation of methane from textile desizing liquors

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Schollmeyer, Eckhard [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (Germany); Dammer, Christoph; Titscher, Tanja; Nickisch-Hartfiel, Anna [Hochschule Niederrhein, Frankenring, Krefeld (Germany); Gruen, Oliver; Spurk, Christoph [OeKOBiT GmbH, Foehren (Germany); Schloderer, Christine; Koeppe, Axel [Textilveredlung an der Wiese, Loerrach (Germany); Doerfler, Christian; Bachus, Herbert [CHT R. Beitlich GmbH, Bismarckstr, Tuebingen (Germany)

    2010-08-15

    A new strategy for the biological transformation of sugar-containing wastewaters from the textile desizing process to biogas was developed. Here, industrial liquors were separated from the following washing step by squeezing the impregnated fabrics after desizing. These waters exhibit a chemical oxygen demand of 40 g/L and allow a direct use in microbial biogas reactors without further treatment or accumulation. After reaching balanced conditions, the microbes continuously produce biogas. Moreover, the chemical oxygen demand can be reduced up to 75%. This new technology seems to be practicable and even attractive for small- and medium-sized enterprises with an annual cotton production down to 2000 t. At this stage, a reliable eco-balance of the overall process is still pending. Further investigations will be carried out soon. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Textiles: Some technocal information and data II: Conversion factors, fibre properties, spinning limits, typical twist factors, weaving performannce and transfer printing temperatures.

    CSIR Research Space (South Africa)

    Hunter, L

    1978-07-01

    Full Text Available comparative rates of production fordifferent fabric manufacturing systems are given below? GENERAL FIBRE PROPERTIES Roductim Proems Weaving Weft knitting Warp knitting Lace Non-woven Textiles-fromdlm Spun-bonding lntegrallysxtrudcd net The specific...

  16. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment.

    Science.gov (United States)

    Carney Almroth, Bethanie M; Åström, Linn; Roslund, Sofia; Petersson, Hanna; Johansson, Mats; Persson, Nils-Krister

    2017-10-28

    Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m(-2)/L(-1) in one wash, compared with polyester fabrics which shed 87 fibers/m(-2)/L(-1). We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

  17. Water-oil separation performance of technical textiles used for marine pollution disasters.

    Science.gov (United States)

    Seddighi, Mahdi; Hejazi, Sayyed Mahdi

    2015-07-15

    Oil is principally one of the most important energy sources in the world. However, as long as oil is explored and transported for being used, there will be the risk of the spillage into the marine environment. The use of technical textiles, i.e. fibrous beds, is a conventional separation technique for oil/water emulsion since it is efficient and easy to design. In this paper, the recovery of oil by technical textiles was mathematically modeled based on the structural parameters of textile and the capillary mechanism. Eleven types of commercial technical textiles with different properties were prepared for the experimental program. The experimental design included fiber type (polypropylene and polyester), fabric type (woven and/or nonwoven), fabric thickness and fabric areal density. Consequently, the absorption capacities of different technical textile samples were derived by the use of theoretical and experimental methods. The results show that there is a well fitness between theoretical outputs and experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. La industria textil uruguaya (1900-1960

    Directory of Open Access Journals (Sweden)

    Magdalena Bertino

    2009-06-01

    Full Text Available La industria textil uruguaya se inició a comienzos del siglo XX con la instalación de algunas fábricas de tejidos de lana y de una gran hilandería de lana peinada. Desde la crisis de 1929, sustentada en la protección cambiaría, se expandió en forma acelerada durante el periodo conocido como de industrialización por sustitución de importaciones. Alcanzó su apogeo entre fines de la segunda guerra mundial y comienzos de la década de los cincuenta, al instalar hilanderías de algodón y de fibras sintéticas y cuando las exportaciones industriales laneras adquirieron una importante dimensión. El progresivo agotamiento de la sustitución de importaciones, los frenos opuestos a las exportaciones, junto al estancamiento económico del país y el desmontaje de la protección estatal, la sumieron en una profunda crisis y en la pérdida creciente de significación en la industria y en la economía uruguaya.The Uruguayan textile industry started in the early xxth century based on the production of woven fabric and wool spinning mill (tops. From the years of the 1929's crisis onwards, it went through a great expansion due to a protectionist policy based on favourable exchange rates. Those were the times of the Import Substitutive Industrialization (ISI in the country. After the Second World War and, particularly, during the fifties it reached its height with the production of cotton fabrics and synthetic fibers. Meanwhile, wool exports would grow strongly. However, in the late fifties, the ISI strategy was in trouble and the obstacles for export's growth and the economic stagnation together with the removal of the protectionist's policies, put an end to the textile industry development. As a consequence, it experienced a deep crisis and lost importance both for the industry and for the economy as a whole.

  19. Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers.

    Science.gov (United States)

    Eom, Jimi; Jaisutti, Rawat; Lee, Hyungseok; Lee, Woobin; Heo, Jae-Sang; Lee, Jun-Young; Park, Sung Kyu; Kim, Yong-Hoon

    2017-03-22

    Emulation of diverse electronic devices on textile platform is considered as a promising approach for implementing wearable smart electronics. Of particular, the development of multifunctional polymeric fibers and their integration in common fabrics have been extensively researched for human friendly wearable platforms. Here we report a successful emulation of multifunctional body-motion sensors and user-interface (UI) devices in textile platform by using in situ polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)-coated fibers. With the integration of PEDOT fibers in a fabric, via an optimization of the fiber pattern design, multifunctional textile sensors such as highly sensitive and reliable strain sensors (with maximum gauge factor of ∼1), body-motion monitoring sensors, touch sensors, and multilevel strain recognition UI devices were successfully emulated. We demonstrate the facile utilization of the textile-based multifunctional sensors and UI devices by implementing in a wireless system that is capable of expressing American Sign Language through predefined hand gestures.

  20. Combining 3D printed forms with textile structures - mechanical and geometrical properties of multi-material systems

    Science.gov (United States)

    Sabantina, L.; Kinzel, F.; Ehrmann, A.; Finsterbusch, K.

    2015-07-01

    The 3D printing belongs to the rapidly emerging technologies which have the chance to revolutionize the way products are created. In the textile industry, several designers have already presented creations of shoes, dresses or other garments which could not be produced with common techniques. 3D printing, however, is still far away from being a usual process in textile and clothing production. The main challenge results from the insufficient mechanical properties, especially the low tensile strength, of pure 3D printed products, prohibiting them from replacing common technologies such as weaving or knitting. Thus, one way to the application of 3D printed forms in garments is combining them with textile fabrics, the latter ensuring the necessary tensile strength. This article reports about different approaches to combine 3D printed polymers with different textile materials and fabrics, showing chances and limits of this technique.

  1. Superhydrophobic chitosan-based coatings for textile processing

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.A., E-mail: NAI-72@yandex.ru [Ivanovo State Textile Academy, F. Engels Avenue 21, 153000 Ivanovo (Russian Federation); Philipchenko, A.B. [Kazan State Medical University, Butlerova 49, 420012 Kazan, Tatarstan (Russian Federation)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Chitosan nanoparticles can be used for design of the superhydrophobic anti-bacterial textile. Black-Right-Pointing-Pointer Spraying the nanoparticle dispersion allows one to get multiscale textured coating. Black-Right-Pointing-Pointer Relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates and coating wettability. - Abstract: A simple method to design the superhydrophobic anti-bacterial textile for biomedical applications was developed. For the coating formulation the spraying of nanoparticles dispersion over the textile sample was applied, allowing the way to get multiscale textured layer on a top of cotton fabric. The anti-bacterial functionality of coating is supported by using chitosan-based nanoparticles. In our approach the fabrication of nanoparticles was based on electrostatic interaction between amine group of chitosan and negatively charged fluoroanion. It was demonstrated that the relative number of fluoroanions per elementary unit of chitosan plays the crucial role in the structure of aggregates in the coating and its wettability as well as in durability of coatings in contact with aqueous media.

  2. North European Symposium for Archaeological Textiles X

    DEFF Research Database (Denmark)

    Proceedings of the Tenth North European Symposium for Archaeological Textiles, held in Copenhagen, 14-17 May 2008......Proceedings of the Tenth North European Symposium for Archaeological Textiles, held in Copenhagen, 14-17 May 2008...

  3. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    Science.gov (United States)

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  4. Luxurious Merovingian Textiles Excavated from Burials in the Saint Denis Basilica, France, 6th-7th century

    OpenAIRE

    Desrosiers, Sophie; Rast-Eicher, Antoinette

    2013-01-01

    A new examination of the textile fragments found in the Merovingian burials in the basilica of Saint Denis, near Paris, has recently underscored the diversity of fabrics used to make garments in which members of the royal court were buried. Among them, some woolens of fine quality had been dyed with indigotin. The most astonishing fibre found belongs to a mixed textile (not skin) with beaver fibers and wool. Silks contained shellfish purple and in one case kermes? Two dyestuffs associated wit...

  5. WEAR-A-BAN: INTERFAZ INALÁMBRICA DE CONTROL HOMBRE-MAQUINA INCORPORADO SOBRE UNA BASE TEXTIL.

    Directory of Open Access Journals (Sweden)

    Vicente Cambra Sanchez

    2013-05-01

    Full Text Available Wear-a-BAN is the development of a human to machine wireless interface able to register biomechanical data and transmit it to a receptor (machine to be used in a specific purpose.It is developed through a built-in system in textiles (clothes, which allows performing the process in an unobtrusive and natural way, has been the goal. The development has been focused in four specific scenarios: Smart fabrics interactive textiles, activity monitoring, rehabilitation robotics and gaming.

  6. Textile paper as a circular material

    OpenAIRE

    Ashok, Archana

    2017-01-01

    Increasing resource efficiency by utilising secondary raw material is one of the key characteristics of a circular economy. Textile dust fibre, a waste generated from textile mechanical recycling has the prospect to be utilised as secondary raw material for producing novel material: textile paper suitable for packaging and other applications. A comparative Life Cycle Assessment (LCA) of carrier bags made from one ton of virgin paper, recycled paper and novel textile paper (~22584paper bags wi...

  7. Functionalization of textiles with silver and zinc oxide nanoparticles

    Science.gov (United States)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  8. Comparative analysis of colour change measurement devices in textile industry

    Directory of Open Access Journals (Sweden)

    Paulina Gilewicz

    2014-08-01

    Full Text Available In the paper there is presented a trial of application of new measurement principle of colour change with the use of DigiEye device. Comparison of DigiEye with commonly use in the textile industry spectrophotometer Macbeth 2020 was an aim of determination of relationship between parameters of both measurement systems. Samples for the colour change assessment on both measurement systems were first aged in the Xenotest 150. Ageing process was done according to the method of blues scale. Results were obtained by the colour measurement devices before and after the ageing test each releasing the diaphragms during exposing the examined samples on the light. Result of colour change were obtained in the colour system CIE L*a*b*. The measurements were done for PES fabrics destined on the outer layers of clothing. [b]Keywords[/b]: textiles, spectrophotometer, colorimeter [b][/b

  9. Development of Flax Fibre based Textile Reinforcements for Composite Applications

    Science.gov (United States)

    Goutianos, S.; Peijs, T.; Nystrom, B.; Skrifvars, M.

    2006-07-01

    Most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The current work aims to develop high-performance natural fibre composite systems for structural applications using continuous textile reinforcements like UD-tapes or woven fabrics. One of the main problems in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they cannot be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g., unidirectional composites) similar to off-axis composites. Therefore, an optimum twist should be used to balance processability and mechanical properties. Subsequently, different types of fabrics (i.e., biaxial plain weaves, unidirectional fabrics and non-crimp fabrics) were produced and evaluated as reinforcement in composites manufactured by well established manufacturing techniques such as hand lay-up, vacuum infusion, pultrusion and resin transfer moulding (RTM). Clearly, as expected, the developed materials cannot directly compete in terms of strength with glass fibre composites. However, they are clearly able to compete with these materials in terms of stiffness, especially if the low density of flax is taken into account. Their properties are however very favourable when compared with non-woven glass composites.

  10. Bioremediation of textile effluent using Phanerochaete chrysosporium

    African Journals Online (AJOL)

    Enormous volumes of effluent are generated at different stages of textile manufacturing, as a result of the use of copious amounts of chemicals and dyes. Several tons of textiles required to meet up with societal demands are produced daily in this industry. Effluent derived from the textile and dyestuff activities can provoke ...

  11. Emerging research trends in medical textiles

    CERN Document Server

    Gokarneshan, N; Rajendran, V; Lavanya, B; Ghoshal, Arundhathi

    2015-01-01

    This book provides a comprehensive review of the significant researches reported during the recent years in the field of medical textiles. It also highlights the use of new types of fibres in developing medical textile products and their promising role in the respective areas of application. Considerable developments have taken place in the development of medical textiles for varied applications.

  12. Texture & Textiles, Together

    Science.gov (United States)

    Guhin, Paula

    2011-01-01

    Creating a painting with texture is easy, although using heavy gel medium or modeling paste may be pricey ways to go about it. High school artists generally like making collages and mixed-media. In this article, the author suggests ways to capitalize on that interest with inexpensive fabric in a painting project.

  13. Biofunctional textiles prepared with liposomes: in vivo and in vitro assessment.

    Science.gov (United States)

    Martí, Meritxell; Martínez, Vanessa; Rubio, Laia; Coderch, Luisa; Parra, José L

    2011-01-01

    A sun filter, ethyl hexyl methoxycinnamate (EHMC) used as a tracer, was vehiculized by liposomes made up of internal wool lipids (IWL) or phosphatidylcholine (PC) and applied onto cotton and polyamide fabrics by exhaustion treatments. After topical applications of textiles on human volunteers, skin properties were evaluated by non-invasive biophysical techniques. Two methodologies based on percutaneous absorption were used to determine the content of the active principle penetration into the skin. PC liposomes showed more affinity for the fabric than IWL liposomes. Moreover, polyamide fabrics absorbed a slightly higher percentage of liposomes than cotton fabrics. A significantly higher amount of EHMC skin penetration was found when the biofunctional textiles were topically applied than when formulations were applied onto the skin. Moreover, the polyamide was the fibre with the highest released properties in all cases.

  14. Use of zinc oxide nano particles for production of antimicrobial textiles

    African Journals Online (AJOL)

    Recently, an awareness of general sanitation, contact disease transmission, and personal protection has led to the development of antimicrobial textiles. The development of antimicrobial cotton fabrics using Zinc oxide nanoparticles has been investigated in this present work. The ZnO nanoparticles were prepared by wet ...

  15. Textile Dry Cleaning Using Carbon Dioxide : Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in

  16. Electronic Textiles as Disruptive Designs: Supporting and Challenging Maker Activities in Schools

    Science.gov (United States)

    Kafai, Yasmin B.; Fields, Deborah A.; Searle, Kristin A.

    2014-01-01

    Electronic textiles are a part of the increasingly popular maker movement that champions existing do-it-yourself activities. As making activities broaden from Maker Faires and fabrication spaces in children's museums, science centers, and community organizations to school classrooms, they provide new opportunities for learning while challenging…

  17. Perceptions of seshoeshoe fabric, naming and meanings of motifs

    African Journals Online (AJOL)

    user

    need to have a national identity and embraced the blue “German Print”, or terantala as it was called, the fabric has evolved extensively. The most popular brand of the fabric that was produced was called the Three Cats and this was exported to South Africa. This brand is now produced by the Da Gama Textiles in South.

  18. Electrical Conductivity in Textiles

    Science.gov (United States)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  19. Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Senel-Ayaz, H G; Perets, A; Govindaraj, M; Brookstein, D; Lelkes, P I

    2010-01-01

    Cardiovascular diseases, specifically myocardial infarction and end-stage heart failure represent some of the major pathologies that threaten human life. Here we present a novel approach for a bioactive cardiac patch based on a combination of biomedical and textile manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. The technological goal is to create BioNanoTextiles™ (BNT) by using "conventional" fabrics as templates for creating three-dimensional nanofibrous scaffolds. Electrospinning nanofibrous scaffolds templated after "ordinary" textiles is a novel way to create complex-patterned, 3-D scaffolds intrinsically mimicking some of the anisotropic structural features of the ventricular wall's extracellular matrix. In preliminary studies, we established that this approach will yield anisotropic 3-D scaffolds with mechanical properties dependent upon the yarn type of the textile-templates. These scaffolds are biocompatible, as inferred from their support of H9C2 cardiac myoblast adhesion which promotes their proliferation as well as cardiac-like anisotropic organization. The use of textile manufacturing strategies will enhance the complexity of the 3-D scaffold structures and enable their commercialization, while providing an opportunity for the textile industry to advance established "low-tech" manufacturing technologies into the realm of "high-tech" BioNanoTextiles.

  20. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  1. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    Science.gov (United States)

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  2. Smart healthcare textile sensor system for unhindered-pervasive health monitoring

    Science.gov (United States)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.

    2012-04-01

    Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.

  3. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.

    Science.gov (United States)

    Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie

    2016-10-05

    The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.

  4. Design Management in the Textile Industry

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2013-01-01

    In this paper we explore textile design activities and textile design management from an industrial network perspective. The textile industry is probably one of the most globalized manufacturing industries in the world and thus one of the most dispersed industries on the globe. Most studies...... on design management are framed inside the organisational context of the firm. In this study the role and practice of textile design is addressed in perspective of the global textile production network. The empirical data stems from six case studies exploring how different types of enterprises are organised...

  5. Los textiles rituales de Nasca en Cahuachi

    OpenAIRE

    Bastiand Atto, María Soledad

    2010-01-01

    El estudio de los textiles arqueológicos nos conduce a entender a una de las actividades productivas de mayor antigüedad en nuestro país, la actividad productiva textil, desarrollada durante 5 000 años. Tal es el caso, de la producción textil de la cultura Nasca desarrollada en el período Intermedio Temprano, de la época prehispánica. Una de las culturas más conocidas por su cerámica polícroma y sus complejos textiles. El presente estudio muestra una Colección Textil de Nasca Temprano,...

  6. Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing.

    Science.gov (United States)

    Xue, Jingchuan; Liu, Wenbin; Kannan, Kurunthachalam

    2017-05-02

    Little is known with regard to the occurrence of potentially toxic chemicals in textiles and clothes. In this study, 77 textiles and infant clothing pieces were analyzed for the determination of bisphenols including bisphenol A (BPA) and bisphenol S (BPS), benzophenones, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs). BPA and BPS occurred in 82% and 53% of the textile samples, respectively, and at mean concentrations of 366 and 15 ng/g, respectively. Benzophenone-3 (BP3) occurred in 70% of the samples at a mean concentration of 11.3 ng/g. Among 11 BADGEs and NOGEs analyzed, BFDGE was the predominant compound, with a mean concentration of 13.6 ng/g. Concentrations of target chemicals were assessed by fabric type, color, and uses. Socks contained the highest concentrations of BPA (mean: 1810 ng/g) with concentrations as high as 13 300 ng/g in a 97% polyester fabric marketed for infants. Calculated dermal exposure dose to BPA by infants via textiles was as high as 7280 pg/kg BW/d. This is the first study to report the occurrence of, and exposure to, BPA, BPS, BADGEs, and NOGEs in textiles and clothing.

  7. Textile effluent biodegradation potentials of textile effluent-adapted ...

    African Journals Online (AJOL)

    Environmental pollution has been recognized as one of the major problems of the modern world. The increasing demand for water and the dwindling supply has made the treatment and reuse of industrial effluents an attractive option. Textile effluents are of concern because they colour the drains and ultimately the water ...

  8. Sound absorption of textile material using a microfibres resistive layer

    Science.gov (United States)

    Segura Alcaraz, M. P.; Bonet-Aracil, M.; Segura Alcaraz, J. G.; Montava Seguí, I.

    2017-10-01

    Acoustic comfort is a basic human need. One of the adverse effects of noise is its interference with speech discrimination. Textile materials are suitable to be used as sound absorptive materials and thus help to improve acoustic comfort in rooms. Micro-fibre fabrics can be considered as better sound absorbers than regular fibre fabrics mainly due to the higher surface of its fibres and bigger contact area with the air thus, allowing greater dissipation of sound energy. In this work, the use of a microfibre woven fabric as an upstream layer is analysed considering acoustic issues. Authors demonstrate it improves the sound absorption of a polyester nonwoven, resulting in a material suitable for absorption at the sound frequencies of the human voice.

  9. Textile allergic contact dermatitis: current status.

    Science.gov (United States)

    Coman, Garrett; Blattner, Collin M; Blickenstaff, Nicholas R; Andersen, Rosa; Maibach, Howard I

    2014-01-01

    We conducted a thorough review of Pubmed search results for "textile percutaneous penetration" and "textile absorption". We also determined relevant articles that discussed percutaneous penetration of textiles into the skin and their associated disease states. Due to limitations in current and past publications, we are uncertain of the extent of the clinical problem; however, for patients allergic to textile dye, it is of practical importance, both clinically and in their everyday life. There are many challenges to correctly identifying the offending textile products in a patient with suspected textile dye dermatitis. Different populations may exhibit varying degrees of allergic contact dermatitis (ACD), but more studies must be done to draw further conclusions. This is further complicated when counseling the patient on how to avoid the textile products most likely to cause a recurrence of ACD skin lesions.

  10. Perception of naturalness in textiles

    NARCIS (Netherlands)

    Overvliet, Krista E.; Karana, Elvin; Soto-Faraco, Salvador

    2016-01-01

    In many daily contexts, we prefer natural 'materials' over un-natural ones. Textiles embodied in garments that are worn on the body all day, or in bed sheets slept under every night touch us literally, on a daily basis. Hence among all other materials, 'naturalness perception' has a strong impact on

  11. NICE3: Textile Brine Separation

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    The goal of this project is to demonstrate the significant energy and waste savings that can be realized by using nanofiltration technology to reuse textile dyebath brines. Read this new fact sheet to learn how this new membrane technology can benefit your business.

  12. Stalled ERP at Random Textiles

    Science.gov (United States)

    Brumberg, Robert; Kops, Eric; Little, Elizabeth; Gamble, George; Underbakke, Jesse; Havelka, Douglas

    2016-01-01

    Andre Raymond, Executive Vice President of Sales and Marketing for Random Textiles Co. Inc. (RTC), stood in front of the podium to address his team of 70 sales consultants in Las Vegas, NV. The organization had increased market share and achieved record sales over the past three years; however, in the shadow of this success lurked an obstacle that…

  13. Durable and Rechargeable Antimicrobial Textiles

    Science.gov (United States)

    2013-12-01

    textiles, to achieve powerful antimicrobial effiacy (see the following tasks). Reaction conditions have significant effects on grafting yields and...efficacy tests, all the microbial species were provided by the American Type Culture Collection (ATCC). Staphylococcus epidermidis (S. epidermidis...non-resistant bacteria. Candida albicans (C. albicans, ATCC 10231, fungi), a diploid fungus , was used as a representative example of fungi. As shown

  14. Textiles and Training in Portugal.

    Science.gov (United States)

    Andrez, Jaime Serrao; Dias, Mario Caldeira

    Analyzing the role of vocational training in an economic sector that is declining in Portugal, this document consists of five chapters, a bibliography, and a list of training organizations. An introduction tells why the study is important and explains that the major obstacles to development of the Portuguese textile and clothing sector are the…

  15. Effect of Seams on Drape of Fabrics (Pp. 62-72)

    African Journals Online (AJOL)

    Nekky Umera

    simplest type in which a single row of lock stitches joins two pieces of fabrics together. Thus, investigating the effect of a plain seam on fabric drape has a significant value for both the textile and clothing industries. The quantified drapeability of a fabric into a dimensionless value called a “Drape coefficient”, which is defined ...

  16. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may be...

  17. Encapsulation for smart textile electronics - humidity and temperature sensor.

    Science.gov (United States)

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  18. Material Property Characterization of AS4/VRM-34 Textile Laminates

    Science.gov (United States)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  19. Comparison among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles

    Directory of Open Access Journals (Sweden)

    Alberto Lopez

    2013-01-01

    Full Text Available The purpose of this paper is to present a comparison among two models and its measurement to calculate the shielding effectiveness of electromagnetic barriers, applying it to conductive textiles. Each one, models a conductive textile as either a (1 wire mesh screen or (2 compact material. Therefore, the objective is to perform an analysis of the models in order to determine which one is a better approximation for electromagnetic shielding fabrics. In order to provide results for the comparison, the shielding effectiveness of the sample has been measured by means of the standard ASTM D4935-99.

  20. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Crisp, Dakota; Badier, Jean-Michel; Malliaras, George G.; Ismailova, Esma

    2015-10-01

    Wearable sensors are receiving a great deal of attention as they offer the potential to become a key technological tool for healthcare. In order for this potential to come to fruition, new electroactive materials endowing high performance need to be integrated with textiles. Here we present a simple and reliable technique that allows the patterning of conducting polymers on textiles. Electrodes fabricated using this technique showed a low impedance contact with human skin, were able to record high quality electrocardiograms at rest, and determine heart rate even when the wearer was in motion. This work paves the way towards imperceptible electrophysiology sensors for human health monitoring.

  1. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography.

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Crisp, Dakota; Badier, Jean-Michel; Malliaras, George G; Ismailova, Esma

    2015-10-08

    Wearable sensors are receiving a great deal of attention as they offer the potential to become a key technological tool for healthcare. In order for this potential to come to fruition, new electroactive materials endowing high performance need to be integrated with textiles. Here we present a simple and reliable technique that allows the patterning of conducting polymers on textiles. Electrodes fabricated using this technique showed a low impedance contact with human skin, were able to record high quality electrocardiograms at rest, and determine heart rate even when the wearer was in motion. This work paves the way towards imperceptible electrophysiology sensors for human health monitoring.

  2. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen

    Science.gov (United States)

    Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia

    2018-01-01

    We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.

  3. CYCLODEXTRINS TO RECOVER TEXTILE DYES IN WASTE WATER

    Directory of Open Access Journals (Sweden)

    FRANCO Esther

    2015-05-01

    Full Text Available Cyclodextrins are cyclic oligosaccharides with a special toroid shape, obtained by the action of glucosyltransferase enzyme (CGTase on starch molecule. Their peculiar structure allows the accommodation of different guest molecules inside their cavity forming molecular inclusion complexes. There are different types depending on the glucose units that are formed, called native. The cyclodextrins can be modified incorporating different groups (hydroxipropyl, methyl... that changes their properties. Due their versatility in size, properties and the variety of inclusion complex can form is employed in many different industries like pharmacy, food or cosmetics to protect the molecule or to reduce their volatility. As the guest molecule is not bond with the cyclodextrin with the appropriate conditions it can release easily. In textile industry had been use in different areas: to remove surfactants from washed textiles, to substitute surfactants, in the dyeing process, in detergents… Due their capacity to fix onto textile allows the functionalization of the fabrics giving them new properties like UV protection, antimicrobial or insect repellents depending on the guest molecule, in. The project DYES4EVER employs the cyclodextrins to encapsulate dyes not fixed during the dye process that remains in the wastewater and aims to go one step further and reuse the dyes recovered as a raw material in new dyeing processes.

  4. THE RELATIONSHIP BETWEEN WORDS, TEXTS, CLOTHES AND TEXTILES

    Directory of Open Access Journals (Sweden)

    STURZA Amalia

    2017-05-01

    Full Text Available In this paper we will speculate the possible relationships between “word,” “text,” “textile,” and “clothing”. Many of the terms we use to describe our interactions with words are derived from the common linguistic root and numerous other expressions associated with reading and writing are drawn from the rich vocabulary of cloth. Textiles are one of the most ubiquitous components of material culture and they are also integral to the material history of texts. The intersection between texts and textiles locates the relationship between language and dress, as together they structure the fashion scene over the century. We compare these texts and storytelling with the process of making clothes, they go from fibers that are spun and then create the fabric or the material out of which the clothes are made. Besides the similitude of the words “text” and “textile” that have four similar letters there is also the resemblance in the way they transmit a message. While texts are meant to transmit something to the reader, to enchant and to create emotions in so various ways, just in the same way clothes are also meant to transmit emotions and feelings to the wearer or to the people watching them.

  5. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-02-14

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  7. Smart hydrogel-functionalized textile system with moisture management property for skin application

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  8. TEXTILE STRUCTURES FOR AERONAUTICS (PART I

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The first part of this paper deals with the introduction of our Textile Research Centre in the field of composites and carbon fiber as a main material to produce three – dimensional textile structures. The use of composite materials in aerospace structures has increased over the past decades. Our contribution related to this field consists of the development of three- dimensional textile structures and even the adaptation and improvement of machinery to do it possible. Carbon fiber provides advantages as volumetric fraction and minimum fault occurrence. However carbon fiber has also disadvantages as uncomfortable handling delamination and high cost of material and processing.

  9. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    Science.gov (United States)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  10. Light Conversion and Scattering in UV Protective Textiles

    Directory of Open Access Journals (Sweden)

    Grancarić Ana Marija

    2014-12-01

    Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration

  11. The Textile Industry at Thebes in the Light of the Textile Industries at Pylos and Knossos

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    2001-01-01

    The paper investigates the textile production at Thebes, Greece, according to the Linear B tablets......The paper investigates the textile production at Thebes, Greece, according to the Linear B tablets...

  12. The Manufacturing of Textile Products with Incorporated Electrodes

    Directory of Open Access Journals (Sweden)

    Curteza Antonela

    2016-03-01

    Full Text Available One of the main causes of disabling deficits is neurological affections. Many times, the evolution of the condition leads to a diminution of the patient’s life quality. Functional electrical stimulation (FES is part of the neurological rehabilitation process that comprises all the actions one can take in order to increase a patient’s integration and autonomy degree from a social and financial point of view. FES is a method based on substituting the commands that are usually transmitted by the nervous system with an electric impulse. The use of such a method on different body areas required the development of some adequate devices, starting with the stimulator itself and finishing with the way in which the stimulus is conveyed to the effectors. Textile materials that incorporate sensors and, mainly, the clothing products that have such components in their structure, have a high applicability potential; they can be used for preventing illnesses and for the rehabilitation of seniors, of people who are confined to bed, sportsmen, people who suffer from long-term illnesses, disabled people, thus diminishing the time one spends in the hospital. A possible solution for manufacturing incorporated textile electrodes consists in the insertion of some electro-conductive yarns onto textile surfaces by using a variety of technologies. The project approaches the use of knitting, a widespread textile technology. The incorporated knitted electrodes were accomplished by applying the knitting technology on single circular small diameter machines. Thus, we were able to obtain a variety of knitted articles as two-dimensional or three-dimensional tubular knitted fabric. Their dimensions, structures, and parameters correspond to the typo-dimensions of the human body and to the purpose for which the clothing product was designed. The knitted versions were tested by using a Microstim2v2 (PW = 300 μs, 40 Hz neurostimulator for which the current intensity was

  13. Hybrid functional microfibers for textile electronics and biosensors

    Science.gov (United States)

    Nanda Sahoo, Bichitra; Choi, Byungwoo; Seo, Jungmok; Lee, Taeyoon

    2018-01-01

    Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications. Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).

  14. New design of textile light diffusers for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, Cédric, E-mail: cedric.cochrane@ensait.fr [Univ Lille Nord de France, F-59000 Lille (France); ENSAIT, GEMTEX, F-59100 Roubaix (France); Mordon, Serge R.; Lesage, Jean Claude [Univ Lille Nord de France, F-59000 Lille (France); INSERM U 703, Lille University Hospital — CHRU (France); Koncar, Vladan [Univ Lille Nord de France, F-59000 Lille (France); ENSAIT, GEMTEX, F-59100 Roubaix (France)

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm{sup 2}: 5 × 20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/cm{sup 2}) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18 ± 2.5 mw/cm{sup 2}. Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm{sup 2}) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes.

  15. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  16. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach.

    Science.gov (United States)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-11

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  17. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    Science.gov (United States)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  18. Thermoset composites reinforced with recycled cotton textile residues

    National Research Council Canada - National Science Library

    Zonatti, Welton Fernando; Guimarães, Bárbara Maria Gama; Duleba, Wânia; Ramos, Júlia Baruque

    2015-01-01

    The recycling of textiles is an issue that requires immediate attention in order to address the management of textiles derived from household waste, as well as scraps generated throughout manufacturing textile processes...

  19. Modelo de autoavaliação para suporte à gestão organizacional: experimentação em indústria do segmento de malharia Model of self-evaluation to support organizational performance: experiment performed in knitted fabric textile industry

    Directory of Open Access Journals (Sweden)

    Gisele Alvim de Rezende Vilas Boas

    2012-01-01

    Full Text Available Este trabalho apresenta um modelo para suporte à gestão organizacional com foco em autoavaliação fundamentado nos critérios dos principais prêmios de excelência em gestão internacionais e do Brasil. Esta proposta teve por finalidade permitir avaliações personalizadas de desempenho do sistema de gestão e da importância para a organização das práticas de excelência em gestão preconizadas por tais prêmios. O método de pesquisa constituiu-se em fundamentação teórica, análise comparativa de três dos principais prêmios de excelência em gestão internacionais e do Brasil e experimentação do modelo proposto em uma indústria do segmento de malharia. A aplicação do modelo proposto possibilitou uma avaliação personalizada do desempenho do sistema de gestão da organização objeto de estudo e, também, da importância atribuída às práticas de excelência em gestão abordadas nos critérios. O contraste entre desempenho e importância permitiu a identificação de pontos organizacionais prioritários de melhoria da organização.This project aims to present a sample to support organizational management focusing on self-evaluation based on the criteria of the most important international and national excellence awards in management. The objective of the sample was to allow for customized evaluations of performance regarding the management system as well as evaluations of the importance of management excellence practices to the company preconized by those awards. The research methodology was based on a theoretical foundation, comparative analysis of the three main Excellence Awards in Management in Brazil, and on the experiment of the sample proposed in a knitted fabric textile industry. The sample proposed has allowed for a customized performance evaluation of the management system of the company used as the object of study, and the importance of the management excellence practices involved in the criteria. The contrast

  20. Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor.

    Science.gov (United States)

    Firoz Babu, K; Siva Subramanian, S P; Anbu Kulandainathan, M

    2013-04-15

    Conducting polymer (polypyrrole (PPy) doped with anion) film has been coated on different textile substrates from a mild, room temperature wet in situ chemical polymerisation method exploiting pyrrole as a monomer and ferric chloride as an oxidant and compared their electrochemical capacitive behaviour by assembling as an unit cell supercapacitor. PPy composites were prepared with carbohydrate polymers like cotton, linen (Natural cellulosic fibre), modified cellulosic fibre-viscose rayon and synthetic polymer polyester fabrics to investigate the influence on electrochemical capacitance. The surface morphology and chemistry of these materials were analysed by SEM, FT-IR, and XRD. It reveals that the PPy has greater interaction with the cellulosic fabrics, but whereas surface deposition only has taken place with synthetic fibres. The capacitive behaviour of the PPy coated textiles were evaluated using cyclic voltammetry, impedance spectroscopy and charge-discharge analysis. A unit cell was fabricated to investigate the capacitive behaviour by assembling two symmetric textile electrodes separated by a solid polymer (PVA/1M H2SO4 gel) electrolyte membrane. The textile electrodes prepared with PPy-Cotton and PPy-Viscose exhibited the highest specific capacitance value of 268 F g(-1) and 244 F g(-1), respectively at a scan rate of 5 mV s(-1). The charge-discharge analysis also shows higher specific capacitance value for PPy-Viscose and PPy-Cotton. The focus of this research is to highlight a successful, simple and reproducible method for fabrication of the textile based supercapacitor and the chemistry of surface interaction of PPy molecule with natural and synthetic fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Active chainmail fabrics for soft robotic applications

    Science.gov (United States)

    Ransley, Mark; Smitham, Peter; Miodownik, Mark

    2017-08-01

    This paper introduces a novel type of smart textile with electronically responsive flexibility. The chainmail inspired fabric is modelled parametrically and simulated via a rigid body physics framework with an embedded model of temperature controlled actuation. Our model assumes that individual fabric linkages are rigid and deform only through their own actuation, thereby decoupling flexibility from stiffness. A physical prototype of the active fabric is constructed and it is shown that flexibility can be significantly controlled through actuator strains of ≤10%. Applications of these materials to soft-robotics such as dynamically reconfigurable orthoses and splints are discussed.

  2. Organofunctional Trialkoxysilane Sol-Gel Precursors for Chemical Modi! cation of Textile Fibres

    Directory of Open Access Journals (Sweden)

    Jelena Vasiljević

    2017-07-01

    Full Text Available This paper reviews the use of organofunctional trialkoxysilane sol-gel precursors as contemporary fi nishing agents for the chemical modification of textile fires. The structures of organofunctional trialkoxysilanes are presented and compared to those of other silicon-based organic-inorganic hybrid materials. We describe the steps in the application procedure and the polysilsesquioxane coating fabrication on the surface of textile fibres. The functionalities, e.g., water and oil repellency, flame retardancy, antimicrobial properties, electrical conductivity and anti-static properties, are discussed in relation to the chemical structures of the precursor organic moiety, mechanisms and principals of the coating activity and its washing fastness. The most important published scientific results on organofunctional trialkoxysilanes applications to the surface of textile fibres are discussed with an emphasis on the creation of a multicomponent coating with multifunctional protective properties.

  3. Elements for a Comparative Study of Textile Production and Use in Hittite Anatolia and Neighbouring Areas

    DEFF Research Database (Denmark)

    Vigo, Matteo; Bellucci, Benedetta; Baccelli, Giulia

    2014-01-01

    Although our general knowledge on trade and usage of textiles in the ancient Near East seems to be quite consolidated, particularly through the study of the economic and administrative texts of Mesopotamia of the third and second millennia BC, we do not have considerable archaeological remains...... different. There are indeed specific monographs dealing with some aspects of Assyrian trade in Anatolia during the XIX-XVIII centuries BC, through which we are inform on trade routes, ‘textile topography’ (i.e. the provenance and the final destination of particular fabrics), costs of production and selling...... documentation. The study on the unearthed weaving tools could help us to fill the quasi absence of information on crafting and weaving techniques in the written sources. In the same way the Hittite administrative texts should increase our knowledge on the textile trades that did not leave archaeological traces...

  4. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications

    Science.gov (United States)

    Abdelkader, Amr M.; Karim, Nazmul; Vallés, Cristina; Afroj, Shaila; Novoselov, Kostya S.; Yeates, Stephen G.

    2017-09-01

    Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing technique. After printing, graphene oxide was reduced in situ via a rapid electrochemical method avoiding the use of any reducing reagents that may damage the textile substrates. The printed electrodes exhibited excellent mechanical stability due to the strong interaction between the ink and textile substrate. The unique hierarchical porous structure of the electrodes facilitated ionic diffusion and maximised the surface area available for the electrolyte/active material interface. The obtained device showed outstanding cyclic stability over 10 000 cycles and maintained excellent mechanical flexibility, which is necessary for wearable applications. The simple printing technique is readily scalable and avoids the problems associated with fabricating supercapacitor devices made of conductive yarn, as previously reported in the literature.

  5. Performance Study of Screen-Printed Textile Antennas after Repeated Washing

    Directory of Open Access Journals (Sweden)

    Kazani I.

    2014-06-01

    Full Text Available The stability of wearable textile antennas after 20 reference washing cycles was evaluated by measuring the reflection coefficient of different antenna prototypes. The prototypes’ conductive parts were screen-printed on several textile substrates using two different silver-based conductive inks. The necessity of coating the antennas with a thermoplastic polyurethane (TPU coating was investigated by comparing coated with uncoated antennas. It is shown that covering the antennas with the TPU layer not only protects the screen-printed conductive area but also prevents delamination of the multilayered textile fabric substrates, making the antennas washable for up to 20 cycles. Furthermore, it is proven that coating is not necessary for maintaining antenna operation and this up to 20 washing cycles. However, connector detachment caused by friction during the washing process was the main problem of antenna performance degradation. Hence, other flexible, durable methods should be developed for establishing a stable electrical connection.

  6. Washable hydrophobic smart textiles and multi-material fibers for wireless communication

    Science.gov (United States)

    Gorgutsa, Stepan; Bachus, Kyle; LaRochelle, Sophie; Oleschuk, Richard D.; Messaddeq, Younes

    2016-11-01

    This paper reports on the performance and environmental endurance of the recently presented wirelessly communicating smart textiles with integrated multi-material fiber antennas. Metal–glass–polymer fiber composites were fabricated using sub-1 mm hollow-core silica fibers and liquid state silver deposition technique. These fibers were then integrated into textiles in the form of center-fed dipole and loop antennas during standard weaving procedure. Fiber antennas performance was found to be directly comparable to classic ‘rigid’ solutions in terms of return loss, gain and radiation patterns, which allowed transmitting data through Bluetooth protocol at 2.4 GHz frequency. Applied superhydrophobic coatings (water contact angle = 152°, sliding angle = 6°) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles.

  7. Textiles and clothing sustainability nanotextiles and sustainability

    CERN Document Server

    2017-01-01

    This book highlights the sustainability aspects of textiles and clothing sector in light of nanomaterials and technologies. The invasion of nano in every industrial sector has been important and has made remarkable changes as well as posed new challenges, including the textiles and clothing sector. There is quite a great deal of research happening in terms of nano materials for textiles across the globe, some of which are covered in this book. .

  8. Bespoke Materials For Bespoke Textile Architecture

    DEFF Research Database (Denmark)

    Tamke, Martin; Baranovskaya, Yuliya; Holden Deleuran, Anders

    2016-01-01

    Membrane architecture uses currently off the shelf materials and produces the shapes and details through cutting and laborsome joining of textile patterns. This paper discusses investigations into an alternative material practice - knit - which engages bespoke membrane materials. A practice which...... how design and engineering practices change, when material properties move from given and constant into the area of design and gradient. Bespoke materials for bespoke textile architecture. Available from: https://www.researchgate.net/publication/306401612_Bespoke_materials_for_bespoke_textile...

  9. Treatment of effluent textiles with ultraviolet light

    OpenAIRE

    Tinoco Gómez, Oscar Rafael; UNMSM; Medina Escudero, Ana María; UNMSM; Zapata Gamarra, Hernán

    2014-01-01

    The use of clean technologies for the treatment of textile effluents is essential to achieve a significant contribution by the textile industry, environmental treatment of them. According to the literature, the dyes used in textile industry are hardly degradable and have strong opposition to biological treatments are subjected to appropriate wastewater. At lower concentrations of hydrogen peroxide (oxygenated water) leads to better dye fading. It also shows that lower concentrations of titani...

  10. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    of sound. This issue is a part of a Ph.D. study at The Danish Design School in Copenhagen. Sound diffusion in architecture is a complex phenomenon. From the sound source the sound spreads in all directions as a sphere of wave fronts. When the sound is reflected from room boundaries or furniture, complex...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form.......Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...

  11. [When textiles help your recovery].

    Science.gov (United States)

    Martel, Bernard; Campagne, Christine; Behary Massika, Nemeshwaree

    2017-01-01

    Textiles are widely used in the biomedical domain, particularly in wound dressings or as implantable devices for strengthening or even replacing some damaged organs. Nowadays they present more and more sophisticated functionalities contributing to the healing process, to the organs regeneration, and fight against infection or thrombosis. Advanced spinning technologies of biostable or bioresorbable polymers and surface treatment technologies are often used, as well as nanotechnologies, to implement two main strategies for development of bio-active textiles. A long or medium term technology is obtained by grafting the bio-active molecule through stable chemical bonds while a short term activity is produced by using "reservoir" systems such as hydrogels and cyclodextrins that release the active agents in situ. ‡. © 2017 médecine/sciences – Inserm.

  12. On-line inspection of textile geometries

    Science.gov (United States)

    Bahners, Thomas; Ringens, Werner; Schollmeyer, Eckhard

    1993-02-01

    Two examples of specific design philosophies for low-cost on-line inspection systems for textiles are described in this paper: The application of the moire-technique can heavily enhance the imaging of textile surfaces as a filter for the assessment of geometric variations of the textile `grating' with extremely simple algorithms for image analysis. Blinded for color shades triangulation sensors have been developed into powerful tools for fast profiling of textile surfaces. Curtailed for certain applications fiber optical modifications of the basic triangulation principle have been developed for aereal inspection.

  13. STAGE OF TEXTILE RECYCLE WASTE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TRIPA Simona

    2014-05-01

    Full Text Available Aim of this article is to examine the stage of textile recycle waste in Romania. For this purpose were analyzed the main sources of textile waste from Romania (industry of manufacture of textiles, wearing apparel, leather and related products, imports of textiles, clothing and footwear and imports of second hand clothing and also evolution of the quantity of textile waste in Romania. The benefits (economic and environmental of the collection and recycling of waste and the legislation on the waste management, have determined the diversification and increasing the number and the capacity of recovery and disposal of waste in Romania. We found the most textile waste in Romania was deposited in deposits onto or into land, in the proportion of 18.51%. This proportion is under the EU average of 34.03%, but is much higher than in other European country. Also, has been an increase in the number of incinerators, in the last years. With all of this, the interest in textile waste management in Romania is far from being to the level of European, where are associations who dealing with the collection and recycling of textiles and is achieved a selective collection of textile waste in the points especially designed for this thing. The information for this paper was gathered from literature, from the EUROSTAT database and INSSE database analysis and by Internet.

  14. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.

    Science.gov (United States)

    Chen, Chuihan; Wu, Hongjuan

    2017-05-24

    Reuse of textile sludge as construction materials has been proved to an economic and environmental friendly strategy to mitigate its disposal problems. Previous studies have illustrated the successful fabrication of common fired bricks using textile sludge as a partial replacement of clay, but no such a specific work was focused on the feasibility of manufacturing lightweight bricks from textile sludge. In this study, a strategy involving the mixing of ground soil, textile sludge, and coal ash as the raw materials for the successful production of lightweight bricks is presented. Coal ash and ground soil have different combustible contents but similar main chemical composition, which facilitates the separable adjustment of these two factors of the raw material mixture to achieve their suitable values at the same time, and thus results in the successful manufacture of lightweight bricks. To meet the requirement for compressive strength and consume textile sludge as more as possible, an optimal ratio of the raw materials was obtained as textile sludge:coal ash:ground soil = 20:20:60. The brick products manufactured from this ratio show a compressive strength of 13.7 MPa, bulk density of 1.47 g cm-3, water absorption of 14.6%, and volumetric shrinkage of 13.61% after sintering. The results of toxicity characteristic leaching procedure test show that the heavy metal concentrations in the leachates of the brick products are very low, which also satisfy the regulations. This study provides a feasible and economical technology for the treatment of textile sludge.

  16. Investigation of Flexible Textile Antennas and AMC Reflectors

    Directory of Open Access Journals (Sweden)

    M. Mantash

    2012-01-01

    Full Text Available In this paper, two different methods for fabric characterization are presented: a single frequency method and a broadband method. Felt and denim fabrics are characterized, and patch antennas are designed using these substrates to test both methods. Prototypes of the antennas on felt and denim are manufactured using conductive textile (called electrotextile aiming to obtain fully flexible antennas. The prototypes are characterized in anechoic chamber to be compared and obtain conclusions related to the characterization methods. A new dual-band hexagonal AMC reflector combinable with antennas is also proposed to improve their performance and reduce the backward radiation to the human body. A novel broadband CPW-fed monopole antenna is designed to be combined with the AMC. The resulted prototype is characterized and compared with the performance of the CPW-fed antenna alone.

  17. Flexible fiber batteries for applications in smart textiles

    Science.gov (United States)

    Qu, Hang; Semenikhin, Oleg; Skorobogatiy, Maksim

    2015-02-01

    In this paper, we demonstrate flexible fiber-based Al-NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ˜10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design.

  18. Multifunctional High Performance Textiles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal is to establish a platform technology of space durable thermally/electrically conductive fabrics for space environment applications. The fabrics...

  19. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  20. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.

    Science.gov (United States)

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim

    2018-02-13

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.

  1. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART II

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2015-05-01

    Full Text Available Unconventional textiles can be obtained by strengthening the fibrous layer using wires, thereby achieving auxiliary materials for clothing, apparel linings, carpets. The fiber layers can be reinforced backing fabric using mechanical or mixed methods. The products are designed as filter materials, basic clothing. The global market for raw materials there is a continuing concern for material recovery specialists and their reintroduction into the economic cycle. Reconsideration materials as technological losses in production processes and in the sphere of consumption as factors polunaţi environment on the one hand and as a source of raw materials and energy, on the other hand, gave rise to different views regarding society's attitudes also potential resources and practical concepts that operate in these areas are unforgettable. Researches in order to create new unconventional textile fiber content of recyclable materials recovered were considered objectives: -The establishment of new wool upholstery variants which besides reusable textile fibers recovered to be entered and recovered fiber in textile products -Make per-lightweight textile per unit area that could be used in land drainage works on clay as filter elements covering plastic tubes.

  2. RESEARCH FOR AUTOMATIC FAULT DETECTION IN TEXTILE FABRIC

    OpenAIRE

    CLAUDIA BELMIRO PROENCA

    1997-01-01

    Este trabalho introduz o conceito de Dimensão Fractal de imagens, além de fazer uma aplicação de alguns métodos usuais de segmentação, visando o controle automático de falhas em tecidos têxteis. Foi desenvolvido um sistema dedicado à indústria têxtil objetivando a detecção de possíveis falhas. Uma indústria têxtil se particulariza por ter produção contínua. A característica planar dos produtos finais deste tipo de produção torna, de uma forma geral, inviável a utilização das técnicas de extra...

  3. Method of fabrication of fibers, textiles and composite materials

    Science.gov (United States)

    Maxwell, James L.

    2013-01-29

    A method of growing a plurality of free-standing structures comprises providing a plurality of free-standing structures, each free-standing structure having a first end coupled to a substrate, and a terminal end; providing at least one laser beam, the laser beam having a beam waste at a point proximate to the terminal end of the free-standing structure; and moving one of the plurality of freestanding structures or the beam waste to provide a growth zone proximate to the terminal end of each of the free-standing structures such that the free-standing structures grow into the growth zones by addition of decomposing precursor components. The growth rates of each of the free-standing structures are substantially the same.

  4. Single- and Multiwalled Carbon Nanotubes with Phosphorus Based Flame Retardants for Textiles

    Directory of Open Access Journals (Sweden)

    D. Wesolek

    2014-01-01

    Full Text Available Due to growing popularity of composites, modification methods to obtain the best properties are searched for. The aim of the study is to reduce the flammability of textile materials using nanocomposite polymer back-coating. Different types of carbon nanotubes (single- and multiwalled and different phosphorus flame retardants (ammonium polyphosphates and melamine polyphosphate were introduced into the resin and then the fabrics were covered by the obtained composites. Homogeneous dispersion of multiwalled carbon nanotubes in the polyurethane resin was obtained by sonification, which was confirmed by scanning electron microscopy. Flammability tests of fabrics coated by modified polyurethane resin were carried out using pyrolysis combustion flow calorimeter (PCFC and thermal stability of textiles was evaluated. Also, organoleptic estimation of coatings was conducted (flexibility and fragility. The use of polymer nanocomposites with phophorus flame retardants as a back-coating for textiles effectively reduces flammability and improves thermal stability of the fabric. Furthermore, the synergistic effect beetwen carbon nanotubes and phosphorous compound occurs. The resulting coatings are flexible and do not crack or change the feel of fabrics.

  5. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy

    Science.gov (United States)

    Chen, Jun; Huang, Yi; Zhang, Nannan; Zou, Haiyang; Liu, Ruiyuan; Tao, Changyuan; Fan, Xing; Wang, Zhong Lin

    2016-10-01

    Developing lightweight, flexible, foldable and sustainable power sources with simple transport and storage remains a challenge and an urgent need for the advancement of next-generation wearable electronics. Here, we report a micro-cable power textile for simultaneously harvesting energy from ambient sunshine and mechanical movement. Solar cells fabricated from lightweight polymer fibres into micro cables are then woven via a shuttle-flying process with fibre-based triboelectric nanogenerators to create a smart fabric. A single layer of such fabric is 320 μm thick and can be integrated into various cloths, curtains, tents and so on. This hybrid power textile, fabricated with a size of 4 cm by 5 cm, was demonstrated to charge a 2 mF commercial capacitor up to 2 V in 1 min under ambient sunlight in the presence of mechanical excitation, such as human motion and wind blowing. The textile could continuously power an electronic watch, directly charge a cell phone and drive water splitting reactions.

  6. Use of textiles in atopic dermatitis: care of atopic dermatitis.

    Science.gov (United States)

    Ricci, G; Patrizi, A; Bellini, F; Medri, M

    2006-01-01

    Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease which usually starts during the first years of life. In the management of AD, the correct approach requires a combination of multiple treatments to identify and eliminate trigger factors, and to improve the alteration of the skin barrier. In this article we try to explain the importance of skin care in the management of AD in relation to the use of textiles: they may be useful to improve disrupted skin but they are also a possible cause of triggering or worsening the lesions. Garments are in direct contact with the skin all day long, and for this reason it is important to carefully choose suitable fabrics in atopic subjects who have disrupted skin. Owing to their hygienic properties fabrics produced from natural fibres are preferential. Wool fibres are frequently used in human clothes but are irritant in direct contact with the skin. Wool fibre has frequently been shown to be irritant to the skin of atopic patients, and for this reason wool intolerance was included as a minor criterion in the diagnostic criteria of AD by Hanifin and Rajka in 1980. Cotton is the most commonly used textile for patients with AD; it has wide acceptability as clothing material because of its natural abundance and inherent properties like good folding endurance, better conduction of heat, easy dyeability and excellent moisture absorption. Silk fabrics help to maintain the body temperature by reducing the excessive sweating and moisture loss that can worsen xerosis. However, the type of silk fabric generally used for clothes is not particularly useful in the care and dressing of children with AD since it reduces transpiration and may cause discomfort when in direct contact with the skin. A new type of silk fabric made of transpiring and slightly elastic woven silk is now commercially available (Microair Dermasilk) and may be used for the skin care of children with AD. The presence of increased bacterial colonization

  7. Varying fabric drape by 3D-imprinted patterns for garment design

    Science.gov (United States)

    Spahiu, T.; Fafenrot, S.; Grimmelsmann, N.; Piperi, E.; Shehi, E.; Ehrmann, A.

    2017-10-01

    Drape is one of the most important properties of fabric, which significantly influences the appearance of a garment or technical textile. Being closely related to stiffness and other mechanical parameters, drape is also influenced by seams and other modifications of the pure textile fabric. In most investigations, the drape coefficient according to Cusick is used to measure drape, using a special drape meter, which allows to quantitatively describing the textile’s behaviour in terms of drape coefficient, number of nodes, etc. This article gives an overview of possibilities to modify fabric drape by printing different geometrical patterns on textile fabric. Their geometry and distance also influence on fabric drape. The resulting differences in a real garment using a skirt as an example will show the impact of 3D printing on garment drape.

  8. Preparation of a Textile-Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Klaus Opwis

    2016-01-01

    Full Text Available Solar energy conversion is an object of continuous research, focusing on improving the energy efficiency as well as the structure of photovoltaic cells. With efficiencies continuously increasing, state-of-the-art PV cells offer a good solution to harvest solar energy. However, they are still lacking the flexibility and conformability to be integrated into common objects or clothing. Moreover, many sun-exposed surface areas are textile-based such as garments, tents, truck coverings, boat sails, and home or outdoor textiles. Here, we present a new textile-based dye-sensitized solar cell (DSC which takes advantage from the properties inherent to fabrics: flexibility, low weight, and mechanical robustness. Due to the necessary thermostability during manufacturing, our DSC design is based on heat-resistant glass-fiber fabrics. After applying all needed layers, the overall structure was covered by a transparent and simultaneously conductive protective film. The light and still flexible large-area devices (up to 6 cm2 per individual unit are working with efficiencies up to 1.8% at 1/5 of the sun. Stability tests assure no loss of photovoltaic activity over a period of at least seven weeks. Therefore, our technology has paved the way for a new generation of flexible photovoltaic devices, which can be used for the generation of power in the mentioned applications as well as in modern textile architecture.

  9. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    Science.gov (United States)

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. THE INFLUENCE OF DOUBLING OF TEXTILE MATERIALS THROUGH THERMOFUSING ON THEIR HIDROPHILICITY

    Directory of Open Access Journals (Sweden)

    Viorica PORAV

    2016-05-01

    Full Text Available In the textile industry, the majority of clothing products, especially outerwear products, have some parts doubled up through thermofusing with other textile fabrics, woven or nonwoven, in order to provide some volume of shape, to fix contours, or to confer dimensional stability to the respective area . In this paper, we aim to highlight the influence on hydrofilicity of natural fiber materials of vegetable origin - flax and cotton - and of mixed natural fiber materials, by the process of doubling through thermofusing with chemicalized materials, woven or nonwoven. From laboratory measurements of the moisture absorption ability for these materials, fused or nonfused, woven or nonwoven, we conclude on the influence of these processes on the hydrofilicity of the fused ensemble and over the sanogenetic indicators that any fashion product must ensure for the wearer. Ensuring the comfort and compliance of clothing products is a priority of the producers of fabrics and textile garments. A clothing item should ensure optimum insulation, breathability, moisture absorption and air permeability to give the wearer comfort, wellbeing and safety. We focused on natural fiber materials of plant origin, since they are increasingly being used in the textile industry with beneficial influences on the state of comfort of the wearer.

  11. Berg River Textiles - Cleaner Production Option Report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    In October and November 2002 meetings were held between Berg River Textiles, Mr. Juan Laubscher, and external consultants from the South African – Danish Cleaner Textile Production Project, Mr. Zsig Schneider and Mr. Henrik Wenzel. This team of people collected information on recipes and flow...

  12. Environmental Considerations for Flame Resistant Textiles

    Science.gov (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  13. Textiles and clothing sustainability sustainable technologies

    CERN Document Server

    2017-01-01

    This is the first book to deal with the innovative technologies in the field of textiles and clothing sustainability. It details a number of sustainable and innovative technologies and highlights their implications in the clothing sector. There are currently various measures to achieve sustainability in the textiles and the clothing industry, including innovations in the manufacturing stage, which is the crux of this book.

  14. New Research on Bronze Age Textile Production

    DEFF Research Database (Denmark)

    Andersson, Eva Birgitta; Mårtensson, Linda; Nosch, Marie-Louise Bech

    2008-01-01

    presentation of the results from the systematic tests with Bronze Age textile tools. results concerning mesurements of lenght and time consumed.......presentation of the results from the systematic tests with Bronze Age textile tools. results concerning mesurements of lenght and time consumed....

  15. The Organization of the Mycenaean Textile Industry

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech

    Analysis of thewritten documentation for the organiztion of the Mycenaean textile industri at Pylos, Knossos, Mycenae and Thebes......Analysis of thewritten documentation for the organiztion of the Mycenaean textile industri at Pylos, Knossos, Mycenae and Thebes...

  16. Tips for Teaching Textiles and Clothing.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Continuing Education Curriculum Development.

    This guide was prepared to help instructors of adult textiles and clothing programs improve their teaching; it is designed to be used with other department publications: Clothing Services Training Guide, Resource Courses for Planning Local Adult Homemaking Programs, and Resource Kit Tips for Teaching Textiles and Clothing (see AC 008 741). Each…

  17. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  18. 78 FR 41911 - Foreign-Trade Zone 39-Dallas-Fort Worth, Texas; CSI Calendering, Inc. (Rubber Coated Textile...

    Science.gov (United States)

    2013-07-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 39--Dallas-Fort Worth, Texas; CSI Calendering, Inc. (Rubber Coated Textile Fabric); Arlington, Texas On March 4, 2013, the Dallas/Fort Worth International Airport Board, grantee of FTZ 39, submitted a...

  19. 75 FR 25839 - Foreign-Trade Zone 26 Atlanta, Georgia, Application for Subzone, Yates Bleachery Company (Textile...

    Science.gov (United States)

    2010-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Docket 31-2010 Foreign-Trade Zone 26 Atlanta, Georgia, Application for Subzone, Yates Bleachery Company (Textile Fabric Finishing), Flintstone, Georgia An application has been submitted to the Foreign-Trade Zones Board (the Boar...

  20. 16 CFR 1610.4 - Requirements for classifying textiles.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for classifying textiles. 1610... REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.4 Requirements for classifying textiles. (a) Class 1, Normal Flammability. Class 1 textiles exhibit normal flammability and are...

  1. 19 CFR 10.553 - Textile and apparel site visits.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile and apparel site visits. 10.553 Section 10... Trade Agreement Origin Verifications and Determinations § 10.553 Textile and apparel site visits. (a... Textile Agreements (CITA), exclude from the territory of the United States textile or apparel goods...

  2. Cost benefit of patch testing with textile finish resins

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Hamann, K

    1982-01-01

    Eleven years experience of textile finish resin patch testing of suspected textile dermatitis patients revealed 15 cases of allergic textile dermatitis among 428 patients tested. Ten of the 15 patients had a relevant positive patch test to one or more of a limited series of textile finishes; 1 wa...

  3. The Textile Elements in Ottoman Miniatures

    Directory of Open Access Journals (Sweden)

    Kevser Gürcan Y A R D I M C I

    2015-07-01

    Full Text Available With the value given to the art and the artist, high quality works of art in many fields were produced in the Ottoman Era. The art of weaving also lived its brightest period in terms of color, design, and weaving techniques in the Ottoman Empire in XVI. Ce ntury. The weaving products shaped the lifestyles of the people in those times and received great interest in the Palace as well. Silk woven fabrics had become such a great power in those times that it became the greatest symbol showing the power of the Ot toman Empire to the foreigners, and the determiner of the social standing within the society. The Ottoman Sultans used their clothing, which they made to become flamboyant with embroideries, to distinguish themselves from the public, and make them accept t heir power. Among the presents that were presented to the Sultans, clothes, kaftans, and similar fabrics as well as other precious presents, were frequent. The miniature manuscripts that were produced in the Palace are in the quality of unique documents t hat transfer yesterday’s knowledge to the modern age. It is easy to decode the dimensions of the clothing habits, decoration elements and hierarchy concepts of the Ottoman Era, as well as the weaving activities by using the miniature manuscripts. On the ot her hand, these elements constitute a rich alphabet in transferring the emotional structure of the society in those times, the traditions and habits to our world today. The greatest share in this effort belongs to the artists who depicted the miniatures by staying loyal to the texts in the manuscripts as well as to their active participation in the events of those times and their narrating the events as the very first observers. In addition, the muralists depicting the manuscripts and their undertaking the job of drawing the designs on the original fabric helped them to reflect the richness in the design of those times to the miniatures. In this study, the weavings and the accessories

  4. TEXTILE IMPACT PLATES FOR NANOPARTICLES

    OpenAIRE

    VISILEANU Emilia; Dumitrescu, Iuliana; Varzaru, Elena; MITRAN Cornelia; CHIRIAC Laura

    2017-01-01

    The paper presents textile materials with destination impact plates, having different surface architectures and active treatments for functionalization, with influence upon the aging process of nano-Ag and nano-CeO2. The woven and knitted samples from 100% cotton, cotton/PES blend and 100% PES were treated by impregnation on the laboratory padding machine, drying and condensing on the machine for drying-condensing-heat setting, with the following recipes: 50g/l RUCOSTAR EEE6+20 ml 5% nano-A...

  5. Functional textiles in hospital interiors

    DEFF Research Database (Denmark)

    Mogensen, Jeppe

    is overall related to the construction of new Danish hospitals, where the design concept healing architecture is introduced in a national context, representing the vision of a promoted healing process of hospitalised patients, supported by design related influence. Past research studies provides evidence...... that the physical environments affect the patients’ level of stress and influence their process of recovery and healing. However, although research in this field of hospital design has increased substantially in recent years, knowledge on the use of new materials and textiles in hospital interiors is still rather...

  6. Intelligent RF-Based Gesture Input Devices Implemented Using e-Textiles

    Directory of Open Access Journals (Sweden)

    Dana Hughes

    2017-01-01

    Full Text Available We present an radio-frequency (RF-based approach to gesture detection and recognition, using e-textile versions of common transmission lines used in microwave circuits. This approach allows for easy fabrication of input swatches that can detect a continuum of finger positions and similarly basic gestures, using a single measurement line. We demonstrate that the swatches can perform gesture detection when under thin layers of cloth or when weatherproofed, providing a high level of versatility not present with other types of approaches. Additionally, using small convolutional neural networks, low-level gestures can be identified with a high level of accuracy using a small, inexpensive microcontroller, allowing for an intelligent fabric that reports only gestures of interest, rather than a simple sensor requiring constant surveillance from an external computing device. The resulting e-textile smart composite has applications in controlling wearable devices by providing a simple, eyes-free mechanism to input simple gestures.

  7. Efficiency and Import Penetrationon the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the ave-rage level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  8. Efficiency And Import Penetration On The Productivity Of Textile Industry And Textile Products

    Directory of Open Access Journals (Sweden)

    Catur B Rakhmawan, Djoni Hartono, Agni A Awirya

    2015-08-01

    Full Text Available Although textile industry and textile products belong to the strategic sub sector of manufacturing industry in Indonesia, they are facing pro-blems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.Keywords:Efficiency, Productivity, Import Penetration, DEA, Fixed Effect

  9. Efficiency and Import Penetration on the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  10. Improvement of UV Protection Properties of the Textile from Natural Fibres by the Sol-gel Method

    Science.gov (United States)

    Vihodceva, S.; Kukle, S.

    2013-12-01

    In this research pure cotton textile was successfully modified by zinc oxide nanosol prepared by the sol-gel method. The cotton fabric was dipped in the nanosol solution for 10 minutes, dried at 90 °C for 10 minutes with further thermal post-treatment at 120 °C, 140 °C or 160 °C for 2 minutes. Comparison of coating of samples prepared using different thermal post-treatments was made. Before and after laundering tests ultraviolet protective properties of the textile samples were determined according to the standards, results show that textiles after treatment with nanosol have excellent ultraviolet protection properties, as well treated samples after laundering tests (50 washing-drying cycles) still provide excellent ultraviolet protection. Analyses based on the scanning electron microscopy and spectrophotometer measurements show that obtained textile coatings are distributed evenly, not only on the surface of yarns but in the depth of textile material as well, and are resistant to exploitation process that indicates about very good adhesion between the coating and the fabric surface.

  11. A WiFi Tracking Device Printed Directly on Textile for Wearable Electronics Applications

    KAUST Repository

    Krykpayev, Bauyrzhan

    2015-12-01

    Wearable technology is quickly becoming commonplace in our everyday life - fit-ness and health monitors, smart watches, and Google Glass, just to name a few. It is very clear that in near future the wearable technology will only grow. One of the biggest wearable fields is the E-textiles. E-textiles empower clothes with new functionality by enhancing fabrics with electronics and interconnects. The main obstacle to the development of E-textile field is the relative difficulty and large tolerance in its manufacturing as compared to the standard circuit production. Current methods such as the application of conductive foils, embroidering of conductive wires and treatment with conductive coatings do not possess efficient, fast and reliable mass production traits inherent to the electronic industry. On the other hand, the method of conductive printing on textile has the potential to unlock the efficiency similar to PCB production, due to its roll-to-roll and reel-to-reel printing capabilities. Further-more, printing on textiles is a common practice to realize graphics, artwork, etc. and thus adaptability to conductive ink printing will be relatively easier. Even though conductive printing is a fully additive process, the end circuit layout is very similar to the one produced via PCB manufacture. However, due to high surface roughness and porosity of textiles, efficient and reliable printing on textile has remained elusive. Direct conductive printing on textile is possible but only on specialized dense and tightly interwoven fabrics. Such fabrics are usually uncommon and expensive. Another option is to employ an interface layer that flattens the textile surface, thus allowing printing on it. The interface layer method can be used with a variety of textiles such as polyester/cotton that can be found in any store, making this method promising for wearable electronics. Very few examples and that too of simple structures such as a line, square patch or electrode have been

  12. Textile Messages: Dispatches from the World of E-Textiles and Education. New Literacies and Digital Epistemologies. Volume 62

    Science.gov (United States)

    Buechley, Leah, Ed.; Peppler, Kylie, Ed.; Eisenberg, Michael, Ed.; Yasmin, Kafai, Ed.

    2013-01-01

    "Textile Messages" focuses on the emerging field of electronic textiles, or e-textiles--computers that can be soft, colorful, approachable, and beautiful. E-textiles are articles of clothing, home furnishings, or architectures that include embedded computational and electronic elements. This book introduces a collection of tools that…

  13. Organic electronics on micro and nano fibers : from e-textiles to biomolecular nanoelectronics

    OpenAIRE

    Hamedi, Mahiar

    2008-01-01

    Research in the field of conjugated polymers (CPs) has led to the emergence of a number of interesting research areas and commercial applications, including solar cells, flexible displays, printed electronics, biosensors, e-textiles and more. Some of the advantages of organic electronics materials, as compared to their inorganic counterparts, include high elasticity, and mechanical flexibility, which allows for a natural integration of CPs into fabrics, making them ideal for e-texile. In this...

  14. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART II

    OpenAIRE

    OANA Ioan-Pavel; OANA Dorina; ŞUTEU Marius

    2015-01-01

    Unconventional textiles can be obtained by strengthening the fibrous layer using wires, thereby achieving auxiliary materials for clothing, apparel linings, carpets. The fiber layers can be reinforced backing fabric using mechanical or mixed methods. The products are designed as filter materials, basic clothing. The global market for raw materials there is a continuing concern for material recovery specialists and their reintroduction into the economic cycle. Reconsideration materials as tech...

  15. Compact and high-performance band stop filter on textile substrate

    Directory of Open Access Journals (Sweden)

    Gustavo Araújo Cavalcante

    2015-03-01

    Full Text Available A band stop filter developed on a denim textile substrate is presented. The filter geometry is composed of interconnected half-wavelength parallel coupled resonators, in a novel microstrip filter configuration. Simulated results were obtained through the wave concept iterative method and Ansoft Designer software, for comparison purposes. In addition, prototypes were fabricated and measured for validating the simulation results. Good agreement is reported between simulated and measured results.

  16. Compact and high-performance band stop filter on textile substrate

    OpenAIRE

    Gustavo Araújo Cavalcante; Diego Ramalho Minervino; Adaildo Gomes D'Assunção Junior; Adaildo Gomes D'Assunção

    2015-01-01

    A band stop filter developed on a denim textile substrate is presented. The filter geometry is composed of interconnected half-wavelength parallel coupled resonators, in a novel microstrip filter configuration. Simulated results were obtained through the wave concept iterative method and Ansoft Designer software, for comparison purposes. In addition, prototypes were fabricated and measured for validating the simulation results. Good agreement is reported between simulated and measured results.

  17. Towards a smart glove: arousal recognition based on textile Electrodermal Response.

    Science.gov (United States)

    Valenza, Gaetano; Lanata, Antonio; Scilingo, Enzo Pasquale; De Rossi, Danilo

    2010-01-01

    This paper investigates the possibility of using Electrodermal Response, acquired by a sensing fabric glove with embedded textile electrodes, as reliable means for emotion recognition. Here, all the essential steps for an automatic recognition system are described, from the recording of physiological data set to a feature-based multiclass classification. Data were collected from 35 healthy volunteers during arousal elicitation by means of International Affective Picture System (IAPS) pictures. Experimental results show high discrimination after twenty steps of cross validation.

  18. Printing of organic light emitting diodes on textile

    OpenAIRE

    Verboven, Inge; Gilissen, Koen; Vandevenne, Glen; Troia, Mariagrazia; Leins, Martina; Walker, Matthias; Schulz, Andreas; Deferme, Wim

    2015-01-01

    Smart textiles with light-emitting properties open a whole new world of innovative textile applications such as indoor and outdoor design and safety clothing. To achieve light-emitting properties on textiles, organic light emitting diodes are printed or integrated onto textile substrates. The advantage of this approach is that typical textile properties like flexibility and drapabilty are maintained. The authors would like to thank the research and funding partners of the European CORNET p...

  19. Stretchable, Porous, and Conductive Energy Textiles

    KAUST Repository

    Hu, Liangbing

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm-1 and sheet resistance less than 1 Ω/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm2, and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications. © 2010 American Chemical Society.

  20. Stretchable, porous, and conductive energy textiles.

    Science.gov (United States)

    Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.

  1. Mechanical Properties Of Traditional And Nanofibre Textiles

    Directory of Open Access Journals (Sweden)

    Ursíny Petr

    2015-09-01

    Full Text Available This study deals with a comparison of mechanical properties of a conventional yarn and a textile from nanofibres. The conventional yarn represents the textile objects with high degree of orientation of fibres and the textile from nanofibres represents the textile objects with low degree of orientation of fibres. The theoretical section is concerned with the issue of internal structure of plied yarn and resulting differences in the orientation and straightening of fibres and in utilisation of deformation properties of fibres in comparison to the referred nano textile. The experimental section describes the manner of realisation of both static and dynamic tests of conventional yarn and strips of nanofibres. The results show differences in the mechanical properties of conventional yarn and textile strip from nanofibres under static and dynamic loading conditions. The processing technology of conventional yarn has been verified in the long term. But textiles from nanofibres are a relatively new material and mechanical properties of the detected differences point out possible problems with their behaviour during standard technological processes.

  2. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles.

    Science.gov (United States)

    Petkova, Petya; Francesko, Antonio; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2016-03-01

    The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the "stepwise" concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce "ready-to-use" antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The structural coloration of textile materials using self-assembled silica nanoparticles

    Science.gov (United States)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-09-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.

  4. Hybrid Nanostructured Textile Bioelectrode for Unobtrusive Health Monitoring

    Science.gov (United States)

    Rai, Pratyush

    Coronary heart disease, cardiovascular diseases and strokes are the leading causes of mortality in United States of America. Timely point-of-care health diagnostics and therapeutics for person suffering from these diseases can save thousands of lives. However, lack of accessible minimally intrusive health monitoring systems makes timely diagnosis difficult and sometimes impossible. To remedy this problem, a textile based nano-bio-sensor was developed and evaluated in this research. The sensor was made of novel array of vertically standing nanostructures that are conductive nano-fibers projecting from a conductive fabric. These sensor electrodes were tested for the quality of electrical contact that they made with the skin based on the fundamental skin impedance model and electromagnetic theory. The hybrid nanostructured dry electrodes provided large surface area and better contact with skin that improved electrode sensitivity and reduced the effect of changing skin properties, which are the problems usually faced by conventional dry textile electrodes. The dry electrodes can only register strong physiological signals because of high background noise levels, thus limiting the use of existing dry electrodes to heart rate measurement and respiration. Therefore, dry electrode systems cannot be used for recording complete ECG waveform, EEG or measurement of bioimpedance. Because of their improved sensitivity these hybrid nanostructured dry electrodes can be applied to measurement of ECG and bioimpedance with very low baseline noise. These textile based electrodes can be seamlessly integrated into garments of daily use such as vests and bra. In combination with embedded wireless network device that can communicate with smart phone, laptop or GPRS, they can function as wearable wireless health diagnostic systems.

  5. A new physical method to assess handle properties of fabrics made from wood-based fibers

    Science.gov (United States)

    Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.

    2017-10-01

    In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.

  6. Textile effluent & waste water: a review

    OpenAIRE

    Mojsov, Kiro

    2013-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Textile industries consume over 7 x 105tons of dyes annually and use up to 1 litre of water per kg of dye processed and arethird largest polluters in the world. As a characteristic of the textile processing industry, a wide range of structurally diverse dyes can be used in a single factory, and therefore effluents from the industry are extremely variable in composition. This needed...

  7. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Azam, E-mail: azam.khan@liu.se; Edberg, Jesper; Nur, Omer; Willander, Magnus [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2014-07-21

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  8. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  9. Development of Flame Resistant Combat Uniform Fabrics Made from Long Staple Wool and Aramid Blend Yarn

    Science.gov (United States)

    2013-04-15

    UNIFORMS ARAMID FIBERS FIRE RESISTANT TEXTILES FABRICS CAMOUFLAGE KNITTED FABRICS PERFORMANCE...3 2. Analyses of aramid fibers (via Uster Test...20.5 micron wool and an aramid blend consisting of Nomex Type N325 (natural, low crystallinity), Kevlar, and P140 antistatic fiber in 100 mm staple

  10. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results

    NARCIS (Netherlands)

    Cao, J.; Akkerman, Remko; Boisse, P.; Chen, J.; Cheng, H.S.; de Graaf, E.F.; Gorczyca, J.L.; Harrison, P.

    2008-01-01

    Textile composites made of woven fabrics have demonstrated excellent mechanical properties for the production of high specific-strength products. Research efforts in the woven fabric sheet forming are currently at a point where benchmarking will lead to major advances in understanding both the

  11. THE BEHAVIOUR OF FABRICS USED FOR ANTIMIS PRODUCTION TO PILLING

    Directory of Open Access Journals (Sweden)

    CHIRILĂ Mihai Maxim

    2016-05-01

    Full Text Available The present study about the behaviour of plain textiles used for the production of antimis (Christian-orthodox liturgical item used in the liturgy to pilling explores the functional classification of different types of antimis as a textile product made out the following different types of fabrics: natural silk, flax, viscose, polyamide 6.6. Pilling is a phenomenon which consists of the formation of small balls made out of fibre congeries on the textile’s surface due to attrition and fatigue. For textiles used as liturgical items, the process of pilling formation includes the following stages: the emergence of the pilling surfaces (the formation of fuzzy, fibre tangle (appearance of small balls, and the detachment of small balls from the fabric’s surface. The analysis method of pilling for liturgical items made out the four types of fabrics mentioned above consists of stereoscopic microscopy techniques and electronic microscopy methods (SEM. The images of textiles samples (yarns and fabrics will be captured using a video microscope. Quantitative tests have been done to determine the metric number and the tex title of the above-mentioned fabrics. The increased resistance of silk to pilling compared to nylon, flax, and viscose can be attributed to the chemical properties of fibres and structural characteristics of silk fabric. The structural compactness of the same fiber mixture of natural silk fabric with bonded fabric will have a higher resistance coefficient to pilling compared to the other mentioned fabrics. Through this, the value of use and durability of the antimis will increase.

  12. Analysis of energetic efficiency in stenters of textile industry; Analise de eficiencia energetica em ramas de industria textil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Antonio Rogerio; Ferraz, Andre; Rocha, Ivan; Azevedo, Jorge; Oshiro, Hugo K.; Konishi, Ricardo; Piazza, Walter; Lehmkuhl, Willian [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2011-12-21

    This paper presents the research on the use of alternative energy within the textile industry: a strategy aimed at reducing costs and securing market share. The use of natural gas allows for the direct heating and drying of textiles through convection, instead of the conventional indirect heating method of thermal fluids. This measure alone reduces significantly the energy costs and grants the process superior efficiency and sustainability. This case examines the improvements to the process of drying textiles through thermal equipment called stenters, whose purpose is to remove humidity from the cloth during its fabrication. As such, SCGAS, in association with FURB, has performed an operational and technological evaluation of the drying process used by a customer enterprise. The data collected enabled the researchers to map all sources (inputs and outputs) of mass and energy for each different stenter. This composed the basis for the analysis done and the subsequent proposal of improvements, which varied from the conversion of stenter from indirect to direct heating and the development of even more energy efficient solutions for the direct heating system. The data obtained shows that, for the indirect heating system, 28% of the thermal energy produced could be recovered, given the temperature of the exhaust gases reached 360 deg C. The indirect heating stenters presented energy efficiency between 24% and 27%, whiles the direct heating ones presented between 27,4% and 34,8%. Additionally, if an automated control system for the natural gas and oxidizing air flows was to be installed, it would guarantee greater quality combustion with a significant increase in energy efficiency, as well as a decrease in carbon monoxide emissions by a factor of eight. (author)

  13. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  14. Dyes removal from textile wastewater using graphene based nanofiltration

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  15. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Youngjin [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jung Tae; Koh, Jong Kwan [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Eunae, E-mail: eakim@yonsei.ac.kr [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-10-01

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm{sup 2} at 100 mW/cm{sup 2} illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.

  16. 76 FR 79166 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2011-12-21

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements ACTION: Determination to add a product... 21, 2011. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  17. 76 FR 78249 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2011-12-16

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a...: December 16, 2011. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  18. 75 FR 75664 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2010-12-06

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a...: December 6, 2010. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  19. 76 FR 16734 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2011-03-25

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a... Publication. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has determined...

  20. 78 FR 16662 - Determination Under the Textile and Apparel Commercial Availability Provision of the United...

    Science.gov (United States)

    2013-03-18

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability... Committee for the Implementation of Textile Agreements. ACTION: Determination to add a product in...: The Committee for the Implementation of Textile Agreements (``CITA'') has determined that certain...

  1. 78 FR 39713 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2013-07-02

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a..., 2013. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has determined...

  2. 77 FR 8221 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2012-02-14

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a...: February 14, 2012. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  3. 75 FR 65609 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2010-10-26

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a... 26, 2010. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  4. 78 FR 7414 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2013-02-01

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a...: February 1, 2013. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  5. 75 FR 48931 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2010-08-12

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') August 9, 2010. AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination... Date: August 12, 2010. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA...

  6. 78 FR 17642 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2013-03-22

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a... 22, 2013. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  7. 76 FR 52640 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2011-08-23

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to remove a.... SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has determined that an...

  8. 78 FR 18561 - Determination Under the Textile and Apparel Commercial Availability Provision of the United...

    Science.gov (United States)

    2013-03-27

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability... Committee for the Implementation of Textile Agreements. ACTION: Determination to add a product in...: The Committee for the Implementation of Textile Agreements (``CITA'') has determined that certain...

  9. 76 FR 67424 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2011-11-01

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a...: November 1, 2011. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  10. 78 FR 16661 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Science.gov (United States)

    2013-03-18

    ... IMPLEMENTATION OF TEXTILE AGREEMENTS Determination Under the Textile and Apparel Commercial Availability...'') AGENCY: The Committee for the Implementation of Textile Agreements. ACTION: Determination to add a... 18, 2013. SUMMARY: The Committee for the Implementation of Textile Agreements (``CITA'') has...

  11. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  12. Dermatotoxicologic clinical solutions: textile dye dermatitis patch testing.

    Science.gov (United States)

    Coman, Garrett; Blickenstaff, Nicholas; Edwards, Ashley; Maibach, Howard

    2015-03-01

    The authors provide a framework for working up and counseling a patient with suspected textile dermatitis, focusing on identifying which textile materials are most likely to be the cause of the eczematous lesions, the current clinical guidelines, the utility and appropriateness of patch testing, the limitations of these guidelines, and our pro tempore recommendations. While there are many challenges to correctly identify and counsel patients on how to avoid the offending textile products in a patient with suspected textile dye dermatitis, there is value in following the guidelines set forth to help identify the causative textile(s). Although patch tests can be useful, dermatologists should understand the limitations of standardized patch testing for patients with suspected textile dye-induced dermatitis. These guidelines are expected to increase the likelihood of identifying the causative textile(s), so that patch testing can be supplemented with swatch testing and chemical dye extraction to help discover the allergenic dye.

  13. Nettle as a distinct Bronze Age textile plant.

    Science.gov (United States)

    Bergfjord, C; Mannering, U; Frei, K M; Gleba, M; Scharff, A B; Skals, I; Heinemeier, J; Nosch, M-L; Holst, B

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe.

  14. Reactions of CW Agents HD And GD with the Polymer Fabrics PVAM and CHEMCAT 41

    Science.gov (United States)

    2015-09-01

    Textile ) is sold by Stedfast (Stedfast, Inc., Granby, Quebec, Canada, or Stedfast USA, Piney Flats, TN). This report includes results on the testing...Multiple NMR spectra were acquired at known time points from the same fabric sample. Textile Properties Current Threshold (Acceptable) Objective (Desired...G-3 History Office U.S. Army RDECOM ATTN: Smart , J. ECBC Technical Library RDCB-DRB-BL ATTN: Foppiano, S. Stein, J

  15. Thin fiber and textile reinforced cementitious systems

    National Research Council Canada - National Science Library

    Aldea, Corina-Maria

    2007-01-01

    This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry...

  16. Nanomaterials for Functional Textiles and Fibers

    National Research Council Canada - National Science Library

    Rivero, Pedro J; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J

    2015-01-01

    ... macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional...

  17. Wearable Electro-Textiles for Battlefield Awareness

    National Research Council Canada - National Science Library

    Winterhalter, C. A; Teverovsky, Justyna; Horowitz, Wendy; Sharma, Vikram; Lee, Kang

    2004-01-01

    This summary describes efforts to develop wearable electronic textiles and connectors to support body worn networking, communications, and battlefield awareness for future service members of the U.S. Army...

  18. ROMANIAN TEXTILE INDUSTRY AND ITS COMPETITIVE ADVANTAGE

    Directory of Open Access Journals (Sweden)

    Cristiana Ioana ŞERBĂNEL

    2014-06-01

    Full Text Available Globalization has set up a new era of international trade flows and implicitly international competition. This is best understood by analyzing the rise and fall within certain industries. The Global Value Chains (GVC framework has emerged from its theoretical origins to become a major paradigm used by several international organizations. A detailed scrutiny of GVC highlightsthe manner in which new patterns of production, international trade and employment shape prospects for development and competitiveness.The purpose of the article is to address the important role of the textile sector in national economy development. Firstly, the paper addresses the presentation of textile industry at global, European and national level. Then, it presents a competitiveness sectorial approach and the analysis of innovation in textile industry.Finally, it is presented the value chain for the textile industry in Romania.

  19. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available composites based on natural fibers are investigated, which includes the manufacuring techniques, fracture and mechanical properties and other behaviours. Consolidation and permeability of the textiles based on natural fibers are specially addressed...

  20. Allergic Contact Dermatitis Induced by Textile Necklace

    Directory of Open Access Journals (Sweden)

    Uffe Nygaard

    2013-11-01

    Full Text Available Allergic contact dermatitis to textile dyes is considered to be a rare phenomenon. A recent review reported a prevalence of contact allergy to disperse dyes between 0.4 and 6.7%. The relevance of positive patch testing was not reported in all studies. Textile dye allergy is easily overlooked and is furthermore challenging to investigate as textile dyes are not labelled on clothing. In this report, we present a case of allergic contact dermatitis to a textile necklace. The patch test showed strong reactions to the necklace and the azo dyes Disperse Orange 1 and Disperse Yellow 3. Despite the European legislation and the reduced use of disperse dyes in Third World countries, disperse azo dyes still induce new cases of allergic contact dermatitis.

  1. Total design for textile products

    Directory of Open Access Journals (Sweden)

    Zafirova Koleta

    2004-01-01

    Full Text Available Product development is less than 20-30 years old and a relatively new area of research compared to the other classic academic disciplines. Integrated product development is a philosophy that systematically employs the teaming of functional disciplines to integrate and concurrently apple all the necessary processes to produce an effective and efficient product that satisfies customer needs. Product development might also be understood as a multidisciplinary field of research. The disciplines directly participating in product development include engineering design, innovation, manufacturing, marketing and management. A background contribution is also generated by disciplines such as psychology, social sciences and information technology. This article is an overview that introduces this philosophy to textile product development.

  2. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    Science.gov (United States)

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  3. Microwave Drying of Textile Materials and Optimization of a Resonant Applicator

    Directory of Open Access Journals (Sweden)

    M. Pourová

    2006-01-01

    Full Text Available The principal aim of this work was to design and optimize the applicator for microwave drying. Our applicator is derived from the Fabry-Perrot resonator, which is an open type resonator.The whole system works at frequency 2.45 GHz and the magnetron that we used delivers power 800 W. This machine is intended for use in drying in factory production of fabrics. After identifying of the basic arrangement of the microwave drying machine, the next step in the design was the use of the electromagnetic field simulator. We determined the position of the magnetron and found the distribution of the electric field strength in drying textiles in this way. In parallel, we analyzed the drying system with analytical calculations. We created a diagram of the EM waves inside this structure and reached the resulting expression for use in calculating the strenght of the electric field in the plane of the drying textile. This quantity depends on the electrical characteristics of wet textiles, e.g. the permittivity and the loss factor. Measurements of these dielectric properties for the coburg is complicated, and this method makes it possible to solve our problem with dielectric parameters. We have SAR distribution results (by simulation and also by measurement, results of measurements of the moisture content in the dried textile with respect to time. These results are important for subsequent optimization of the efficiency of the whole machine. 

  4. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  5. Life Cycle Assessment as a tool for water management optimization in textile finishing industry

    Science.gov (United States)

    Tarantini, Mario; Scalbi, Simona; Misceo, Monica; Verità, Simona

    2004-12-01

    In several countries, due to the increasing cost and shortage of water, textile finishing industries are looking for non conventional water resources. The use of reclaimed wastewater appears a technically feasible solution and is gaining a growing consensus. A European Union research project (TOWEF0, Towards effluent zero) with the aim of elaborating a multicriteria integrated and coherent methodology to support the implementation of sustainable water reuse in textile finishing processes has been recently concluded. In order to achieve an optimal compromise between minimization of environmental impacts of the production processes and maximum recovery of resources, Life Cycle Assessment (LCA) methodology has been applied to selected textile products manufactured within Belgian and Italian textile finishing companies. The study identified the key environmental issues within the finishing processes of a variety of natural (cotton, silk) and man-made (polyester, acetate, viscose) fibers and fabrics and analyzed alternative water reuse scenarios. Significant margins exist for impressive reductions in water consumption with almost no additional environmental impact adopting in situ membrane filtration technology. In this paper the methodological approach and the results of the LCA analyses applied to a flax-polyester product are presented and discussed.

  6. Textile UV detector with 2,3,5-triphenyltetrazolium chloride as an active compound

    Energy Technology Data Exchange (ETDEWEB)

    Kozicki, Marek, E-mail: mkozicki@mitr.p.lodz.p [Institute of Architecture of Textiles, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Sasiadek, Elzbieta [Institute of Architecture of Textiles, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)

    2011-05-15

    In this paper, results on the construction of a new flat textile-based UV light dosimeter are reported. As a textile support polyamide woven fabric was chosen, which was surface-modified with 2,3,5-triphenyltetrazolium chloride (TTC). At first, spectrophotometric and dynamic laser light scattering results on the steady-state UV irradiation of aqueous TTC solutions in the presence of oxygen are discussed. If irradiated, TTC converts to the corresponding formazan molecules of red colour. The size and size distribution of the particles is related to the absorbed radiation and pH of the solution. When TTC molecules reside on polyamide textile, UV irradiation causes a colour change from white to deep red. The tinge intensity depends on the absorbed energy per unit surface area. On this basis, the calibration parameters of the detectors, such as dose sensitivity, dose range, quasi-linear dose range, were calculated. Furthermore, the improvement of the dosimeters' resistance to atmospheric conditions was achieved and assessed through washing fastness tests. Finally, the detectors were proved to be adequate for measurements of the 2D distribution of absorbed UV energy. A simple method of UV dose distribution measurements was proposed. The textile-based systems show promise as dosimeters.

  7. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    Directory of Open Access Journals (Sweden)

    Caroline Loss

    2016-06-01

    Full Text Available The Internet of Things (IoT scenario is strongly related with the advance of the development of wireless sensor networks (WSN and radio frequency identification (RFID systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM 900 and digital cellular system (DCS 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  8. Textile inspired flexible metamaterial with negative refractive index

    Science.gov (United States)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  9. A carbon nanotube based ammonia sensor on cotton textile

    Science.gov (United States)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  10. Greensilica® vectors for smart textiles.

    Science.gov (United States)

    Matos, Joana C; Avelar, Inês; Martins, M Bárbara F; Gonçalves, M Clara

    2017-01-20

    The present work aims developing a versatile Greensilica® vector/carrier, able to bind to a wide range of textile matrices of carbohydrate polymers and susceptible of being loaded with chemicals/drugs/therapeutic molecules, to create a green tailor-made (multi)functional high-tech textile. A green, eco-friendly, ammonia-free, easily scalable, time-saving sol-gel process was established for the production of those silica-based colloidal particles (SiO2, amine-SiO2, diamine-SiO2, and epoxy-SiO2). Two different textile matrices (cotton, polyester) were functionalized, through the impregnation of Greensilica® particles. The impregnation was performed with and without cure. Diamine-SiO2 colloidal particles exhibited the higher bonding efficiency in cured textile matrices (both cotton and polyester), while with no cure the best adherence to cotton and polyester textile matrices was achieved with diamine-SiO2 and amine-SiO2, respectively. Use once and throw away and continued use applications were envisaged and screened through washing tests. The efficiency of the textiles impregnation was confirmed by SEM, and quantified by ICP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. CAREER DEVELOPMENT OF TEXTILE INDUSTRY EMPLOYEES

    Directory of Open Access Journals (Sweden)

    UROŠEVIĆ Snežana

    2017-05-01

    Full Text Available Textile industry is a very important industrial branch because it produces clothes for nearly seven billion people and textile materials for technical usage. It employs a huge number of competitive and qualified, mostly female work force. It is also technologically and technically challenging. Thus, it is vital to employ qualified and well trained employees with certain competences, knowledge and skills in order to respond to rapid technological and market changes. Here, we will consider the influence of the career development on doing business in the textile industry while acquiring the competitive advantage. Career development is a lifelong process and it is includes knowledge management. The term career has several meanings while nowadays it can mean advancement. The career usually reflects the professional development path of an individual during his or her working career. The career is that concept which connects and unifies most strongly and explicitly individual and organizational interests and needs. The theoretical part explains terms such as career development, importance and improvement of employees for an organization, the possibility for career development within the textile industry. The second part of the paper deals with research conducted among the employees of the textile sector in Leskovac, the town in Serbia with a long-lasting textile tradition.

  12. Research and development in the textile industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    Included in the portfolio of IP's projects are the R and D activities for several advanced technologies targeted at the textile industry, one of the top ten energy intensive industries in the country. These R and D projects have primarily been aimed at improving the energy efficiency and productivity of textile production processes. Many projects in this area have been successfully completed, and some have resulted in the development and implementation of new technologies (e.g., foam processing) for various process steps. Other projects have produced technical results that have later been utilized by the industry in other capacities (e.g., hyperfiltration). Several projects at various stages of development are currently underway. This brochure describes the Office of Industrial Programs' R and D activities relevant to the textile industry. The brochure is comprised of the following: Industry Update, Energy Consumption in the Textile Industry, Energy Consumption in the Textile Industry, Potential Energy Savings in the Textile Industry, Office of Industrial Programs, R and D Efforts, and R and D Data Base.

  13. Wearable electronics formed on intermediate layer on textiles

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-07-27

    One manner of producing more desirable clothing with electronic capabilities is to manufacture electronics, such as the charging wires or devices themselves, directly onto the textile materials. Textile materials generally do not support the manufacturing of electronic devices, in part because the surface of the textile is too rough for electronic devices or the processes used to manufacturing electronic devices. An intermediate layer (204) may be placed on the textile material (202) to reduce the roughness of the surface of the textile material and provide other beneficial characteristics for the placement of electronic devices (206) directly on the textile material.

  14. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles.

    Science.gov (United States)

    Mitrano, Denise M; Rimmele, Elisa; Wichser, Adrian; Erni, Rolf; Height, Murray; Nowack, Bernd

    2014-07-22

    Questions about how to regulate nanoenhanced products regularly arise as researchers determine possible nanoparticle transformation(s). Focusing concern on the incorporation and subsequent release of nano-Ag in fabrics often overshadows the fact that many "conventional silver" antimicrobials such as ionic silver, AgCl, metallic Ag, and other forms will also form different species of silver. In this study we used a laboratory washing machine to simulate the household laundering of a number of textiles prepared with known conventional Ag or nano-Ag treatments and a commercially available fabric incorporating yarns coated with bulk metallic Ag. Serial filtration allowed for quantification of total Ag released in various size fractions (>0.45 μm, nano-Ag treatments. Incorporating nano-silver into the fiber (as opposed to surface treatments) yielded less total Ag during fabric washing. A variety of metallic Ag, AgCl, and Ag/S particles were observed in washing solution by TEM/EDX to various extents depending on the initial Ag speciation in the fabrics. Very similar particles were also observed when dissolved ionic Ag was added directly into the washing liquid. On the basis of the present study, we can state that all silver-treated textiles, regardless of whether the treatment is "conventional" or "nano", can be a source of silver nanoparticles in washing solution when laundering fabrics. Indeed, in this study we observed that textiles treated with "conventional" silver have equal or greater propensity to form nano-silver particles during washing conditions than those treated with "nano"-silver. This fact needs to be strongly considered when addressing the risks of nano-silver and emphasizes that regulatory assessment of nano-silver warrants a similar approach to conventional silver.

  15. Resource Communication Technology and Marketing of Textile Products: A U.S. Textile Industry Case Study

    Science.gov (United States)

    Baah, Anthony

    2010-01-01

    The purpose of the qualitative positivistic case study was to explore whether resource communication technology has helped or would help the marketing of textile products in the U.S. textile industry. The contributions of human capital in the marketing department, the marketing-demand information system function, and the product supply chain…

  16. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    Energy Technology Data Exchange (ETDEWEB)

    Nejman, Alicja, E-mail: anejman@iw.lodz.pl [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Cieślak, Małgorzata [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Gajdzicki, Bogumił [Textile Research Institute, Scientific Department of Textile Chemistry and Products Modification, 5/15 Brzezinska St., 92-103 Lodz (Poland); Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland)

    2014-08-10

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric.

  17. Analytical assessment of woven fabrics under vertical stabbing - The role of protective clothing.

    Science.gov (United States)

    Hejazi, Sayyed Mahdi; Kadivar, Nastaran; Sajjadi, Ali

    2016-02-01

    Knives are being used more commonly in street fights and muggings. Therefore, this work presents an analytical model for woven fabrics under vertical stabbing loads. The model is based on energy method and the fabric is assumed to be unidirectional comprised of N layers. Thus, the ultimate stab resistance of fabric was determined based on structural parameters of fabric and geometrical characteristics of blade. Moreover, protective clothing is nowadays considered as a strategic branch in technical textile industry. The main idea of the present work is improving the stab resistance of woven textiles by using metal coating method. In the final, a series of vertical stabbing tests were conducted on cotton, polyester and polyamide fabrics. Consequently, it was found that the model predicts with a good accuracy the ultimate stab resistance of the sample fabrics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Textile influence on remote identification of explosives in the THz range

    Science.gov (United States)

    Walczakowski, M. J.; Palka, N.; Szustakowski, M.

    2015-10-01

    In this study common clothing and variety of textile materials were used in research on its influence on remote materials identification. Experimental setup was designed for the terahertz reflection spectroscopy of different materials located at a distance up to 5 m. The source of the radiation is a tunable solid-state optical parametric oscillator (OPO), which generates a narrow-band nanosecond pulses in the range of 0.7-2.7 THz. The signal is detected with hot electron bolometer (HEB). Investigations were carried out for 1 m, 3 m and 5 m distance between the examined sample and the system. Experiment was conducted in the 0.7 - 2.5 THz range. Fabrics subjected to testing were varied in terms of the fibers kind which they were made from and weights of test materials ranged from 53 g/m2 up to 420 g/m2. Also textiles with a composition consisting of several fibers with differing percentage of the fibers composition of each sample were measured. Information about textiles transmission was obtained in separate set of experiments. The study fabrics were made of viscose, polyester, cotton, spandex, wool, nylon, leather, flax.

  19. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.

    Science.gov (United States)

    Huang, Yan; Hu, Hong; Huang, Yang; Zhu, Minshen; Meng, Wenjun; Liu, Chang; Pei, Zengxia; Hao, Chonglei; Wang, Zuankai; Zhi, Chunyi

    2015-05-26

    Wearable electronic textiles that store capacitive energy are a next frontier in personalized electronics. However, the lack of industrially weavable and knittable conductive yarns in conjunction with high capacitance, limits the wide-scale application of such textiles. Here pristine soft conductive yarns are continuously produced by a scalable method with the use of twist-bundle-drawing technique, and are mechanically robust enough to be knitted to a cloth by a commercial cloth knitting machine. Subsequently, the reduced-graphene-oxide-modified conductive yarns covered with a hierarchical structure of MnO2 nanosheets and a polypyrrole thin film were used to fabricate weavable, knittable and wearable yarn supercapacitors. The resultant modified yarns exhibit specific capacitances as high as 36.6 mF cm(-1) and 486 mF cm(-2) in aqueous electrolyte (three-electrode cell) or 31 mF cm(-1) and 411 mF cm(-2) in all solid-state two-electrode cell. The symmetric solid-state supercapacitor has high energy densities of 0.0092 mWh cm(-2) and 1.1 mWh cm(-3) (both normalized to the whole device) with a long cycle life. Large energy storage textiles are fabricated by weaving our flexible all-solid-state supercapacitor yarns to a 15 cm × 10 cm cloth on a loom and knitting in a woollen wrist band to form a pattern, enabling dual functionalities of energy storage capability and wearability.

  20. Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane

    Science.gov (United States)

    Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave

    2017-12-01

    Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.

  1. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  2. New approaches to improving thermal regulating property of cellulosic fabric.

    Science.gov (United States)

    Hassabo, Ahmed G

    2014-01-30

    To enhance the thermoregulation property of cotton fabric, new materials have been prepared to be used for encapsulating phase change materials (PCMs). The new material has been prepared via esterification reaction between different carboxylic acids and different fatty acids crossed with diglycol compounds, these materials were characterised to be used as hosting materials for octadecane, which is heat storing material suitable for textile applications. FT-IR and DSC analysis were used to characterise the prepared hosting material. The prepared materials have special shape which has different cavity distance between its side chains, and also have a reactive group on the backbone of its structure which make these materials able to react chemically with cotton fabric to help it to be not leakage from the treated surface (permanent) and the material will be stable on the fibre surface even after washing. When applied onto textile materials, the treated fabric shows good thermoregulation property. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Stephanie V. Del; Garcia, Vanessa S.G.; Boiani, Nathalia F.; Rosa, Jorge M.; Andrade e Silva, Leonardo G. de; Borrely, Sueli I., E-mail: vanessagranadeiro@gmail.com, E-mail: steh.vdsole@gmail.com, E-mail: jotarosa@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); SENAI, Faculdade de Tecnologia Antoine Skaf, Sao Paulo, SP (Brazil)

    2017-11-01

    Textile industry has an expressive scenario in the world economy and Brazil is the 5{sup th} in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric (ABIT, 2017). The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations. Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective in reducing the color of the effluent, starting from 0.5 kGy. EB radiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes. (author)

  4. Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation

    Science.gov (United States)

    He, Liang; Li, Sha; Chung, Cordelia T. W.; Gao, Chang; Xin, John H.

    2016-01-01

    Recently zwitterionic materials have been widely applied in the biomedical and bioengineering fields due to their excellent biocompatibility. Inspired by these, this study presents a graft-to strategy via covalent bond formation to fabricate safe and durable antibacterial textile surfaces. A novel zwitterionic sulfobetaine containing triazine reactive group was specifically designed and synthesized. MTT assay showed that it had no obvious cytotoxicity to human skin HaCaT cells as verified by ca. 89.9% relative viability at a rather high concentration of 0.8 mg·mL−1. In the evaluation for its skin sensitization, the maximum score for symptoms of erythema and edema in all tests were 0 in all observation periods. The sulfobetaine had a hydrophilic nature and the hydrophilicity of the textiles was enhanced by 43.9% when it was covalently grafted onto the textiles. Moreover, the textiles grafted with the reactive sulfobetaine exhibited durable antibacterial activities, which was verified by the fact that they showed antibacterial rates of 97.4% against gram-positive S. aureus and 93.2% against gram-negative E. coli even after they were laundered for 30 times. Therefore, the titled zwitterionic sulfobetaine is safe to human for healthcare and wound dressing and shows a promising prospect on antibacterial textile application. PMID:27808248

  5. Coping with arsenic-based pesticides on Dine (Navajo) textiles

    Science.gov (United States)

    Anderson, Jae R.

    Arsenic-based pesticide residues have been detected on Arizona State Museum's (ASM) Dine (Navajo) textile collection using a handheld portable X-ray (pXRF) spectrometer. The removal of this toxic pesticide from historic textiles in museums collections is necessary to reduce potential health risks to Native American communities, museum professionals, and visitors. The research objective was divided into three interconnected stages: (1) empirically calibrate the pXRF instrument for arsenic contaminated cotton and wool textiles; (2) engineer an aqueous washing treatment exploring the effects of time, temperature, agitation, and pH conditions to efficiently remove arsenic from wool textiles while minimizing damage to the structure and properties of the textile; (3) demonstrate the devised aqueous washing treatment method on three historic Navajo textiles known to have arsenic-based pesticide residues. The preliminary results removed 96% of arsenic from a high arsenic concentration (~1000 ppm) textile opposed to minimal change for low arsenic concentration textiles (<100 ppm).

  6. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    Science.gov (United States)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  7. Covalent immobilization of metal–organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles

    Science.gov (United States)

    Yu, Ming; Li, Wanxin; Wang, Ziqiang; Zhang, Bowu; Ma, Hongjuan; Li, Linfan; Li, Jingye

    2016-01-01

    The prevention of refractory organic pollution caused by conventional dyeing and the development of new fabrics with various functions are two issues to be solved urgently in the field of textile fabrication. Here, we report a new environmentally friendly route for the simultaneous coloration and functionalization of textiles by the covalent immobilization of a metal–organic framework, Cr-based MIL-101(Cr), onto the surfaces of nylon fabrics by co-graft polymerization with 2-hydroxyethyl acrylate initiated by γ-ray irradiation. The Cr(III) clusters color the nylon fabric, and the color intensity varies with the MIL-101 content, providing a “green” textile coloration method that is different from conventional dyeing processes. An X-ray diffraction (XRD) analysis shows that the nanoporous structure of the original MIL-101 particles is retained during radiation-induced graft polymerization. Numerous nanopores are introduced onto the surface of the nylon fabric, which demonstrated better sustained-release-of-aroma performance versus pristine nylon fabric in tests. The modified fabrics exhibit laundering durability, with MIL-101 nanoparticles intact on the nylon surface after 30 h of dry cleaning. PMID:26948405

  8. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.

    Science.gov (United States)

    Yu, Guihua; Hu, Liangbing; Vosgueritchian, Michael; Wang, Huiliang; Xie, Xing; McDonough, James R; Cui, Xu; Cui, Yi; Bao, Zhenan

    2011-07-13

    Large scale energy storage system with low cost, high power, and long cycle life is crucial for addressing the energy problem when connected with renewable energy production. To realize grid-scale applications of the energy storage devices, there remain several key issues including the development of low-cost, high-performance materials that are environmentally friendly and compatible with low-temperature and large-scale processing. In this report, we demonstrate that solution-exfoliated graphene nanosheets (∼5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials. With further controlled electrodeposition of pseudocapacitive MnO(2) nanomaterials, the hybrid graphene/MnO(2)-based textile yields high-capacitance performance with specific capacitance up to 315 F/g achieved. Moreover, we have successfully fabricated asymmetric electrochemical capacitors with graphene/MnO(2)-textile as the positive electrode and single-walled carbon nanotubes (SWNTs)-textile as the negative electrode in an aqueous Na(2)SO(4) electrolyte solution. These devices exhibit promising characteristics with a maximum power density of 110 kW/kg, an energy density of 12.5 Wh/kg, and excellent cycling performance of ∼95% capacitance retention over 5000 cycles. Such low-cost, high-performance energy textiles based on solution-processed graphene/MnO(2) hierarchical nanostructures offer great promise in large-scale energy storage device applications.

  9. The Effectiveness EM Mudball and Banana Peels for Textile Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Ahmad Nazria Mohd Ariff bin

    2017-01-01

    Full Text Available Textile industrial activities known as a higher consumer of water that involved several processed daily to maintain the quality of fabric that contribute to the water pollution. Wastewater produced from the textiles could lead to the presence of heavy metal contaminant. Meanwhile, heavy metal is one of the contaminants in wastewater and must be overcome with the appropriate treatment process. To overcome the heavy metal issue, the absorption method by organic waste could be used. Effective microorganism (EM mudballs and banana peels is a method for threating wastewater quality from textiles effluent. EM is a medium that is able to improve water quality without altering the design area while the banana peels act as a nutrient to microorganism growth and have a potential to removed heavy metal contaminant that produced from textiles wastewater. Method that used to carry out this study are through the laboratory experimental for all consider parameters. The result was obtained shows that EM mudball itself are capable to reduce the concentration of BOD and COD as much as 84% for BOD with the value reduced to 37 mg/L and 90% for COD with the value reduced to 89 mg/L. The effectiveness of banana peels added to the EM mudball could be seen by the 70% of banana peels are well mixed with the EM mudball have the potential to reduce the concentration of BOD, COD and heavy metal contaminant in textiles wastewater as much as 81% for BOD (43 mg/L, 90% of COD (87 mg/L, and 86% of Zink (Zn2+ with the value is 0.065 mg/L. From the comparison of result with the standard

  10. Solution-Processed Graphene/MnO 2 Nanostructured Textiles for High-Performance Electrochemical Capacitors

    KAUST Repository

    Yu, Guihua

    2011-07-13

    Large scale energy storage system with low cost, high power, and long cycle life is crucial for addressing the energy problem when connected with renewable energy production. To realize grid-scale applications of the energy storage devices, there remain several key issues including the development of low-cost, high-performance materials that are environmentally friendly and compatible with low-temperature and large-scale processing. In this report, we demonstrate that solution-exfoliated graphene nanosheets (∼5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials. With further controlled electrodeposition of pseudocapacitive MnO2 nanomaterials, the hybrid graphene/MnO2-based textile yields high-capacitance performance with specific capacitance up to 315 F/g achieved. Moreover, we have successfully fabricated asymmetric electrochemical capacitors with graphene/MnO 2-textile as the positive electrode and single-walled carbon nanotubes (SWNTs)-textile as the negative electrode in an aqueous Na 2SO4 electrolyte solution. These devices exhibit promising characteristics with a maximum power density of 110 kW/kg, an energy density of 12.5 Wh/kg, and excellent cycling performance of ∼95% capacitance retention over 5000 cycles. Such low-cost, high-performance energy textiles based on solution-processed graphene/MnO2 hierarchical nanostructures offer great promise in large-scale energy storage device applications. © 2011 American Chemical Society.

  11. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K, E-mail: ashwini@smita-iitd.co, E-mail: manjeet.jassal@smita-iitd.co [Smart and Innovative Textile Materials Group (SMITA), Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2010-02-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 {mu}l took around 250 s to get absorbed in the treated sample compared to < 1 s in the untreated samples. The plasma modified samples showed water contact angle of around 134{sup 0}. Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  12. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    Science.gov (United States)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  13. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zezova, Silvana; Spasova, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  14. Flexible and wearable electronic silk fabrics for human physiological monitoring

    Science.gov (United States)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  15. Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates

    Science.gov (United States)

    Junger, Irén Juhász; Homburg, Sarah Vanessa; Grethe, Thomas; Herrmann, Andreas; Fiedler, Johannes; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz; Ehrmann, Andrea

    2017-01-01

    In recent years, the development of smart textiles has attracted great attention. Such textiles can contain small electrical devices, which need a power supply. Dye-sensitized solar cells, which can be produced from nontoxic, cheap, low-purity materials, could fill this purpose. However, to reach reasonable cell properties, sintering the TiO2 layer on the substrate is necessary. Unfortunately, only a few textile materials can withstand a sintering process at high temperatures. Therefore, it is important to find an optimal temperature leading to a reasonable improvement of the cell characteristics without damaging the textile substrate. The influence of the sintering temperature on different properties is investigated. For this, the surface properties of the TiO2 coating, such as adhesion to the substrate, dye adsorption characteristic, and film stability, are investigated on different substrates, i.e., a glass plate, a stainless steel nonwoven fabric, and a carbon woven fabric. Two commercially available TiO2 sources are used: a TiO2 dispersion obtained from Man Solar and a water-based solution of TiO2 particles purchased from Kronos. The influence of the sintering temperature on short-circuit current and open-circuit voltage of solar cells on the aforementioned substrates is also examined.

  16. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  17. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  18. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles.

    Science.gov (United States)

    Petkova, Petya; Francesko, Antonio; Fernandes, Margarida M; Mendoza, Ernest; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2014-01-22

    Textiles are good substrates for growth of microorganisms especially under moisture and temperature conditions found in hospitals. Microbial shedding from the body occurs continuously at contact of the patient with textile materials used in medical practices, contributing to the occurrence of hospital acquired infections. Thus, the use of efficient antimicrobial textiles is necessary to prevent the transfer of pathogens and the infection incidence. In this work, hybrid antimicrobial coatings were generated on cotton fabrics by means of a one-step simultaneous sonochemical deposition of ZnO nanoparticles (NPs) and chitosan. The process was further optimized in terms of reagents concentration and processing time in order to improve the antibacterial properties of the fabric and ensure their biocompatibility. The highest antibacterial activity of the fabrics against two medically relevant bacterial species was achieved in a 30 min sonochemical coating process using 2 mM ZnO NPs suspension. When chitosan was simultaneously deposited with the same amount of ZnO, the obtained hybrid NPs coating displayed higher by 48 and 17% antibacterial activity against Staphylococcus aureus and Escherichia coli, respectively. The presence of biopolymer also improved the durability of the antimicrobial effect of the coatings by 21% for Staphylococcus aureus and 40% for Escherichia coli, evaluated after applying multiple washing cycles at hospital laundering regimes. Finally, 87% biocompatibility improvement supported by fibroblast viability was observed for the hybrid ZnO/chitosan coating compared to the steady decrease of cells viability over one week in contact with the fabrics coated with ZnO alone.

  19. Development and characterization of a multilayer matrix textile sensor for interface pressure measurements

    Science.gov (United States)

    Baldoli, Ilaria; Maselli, Martina; Cecchi, Francesca; Laschi, Cecilia

    2017-10-01

    Matrix textile sensors hold great potential for measuring pressure distribution in applications of modern daily lives, mainly regarding the biomedical field, but also robotics, automotive systems, and wearable and consumer electronics. However, an experimental analysis of their metrological properties is lacking in the literature, thus compromising their widespread acceptance. In the present work, we report the characterization of an 8 × 8 textile sensor assembled by sandwiching a piezoresistive fabric sheet between two outer fabric layers embedding conductive rows and columns. The location of the applied pressure can be identified by detecting the position where the change of resistances occurs between the external conductive paths. The sensor structure, its electrical circuit and characteristics are described in detail, after studying both the integration levels of the hierarchical structure and the composition of the piezoresistive fabric sheet. The pressure measurement range and the calibration curve were studied by tuning circuital parameters. Repeatability, time drift, temperature dependence, signal-to-noise ratio and dynamic response were analyzed. Novel tests were employed to consider the sensor sensitivity to stretch, shear force and surface curvature. A special analysis was taken over hysteresis and dynamic accuracy, focusing on a possible compensating solution. Results indicated that the system provides overall good quality performances with the main drawback of a limited dynamic accuracy, typical of piezoresistive sensing elements. Nevertheless, the use of textiles allows the realization of lightweight, wearable, washable, thin and stretchable sensors. In addition fabric sensors are robust, cheap, easy-to-use and employable to cover large area three dimensional surfaces. The wide characterization reported here could provide precious insights and guidelines to help researchers and users in taking advantages from all of these benefits, supporting them in

  20. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  1. Failure modes of conducting yarns in electronic-textile applications

    NARCIS (Netherlands)

    Kok, M. de; Vries, H. de; Pacheco, K.; Heck, G. van

    2015-01-01

    Integration of electronic functionalities into textiles adds to the value of textiles. It allows measuring, detecting, actuating and treating or communicating with a body or object. These added values can render the smart textiles very useful, fun, supporting, protecting or even lifesaving. It is,

  2. Aerobic Bacterial degraders in effluent from Itoku textile industry ...

    African Journals Online (AJOL)

    The local textile industry in Itokun village is one major textile industry in Abeokuta Ogun state, known for “adire” production whose processes are not maintained at regulatory standards. This study involves isolating and identifying aerobic microorganisms in waste water effluents from this textile Industry and screening for ...

  3. Nettle as a distinct Bronze Age textile plant

    DEFF Research Database (Denmark)

    Bergfjord, C.; Mannering, Ulla; Frei, Karin Margarita

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old...

  4. Woven sculptural piece as added dimension to textile design ...

    African Journals Online (AJOL)

    Woven sculptural piece as added dimension to textile design. ... Mgbakoigba: Journal of African Studies ... However, if adequate attention is given to it, it can be combined with other textile materials, independently to create desirable design, which can compete favorably in the international textile and arts market. Keywords: ...

  5. 19 CFR 11.12b - Labeling textile fiber products.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Labeling textile fiber products. 11.12b Section 11... THE TREASURY PACKING AND STAMPING; MARKING Marking § 11.12b Labeling textile fiber products. (a) Textile fiber products imported into the United States shall be labeled or marked in accordance with the...

  6. 16 CFR 303.12 - Trimmings of household textile articles.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Trimmings of household textile articles. 303... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.12 Trimmings of household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household...

  7. 19 CFR 10.771 - Textile or apparel goods.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile or apparel goods. 10.771 Section 10.771... Agreement Rules of Origin § 10.771 Textile or apparel goods. (a) De minimis. Except as provided in paragraph (a)(1) of this section, a textile or apparel good that is not an originating good under the MFTA...

  8. 19 CFR 102.21 - Textile and apparel products.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile and apparel products. 102.21 Section 102... THE TREASURY RULES OF ORIGIN Rules of Origin § 102.21 Textile and apparel products. (a) Applicability... control the determination of the country of origin of imported textile and apparel products for purposes...

  9. 19 CFR 10.811 - Textile or apparel goods.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile or apparel goods. 10.811 Section 10.811... Agreement Rules of Origin § 10.811 Textile or apparel goods. (a) De minimis—(1) General. Except as provided in paragraph (a)(2) of this section, a textile or apparel good that is not an originating good under...

  10. Multilevel modelling of mechanical properties of textile composites: ITOOL Project

    NARCIS (Netherlands)

    Van Den Broucke, Bjorn; Drechsler, Klaus; Hanisch, Vera; Hartung, Daniel; Ivanov, Dimitry S.; Koysin, V.; Lomov, Stepan V.; Middendorf, Peter

    2007-01-01

    The paper presents an overview of the multi-level modelling of textile composites in the ITOOL project, focusing on the models of textile reinforcements, which serve as a basis for micromechanical models of textile composites on the unit cell level. The modelling is performed using finite element

  11. Nano-particulate coating on cotton fabric through DBD

    Science.gov (United States)

    Guo, Ying; Zhang, Jing; Xu, Jinzhou; Zhou, Rongming; Yu, Jianyong

    2008-02-01

    Plasma polymerization of fluorocarbon was processed through dielectric barrier discharge (DBD). A thin hydrophobic film packed with nano-particulate structure was obtained on cotton fabric surface. The contact angle of the water and 1-bromonaphthalene on coated cotton fabric was 133° and 124° separately. The surface morphology of the coating was observed through SEM (Scanning Electronic Microscope). It was found that cotton fabric surface was tightly adhered to a thin film packed by nano-particles from 10nm to 200nm. This process showed potential applications in continuous coating of textiles with functional nano-particulate polymers, but without changing their softness performance.

  12. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  13. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  14. How Associative Material Characteristics Create Textile Reflection

    DEFF Research Database (Denmark)

    Hasling, Karen Marie; Bang, Anne Louise

    2015-01-01

    and meanings. As educators of future designers we are concerned with teaching students, how to develop and use materials for ‘future design’ in a way that embrace multiple properties, including aesthetic, technical, functional and sustainable concerns. In this study we are specifically concerned......Product design, and especially relevant for this study textiles design, is concerned with designing not only the product itself, but just as much the material, which forms the product. It is further highly relevant that designers relate their materials and product to an existing context...... materials and to reflect on, how personal associations can be embodied in [textile] materials. The discussion and results of the study stressed the coherence and differences of textile techniques used to express the given keywords and how the assignment has influenced the students’ material practice. How...

  15. Towards reinforcement solutions for urban fibre/fabric waste using bio-based biodegradable resins.

    Science.gov (United States)

    Agrawal, Pramod; Hermes, Alina; Bapeer, Solaf; Luiken, Anton; Bouwhuis, Gerrit; Brinks, Ger

    2017-10-01

    The main research question is how to systematically define and characterize urban textile waste and how to effectively utilise it to produce reinforcement(s) with selected bio-based biodegradable resin(s). Several composite samples have been produced utilising predominantly natural and predominantly synthetic fibres by combining loose fibres with PLA, nonwoven fabric with PLA, woven fabric with PLA, two-layer composite & four-layer composite samples. Physio-chemical characterisations according to the established standards have been conducted. The present work is a step toward the circular economy and closing the loop in textile value chain.

  16. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  17. From sensitive fabrics to distributed wearable sensors

    Science.gov (United States)

    De Rossi, Danilo; Mazzoldi, Alberto; Lorussi, Federico; Paradiso, Rita

    2000-06-01

    Our previous work has shown that elastic textiles covered with an epitaxial layer of conducting polymer show piezoresistive properties. They can be used to fabricate sensorized garments such as gloves, leotards, socks and seat covers as man-machine interfaces. A purposely designed screen printing process has been implemented to realize sensors/tracks patterns. Polypyrrole/lycra fabrics were prepared using the method developed by Milliken Co. (Spartanburg, USA). The epitaxial deposition is obtained controlling the concentrations of monomer and the temperature of the reaction medium. Investigation on mechanoelectric transduction properties (static and dynamic) of the fabrics, calibration of wearable sensing devices and ongoing R&D efforts in multimedia, sport and rehabilitation fields are reported.

  18. Smart Textiles in Humanistic Hospital Design

    DEFF Research Database (Denmark)

    Mogensen, Jeppe; Fisker, Anna Marie; Poulsen, Søren Bolvig

    2014-01-01

    Hospitalised patients’ healing process, supported by stimulating architecture. In this regard, we address focus on the potential influence of the design principle, discussing how healing architecture may contribute in making the future hospital institutions more responsive to human needs. The main...... of some of the stakeholders involved in the design process? Relating to the Danish scene of hospital design, we introduce the research project “Smart Textiles in Future Hospitals”, stating the overall hypothesis that textiles in hospital interiors possess an unexploited architectural potential in relation...

  19. A New ‘T’ for Textiles

    DEFF Research Database (Denmark)

    Earley, Rebecca; Vuletich, Clara; Hadridge, Phil

    2016-01-01

    The paper is based on a training programme given to researchers in the Textiles Environment Design (TED) project at the University of the Arts London (UAL). The programme took place over three years (September 2010 to October 2013) whilst the researchers were engaged as consultants and researchers...... sustainable design strategies for textiles and fashion was the framework for the Sustainable Design Inspiration (SDI) work at H&M – a broad and holistic approach to redesigning products including materials, process, systems, services, consumer behaviour and activism....

  20. TEXTILE PATTERNS BASED ON ANCIENT EGYPTIAN ORNAMENTS

    Directory of Open Access Journals (Sweden)

    ElSayed ElNashar

    2016-10-01

    Full Text Available A developed digital collection of textile patterns is presented Iin the report. As objects in this collection designed modern textile prints developed on the basis of elements of ancient Egyptian costume are included. Software tools are developed to obtain colors, shapes and descriptions of the used ancient Egyptian elements. The resulting elements are in vector format, and can be used in CAD systems and spreadsheets. Descriptions of these motifs can be used for comparison with such elements from other national costumes.

  1. Comparative evaluation of antimicrobials for textile applications.

    Science.gov (United States)

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The

  2. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics.

    Science.gov (United States)

    Wei, Di; Cotton, Darryl; Ryhänen, Tapani

    2012-08-13

    A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or secondary batteries reported. The bending radius of such a textile battery is less than 1.5 mm while lightening up an LED. This new material combination and inherent flexibility is well suited to provide an energy source for future wearable and woven electronics.

  3. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    Science.gov (United States)

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-06-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for `stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces.

  4. Water and Oil Repellent Finishing of Textiles by UV Curing: Evaluation of the Influence of Scaled-Up Process Parameters

    Directory of Open Access Journals (Sweden)

    Franco Ferrero

    2017-04-01

    Full Text Available In this work, various textile fabrics were coated with silicone and fluorocarbon-based resins by photo-curing using ultraviolet irradiation. A great number of large fabric samples were impregnated by padding with commercial finishing agents and then irradiated in air with a high power, semi-industrial UV source. The add-on of various finishing agents was kept low to reduce the treatment cost. White and dyed samples of different textile composition were treated and evaluated in terms of conferred repellency, yellowing, or color changes. Most relevant process parameters were investigated, utilizing the thermal process normally adopted at industrial level as reference. The results were statistically evaluated by ANOVA using Minitab 16 software, in order to identify the most influential parameters and to evaluate the real possibility of replacing the thermal treatment with UV curing.

  5. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    Directory of Open Access Journals (Sweden)

    Tapani Ryhänen

    2012-08-01

    Full Text Available A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene (PEDOT nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or secondary batteries reported. The bending radius of such a textile battery is less than 1.5 mm while lightening up an LED. This new material combination and inherent flexibility is well suited to provide an energy source for future wearable and woven electronics.

  6. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    Science.gov (United States)

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  7. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  8. Design Management in the Textile Industry - A Network Perspective

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Bang, Anne Louise

    In this paper we explore textile design activities and textile design management from an industrial network perspective. The textile industry is probably one of the most globalized manufacturing industries in the world and thus one of the most dispersed industries on the globe. Most studies...... on design management are framed inside the organisational context of the firm. In this study the role and practice of textile design is addressed in perspective of the global textile production network. The empirical data stems from six case studies exploring how different types of enterprises are organised...

  9. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  10. Investigation of the electrical characteristics of electrically conducting yarns and fabrics

    Science.gov (United States)

    Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.

    2017-11-01

    Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.

  11. Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles.

    Science.gov (United States)

    Liu, Xiaoxia; Wang, Yujie; Sun, Shiqing; Zhu, Changjun; Xu, Wei; Park, Yongdoo; Zhou, Haimeng

    2013-01-01

    Microwaves have been used as a mutant agent to select mutant strains with high-yield and high-purity pigment. Mass spectrometry and nuclear magnetic resonance spectroscopic techniques were used to elucidate the structures of the pigment. High-performance liquid chromatography was used to measure pigment purity. The analysis of the mutant strain showed that pigment yield increased by 109% and was 98% pure. Prodigiosin in ethanol solution had good stability under ambient temperature and natural indoor light. However, prodigiosin rapidly decomposed under intense sunlight. Prodigiosin is an ecological colorant to dye fabrics, including synthetic and natural fibers. Synthetic fabrics dyed with prodigiosin, such as polyamide and acrylic, have high colorfastness to washing (≥4th grade) and antimicrobial properties (>90%) against Escherichia coli and Staphylococcus aureus. Antimicrobial properties were significantly different between synthetic and natural fabrics. The mutant strain Serratia marcescens jx1-1, with high prodigiosin yield and purity, has promising prospects in food, cosmetic, and textile industries.

  12. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  13. Synthesis of TiO{sub 2} nanoparticles by self-assembling reverse micelle cores of PS-b-PAA for functional textile applications

    Energy Technology Data Exchange (ETDEWEB)

    Akpolat, Leyla Budama; Çakır, Burçin Acar; Topel, Önder, E-mail: ondertopel@akdeniz.edu.tr; Hoda, Numan, E-mail: nhoda@akdeniz.edu.tr

    2015-04-15

    Highlights: • TiO{sub 2} nanoparticles were synthesized within poly(styrene)-b-poly(acrylic acid) micelles. • The copolymer solution including nano TiO{sub 2} was coated onto textile fabrics. • UV-protective factor of nano TiO{sub 2} coated fabrics was estimated as 50+. • Nano TiO{sub 2} coated fabrics was found to exhibit a high photocatalytic activity. - Abstract: Titanium dioxide (i.e., titanium(IV) oxide, TiO{sub 2}) nanoparticles have been fabricated using a copolymer templating technique in micellar solution of poly(styrene)-block-poly(acrylic acid), PS(10912)-b-PAA(4842) synthesized by atom transfer radical polymerization (ATRP). The size and morphology of the synthesized TiO{sub 2} nanoparticles have been characterized via TEM and XRD measurements. The average size of TiO{sub 2} nanoparticles was determined as 13 ± 3 and 13 ± 4 nm for titanium:copolymer ratios of 20:1 and 33:1, respectively. The copolymer solution including nano TiO{sub 2} particles has been coated onto textile fabrics to enhance their UV-blocking and self-cleaning properties. It has been determined that nano TiO{sub 2} coated textile fabrics have very good UV-blocking properties with 50+ of the ultraviolet protecting factor (UPF) and high photocatalytic efficiency with 69.2% of the photodegradation of methylene blue.

  14. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing.

    Science.gov (United States)

    Hernandez, Edgar; Nowack, Bernd; Mitrano, Denise M

    2017-06-20

    Microplastic fibers make up a large proportion of microplastics found in the environment, especially in urban areas. There is good reason to consider synthetic textiles a major source of microplastic fibers, and it will not diminish since the use of synthetic fabrics, especially polyester, continues to increase. In this study we provide quantitative data regarding the size and mass of microplastic fibers released from synthetic (polyester) textiles during simulated home washing under controlled laboratory conditions. Consideration of fabric structure and washing conditions (use of detergents, temperature, wash duration, and sequential washings) allowed us to study the propensity of fiber shedding in a mechanistic way. Thousands of individual fibers were measured (number, length) from each wash solution to provide a robust data set on which to draw conclusions. Among all the variables tested, the use of detergent appeared to affect the total mass of fibers released the most, yet the detergent composition (liquid or powder) or overdosing of detergent did not significantly influence microplastic release. Despite different release quantities due to the addition of a surfactant (approximately 0.025 and 0.1 mg fibers/g textile washed, without and with detergent, respectively), the overall microplastic fiber length profile remained similar regardless of wash condition or fabric structure, with the vast majority of fibers ranging between 100 and 800 μm in length irrespective of wash cycle number. This indicates that the fiber staple length and/or debris encapsulated inside the fabric from the yarn spinning could be directly responsible for releasing stray fibers. This study serves as a first look toward understanding the physical properties of the textile itself to better understand the mechanisms of fiber shedding in the context of microplastic fiber release into laundry wash water.

  15. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment.

    Science.gov (United States)

    Montazer, Majid; Seifollahzadeh, Samira

    2011-01-01

    Textile materials can be treated with some enzymes to improve their functionality. The usual enzymatic treatment hydrolyzes the textile surfaces that leads to increase the functional groups. Here, the polyester/wool fabric as a blend of fibers fabric was selected and treated with the two different types of enzymes to increase the surface activity with a propose of higher nano-TiO(2) adsorption. The fabric was first treated with proteases and lipases to hydrolyze the wool and the polyester surfaces, respectively. It has been then dipped into an ultrasound bath containing nano TiO(2) and cross-linking agent followed by curing. The cross-linking agent, butane tetracarboxylic acid (BTCA), also assisted to enhance the nano-particles adsorption and stabilization on the fabric surface. The self-cleaning properties of the fabrics were examined through evaluating the color removal from the stained fabric with Acid Blue 113. The antibacterial properties were determined by reduction growth of a Gram-negative bacteria E. coli. and the UV protection was assessed by UV-reflectance spectrum. The SEM pictures and EDX spectrums of some samples were also reported. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  16. Functional textiles driven by transforming NiTi wires

    Directory of Open Access Journals (Sweden)

    Heller Luděk

    2015-01-01

    Full Text Available Over last ten years, we have carried out extensive research on the use of thin NiTi wires for advanced functional textiles. In this work we discuss general challenges and opportunities in the design, production and processing of NiTi textiles stemming from the fact that NiTi is martensitically transforming metal. As a case example, application of weft knitting technology to NiTi wires is discussed in detail covering technological aspects related to textile processing, shape setting as well as multiaxial thermomechanical properties of final products. Finally, two weft knitted NiTi textile proof-of-concepts with a promising application potential are presented. First, a textile based actuator with large strokes and low forces characteristics is introduced. Second, 3D textiles with temperature-adaptive cross-section height for applications in technical or protective textiles are described.

  17. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine.

    Science.gov (United States)

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Xiong, Meiling; Luo, Junxuan; Tang, Jiaoning; Ge, Zaochuan

    2011-04-01

    This paper reports a novel environmentally friendly antibacterial cotton textile finished with reactive siloxane sulfopropylbetaine(SSPB). The results show that SSPB can be covalently bound onto the cotton textile surface, imparting perdurable antibacterial activity. The textiles finished with SSPB have been investigated systematically from the mechanical properties, thermal stability, hydrophilic properties and antibacterial properties. It is found that the hydrophilicity and breaking strength are improved greatly after the cotton textiles are finished with SSPB. Additionally, the cotton textiles finished with SSPB exhibit good antibacterial activities against gram-positive bacteria Staphylococcus aureus (S.aureus, ATCC 6538), gram-negative bacteria Escherichia coli (E.coli, 8099) and fungi Candida albicans (C.albicans, ATCC 10231). Moreover, SSPB is nonleachable from the textiles, and it does not induce skin stimulation and is nontoxic to animals. Thus, SSPB is ideal candidate for environmentally friendly antibacterial textile applications. © 2011 American Chemical Society

  18. The future of textile production in high wage countries

    Science.gov (United States)

    Kemper, M.; Gloy, Y.-S.; Gries, T.

    2017-10-01

    It is undisputed that smart production in the context of industry 4.0 offers significant potential for industrial production in Germany. Exploiting this potential provides an opportunity to meet the growing competitive pressure for textile production in high-wage Germany. The complete cross-linking of textile mills towards Textile Production 4.0 means substantial savings. However, currently there are still some challenges that have to be overcome on the long way to Textile Production 4.0. This paper initially reflects the particular challenges of textile production in high-wage Germany. Later, the vision of the future of smart textile production will be outlined. In addition, first pilot solutions and current research approaches which pave the way for Textile Production 4.0 are described.

  19. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    Science.gov (United States)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  20. Environmental Assessment of Textile Material Recovery Techniques : Examining Textile Flows in Sweden

    OpenAIRE

    Youhanan, Lena

    2013-01-01

    The production of textiles, focusing on cotton and polyester, carries with it major environmental concerns such as significant water and chemical use as well as the use of non-renewable resources. Measures need to be taken to decrease those environmental burdens. The present study investigates four different recovery techniques in terms of specific environmental factors. The investigated recovery methods are the Re:newcell method, polyester recycling, textile to insulation material and biogas...