WorldWideScience

Sample records for text size print

  1. Quality Inspection of Printed Texts

    DEFF Research Database (Denmark)

    Pedersen, Jesper Ballisager; Nasrollahi, Kamal; Moeslund, Thomas B.

    2016-01-01

    -folded: for costumers of the printing and verification system, the overall grade used to verify if the text is of sufficient quality, while for printer's manufacturer, the detailed character/symbols grades and quality measurements are used for the improvement and optimization of the printing task. The proposed system...

  2. Does print size matter for reading? A review of findings from vision science and typography.

    Science.gov (United States)

    Legge, Gordon E; Bigelow, Charles A

    2011-08-09

    The size and shape of printed symbols determine the legibility of text. In this paper, we focus on print size because of its crucial role in understanding reading performance and its significance in the history and contemporary practice of typography. We present evidence supporting the hypothesis that the distribution of print sizes in historical and contemporary publications falls within the psychophysically defined range of fluent print size--the range over which text can be read at maximum speed. The fluent range extends over a factor of 10 in angular print size (x-height) from approximately 0.2° to 2°. Assuming a standard reading distance of 40 cm (16 inches), the corresponding physical x-heights are 1.4 mm (4 points) and 14 mm (40 points). We provide new data on the distributions of print sizes in published books and newspapers and in typefounders' specimens, and consider factors influencing these distributions. We discuss theoretical concepts from vision science concerning visual size coding that help inform our understanding of historical and modern typographical practices. While economic, social, technological, and artistic factors influence type design and selection, we conclude that properties of human visual processing play a dominant role in constraining the distribution of print sizes in common use.

  3. Effects of the Particle Size and the Solvent in Printing Inks on the Capacitance of Printed Parallel-Plate Capacitors

    Directory of Open Access Journals (Sweden)

    Sungsik Park

    2016-02-01

    Full Text Available Parallel-plate capacitors were fabricated using a printed multi-layer structure in order to determine the effects of particle size and solvent on the capacitance. The conductive-dielectric-conductive layers were sequentially spun using commercial inks and by intermediate drying with the aid of a masking polymeric layer. Both optical and scanning electron microscopy were used to characterize the morphology of the printed layers. The measured capacitance was larger than the theoretically calculated value when ink with small-sized particles was used as the top plate. Furthermore, the use of a solvent whose polarity was similar to that of the underlying dielectric layer enhanced the penetration and resulted in an increase in capacitance. The functional resistance-capacitance low-pass filter was implemented using printed resistors and capacitors, a process that may be scalable in the future.

  4. Machine printed text and handwriting identification in noisy document images.

    Science.gov (United States)

    Zheng, Yefeng; Li, Huiping; Doermann, David

    2004-03-01

    In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.

  5. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  6. Search for the optimal size of printed circuit boards for mechanical structures for electronic equipment

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2014-12-01

    Full Text Available The authors present a method, an algorithm and a program, designed to determine the optimal size of printed circuit boards (PCB of mechanical structures and different kinds of electronic equipment. The PCB filling factor is taken as an optimization criterion. The method allows one to quickly determine the dependence of the filling factor on the size of the PCB for various components.

  7. The Contribution of Text-Highlighting to Comprehension: A Comparison of Print and Digital Reading

    Science.gov (United States)

    Ben-Yehudah, Gal; Eshet-Alkalai, Yoram

    2018-01-01

    The use of digital materials in educational settings is common, despite evidence indicating that comprehension of digital text is inferior to comprehension of printed text. A potential solution to this problem is to use learning strategies for deeper text processing. Text-highlighting is a strategy known to improve comprehension of printed text;…

  8. Reading across Mediums: Effects of Reading Digital and Print Texts on Comprehension and Calibration

    Science.gov (United States)

    Singer, Lauren M.; Alexander, Patricia A.

    2017-01-01

    This study explored differences that might exist in comprehension when students read digital and print texts. Ninety undergraduates read both digital and print versions of newspaper articles and book excerpts on topics of childhood ailments. Prior to reading texts in counterbalanced order, topic knowledge was assessed and students were asked to…

  9. Manufacture and evaluation of 3-dimensional printed sizing tools for use during intraoperative breast brachytherapy

    Directory of Open Access Journals (Sweden)

    Joshua M. Walker, MD, PhD

    2016-04-01

    Full Text Available Three-dimensional (3D printing has emerged as a promising modality for the production of medical devices. Here we describe the design, production, and implementation of a series of sizing tools for use in an intraoperative breast brachytherapy program. These devices were produced using a commercially available low-cost 3D printer and software, and their implementation resulted in an immediate decrease in consumable costs without affecting the quality of care or the speed of delivery. This work illustrates the potential of 3D printing to revolutionize the field of medical devices, enabling physicians to rapidly develop and prototype novel tools.

  10. The Link between Text Difficulty, Reading Speed and Exploration of Printed Text during Shared Book Reading

    Science.gov (United States)

    Roy-Charland, Annie; Perron, Melanie; Turgeon, Krystle-Lee; Hoffman, Nichola; Chamberland, Justin A.

    2016-01-01

    In the current study the reading speed of the narration and the difficulty of the text was manipulated and links were explored with children's attention to the printed text in shared book reading. Thirty-nine children (24 grade 1 and 15 grade 2) were presented easy and difficult books at slow (syllable by syllable) or fast (adult reading speed)…

  11. College Students' Perceptions of the C-Print Speech-to-Text Transcription System.

    Science.gov (United States)

    Elliot, L B; Stinson, M S; McKee, B G; Everhart, V S; Francis, P J

    2001-01-01

    C-Print is a real-time speech-to-text transcription system used as a support service with deaf students in mainstreamed classes. Questionnaires were administered to 36 college students in 32 courses in which the C-Print system was used in addition to interpreting and note taking. Twenty-two of these students were also interviewed. Questionnaire items included student ratings of lecture comprehension. Student ratings indicated good comprehension with C-Print, and the mean rating was significantly higher than that for understanding of the interpreter. Students also rated the hard copy printout provided by C-Print as helpful, and they reported that they used these notes more frequently than the handwritten notes from a paid student note taker. Interview results were consistent with those for the questionnaire. Questionnaire and interview responses regarding use of C-Print as the only support service indicated that this arrangement would be acceptable to many students, but not to others. Communication characteristics were related to responses to the questionnaire. Students who were relatively proficient in reading and writing English, and in speech-reading, responded more favorably to C-Print.

  12. The Impact of the Acquisition of Electronic Medical Texts on the Usage of Equivalent Print Books in an Academic Medical Library

    Directory of Open Access Journals (Sweden)

    Pamela S. Morgan

    2010-09-01

    Full Text Available Objectives – This study examines whether acquiring a text in electronic format effects the usage of the print version of the text, focusing specifically on medical texts. Studies in the literature dealt specifically with general collections and it was not clear if they were applicable to medical collections. It was also not clear if these studies should play a role in determining whether a medical library should purchase electronic texts or whether reserve collections are still needed for print texts.Methods – Four usage studies were conducted using data from the circulation system and the electronic vendor systems. These were 1 trends of print usage; 2 trends of electronic usage; 3 a comparison of electronic usage with print usage of the same title in the reserve collection; 4 a comparison of electronic usage with print usage of the same title in the general collection.Results – In comparison to print, substantial usage is being made of electronic books. Print is maintaining a level pattern of usage while electronic usage is increasing steadily. There was a noticeable difference in the usage levels of the electronic texts as regards to the package in which they are contained. Usage of print texts both on reserve and in the general collection has decreased over time, however the acquisition of the electronic version of a medical title had little impact on the usage of the equivalent print version. Conclusion – There is a demand for medical texts in medical libraries. Electronic versions can replace print versions of texts in reserve. Further investigation is needed of current patterns of print collection usage, with particular emphasis on trends in reserve collection usage.

  13. Gender Differences in Teens' Digital Propensity and Perceptions and Preferences with Regard to Digital and Printed Text

    Science.gov (United States)

    Seok, Soonhwa; DaCosta, Boaventura

    2017-01-01

    Gender differences between the reading of digital and printed text were explored in this study. Predictors of digital propensity were investigated along with gender differences in the context of digital propensity and perceptions and preferences toward the reading of digital and printed text. Findings strengthened results reported in existing…

  14. Commercial Database Design vs. Library Terminology Comprehension: Why Do Students Print Abstracts Instead of Full-Text Articles?

    Science.gov (United States)

    Imler, Bonnie; Eichelberger, Michelle

    2014-01-01

    When asked to print the full text of an article, many undergraduate college students print the abstract instead of the full text. This study seeks to determine the underlying cause(s) of this confusion. In this quantitative study, participants (n = 40) performed five usability tasks to assess ease of use and usefulness of five commercial library…

  15. Boosting bonsai trees for handwritten/printed text discrimination

    Science.gov (United States)

    Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand

    2013-12-01

    Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.

  16. Printed Persian Subword Recognition Using Wavelet Packet Descriptors

    Directory of Open Access Journals (Sweden)

    Samira Nasrollahi

    2013-01-01

    Full Text Available In this paper, we present a new approach to offline OCR (optical character recognition for printed Persian subwords using wavelet packet transform. The proposed algorithm is used to extract font invariant and size invariant features from 87804 subwords of 4 fonts and 3 sizes. The feature vectors are compressed using PCA. The obtained feature vectors yield a pictorial dictionary for which an entry is the mean of each group that consists of the same subword with 4 fonts in 3 sizes. The sets of these features are congregated by combining them with the dot features for the recognition of printed Persian subwords. To evaluate the feature extraction results, this algorithm was tested on a set of 2000 subwords in printed Persian text documents. An encouraging recognition rate of 97.9% is got at subword level recognition.

  17. Shear Flow Instabilities and Droplet Size Effects on Aerosol Jet Printing Resolution

    Science.gov (United States)

    Chen, Guang; Gu, Yuan; Hines, Daniel; Das, Siddhartha; LaboratoryPhysical Science Collaboration; Soft Matter, Interfaces, Energy Laboratory Collaboration

    2017-11-01

    Aerosol Jet printing (AJP) is an additive technology utilizing aerodynamic focusing to produce fine feature down to 10 micrometers that can be used in the manufacture of wearable electronics and biosensors. The main concern of the current technology is related to unstable printing resolution, which is usually assessed by effective line width, edge smoothness, overspray and connectivity. In this work, we perform a 3D CFD model to study the aerodynamic instabilities induced by the annular shear flow (sheath gas flow or ShGF) trapped with the aerosol jet (carried gas flow or CGF) with ink droplets. Extensive experiments on line morphology have shown that by increasing ShGF, one can first obtain thinner line width, and then massive overspray is witnessed at very large ShGF/ CGF ratio. Besides the fact that shear-layer instabilities usually trigger eddy currents at comparatively low Reynolds number 600, the tolerance of deposition components assembling will also propagate large offsets of the deposited feather. We also carried out detailed analysis on droplet size and deposition range on the printing resolution. This study is intended to come up with a solution on controlling the operating parameters for finer printed features, and offer an improvement strategy on next generation.

  18. Generation of micro-sized conductive lines on glass fibre fabrics by inkjet printing

    NARCIS (Netherlands)

    Balda Irurzun, Unai; Dutschk, Victoria; Calvimontes, Alfredo; Akkerman, Remko

    2012-01-01

    Micro-sized lines were inkjet printed on glass fibre fabrics using different droplet spacing. A conductive ink containing silver nanoparticles was used in this study. Glass fibre fabrics were differently pre-treated to avoid spontaneous spreading of the ink dispersion. The sample topography was

  19. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training.

    Science.gov (United States)

    Park, Hyun Jin; Wang, Chenyu; Choi, Kyung Ho; Kim, Hyong Nyun

    2018-04-16

    Training beginners of the pedicle screw instrumentation technique in the operating room is limited because of issues related to patient safety and surgical efficiency. Three-dimensional (3D) printing enables training or simulation surgery on a real-size replica of deformed spine, which is difficult to perform in the usual cadaver or surrogate plastic models. The purpose of this study was to evaluate the educational effect of using a real-size 3D-printed spine model for training beginners of the free-hand pedicle screw instrumentation technique. We asked whether the use of a 3D spine model can improve (1) screw instrumentation accuracy and (2) length of procedure. Twenty life-size 3D-printed lumbar spine models were made from 10 volunteers (two models for each volunteer). Two novice surgeons who had no experience of free-hand pedicle screw instrumentation technique were instructed by an experienced surgeon, and each surgeon inserted 10 pedicle screws for each lumbar spine model. Computed tomography scans of the spine models were obtained to evaluate screw instrumentation accuracy. The length of time in completing the procedure was recorded. The results of the latter 10 spine models were compared with those of the former 10 models to evaluate learning effect. A total of 37/200 screws (18.5%) perforated the pedicle cortex with a mean of 1.7 mm (range, 1.2-3.3 mm). However, the latter half of the models had significantly less violation than the former half (10/100 vs. 27/100, p 3D-printed spine model can be an excellent tool for training beginners of the free-hand pedicle screw instrumentation.

  20. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Arghavan Farzadi

    Full Text Available Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z, on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  1. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes

    Directory of Open Access Journals (Sweden)

    Laura Contat-Rodrigo

    2016-09-01

    Full Text Available A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs based on poly(3,4-ethylenedioxythiophene doped with polysterene sulfonate (PEDOT:PSS. Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B. The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag. The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl− counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  2. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    Science.gov (United States)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  3. Comprehension of texts in Digital Format versus Printed Texts and Self-Regulated Learning in University Students

    Directory of Open Access Journals (Sweden)

    Paula Gabriela Flores-Carrasco

    2016-12-01

    Full Text Available This article aims (1 to describe the levels of self-regulation and reading comprehension of scientific expository texts; (2 to establish the relationship between self-regulation and reading comprehension; and (3 to compare the performance in comprehension when the printed media (paper or digital media (computer is used. A quasi-experimental, quantitative, descriptive and correlative design was implemented. The sample was composed of 55 university students from four careers of Education; they were in 1st and 3rd year of study at a regional university of the Council of Rectors of Chilean Universities. Three measuring instruments were used: a questionnaire of self-regulated learning and two comprehension tests based on the understanding of Parodi’s (2005 assessment model. The implementation was made in two consecutive moments; first, the self-questionnaire; then, the tests for reading comprehension in both media. With the data obtained, statistical tests of variance, one-way ANOVA, Pearson’s correlation, and means comparison with Bruner and Munzel and U-Mann Whitney’s tests were calculated. In conclusion, and different from the initial statement, it was obtained that university students have an adequate level of self-regulation and low reading comprehension in both data, even the scores are relatively lower in digital data. In both data the output is inverse to the complexity of the questions. Between 1st and 3rd year, there is no increase either in the self-regulation or in reading comprehension; but, exceptionally, the career of Primary General Education specialist on Language and History did. There is a strong relationship between reading comprehension in printed media and self-regulation (ARATEX. The support does not affect reading comprehension, but individual reading skills of the subjects do. A competent reader will have similar performance in both reading supports.

  4. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    International Nuclear Information System (INIS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  5. The best printing methods to print satellite images

    OpenAIRE

    G.A. Yousif; R.Sh. Mohamed

    2011-01-01

    Printing systems operate in general as a system of color its color scale is limited as compared with the system color satellite images. Satellite image is building from very small cell named pixel, which represents the picture element and the unity of color when the image is displayed on the screen, this unit becomes lesser in size and called screen point. This unit posseses different size and shape from the method of printing to another, depending on the output resolution, tools and material...

  6. The Effects of Literacy Support Tools on the Comprehension of Informational e-Books and Print-Based Text

    Science.gov (United States)

    Herman, Heather A.

    2017-01-01

    This mixed methods research explores the effects of literacy support tools to support comprehension strategies when reading informational e-books and print-based text with 14 first-grade students. This study focused on the following comprehension strategies: annotating connections, annotating "I wonders," and looking back in the text.…

  7. The Effects of Font Type and Spacing of Text for Online Readability and Performance

    Science.gov (United States)

    Hojjati, Nafiseh; Muniandy, Balakrishnan

    2014-01-01

    Texts are a group of letters which are printed or displayed in a particular style and size. In the course of the fast speed of technological development everywhere and expanding use of computer based instruction such as online courses, students spend more time on a computer screen than printed media. Texts have been the main element to convey…

  8. Efficiency in Reading Comprehension: A Comparison of Students' Competency in Reading Printed and Digital Texts

    Science.gov (United States)

    Duran, Erol

    2013-01-01

    In this study, survey model was used, for investigating the effect of printed and electronic texts on the reading comprehension levels of teacher candidates. While dependent variable of the research comprises the levels of understanding of the teacher candidates, independent variable comprises the departments of the teacher candidates, types of…

  9. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    OpenAIRE

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    Abstract We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500??m and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, ?-tricalcium phosphate (?-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, prolife...

  10. Influence of Parameters of a Printing Plate on Photoluminescence of Nanophotonic Printed Elements of Novel Packaging

    Directory of Open Access Journals (Sweden)

    Olha Sarapulova

    2015-01-01

    Full Text Available In order to produce nanophotonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nanophotonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nanophotonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nanophotonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nanophotonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nanophotonic areas with predetermined photoluminescent properties, the influence of investigated factors on changes of photoluminescent properties of nanophotonic printed surfaces should be taken into consideration.

  11. Print versus digital texts: understanding the experimental research and challenging the dichotomies

    Directory of Open Access Journals (Sweden)

    Bella Ross

    2017-11-01

    Full Text Available This article presents the results of a systematic critical review of interdisciplinary literature concerned with digital text (or e-text uses in education and proposes recommendations for how e-texts can be implemented for impactful learning. A variety of e-texts can be found in the repertoire of educational resources accessible to students, and in the constantly changing terrain of educational technologies, they are rapidly evolving, presenting new opportunities and affordances for student learning. We highlight some of the ways in which academic studies have examined e-texts as part of teaching and learning practices, placing a particular emphasis on aspects of learning such as recall, comprehension, retention of information and feedback. We also review diverse practices associated with uses of e-text tools such as note-taking, annotation, bookmarking, hypertexts and highlighting. We argue that evidence-based studies into e-texts are overwhelmingly structured around reinforcing the existing dichotomy pitting print-based (‘traditional’ texts against e-texts. In this article, we query this approach and instead propose to focus on factors such as students’ level of awareness of their options in accessing learning materials and whether they are instructed and trained in how to take full advantage of the capabilities of e-texts, both of which have been found to affect learning performance.

  12. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    Science.gov (United States)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  13. Print Quality of Ink Jet Printed PVC Foils

    Directory of Open Access Journals (Sweden)

    Nemanja Kašiković

    2015-09-01

    Full Text Available Digital printing technique is used for a wide variety of substrates, one of which are PVC foils. Samples used in this research were printed by digital ink jet printing technique using Mimaki JV22 printing machine and J-Eco Subly Nano inks. As printing substrates, two different types of materials were used (ORACAL 640 - Print Vinyl and LG Hausys LP2712. A test card consisting of fields of CMYK colours was created and printed, varying the number of ink layers applied. Samples were exposed to light after the printing process. Spectrophotometric measurements were conducted before and after the light treatment. Based on spectrophotometricaly obtained data, colour differences ΔE2000 were calculated. Results showed that increasing number of layers, as well as the right choice of substrates, can improve the behaviour of printed product during exploitation.

  14. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    Science.gov (United States)

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  15. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  16. Studies in ephemera text and image in eighteenth-century print

    CERN Document Server

    Murphy, Kevin

    2013-01-01

    The book offers new perspectives on works that were central to the visual and literary culture of the Anglo-American world-ephemeral print-but which have received little scholarly attention in the past.

  17. Advances in Home Photo Printing

    Institute of Scientific and Technical Information of China (English)

    Qian Lin; Brian Atkins; Huitao Luo

    2004-01-01

    With digital camera adoptions going main stream, consumers capture a record number of photos.Currently, the majority of the digital photos are printed at home. One of the key enablers of this transformation is the advancement of home photo printing technologies. In the past few years, inkjet printing technologies have continued to deliver smaller drop size, larger number of inks, and longer-lasting prints. In the mean time, advanced image processing automatically enhances captured digital photos while being printed. The combination of the above two forces has closed the gap between the home photo prints and AgX prints. It will give an overview of the home photo printing market and technology trends, and discuss major advancements in automatic image processing.

  18. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.

    Science.gov (United States)

    Ding, Jin; Liu, Jun; Tian, Qingyong; Wu, Zhaohui; Yao, Weijing; Dai, Zhigao; Liu, Li; Wu, Wei

    2016-12-01

    A facile one-step polyol method is employed to synthesize the Ag nanoparticles (NPs) in large scale. The Ag NPs with different average diameter (from 52 to 120 nm) and particle size distribution are prepared by changing the mass ratio of AgNO3 and PVP. Furthermore, the as-obtained Ag NPs are prepared as conductive inks, which could be screen printed on various flexible substrates and formed as conductive patterns after sintering treatment. During the reaction process, PVP is used as the capping reagent for preventing the agglomeration of Ag NPs, and the influence of the mass ratio of AgNO3 and PVP to the size distribution of Ag NPs is investigated. The results of electronic properties reveal that the conductivity of printed patterns is highly dependent on the size distribution of as-obtained Ag NPs. Among all the samples, the optimal conductivity is obtained when the mass ratio of AgNO3 and PVP is 1:0.4. Subsequently, the sintering time and temperature are further investigated for obtaining the best conductivity; the optimal electrical resistivity value of 3.83 μΩ · cm is achieved at 160 °C for 75 min, which is close to the resistivity value of the bulk silver (1.58 μΩ · cm). Significantly, there are many potential advantages in printed electronics applications because of the as-synthesized Ag NPs with a low sintering temperature and low electrical resistivity.

  19. A high speed electrohydrodynamic (EHD) jet printing method for line printing

    International Nuclear Information System (INIS)

    Phung, Thanh Huy; Kim, Seora; Kwon, Kye-Si

    2017-01-01

    Electrohydrodynamic (EHD) jet printing has drawn attention due to its capability to produce smaller dots and patterns with finer lines when compared to those obtained from using conventional inkjet printing. Previous studies have suggested that drop-on-demand EHD-patterning applications should be limited to very slow printing cases with speeds far less than 10 mm s −1 due to the small dot size and limited jetting frequency. In this study, a new EHD printing method is proposed to significantly increase the line-patterning printing speed by modifying the ink and thereby changing the relic shape. The proposed method has the additional advantage of reducing the line-pattern width. The results of the experiment show that the pattern width could be reduced from 20 µ m to 4 µ m by increasing the printing speed from 10 mm s −1 to 50 mm s −1 , respectively. (paper)

  20. Using 3D printed eggs to examine the egg-rejection behaviour of wild birds

    Directory of Open Access Journals (Sweden)

    Branislav Igic

    2015-05-01

    Full Text Available The coevolutionary relationships between brood parasites and their hosts are often studied by examining the egg rejection behaviour of host species using artificial eggs. However, the traditional methods for producing artificial eggs out of plasticine, plastic, wood, or plaster-of-Paris are laborious, imprecise, and prone to human error. As an alternative, 3D printing may reduce human error, enable more precise manipulation of egg size and shape, and provide a more accurate and replicable protocol for generating artificial stimuli than traditional methods. However, the usefulness of 3D printing technology for egg rejection research remains to be tested. Here, we applied 3D printing technology to the extensively studied egg rejection behaviour of American robins, Turdus migratorius. Eggs of the robin’s brood parasites, brown-headed cowbirds, Molothrus ater, vary greatly in size and shape, but it is unknown whether host egg rejection decisions differ across this gradient of natural variation. We printed artificial eggs that encompass the natural range of shapes and sizes of cowbird eggs, painted them to resemble either robin or cowbird egg colour, and used them to artificially parasitize nests of breeding wild robins. In line with previous studies, we show that robins accept mimetically coloured and reject non-mimetically coloured artificial eggs. Although we found no evidence that subtle differences in parasitic egg size or shape affect robins’ rejection decisions, 3D printing will provide an opportunity for more extensive experimentation on the potential biological or evolutionary significance of size and shape variation of foreign eggs in rejection decisions. We provide a detailed protocol for generating 3D printed eggs using either personal 3D printers or commercial printing services, and highlight additional potential future applications for this technology in the study of egg rejection.

  1. High-Speed Printing Process Characterization using the Lissajous Trajectory Method

    Science.gov (United States)

    Lee, Sangwon; Kim, Daekeun

    2018-04-01

    We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.

  2. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  3. 7 CFR 58.340 - Printing and packaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a room...

  4. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  5. A comparison of lip prints between Aryans-Dravidians and Mongols

    Directory of Open Access Journals (Sweden)

    Prathibha Prasad

    2011-01-01

    Full Text Available Context: Lip prints are very useful in forensic investigation and personal identification. Like finger prints, even lip prints can be instrumental in identifying a person positively. Aims: Indians are closer to Mongoloids than to Caucasoids or Negroids as indicated by the phylogenetic tree. Most of the studies on lip prints are done in their own population. We have compared lip prints of Manipuris with other Indians (Aryans and Dravidians who are both close to Mongoloid race and are genetically similar. Materials and Methods: A total of 100 students 50 males and 50 females were selected of whom 30 males and 30 females were of Aryan and Dravidian features and 20 males and 20 females showed the Mongol features. Study materials used were Red colored lipstick, Lip brush, Cellophane tape, White chart paper and Magnifying lens. The lip prints were analyzed by dividing them into eight compartments. Results: Analysis of lip prints showed that the most common and the least common pattern in both males and females (Aryans-Dravidians and Mongols were the same, but the compartment wise distribution of the lip patterns was different. Conclusion: In the present study, it is established that there is no similarity of lip prints from one individual to another individual and between males and females. Regarding the comparison with Mongols, more studies with a larger sample size is necessary.

  6. Influence of Pore Size on the Optical and Electrical Properties of Screen Printed TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Dinfa Luka Domtau

    2016-01-01

    Full Text Available Influence of pore size on the optical and electrical properties of TiO2 thin films was studied. TiO2 thin films with different weight percentages (wt% of carbon black were deposited by screen printing method on fluorine doped tin oxide (FTO coated on glass substrate. Carbon black decomposed on annealing and artificial pores were created in the films. All the films were 3.2 µm thick as measured by a surface profiler. UV-VIS-NIR spectrophotometer was used to study transmittance and reflectance spectra of the films in the photon wavelength of 300–900 nm while absorbance was studied in the range of 350–900 nm. Band gaps and refractive index of the films were studied using the spectra. Reflectance, absorbance, and refractive index were found to increase with concentrations of carbon black. There was no significant variation in band gaps of films with change in carbon black concentrations. Transmittance reduced as the concentration of carbon black in TiO2 increased (i.e., increase in pore size. Currents and voltages (I-V characteristics of the films were measured by a 4-point probe. Resistivity (ρ and conductivity (σ of the films were computed from the I-V values. It was observed that resistivity increased with carbon black concentrations while conductivity decreased as the pore size of the films increased.

  7. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  8. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  9. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  10. Advances in digital printing and quality considerations of digitally printed images

    Science.gov (United States)

    Waes, Walter C.

    1997-02-01

    The traditional 'graphic arts' market has changed very rapidly. It has been only ten years now since Aldus introduced its 'PageMaker' software for text and layout. The platform used was Apple-Mac, which became also the standard for many other graphic applications. The so-called high-end workstations disappeared. This was the start for what later was called: the desk top publishing revolution. At the same time, image scanning became also user-friendly and heavy duty scanners were reduced to desktop-size. Color- reproduction became a commodity product. Since then, the pre-press industry has been going through a technical nightmare, trying to keep up with the digital explosion. One after another, tasks and crafts of pre-press were being transformed by digital technologies. New technologies in this field came almost too fast for many people to adapt. The next digital revolution will be for the commercial printers. All the reasons are explained later in this document. There is now a definite need for a different business-strategy and a new positioning in the electronic media-world. Niches have to be located for new graphic arts- applications. Electronic services to-and-from originators' and executors environments became a requirement. Data can now flow on-line between the printer and the originator of the job. It is no longer the pre-press shop who is controlling this. In many cases, electronic data goes between the print-buyer or agency and the printer. High power communication-systems with accepted standard color- management are transforming the printer, and more particularly, the pre-press shop fatally. The new digital printing market, now in the beginning of its expected full expansion, has to do with growing requests coming from agencies and other print-buyers for: (1) short-run printing; (2) print-on-demand approximately in-time; (3) personalization or other forms of customization; (4) quick turnaround.

  11. Printing Has a Future

    Directory of Open Access Journals (Sweden)

    Hans Georg Wenke

    2004-12-01

    Full Text Available Printing will also be done in the future. Printed items meet basic needs and are deeply anchored in people’s habits. Being able to handle and collect printed matter is highly attractive. And paper is now more alive than ever. It is therefore too shortsighted to disclaim the importance of one of the still large economic sectors just because of a few looming-recession instigated market shifts.The exciting aspect of drupa 2004 is: printing will be reinvented, so to speak. Much more printing will be done in the future than at present. On the one hand, people are concentrating on process optimization and automation to ensure this. Measuring and testing, process control and optimization, and linking up "office software" with printing technology will be very central topics at drupa 2004. Electronics and print are not rivals; a symbiosis exists. And printing is high-tech: hardly any other multifaceted sector which has been so successful for centuries is as computerized as the printing industry.A series of "new chapters" in the variety of printing possibilities will be opened at drupa. Talk will be generated by further technical developments, often the connection between paper/cardboard and electronics, the link between the office world and graphics industry, text databases and their link-up to graphic page production tools, and "on the fly" dynamic printing over networks.All of this and more belongs to future potentialities, which are so substantial overall, the outlook is by no means black for the "black art". Like its predecessors, drupa 2004 is also a product trade fair. However, more than ever before in its history, it is also an "information village". The exhibits are useful, because they occasionally make what this means visible.

  12. Internet printing

    Science.gov (United States)

    Rahgozar, M. Armon; Hastings, Tom; McCue, Daniel L.

    1997-04-01

    The Internet is rapidly changing the traditional means of creation, distribution and retrieval of information. Today, information publishers leverage the capabilities provided by Internet technologies to rapidly communicate information to a much wider audience in unique customized ways. As a result, the volume of published content has been astronomically increasing. This, in addition to the ease of distribution afforded by the Internet has resulted in more and more documents being printed. This paper introduces several axes along which Internet printing may be examined and addresses some of the technological challenges that lay ahead. Some of these axes include: (1) submission--the use of the Internet protocols for selecting printers and submitting documents for print, (2) administration--the management and monitoring of printing engines and other print resources via Web pages, and (3) formats--printing document formats whose spectrum now includes HTML documents with simple text, layout-enhanced documents with Style Sheets, documents that contain audio, graphics and other active objects as well as the existing desktop and PDL formats. The format axis of the Internet Printing becomes even more exciting when one considers that the Web documents are inherently compound and the traversal into the various pieces may uncover various formats. The paper also examines some imaging specific issues that are paramount to Internet Printing. These include formats and structures for representing raster documents and images, compression, fonts rendering and color spaces.

  13. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  14. The analysis of ink jet printed eco-font efficiency

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2016-07-01

    Full Text Available Utilization of eco-font for office printing is one of sustainable, “green” printing concepts, which besides obvious economic benefits, as a result has a certain effect on environmental sustainability as well. The fundamental problem that this practice faces is decreased quality of text printed using eco-fonts comparing to those printed with regular fonts. The aim of this research is eco-font efficiency estimation, i.e. determination of toner usage reduction level of ink jet printed documents typed with this font type, as well as estimation of the extent humans perceive differences between text printed with eco-font and the one printed by its „non-eco“ equivalent. Combining instrumental measuring method and digital image analysis, it was found that this simple principle (eco-font utilization enables substantial toner usage reduction for an ink jet printing system, while visual test showed that visual experience of text printed using eco-font is sufficient. In addition, awareness of benefits that eco-font utilization brings, change users’ attitude towards eco-font quality.

  15. Some Thoughts on Contemporary Graphic Print

    Directory of Open Access Journals (Sweden)

    Stefan Skiba

    2016-09-01

    Full Text Available The production requirements of original graphic works of art have changed since 1980. The development of digital printing using lightfast colors now rivals traditional techniques such as wood cut, screen print, lithography, etching etc. Today, with respect to artistic legitimacy, original graphics using traditional printing techniques compete with original graphics produced by digital printing techniques on the art market. What criteria distinguish traditional printing techniques from those of digital printing in the production and acquisition of original graphics? What consequences is the serious artist faced with when deciding to implement digital print production? How does digital print change original graphic acquisition decisions?

  16. A database for reproducible manipulation research: CapriDB – Capture, Print, Innovate

    Directory of Open Access Journals (Sweden)

    Florian T. Pokorny

    2017-04-01

    Full Text Available We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scanning setups and aims to enable anyone with a camera to scan, print and track complex objects for manipulation research. The proposed approach results in detailed textured mesh models whose 3D printed replicas provide close approximations of the originals. A key motivation for utilizing 3D printed objects is the ability to precisely control and vary object properties such as the size, material properties and mass distribution in the 3D printing process to obtain reproducible conditions for robotic manipulation research. We present CapriDB – an extensible database resulting from this approach containing initially 40 textured and 3D printable mesh models together with tracking features to facilitate the adoption of the proposed approach.

  17. Generating size-controlled embryoid bodies using laser direct-write

    International Nuclear Information System (INIS)

    Dias, A D; Corr, D T; Unser, A M; Xie, Y; Chrisey, D B

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to self-renew and differentiate into any specialized cell type. One common method to differentiate ESCs in vitro is through embryoid bodies (EBs), three-dimensional cellular aggregates that spontaneously self-assemble and generally express markers for the three germ layers, endoderm, ectoderm, and mesoderm. It has been previously shown that both EB size and 2D colony size each influence differentiation. We hypothesized that we could control the size of the EB formed by mouse ESCs (mESCs) by using a cell printing method, laser direct-write (LDW), to control both the size of the initial printed colony and the local cell density in printed colonies. After printing mESCs at various printed colony sizes and printing densities, two-way ANOVAs indicated that the EB diameter was influenced by printing density after three days (p = 0.0002), while there was no effect of the printed colony diameter on the EB diameter at the same timepoint (p = 0.74). There was no significant interaction between these two factors. Tukey's honestly significant difference test showed that high-density colonies formed significantly larger EBs, suggesting that printed mESCs quickly aggregate with nearby cells. Thus, EBs can be engineered to a desired size by controlling printing density, which will influence the design of future differentiation studies. Herein, we highlight the capacity of LDW to control the local cell density and colony size independently, at prescribed spatial locations, potentially leading to better stem cell maintenance and directed differentiation. (paper)

  18. Banner Pages on the New Printing Infrastructure

    CERN Multimedia

    2006-01-01

    Changes to the printing service were announced in CERN Bulletin No. 37-38/2006. In the new infrastructure, the printing of the banner page has been disabled in order to reduce paper consumption. Statistics show that the average print job size is small and the paper savings by not printing the banner page could be up to 20 %. When each printer is moved onto the new infrastructure banner page printing will be disabled. In the case of corridor printers which are shared by several users, the Helpdesk can re-enable banner page printing upon request. We hope ultimately to arrive at a situation where banner page printing is enabled on fewer than 10% of printers registered on the network. You can still print banner pages on printers where it has been centrally disabled by using Linux. Simply add it to your print job on the client side by adding the -o job-sheets option to your lpr command. Detailed documentation is available on each SLC3/4 under the following link: http://localhost:631/sum.html#4_2 Please bea...

  19. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    Directory of Open Access Journals (Sweden)

    Jason S Naftulin

    Full Text Available Neuroimaging technologies such as Magnetic Resonance Imaging (MRI and Computed Tomography (CT collect three-dimensional data (3D that is typically viewed on two-dimensional (2D screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM images to stereolithography (STL files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min. Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  20. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  1. Print Finishing: From Manual to Automated Print Finishing

    Directory of Open Access Journals (Sweden)

    Gareth Ward

    2004-12-01

    Full Text Available Meeting the demand for faster turnrounds and shorter print runs goes beyond making the printing press easier to set up and change. There is little point in producing plates and then sheets from a press if the post press area does not change to keep abreast of developments in prepress and the print room. The greatest impact is going to come from JDF, the end to end production data format which is finding wide spread acceptance in print areas. To date finishing equipment manufacturers are not as well represented within the CIP4 organisation as prepress and press vendors, but the major manufacturers are members. All are working to the goal of complete connectivity.The idea of JDF is that if the format of a print product like a magazine is known during the creation phases, the information can be used to preset machinery that is going to be used to produce it, so avoiding input errors and saving manufacturing time.A second aspect to JDF is that information about performance and progress is gathered and can be retrieved from a central point or made available to a customer. Production scheduling and costing becomes more accurate and customer relationships are deepened. However JDF to its fullest extent is not yet in use in connecting the finishing area to the rest of the printing plant. Around the world different companies are testing the idea of JDF to connect saddle stitchers, guillotines and binders with frantic work underway to be able to show results soon.

  2. Balkan Print Forum – Dynamic Balkan Print Media Community

    Directory of Open Access Journals (Sweden)

    Rossitza Velkova

    2011-11-01

    Full Text Available Founded in October 2006, the Balkan Print Forum is gradually becoming an important regional institution. Its main targets are to share experiences and know-how,to initiate and intensify contacts and to support joint projects in the Balkan region.Since drupa 2008 there are 11 member countries of the Balkan Print Forum:Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Former Yugoslav Republic of Macedonia, Greece, Hungary, Romania, Serbia, Slovenia and Turkey. Partners of BPF are some companies and universities from Russia and Ukraine.

  3. The effects of visual crowding, text size, and positional uncertainty on text legibility at a glance.

    Science.gov (United States)

    Dobres, Jonathan; Wolfe, Benjamin; Chahine, Nadine; Reimer, Bryan

    2018-07-01

    Reading at a glance, once a relatively infrequent mode of reading, is becoming common. Mobile interaction paradigms increasingly dominate the way in which users obtain information about the world, which often requires reading at a glance, whether from a smartphone, wearable device, or in-vehicle interface. Recent research in these areas has shown that a number of factors can affect text legibility when words are briefly presented in isolation. Here we expand upon this work by examining how legibility is affected by more crowded presentations. Word arrays were combined with a lexical decision task, in which the size of the text elements and the inter-line spacing (leading) between individual items were manipulated to gauge their relative impacts on text legibility. In addition, a single-word presentation condition that randomized the location of presentation was compared with previous work that held position constant. Results show that larger text was more legible than smaller text. Wider leading significantly enhanced legibility as well, but contrary to expectations, wider leading did not fully counteract decrements in legibility at smaller text sizes. Single-word stimuli presented with random positioning were more difficult to read than stationary counterparts from earlier studies. Finally, crowded displays required much greater processing time compared to single-word displays. These results have implications for modern interface design, which often present interactions in the form of scrollable and/or selectable lists. The present findings are of practical interest to the wide community of graphic designers and interface engineers responsible for developing our interfaces of daily use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Vector Printing Method for High-Speed Electrohydrodynamic (EHD Jet Printing Based on Encoder Position Sensors

    Directory of Open Access Journals (Sweden)

    Thanh Huy Phung

    2018-02-01

    Full Text Available Electrohyrodynamic (EHD jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages.

  5. Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication

    Directory of Open Access Journals (Sweden)

    Tomov Rumen I.

    2016-01-01

    Full Text Available Inkjet printing fabrication and modification of electrodes and electrolytes of SOFCs were studied. Electromagnetic print-heads were utilized to reproducibly dispense droplets of inks at rates of several kHz on demand. Printing parameters including pressure, nozzle opening time and drop spreading were studied in order to optimize the inks jetting and delivery. Scanning electron microscopy revealed highly conformal ~ 6-10 μm thick dense electrolyte layers routinely produced on cermet and metal porous supports. Open circuit voltages ranging from 0.95 to 1.01 V, and a maximum power density of ~180 mW.cm−2 were measured at 750 °C on Ni-8YSZ/YSZ/LSM single cell 50×50 mm in size. The effect of anode and cathode microstructures on the electrochemical performance was investigated. Two - step fabrication of the electrodes using inkjet printing infiltration was implemented. In the first step the porous electrode scaffold was created printing suspension composite inks. During the second step inkjet printing infiltration was utilized for controllable loading of active elements and a formation of nano-grid decorations on the scaffolds radically reducing the activation polarization losses of both electrodes. Symmetrical cells of both types were characterized by impedance spectroscopy in order to reveal the relation between the microstructure and the electrochemical performance.

  6. 47 CFR 0.409 - Commission policy on private printing of FCC forms.

    Science.gov (United States)

    2010-10-01

    ... ORGANIZATION General Information General § 0.409 Commission policy on private printing of FCC forms. The... in quality to the original document, without change to the page size, image size, configuration of... Managing Director. [53 FR 27861, July 25, 1988] Printed Publications ...

  7. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  8. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Directory of Open Access Journals (Sweden)

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  9. A font and size-independent OCR system for printed Kannada ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    put is an editable computer file containing the information in the printed page. ...... The work reported in this paper is partially supported by a project under the ... guage Technology Solutions – Kannada programme of the TDIL Group of the ...

  10. Ultrasonic properties of all-printed piezoelectric polymer transducers

    Science.gov (United States)

    Wagle, Sanat; Decharat, Adit; Bodö, Peter; Melandsø, Frank

    2013-12-01

    The ability of producing ultrasonic transducers from screen-printing has been explored experimentally, through printing and characterization of a large number of transducers. In an all-printed test design, 124 transducers with four different electrode sizes ranging from 1 to 4.9 mm2, were printed layer-by-layer on a high performance polyethyleneimine polymer. Inks from ferroelectric and conductive polymers were applied to the active part of a transducer, to provide a good acoustical match between the individual layers. Ultrasonic characterizations of the transducers done by two independent methods provided a broad-banded frequency response with a maximum response around 100 MHz.

  11. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  12. Fuzzy-Based Segmentation for Variable Font-Sized Text Extraction from Images/Videos

    Directory of Open Access Journals (Sweden)

    Samabia Tehsin

    2014-01-01

    Full Text Available Textual information embedded in multimedia can provide a vital tool for indexing and retrieval. A lot of work is done in the field of text localization and detection because of its very fundamental importance. One of the biggest challenges of text detection is to deal with variation in font sizes and image resolution. This problem gets elevated due to the undersegmentation or oversegmentation of the regions in an image. The paper addresses this problem by proposing a solution using novel fuzzy-based method. This paper advocates postprocessing segmentation method that can solve the problem of variation in text sizes and image resolution. The methodology is tested on ICDAR 2011 Robust Reading Challenge dataset which amply proves the strength of the recommended method.

  13. EARLY ENGLISH PRINTING AND THE HANDS OF COMPOSITORS

    Directory of Open Access Journals (Sweden)

    Satoko Tokunaga

    2005-12-01

    Full Text Available This paper examines soine distinctive uses of typefaces by Caxton's compositors in his early products at Westminster and illustrates how useful such examples are in revealing the chronology of actual book production, as well as in identifying the compositors at work on individual volumes. An exhaustive analysis of early printed books can provide us with information about compositors at work in England's earliest printing house. This paper therefore argues that it is inost definitely worth considering such 'inechaiiical' aspects of book design as typography when editing any printed text, and introduces most recent research results contributed by a project at Keio University, which airns to establish a semiautomatic system that can transcribe every feature of the printed text including even minute differences in types.

  14. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  15. An investigation of document aesthetics for web-to-print repurposing of small-medium business marketing collateral

    Science.gov (United States)

    Allebach, J. P.; Ortiz Segovia, Maria; Atkins, C. Brian; O'Brien-Strain, Eamonn; Damera-Venkata, Niranjan; Bhatti, Nina; Liu, Jerry; Lin, Qian

    2010-02-01

    Businesses have traditionally relied on different types of media to communicate with existing and potential customers. With the emergence of the Web, the relation between the use of print and electronic media has continually evolved. In this paper, we investigate one possible scenario that combines the use of the Web and print. Specifically, we consider the scenario where a small- or medium-sized business (SMB) has an existing web site from which they wish to pull content to create a print piece. Our assumption is that the web site was developed by a professional designer, working in conjunction with the business owner or marketing team, and that it contains a rich assembly of content that is presented in an aesthetically pleasing manner. Our goal is to understand the process that a designer would follow to create an effective and aesthetically pleasing print piece. We are particularly interested to understand the choices made by the designer with respect to placement and size of the text and graphic elements on the page. Toward this end, we conducted an experiment in which professional designers worked with SMBs to create print pieces from their respective web pages. In this paper, we report our findings from this experiment, and examine the underlying conclusions regarding the resulting document aesthetics in the context of the existing design, and engineering and computer science literatures that address this topic

  16. The rheological behavior of disperse systems for 3D print-ing in constrcution: the problem of control and possibility of «nano» tools application

    Directory of Open Access Journals (Sweden)

    Slavcheva Galina Stanislavovna

    2018-06-01

    Full Text Available The paper considers the problem of creating a wider class of building materials used for 3D printing. From the point of view of classical rheology of disperse systems, the application of 3D printing technology in construction has been analyzed. Theoretical analysis of the models of rheological behavior is performed according to state of their structure and the dynamic of the 3D printing processes such as mixing, pumping, extrusion, multilayer casting and structural built-up in the printing layers. The main factors and criteria for the stability of heterogeneous disperse systems in dynamic and static 3D printing processes have been identified. The general scientific concept for optimization of admixtures for 3D printable materials has been developed in terms of viscosity, consistency, and parameters of flocculation and structural built-up. The technological tools to control rheological behavior of visco-plastic admixtures are identified in all stages of 3D printing. The relevant considerations include the concentration, size, morphology, chemical and mineralogical composition, the physical and chemical activity of the solid phase’s surface, and the ionic composition, viscosity, and density of the liquid phase. It is shown that the practical engineering solutions to control the rheology, structure formation, properties of 3D printing admixtures and materials must be based on traditional factors as well as with the use of «nano» tools. According to the nanotechnological principle «bottom-up», a set of «nano» tools is proposed to control such admixture properties as extrudability, formability, and buildability. In conclusion the scientific and technical tasks to be researched have been formulated.

  17. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  18. Influence of Parameters of a Printing Plate on Photoluminescence of Nano photonic Printed Elements of Novel Packaging

    International Nuclear Information System (INIS)

    Sarapulova, O.; Sherstiuk, V.

    2015-01-01

    In order to produce nano photonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nano photonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nano photonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nano photonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nano photonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nano photonic areas with predetermined photo luminescent properties, the influence of investigated factors on changes of photo luminescent properties of nano photonic printed surfaces should be taken into consideration

  19. Variable-data Printing Serves - Niches Here, There & Everywhere

    Directory of Open Access Journals (Sweden)

    Roger Ynostroza

    2004-12-01

    Full Text Available A milestone focus on high-end digital color presses capable of variable-data imaging - a technology that was introduced ten years ago and is just now at the beginning of wider, more successful implementation in commercial printing-tends to overshadow some real achievements on other variable-data fronts. Those activities involve ink-jet and electrophotographic imaging for high-volume transactional printing, print-on-demand books and catalogs, wide-format proofing and imaging, label production, and printing of text and coding of printed packaging.The capabilities of digital production color presses intrigue commercial printers the most, especially new units referred to by manufacturers as "Series II" or "third-generation" systems. Besides having more press-like characteristics, from offset-caliber quality, image consistency, and high output rates to sturdy construction, reliability, and stock choice, the units seem to represent a way to produce printing that’s beyond the norm.Some users are producing hybrid printed products (offset printing a quantity of "shells" that are later personalized by digital presses, while others are utilizing clients’ "dynamic" databases to personalize marketing materials that drive response rates up to 15%, even 35%. Finally, digital color systems prompt the creation of high-margin Internet-based print providers offering easy-to-design and easy-toorder print materials. Printers may do well to adopt the high-value communications capability that digital imaging offers.

  20. R2R-printed inverted OPV modules - towards arbitrary patterned designs

    Science.gov (United States)

    Välimäki, M.; Apilo, P.; Po, R.; Jansson, E.; Bernardi, A.; Ylikunnari, M.; Vilkman, M.; Corso, G.; Puustinen, J.; Tuominen, J.; Hast, J.

    2015-05-01

    We describe the fabrication of roll-to-roll (R2R) printed organic photovoltaic (OPV) modules using gravure printing and rotary screen-printing processes. These two-dimensional printing techniques are differentiating factors from coated OPVs enabling the direct patterning of arbitrarily shaped and sized features into visual shapes and, increasing the freedom to connect the cells in modules. The inverted OPV structures comprise five layers that are either printed or patterned in an R2R printing process. We examined the rheological properties of the inks used and their relationship with the printability, the compatibility between the processed inks, and the morphology of the R2R-printed layers. We also evaluate the dimensional accuracy of the printed pattern, which is an important consideration in designing arbitrarily-shaped OPV structures. The photoactive layer and top electrode exhibited excellent cross-dimensional accuracy corresponding to the designed width. The transparent electron transport layer extended 300 µm beyond the designed values, whereas the hole transport layer shrank 100 µm. We also examined the repeatability of the R2R fabrication process when the active area of the module varied from 32.2 cm2 to 96.5 cm2. A thorough layer-by-layer optimization of the R2R printing processes resulted in realization of R2R-printed 96.5 cm2 sized modules with a maximum power conversion efficiency of 2.1% (mean 1.8%) processed with high functionality.

  1. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  2. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  3. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  4. The influence of printing substrate on macro non-uniformity and line reproduction quality of imprints printed with electrophotographic process

    Directory of Open Access Journals (Sweden)

    Đorđe Vujčić

    2016-12-01

    Full Text Available Print quality is very important for every printing technique. It depends on many different quality attributes. This research included analysis of macro non-uniformities and line reproduction. 16 different paper substrates printed by electrophotographic process were analyzed. They were separated in two groups: coated and uncoated papers. Analysis of macro non-uniformity showed that print mottle has lower values when printed on coated papers than on uncoated papers. Line reproduction analysis showed that the toner spreaded, during melting and fixation, on line edges for both types of paper. According to these results it can be concluded that paper substrate affects the macro non-uniformity and line reproduction, thus overall print quality.

  5. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae

    2015-06-01

    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  6. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    Directory of Open Access Journals (Sweden)

    S. Laureti

    2016-12-01

    Full Text Available An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  7. Initial letters on the pages of Ukrainian old printed books of the 17th-18th centuries

    Directory of Open Access Journals (Sweden)

    Yukhymets H. M.

    2017-01-01

    Full Text Available The article is devoted to such a complicated and little studied element of artistic decoration of Ukrainian printed books of the 17th-18th centuries as capital letters. The authors research old printed books from the collection of imprints of the Kyiv-Pechersk Lavra’s typography. Various topics, iconography, compositional and artistic stylistic features of miniature illustrations of initial letters, their location on book pages, content correspondence or discrepancy with a text, usage of one clichй in various editions provide multiple new possibilities to researchers. Especially the authors accentuate iconography of gospel and life subjects, as well as the source studies analysis of initial letters, which in Ukrainian old printed editions of Baroque epoch impress with innovation of subject development and the ambition for original decisions of complex compositional tasks conditioned not only by the size and format of an initial, but also by the form and location of the letter itself in a certain decorative space.

  8. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  9. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  10. E-text

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2018-01-01

    text can be defined by taking as point of departure the digital format in which everything is represented in the binary alphabet. While the notion of text, in most cases, lends itself to be independent of medium and embodiment, it is also often tacitly assumed that it is, in fact, modeled around...... the print medium, rather than written text or speech. In late 20th century, the notion of text was subject to increasing criticism as in the question raised within literary text theory: is there a text in this class? At the same time, the notion was expanded by including extra linguistic sign modalities...

  11. Influence of printing speed on production of embossing tools using FDM 3D printing technology

    Directory of Open Access Journals (Sweden)

    Jelena Žarko

    2017-06-01

    Full Text Available Manufacturing of the embossing tools customary implies use of metals such as zinc, magnesium, copper, and brass. In the case of short run lengths, a conventional manufacturing process and the material itself represent a significant cost, not only in the terms of material costs and the need for using complex technological systems which are necessary for their production, but also in the terms of the production time. Alternatively, 3D printing can be used for manufacturing similar embossing tools with major savings in production time and costs. However, due to properties of materials used in the 3D printing technology, expected results of embossing by 3D printed tools cannot be identical to metal ones. This problem is emphasized in the case of long run lengths and high accuracy requirement for embossed elements. The objective of this paper is primarily focused on investigating the influence of the printing speed on reproduction quality of the embossing tools printed with FDM (Fused Deposition Modelling technology. The obtained results confirmed that printing speed as a process parameter affects the reproduction quality of the embossing tools printed with FDM technology: in the case of deposition rate of 90 mm/s was noted the poorest dimensional accuracy in relation to the 3D model, which is more emphasised in case of circular and square elements. Elements printed with the highest printing speed have a greater dimensional accuracy, but with evident cracks on the surface.

  12. Screen-printed nanoparticles as anti-counterfeiting tags

    Science.gov (United States)

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-01

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  13. Printing microstructures in a polymer matrix using a ferrofluid droplet

    International Nuclear Information System (INIS)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.

    2016-01-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  14. Printing microstructures in a polymer matrix using a ferrofluid droplet

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada); Puri, Ishwar K. [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada)

    2016-03-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  15. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  16. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  17. Packaging Printing Today

    OpenAIRE

    Stanislav Bolanča; Igor Majnarić; Kristijan Golubović

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. T...

  18. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2017-11-01

    Full Text Available Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research.

  19. The Impact of Multimodal Texts on Reading Achievement: A Study of Iranian Secondary School Learners

    Directory of Open Access Journals (Sweden)

    Bahareh Baharani

    2015-07-01

    Full Text Available This study was designed to investigate the impact of multimodal text on reading comprehension test performance of Iranian intermediate learners. A total of 80 students participated in this study. All of them were Iranian female EFL learners with the age ranging from 16 to 18. They were selected from a boarding high school in Nasr Abad, Torbat Jam in Khorasan e Razavi, Iran. The students were randomly settled in four groups, who received different instructional approaches through using linear texts, multimodal printed texts, non-printed multimodal texts, and both multimodal printed and non-printed texts.  A pre-test and post-test were used to find out the differences before and after the experimental treatment.  The results reflected that the printed and non-printed multimodal texts had significant impact on reading comprehension test performance. In contrast, applying linear texts or traditional texts did not exert significant influence on reading comprehension ability of the participants. The findings provide useful hints for language instructors to improve effectiveness of instructional reading curriculums and reading ability of language learners. The participants who learned reading comprehension through using multimodal printed and non-printed texts enjoy reading programs and develop their intrinsic and extrinsic motivation for improving reading ability.

  20. EL device pad-printed on a curved surface

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Hur, Shin; Kim, Jae-Hyun; Choi, Hyun-Cheol

    2010-01-01

    This paper is unique in that the electroluminescence (EL) display device is fabricated on a curved surface using the pad-printing method. The precision of the pad-printing process is explored to verify whether it can be used for micro patterning. The minimum pattern size and pattern distortion, which is caused by use of the pad, were tested and simulated. The minimal pattern was found to be 35 µm wide and 2.4 µm thick. Pattern distortion when pad-printing on a flat surface, caused by the deformation of the silicon pad, was less than 5 µm. Numerical analysis shows how to estimate pattern distortion when pad-printing on a curved surface. The proposed EL display device consists of five layers, namely a bottom electrode, dielectric layer, phosphor, transparent electrode and a bus electrode. The ink of each layer was reformulated with solvents and the pad-printing conditions were controlled. A PEN film was used first in order to realize the pad-printing process condition of each layer. Finally, the EL display device was printed onto a dish with a radius of curvature of 80 mm. The luminance was 180 cd m −2

  1. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Amelia Yilin Lee

    2017-10-01

    Full Text Available The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

  2. Using 3D printed eggs to examine the egg-rejection behaviour of wild birds

    Science.gov (United States)

    Nunez, Valerie; Voss, Henning U.; Croston, Rebecca; Aidala, Zachary; López, Analía V.; Van Tatenhove, Aimee; Holford, Mandë E.; Shawkey, Matthew D.; Hauber, Mark E.

    2015-01-01

    The coevolutionary relationships between brood parasites and their hosts are often studied by examining the egg rejection behaviour of host species using artificial eggs. However, the traditional methods for producing artificial eggs out of plasticine, plastic, wood, or plaster-of-Paris are laborious, imprecise, and prone to human error. As an alternative, 3D printing may reduce human error, enable more precise manipulation of egg size and shape, and provide a more accurate and replicable protocol for generating artificial stimuli than traditional methods. However, the usefulness of 3D printing technology for egg rejection research remains to be tested. Here, we applied 3D printing technology to the extensively studied egg rejection behaviour of American robins, Turdus migratorius. Eggs of the robin’s brood parasites, brown-headed cowbirds, Molothrus ater, vary greatly in size and shape, but it is unknown whether host egg rejection decisions differ across this gradient of natural variation. We printed artificial eggs that encompass the natural range of shapes and sizes of cowbird eggs, painted them to resemble either robin or cowbird egg colour, and used them to artificially parasitize nests of breeding wild robins. In line with previous studies, we show that robins accept mimetically coloured and reject non-mimetically coloured artificial eggs. Although we found no evidence that subtle differences in parasitic egg size or shape affect robins’ rejection decisions, 3D printing will provide an opportunity for more extensive experimentation on the potential biological or evolutionary significance of size and shape variation of foreign eggs in rejection decisions. We provide a detailed protocol for generating 3D printed eggs using either personal 3D printers or commercial printing services, and highlight additional potential future applications for this technology in the study of egg rejection. PMID:26038720

  3. Concept of heat-induced inkless eco-printing.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Xie, Juan; Meng, Chuang; Wu, Gang; Zu, Qiao

    2012-07-01

    Existing laser and inkjet printers often produce adverse effects on human health, the recycling of printing paper and the environment. Therefore, this paper examines the thermogravimetry curves for printer paper, analyzes the discoloration of paper using heat-induction, and investigates the relationship between paper discoloration and the heat-inducing temperature. The mechanism of heat-induced printing is analyzed initially, and its feasibility is determined by a comparative analysis of heat-induced (laser ablation) printing and commercial printing. The innovative concept of heat-induced inkless eco-printing is proposed, in which the required text or graphics are formed on the printing paper via yellowing and blackening produced by thermal energy. This process does not require ink during the printing process; thus, it completely eliminates the aforementioned health and environmental issues. This research also contributes to related interdisciplinary research in biology, laser technology, photochemistry, nano-science, paper manufacturing and color science. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A research on comprehension differences between print and screen reading

    Directory of Open Access Journals (Sweden)

    Szu-Yuan Sun

    2013-12-01

    Full Text Available Since the 1980s, extensive research has been conducted comparing reading comprehension from printed text and computer screens. The conclusions, however, are not very consistent. As reading from computer screens requires a certain degree of individual technical skill, such variables should be objectively taken into consideration when conducting an experiment regarding the comparison between print and screen reading. This study analyses the difference in the level of understanding of the two presentational formats (text on printed pages and hypertext on computer screens for people between 45-54 years of age (i.e. “middleaged” adults. In our experimental findings there were no significant differences between the levels of comprehension for print and screen presentations. With regard to individual differences in gender, age group and educational level, the findings are as follows: gender and education effects on print reading comprehension performance were significant, while those on screen reading comprehension performance were not. For middle-aged computer learners, the main effect of age group on both print and screen reading comprehension performance was insignificant. In contrast, linear texts of traditional paper-based material are better for middle-aged readers’ literal text comprehension, while hypertext is beneficial to their inferential text comprehension. It is also suggested that hypermedia could be used as a cognitive tool for improving middle-aged adults’ inferential abilities on reading comprehension, provided that they were trained adequately to use available computers.

  5. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2016-05-01

    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  6. Uniformity across 200 mm silicon wafers printed by nanoimprint lithography

    International Nuclear Information System (INIS)

    Gourgon, C; Perret, C; Tallal, J; Lazzarino, F; Landis, S; Joubert, O; Pelzer, R

    2005-01-01

    Uniformity of the printing process is one of the key parameters of nanoimprint lithography. This technique has to be extended to large size wafers to be useful for several industrial applications, and the uniformity of micro and nanostructures has to be guaranteed on large surfaces. This paper presents results of printing on 200 mm diameter wafers. The residual thickness uniformity after printing is demonstrated at the wafer scale in large patterns (100 μm), in smaller lines of 250 nm and in sub-100 nm features. We show that a mould deformation occurs during the printing process, and that this deformation is needed to guarantee printing uniformity. However, the mould deformation is also responsible for the potential degradation of the patterns

  7. Future enhancements to 3D printing and real time production

    Science.gov (United States)

    Landa, Joseph; Jenkins, Jeffery; Wu, Jerry; Szu, Harold

    2014-05-01

    The cost and scope of additive printing machines range from several hundred to hundreds of thousands of dollars. For the extra money, one can get improvements in build size, selection of material properties, resolution, and consistency. However, temperature control during build and fusing predicts outcome and protects the IP by large high cost machines. Support material options determine geometries that can be accomplished which drives cost and complexity of printing heads. Historically, 3D printers have been used for design and prototyping efforts. Recent advances and cost reduction sparked new interest in developing printed products and consumables such as NASA who is printing food, printing consumer parts (e.g. cell phone cases, novelty toys), making tools and fixtures in manufacturing, and recursively print a self-similar printer (c.f. makerbot). There is a near term promise of the capability to print on demand products at the home or office... directly from the printer to use.

  8. Print quality challenges for the next decade

    Science.gov (United States)

    Meyer, John D.

    1990-07-01

    The decade of the eighties has seen a remarkable transformation in the performance and capabilities of shared and personal printers. Dramatic gains have been made in four key areas: cost, throughput, reliability and most significantly, print quality. The improvements in text print quality due to algorithmic fonts and increased resolution have been pivotal in the creation of the desktop publishing market. Electronic pre-press systems now include hardware to receive Postscript files accompanied by color originals for scanning and separation. These systems have application in the commercial printing of a wide variety of material e.g. books, magazines, brochures, newspapers. The vision of the future of hardcopy now embraces the full spectrum from typeset text to full color reproduction of natural images due to the advent of grayscale and color capability in printer technology. This will place increased demands for improvements in print quality, particularly in the use of grayscale and color. This paper gives an overview of the challenges which must be met and discusses data communication standards and print quality measurement techniques as a means of meeting these challenges for both color and black and white output.

  9. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  10. Laser-assisted printing of alginate long tubes and annular constructs

    International Nuclear Information System (INIS)

    Yan Jingyuan; Huang Yong; Chrisey, Douglas B

    2013-01-01

    Laser-assisted printing such as laser-induced forward transfer has been well studied to pattern or fabricate two-dimensional constructs. In particular, laser printing has found increasing biomedical applications as an orifice-free cell and organ printing approach, especially for highly viscous biomaterials and biological materials. Unfortunately, there have been very few studies on the efficacy of three-dimensional printing performance of laser printing. This study has investigated the feasibility of laser tube printing and the effects of sodium alginate concentration and operating conditions such as the laser fluence and laser spot size on the printing quality during laser-assisted printing of alginate annular constructs (short tubes) with a nominal diameter of 3 mm. It is found that highly viscous materials such as alginate can be printed into well-defined long tubes and annular constructs. The tube wall thickness and tube outer diameter decrease with the sodium alginate concentration, while they first increase, then decrease and finally increase again with the laser fluence. The sodium alginate concentration dominates if the laser fluence is low, and the laser fluence dominates if the sodium alginate concentration is low. (paper)

  11. Proposal of Heuristic Algorithm for Scheduling of Print Process in Auto Parts Supplier

    Science.gov (United States)

    Matsumoto, Shimpei; Okuhara, Koji; Ueno, Nobuyuki; Ishii, Hiroaki

    We are interested in the print process on the manufacturing processes of auto parts supplier as an actual problem. The purpose of this research is to apply our scheduling technique developed in university to the actual print process in mass customization environment. Rationalization of the print process is depending on the lot sizing. The manufacturing lead time of the print process is long, and in the present method, production is done depending on worker’s experience and intuition. The construction of an efficient production system is urgent problem. Therefore, in this paper, in order to shorten the entire manufacturing lead time and to reduce the stock, we reexamine the usual method of the lot sizing rule based on heuristic technique, and we propose the improvement method which can plan a more efficient schedule.

  12. Digital Dentistry — 3D Printing Applications

    OpenAIRE

    Zaharia Cristian; Gabor Alin-Gabriel; Gavrilovici Andrei; Stan Adrian Tudor; Idorasi Laura; Sinescu Cosmin; Negruțiu Meda-Lavinia

    2017-01-01

    Three-dimensional (3D) printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS), stereolithography, fused deposition mo...

  13. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Inkjet-printed silver tracks on different paper substrates

    CSIR Research Space (South Africa)

    Joubert, T-H

    2015-08-01

    Full Text Available Inkjet printing is a widely used patterning method in industrial and scientific applications, and has also drawn attention in the field of printed electronics in recent years [1]. In this work, conductive silver tracks were achieved by inkjet...

  15. Design rules for vertical interconnections by reverse offset printing

    Science.gov (United States)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Ushijima, Hirobumi

    2018-03-01

    Formation of vertical interconnections by reverse offset printing was investigated, particularly focusing on the transfer step, in which an ink pattern is transferred from a polydimethylsiloxane (PDMS) sheet for the step coverage of contact holes. We systematically examined the coverage of contact holes made of a tapered photoresist layer by varying the hole size, the hole depth, PDMS elasticity, PDMS thickness, printing speed, and printing indentation depth. Successful ink filling was achieved when the PDMS was softer, and the optimal PDMS thickness varied depending on the size of the contact holes. This behaviour is related to the bell-type uplift deformation of incompressible PDMS, which can be described by contact mechanics numerical simulations. Based on direct observation of PDMS/resist-hole contact behaviour, the step coverage of contact holes typically involves two steps of contact area growth: (i) the PDMS first touches the bottom of the holes and then (ii) the contact area gradually and radially widens toward the tapered sidewall. From an engineering perspective, it is pointed out that mechanical synchronisation mismatch in the roll-to-sheet type printing invokes the cracking of ink layers at the edges of contact holes. According to the above design rule, ink filling into a contact hole with thickness of 2.5 µm and radius of 10 µm was achieved. Contact chain patterns with 1386 points of vertical interconnections with the square hole size of up to 10 µm successfully demonstrated the validity of the technique presented herein.

  16. Numerical simulation of evaporation and absorption of inkjet printed droplets

    NARCIS (Netherlands)

    Siregar, D.P.

    2012-01-01

    Inkjet printing is an important field of research for many industrial applications. In particular, the inkjet-printing technology is widely used in the production of a text or graphics of documents stored in electronic form by printing ink on papers and the manufacturing of microarray slides by

  17. Text accessibility by people with reduced contrast sensitivity.

    Science.gov (United States)

    Crossland, Michael D; Rubin, Gary S

    2012-09-01

    Contrast sensitivity is reduced in people with eye disease, and also in older adults without eye disease. In this article, we compare contrast of text presented in print and digital formats with contrast sensitivity values for a large cohort of subjects in a population-based study of older adults (the Salisbury Eye Evaluation). Contrast sensitivity values were recorded for 2520 adults aged 65 to 84 years living in Salisbury, Maryland. The proportion of the sample likely to be unable to read text of different formats (electronic books, newsprint, paperback books, laser print, and LED computer monitors) was calculated using published contrast reserve levels required to perform spot reading, to read with fluency, high fluency, and under optimal conditions. One percent of this sample had contrast sensitivity less than that required to read newsprint fluently. Text presented on an LED computer monitor had the highest contrast. Ninety-eight percent of the sample had contrast sensitivity sufficient for high fluent reading of text (at least 160 words/min) on a monitor. However, 29.6% were still unlikely to be able to read this text with optimal fluency. Reduced contrast of print limits text accessibility for many people in the developed world. Presenting text in a high-contrast format, such as black laser print on a white page, would increase the number of people able to access such information. Additionally, making text available in a format that can be presented on an LED computer monitor will increase access to written documents.

  18. Study of lip prints: A forensic study

    Directory of Open Access Journals (Sweden)

    Vikash Ranjan

    2014-01-01

    Full Text Available Background: Although several studies have been done on lip prints for human identification in forensic science, there is a doubt about their use in gender determination. Aims: The present study was designed to study the lip groove patterns in all the quadrants of both male and female subjects to identify the sex, based on the patterns of the grooves of the lip prints. Study Design: 300 lip prints were collected from volunteers of D. J. College of Dental Sciences and Research, Modinagar (UP. Materials and Methods: Lip prints were recorded with lip stick and transferred on to a glass slide. Statistical Analysis: Pearson chi-square test was adopted for statistical analysis and probability value (P value was calculated. Conclusion: In our study, none of the lip prints were identical, thus confirming the role of lip prints in individual identification. According to Suzuki′s classification, Type I, II, III and IV patterns were significant in gender determination.

  19. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  20. HBS-1: A Modular Child-Size 3D Printed Humanoid

    Directory of Open Access Journals (Sweden)

    Lianjun Wu

    2016-01-01

    Full Text Available An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1 intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM and the design for assembly (DFA philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks.

  1. 3D printed glass: surface finish and bulk properties as a function of the printing process

    Science.gov (United States)

    Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven

    2015-03-01

    It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.

  2. How do typographical factors affect reading text and comprehension performance in Arabic?

    Science.gov (United States)

    Ganayim, Deia; Ibrahim, Raphiq

    2013-04-01

    The objective of this study was to establish basic reading performance that could lead to useful design recommendations for print display text formats and layouts for the improvement of reading and comprehension performance of print text, such as academic writings, books, and newspapers, of Arabic language. Readability of English print text has been shown to be influenced by a number of typographical variables, including interline spacing, column setting and line length, and so on.Therefore, it is very important to improve the reading efficiency and satisfaction of print text reading and comprehension by following simple design guidelines. Most existing research on readability of print text is oriented to build guidelines for designing English texts rather than Arabic. However, guidelines built for English script cannot be simply applied for Arabic script because of orthographic differences. In the current study, manipulating interline spacing and column setting and line length generated nine text layouts. The reading and comprehension performance of 210 native Arab students assigned randomly to the different text layouts was compared. Results showed that the use of multicolumn setting (with medium or short line length) affected comprehension achievement but not reading and comprehension speed. Participants' comprehension scores were better for the single-column (with long line length) than for the multicolumn setting. However, no effect was found for interline spacing. The recommendations for appropriate print text format and layout in Arabic language based on the results of objective measures facilitating reading and comprehension performance is a single-column (with long line length) layout with no relevance of the interline spacing.

  3. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    Science.gov (United States)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  4. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.

    Science.gov (United States)

    Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R

    2018-01-01

    Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.

  5. Ultrafast Laser Engraving Method to Fabricate Gravure Plate for Printed Metal-Mesh Touch Panel

    Directory of Open Access Journals (Sweden)

    Weiyuan Chen

    2015-10-01

    Full Text Available In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in large size process, substrate material limitation due to etching solution availability, and process complexity. We developed ultra-fast laser technology to directly engrave a stainless plate, a gravure plate, to be used for fabricating 23 in. metal-mesh touch panel by gravure offset printing process. The technology employs high energy pulse to ablate materials from a substrate. Because the ultra-fast laser pulse duration is shorter than the energy dissipation time between material lattices, there is no heating issue during the ablation process. Therefore, no volcano-type protrusion on the engraved line edges occurs, leading to good printing quality. After laser engraving, we then reduce surface roughness of the gravure plate using electro-polishing process. Diamond like carbon (DLC coating layer is then added onto the surface to increase scratch resistance. We show that this procedure can fabricate gravure plate for gravure offset printing process with minimum printing linewidth 10.7 μm. A 23 in. metal-mesh pattern was printed using such gravure plate and fully functional touch panel was demonstrated in this work.

  6. Cost viability of 3D printed house in UK

    Science.gov (United States)

    Tobi, A. L. Mohd; Omar, S. A.; Yehia, Z.; Al-Ojaili, S.; Hashim, A.; Orhan, O.

    2018-03-01

    UK has been facing housing crisis due to the rising price of the property on sale. This paper will look into the viability of 3D printing technology as an alternative way for house construction on UK. The analysis will be carried out based on the data until the year of 2014 due to limited resources availability. Details cost breakdown on average size house construction cost in UK were analysed and relate to the cost viability of 3D printing technology in reducing the house price in UK. It is found that the 3D printing generates saving of up to around 35% out of total house price in UK. This cost saving comes from the 3D printed construction of walls and foundations for material and labour cost.

  7. 3D-Printing for Analytical Ultracentrifugation.

    Directory of Open Access Journals (Sweden)

    Abhiksha Desai

    Full Text Available Analytical ultracentrifugation (AUC is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

  8. Health Sciences Patrons Use Electronic Books More than Print Books

    Directory of Open Access Journals (Sweden)

    Robin Elizabeth Miller

    2017-09-01

    Full Text Available A Review of: Li, J. (2016. Is it cost-effective to purchase print books when the equivalent e-book is available? Journal of Hospital Librarianship, 16(1, 40-48. http://dx.doi.org/10.1080/15323269.2016.1118288 Abstract Objective – To compare use of books held simultaneously in print and electronic formats. Design – Case study. Setting – A health sciences library at a public comprehensive university with a medical college in the southern United States. Subjects – Usage data for 60 books held by the library simultaneously in print and electronically. The titles were on standing order in print and considered “core” texts for clinical, instructional, or reference for health sciences faculty, students, and medical residents. Methods – Researchers collected usage data for 60 print titles from the integrated library system and compared the data to COUNTER reports for electronic versions of the same titles, for the period spanning 2010-2014. Main Results – Overall, the 60 e-book titles were used more than the print versions, with the electronic versions used a total of 370,695 times while the print versions were used 93 times during the time period being examined. Conclusion – The use of electronic books outnumbers the use of print books of the same title.

  9. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  10. Photooxidation stability of microcapsules in thermochromic prints

    Directory of Open Access Journals (Sweden)

    Mirela Rozic

    2018-03-01

    Full Text Available In this paper, photochemical stability of two thermochromic prints was investigated: vegetable oil based offset and UV curing screen printing ink. The obtained preliminary results can be used for further detailed examination of prints stability. It is well known that thermochromic printing inks are very unstabile when exsposed to UV irradiance and this is why they are mainly used for applications that are not directly exposed to sunlight. The results of the study show the heterogeneous nature of photooxidative degradation of thermochromic prints, and the opposite behaviour of photooxidation can be noticed comparing examined prints. Microcapsules in the UV curable screen print by fixation with polar polymer binder can create a new products stable to photoxidation. For this reason, the areas where the microcapsules and binder are bonded together are stable. Degraded only areas where binder is not related to microcapsules. Microcapsules in offset print do not have the ability to create new stabile forms due to smaller polarity and different chemical composition of the offset oxidized binder. In the offset print, the microcapsules are the least photooxidative stable and also cause lower photooxidative stability of the binder in contact with them. Cavities are formed in the areas where microcapsules are in contact with the binder, while the areas in which the binder is not in contact with microcapsules are not degraded.

  11. The Influence of Parameters of Ink-Jet Printing on Photoluminescence Properties of Nanophotonic Labels Based on Ag Nanoparticles for Smart Packaging

    Directory of Open Access Journals (Sweden)

    Olha Hrytsenko

    2017-01-01

    Full Text Available Ag nanoparticles are perspective for the use in ink-jet printed smart packaging labels in order to protect a customer from counterfeit or inform them about the safety of consumption of a packaged product via changeable luminescence properties. It is determined that, to obtain printed images with the highest luminescence intensity, using the most technologically permissible concentration of fluorescent component in the ink composition and applying inks to papers with the lowest absorbance are recommended. The highest contrast of a tone fluorescent image can be obtained on papers with high degree of sizing. It is found that the use of papers with low optical brightness agent (OBA content with a wide range of luminescence intensity allows obtaining the same visual legibility of a printed nanophotonic label. The increase in the relative area of raster elements of an image leads to nonlinear increase in luminescence intensity of printed images in long-wave area of visible spectrum, affecting the luminescence color of a printed label. For wide industrial production of printed nanophotonic labels for smart packaging, the created principles of reproduction of nanophotonic images applied onto paper materials by ink-jet printing technique using printing inks containing Ag nanoparticles should be taken into account.

  12. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  13. Large-Print Computers: An Evaluation of Their Features.

    Science.gov (United States)

    Morrissette, Diane L.

    1984-01-01

    Three large-print computers for visually handicapped users are evaluated: the Apollo Computer Terminal System, Viewscan Text System, and Visualtek Large Print Display Processor. The Apollo Professional Typing System, an option with the Apollo Terminal System, is also reviewed. Advantages and disadvantages are explored. (Author/CL)

  14. Cardiothoracic Applications of 3D Printing

    Science.gov (United States)

    Giannopoulos, Andreas A.; Steigner, Michael L.; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R.; Rybicki, Frank J.; Mitsouras, Dimitris

    2016-01-01

    Summary Medical 3D printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as CT, MRI, echocardiography and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D printed models can improve diagnosis and allow for advanced pre-operative planning. The majority of applications reported involve congenital heart diseases, valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing peri-operative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  15. Inheritance pattern of lip prints among Malay population: A pilot study.

    Science.gov (United States)

    George, Renjith; Nora Afandi, Nurulain Syafinaz Binti; Zainal Abidin, Siti Nur Hayati Binti; Binti Ishak, Nur Ismawani; Soe, Htoo Htoo Kyaw; Ismail, Abdul Rashid Hj

    2016-04-01

    We assessed the resemblance of lip print patterns between parents and biological offspring in families of 31 Malay students as well as the distribution of different types of lip print in the study group. Only a few studies have successfully established the inheritance pattern of lip prints. Such studies can be population specific and need to be conducted in various populations. No such study have been conducted in Malay population in Malaysia, according to our knowledge. Present study was carried out to ascertain whether there is any inherence pattern in lip prints and thereby to investigate the potential role of lip prints in personal identification. We found 58.06% resemblance of lip print patterns between the parents and their biological offspring in our study. The influence of heredity in lip print pattern is still a new concept and there is lack of concrete evidence. The data from our study shows that there is potential influence of inheritance in the lip print patterns among the family members. Further researches involving larger samples size are suggested to derive more reliable and accurate results. The most common lip print pattern among the study group is type I (29.84%) followed by type II (23.12%), type III (22.45%), type I' (13.44%), type IV (9.54%) and type V (1.61%). Racial variations in lip print patterns and their prevalence may serve as an aid in forensic identification and crime scene investigation. The results of this pilot study will help in establishing guidelines for future researches on lip print analysis in Malaysia. Lip print patterns are unique and individualistic. However, there are some similarities in basic patterns of lip prints between family members which may be attributed to influence of inheritance. 1. To determine the inheritance pattern of lip prints among Malay family members of the student. 2. To identify the distribution of different types of lip prints among Malay population. and Observational pilot study. Lip prints of 124

  16. Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory

    Science.gov (United States)

    Wissman, Kathryn T.; Rawson, Katherine A.

    2015-01-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…

  17. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs

    International Nuclear Information System (INIS)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-01-01

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer. (paper)

  18. Digital Textile Printing

    OpenAIRE

    Moltchanova, Julia

    2011-01-01

    Rapidly evolving technology of digital printing opens new opportunities on many markets. One of them is the printed fabric market where printing companies as well as clients benefit from new printing methods. This thesis focuses on the digital textile printing technology and its implementation for fabric-on-demand printing service in Finland. The purpose of this project was to study the technology behind digital textile printing, areas of application of this technology, the requirements ...

  19. 3D-printed upper limb prostheses: a review.

    Science.gov (United States)

    Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul

    2017-04-01

    This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.

  20. 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility

    Directory of Open Access Journals (Sweden)

    G. Szebenyi

    2017-07-01

    Full Text Available We introduced a general concept to create smart, (multifunctional interphases in polymer composites with layered reinforcements, making use of 3D printing. The concept can be adapted for both thermoplastic and thermoset matrix-based composites with either thermoplastic- or thermoset-enriched interphases. We showed feasibility using an example of a composite containing a thermoset matrix/thermoplastic interphase. Carbon fiber unidirectional reinforcing layers were patterned with poly(ε-caprolactone (PCL through 3D printing, then infiltrated with an amine-cured epoxy (EP. The corresponding composites were subjected to static and dynamic flexure tests. The PCL-rich interphase markedly improved the ductility in static tests without deteriorating the flexural properties. Its effect was marginal in Charpy impact tests, which can be explained with effects of specimen and PCL pattern sizes. The PCL-rich interphase ensured self-healing when triggered by heat treatment above the melting temperature of PCL.

  1. The future of 3D printing technology in biomedicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2015-07-01

    Full Text Available 3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any imaginable geometry through the translation of radiological images of patients into digital.stl 3D print files. The creation of anatomical models based on the patient’s pathological conditions using 3D printing technologies would provide good models for training and to design surgical approaches. Hence, 3D printing not only will transform medical healthcare industry but also promises new converging technologies in the field of regenerative medicine.

  2. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    Science.gov (United States)

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.

    2011-01-01

    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  3. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  4. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  5. A computational model for doctoring fluid films in gravure printing

    Energy Technology Data Exchange (ETDEWEB)

    Hariprasad, Daniel S., E-mail: dshari@unm.edu [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Grau, Gerd [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720-1770 (United States); Schunk, P. Randall [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185-0826 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Tjiptowidjojo, Kristianto [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)

    2016-04-07

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  6. 3D Printing and Bioprinting in MEMS Technology

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-07-01

    Full Text Available 3D printing and bioprinting have advanced significantly in printing resolution in recent years, which presents a great potential for fabricating small and complex features suitable for microelectromechanical systems (MEMS with new functionalities. This special issue aims to give a glimpse into the future of this research field.

  7. Grey Balance Colorimetry of the Automatically Guided Printing

    Directory of Open Access Journals (Sweden)

    Igor Zjakic

    2005-12-01

    Full Text Available Apart from visual control, it is possible to controll the ink on a print by means of auxilliary instruments - densitometer, colorimeter and spectral photometer.One of the problems in offset printing reproduction is the inconstancy of theink flow and ink consumption during the run printing. This problem appears because of the change of ink viscosity, the change of ink temperature, the change of fountain solution quantity in ink, the change of printing speed etc.This article shows the measurements of the chromatic values performed by spectral photometer on the control - signal strip from the very beginning of the run printing till 20000th print. Gray balance (CMY by means of CIE L*a*b* system has been investigated. Densitometric values of the solid area, the growth of the screen values and doubling-shear have been determined. The results of the spectrophotometric measurements of gray balance and the densitometric measurements of the solid tint have been analyzed.

  8. Paper-Based Textbooks with Audio Support for Print-Disabled Students.

    Science.gov (United States)

    Fujiyoshi, Akio; Ohsawa, Akiko; Takaira, Takuya; Tani, Yoshiaki; Fujiyoshi, Mamoru; Ota, Yuko

    2015-01-01

    Utilizing invisible 2-dimensional codes and digital audio players with a 2-dimensional code scanner, we developed paper-based textbooks with audio support for students with print disabilities, called "multimodal textbooks." Multimodal textbooks can be read with the combination of the two modes: "reading printed text" and "listening to the speech of the text from a digital audio player with a 2-dimensional code scanner." Since multimodal textbooks look the same as regular textbooks and the price of a digital audio player is reasonable (about 30 euro), we think multimodal textbooks are suitable for students with print disabilities in ordinary classrooms.

  9. Nanosilver conductive lines made by spray coating and aerosol jet printing technique

    Science.gov (United States)

    Krzeminski, Jakub; Wroblewski, Grzegorz; Dybowska-Sarapuk, Lucja; Lepak, Sandra; Jakubowska, Malgorzata

    2017-08-01

    Printing electronics even though the printing techniques are known for a long time, are gaining in importance. The possibility of making the electronic circuits on flexible, big-area substrates with efficient and cheap technology make it attractive for the electronic industry. Spray coating, as a one of printing methods, additionally provide the chance to print on the non-flat, complicated shaped substrates. Despite the spray coating is mostly used to print a big pads, it is reachable to spray the separate conductive lines both as a quickly-produced prototype and as a fully manufactured circuit. Our work presents the directly printed lines with spray coating technique. For the printing process self-made ink was used. We tested three different approaches to line formation and compare them in the terms of line edge, resistivity and thickness. Line profiles provide the information about the roughness and the line size. In the end we showed the aerosol jet printed meander to give an overview of this similar to spray coating but more sophisticated technique.

  10. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  11. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

    Science.gov (United States)

    Yang, Qiang; Li, Huizeng; Li, Mingzhu; Li, Yanan; Chen, Shuoran; Bao, Bin; Song, Yanlin

    2017-11-29

    Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 printing electronics and biotechnologies.

  12. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  13. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.

    Science.gov (United States)

    Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng

    2018-05-01

    Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of the Optical Properties of Screen-Printed and Aerosol-Printed and Plated Fingers of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    R. Woehl

    2008-01-01

    Full Text Available One main efficiency loss in industrial solar cells is the shading of the cell caused by the metal front side contacts. With the aerosol-printing technique plus an additional light-induced plating (LIP step, not only is the geometrical contact width narrowed compared to screen-printed contacts but also the shape of the finger changes. In this work, the effective shading of different finger types is analysed with two different measurement methods. The essential parameter for characterising the finger is the effective width which can be reduced drastically compared to the geometrical width due to total internal reflection at the glass-air layer and the reflection from the roundish edges of the contact fingers into the cell. This parameter was determined with different methods. It could be shown that for aerosol-printed fingers the effective (optical width is only 38% of its geometrical width, while for standard screen-printed fingers it is 47%. The measured values are compared to a theoretical model for an aerosol-printed and plated finger and are in good agreement.

  15. Steganography and Prospects of Its Application in Protection of Printing Documents

    Directory of Open Access Journals (Sweden)

    M. O. Zhmakin

    2010-09-01

    Full Text Available In the article the principle of steganography reveals. Three modern directions of concealment of the information are presented. Application classical steganography in printing prints is described.

  16. Structural colour printing from a reusable generic nanosubstrate masked for the target image

    International Nuclear Information System (INIS)

    Rezaei, M; Jiang, H; Kaminska, B

    2016-01-01

    Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated. (paper)

  17. Structural colour printing from a reusable generic nanosubstrate masked for the target image

    Science.gov (United States)

    Rezaei, M.; Jiang, H.; Kaminska, B.

    2016-02-01

    Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated.

  18. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2014-08-01

    Full Text Available A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs modified with Prussian blue nanoparticles (PBNPs deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA∙mM–1∙cm–2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd.

  19. Customizable engineered blood vessels using 3D printed inserts.

    Science.gov (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T

    2016-04-15

    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Novel materials for electronic device fabrication using ink-jet printing technology

    International Nuclear Information System (INIS)

    Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi

    2009-01-01

    Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 deg. C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.

  1. Recent trends in print portals and Web2Print applications

    Science.gov (United States)

    Tuijn, Chris

    2009-01-01

    For quite some time now, the printing business has been under heavy pressure because of overcapacity, dropping prices and the delocalization of the production to low income countries. To survive in this competitive world, printers have to invest in tools that, on one hand, reduce the production costs and, on the other hand, create additional value for their customers (print buyers). The creation of customer portals on top of prepress production systems allowing print buyers to upload their content, approve the uploaded pages based on soft proofs (rendered by the underlying production system) and further follow-up the generation of the printed material, has been illustrative in this respect. These developments resulted in both automation for the printer and added value for the print buyer. Many traditional customer portals assume that the printed products have been identified before they are presented to the print buyer in the portal environment. The products are, in this case, typically entered by the printing organization in a so-called MISi system after the official purchase order has been received from the print buyer. Afterwards, the MIS system then submits the product to the customer portal. Some portals, however, also support the initiation of printed products by the print buyer directly. This workflow creates additional flexibility but also makes things much more complex. We here have to distinguish between special products that are defined ad-hoc by the print buyer and standardized products that are typically selected out of catalogs. Special products are most of the time defined once and the level of detail required in terms of production parameters is quite high. Systems that support such products typically have a built-in estimation module, or, at least, a direct connection to an MIS system that calculates the prices and adds a specific mark-up to calculate a quote. Often, the markup is added by an account manager on a customer by customer basis; in this

  2. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  3. Synthesis and inkjet printing of aqueous ZnS:Mn nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Peter D., E-mail: peter.angelo@mail.utoronto.ca [Department of Chemical Engineering and Applied Chemistry, Pulp and Paper Centre, University of Toronto, 200 College Street, Toronto, Canada M5G3A1 (Canada); Kronfli, Rosanna; Farnood, Ramin R. [Department of Chemical Engineering and Applied Chemistry, Pulp and Paper Centre, University of Toronto, 200 College Street, Toronto, Canada M5G3A1 (Canada)

    2013-04-15

    Nanoparticles of ZnS doped with Mn, a common photo- and electro-luminescent species, were synthesized in water using a competitive precipitation method. Particle size was controlled by selection of an appropriate stabilizer added during synthesis, 3-mercaptopropionic acid, which also rendered the particles water-dispersible after synthesis and isolation. Primary particle size was ∼3 nm, with small agglomerates of 10–20 nm in size. The particles were stably dispersed into water at a loading of 2.5 w/w%. This dispersion formed the basis for an aqueous inkjet ink, containing 1 w/w% ZnS:Mn. The small particle size allowed the nanoparticles to be successfully delivered to several substrates without loss during filtration or jetting. Bright photoluminescence was observed in the printed patterns on some substrates (glass, photo-paper, foil, etc.) but was quenched on other substrates where the ink penetrated into the surface (uncoated paper). The small drop volume (10 pL) allowed for reasonably high-resolution printed patterns to be deposited, albeit with significant surface roughness due to the “coffee-ring” effect. -- Highlights: ► Highly monodisperse ZnS:Mn nanoparticles were prepared in aqueous solution. ► ZnS:Mn incorporated into a fluid with suitable properties for inkjet printing. ► Photoluminescence was bright on impermeable substrates but quenched on paper. ► Film smoothness was compromised by high solids loading, and high viscosity of ink.

  4. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Ruixin [Institute of Medical Equipment, Academy of Military and Medical Sciences, No. 106, Wandong Street, Hedong District, Tianjin 300000 (China); Jiang, Wenxue, E-mail: jiangortholivea@sina.cn [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Sun, Yufu [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Hui [Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, TJ 300052 (China)

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  5. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    International Nuclear Information System (INIS)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-01-01

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  6. Direct laser printing using viscous printer's ink

    International Nuclear Information System (INIS)

    Nasibov, A S; Bagramov, V G; Berezhnoi, K V

    2006-01-01

    The results of experiments on direct laser printing using viscous printer's ink with the help of a copper vapour laser (CVL)-based device are presented. The highly reflecting CVL cavity mirror was replaced by a spatial mirror modulator (SMM). Viscous printer's ink was used for printing. A pressure pulse produced at the boundary (on which an intensified and diminished image of the SMM was projected) between the ink and a transparency was used for transferring the ink to the plastic card. It was shown that the use of a CVL allowed a maximum printing speed of ∼80 cm 2 s -1 , a resolution of 625 dpi and up to 15 gradations. The dependence of the emission intensity of the element being projected (pixel) on its diameter is studied. It is shown that an increase in the brightness of this element with decreasing its size is caused by the summation of the laser and amplified radiation. (laser applications and other topics in quantum electronics)

  7. Goethe in the Hall and His Journeys in Printed Rome

    Directory of Open Access Journals (Sweden)

    Victor Plahte Tschudi

    2015-12-01

    Full Text Available The article focuses on graphic reproductions in Johann Wolfgang von Goethe’s 'Italian Journey'. This travel account gives a clear sense of how important prints were as part of Goethe’s education and preparation for the encounter with classical Roman monuments. As the text itself was edited and rewritten thirty to forty years after the journey itself, however, prints also became crucial in the attempt to remember that journey. In other words, the author of the 'Journey', in contrast to the youthful traveler, no longer sees engravings of Rome, but Rome through engravings. The discussion takes as a point of departure Goethe’s vast collection of prints, still kept in Weimar. Measured up against the references in the travel journal, prints not only reflected his impression of monuments, but also structured those impressions, as the elderly man looks back and reassembles his memories to make an official account of his life. However, it is too easy to ascribe this reliance on prints to a fading memory — on the contrary. As he grows into old age, Goethe’s idea of graphic reproduction evolves in parallel with his increasingly refined theories of nature. His growing preference for prints depicted as ruins reflects the aging author’s own sense of change and transformation.

  8. Effects of ozone on the various digital print technologies: Photographs and documents

    Energy Technology Data Exchange (ETDEWEB)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D, E-mail: dmbpph@rit.ed [Image Permanence Institute at Rochester Institute of Technology, 70 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2010-06-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  9. Effects of ozone on the various digital print technologies: Photographs and documents

    International Nuclear Information System (INIS)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D

    2010-01-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  10. Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jung-Shiun; Liang, Jau-En; Yi, Han-Liou [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China); Chen, Shu-Hua [China Steel Corporation, Kaohsiung City 806, Taiwan, ROC (China); Hua, Chi-Chung, E-mail: chmcch@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China)

    2016-06-15

    Numerous recent applications with inorganic solar cells and energy storage electrodes make use of silver pastes through processes like screen-printing to fabricate fine conductive lines for electron conducting purpose. To date, however, there have been few studies that systematically revealed the properties of the silver paste in relation to the mechanical and electronic performances of screen-printing thick films. In this work, the rheological properties of a series of model silver pastes made of silver powders of varying size (0.9, 1.3, and 1.5 μm) and shape (irregular and spherical) were explored, and the results were systematically correlated with the morphological feature (scanning electron microscopy, SEM) and mechanical (peeling test) and electronic (transmission line method, TLM) performances of screen-printing dried or sintered thick films. We provided evidence of generally intimate correlations between the powder dispersion state in silver pastes—which is shown to be well captured by the rheological protocols employed herein—and the performances of screen-printing thick films. Overall, this study suggests the powder dispersion state and the associated phase behavior of a paste sample can significantly impact not only the morphological and electronic but also mechanical performances of screen-printing thick films, and, in future perspectives, a proper combination of silver powders of different sizes and even shapes could help reconcile quality and stability of an optimum silver paste. - Highlights: • Powder dispersion correlates well with screen-printing thick film performances. • Rheological fingerprints can be utilized to fathom the powder dispersion state. • Good polymer-powder interactions in the paste ensure good powder dispersion. • Time-dependent gel-like viscoelastic features are found with optimum silver pastes. • The size and shape of functional powder affect the dispersion and film performances.

  11. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2017-08-01

    Full Text Available LiFePO4 (LFP is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW-based 3D printing was used to fabricate three-dimensional (3D LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  12. Influence of Software on the Features of Laser-printed Characters

    Directory of Open Access Journals (Sweden)

    Yuanli Han

    2017-01-01

    Full Text Available Verifying the authenticity or otherwise of printed documents is one of the most important aspects of questioned document examination and plays a vital role in the field of forensic science. In recent years, continued developments in the quality of impression combined with ever-cheaper toner printers have allowed this technology to spread. It is now used in an increasing number of homes for all types of documents, including for criminal aims. Here, the factors that influence the printed features in text files are studied in relation to the operating system and the word processing software. The Net Application report in October 2014 showed that the market shares of Windows 7 and Windows XP were 53.05% and 17.18%, respectively. The Forrester report in October 2013 showed that the market share of Microsoft Office was more than 85%, the top three word processors being Microsoft Word 2003, 2007, and 2010. In this study, Windows XP (shortened to XP, Windows 7 (shortened to Win7, Microsoft Word 2003/2007/2010, WPS Office 2013, and the PDF format are chosen as the most common operating systems and word processing software. WPS Office was developed by the Chinese company Kingsoft Co., Ltd. and is widely used in China. A particular text file was designed and edited and was printed on a laser printer. The features of the printed characters were captured using an Anyty 3R digital microscope, Printer Expert, and X-printer devices. Coincidence comparison and outline feature extraction were used to evaluate the differences. It is shown that XP and Win7 have no effect on the printed features of text files. However, the printed features do depend to a certain extent on the word-processing software, with the PDF format having the greatest influence.

  13. One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2017-11-01

    Full Text Available In order to facilely increase the color yield of ink-jet prints using reactive inks, one-bath pretreatment of cotton fabrics with pretreatment formulation containing sodium alginate, glycidyltrimethylammonium chloride (GTA, sodium hydroxide, and urea is designed for realizing sizing and cationization at the same time. The pretreatment conditions, including the concentrations of GTA and alkali, baking temperature, and time are optimized based on the result of thecolor yield on cationic cotton for magenta ink. The mechanism for color yield enhancement on GTA-modified fabrics is discussed and the stability of GTA in the print paste is investigated. Scanning electron microscopey, tear strength, and thermogravimetric analysis of the modified and unmodified cotton are studied and compared. Using the optimal pretreatment conditions, color yield on the cationic cotton for magenta, cyan, yellow, and black reactive inks are increased by 128.7%, 142.5%, 71.0%, and 38.1%, respectively, compared with the corresponding color yield on the uncationized cotton. Much less wastewater is produced using this one-bath pretreatment method. Colorfastness of the reactive dyes on the modified and unmodified cotton is compared and boundary clarity between different colors is evaluated by ink-jet printing of colorful patterns.

  14. 4D Printed Actuators with Soft-Robotic Functions.

    Science.gov (United States)

    López-Valdeolivas, María; Liu, Danqing; Broer, Dick Jan; Sánchez-Somolinos, Carlos

    2018-03-01

    Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. REAL TIME QUALITY CONTROL OF THE HEATSET OFFSET PRINTING PROCESS

    Directory of Open Access Journals (Sweden)

    Răzvan-George RĂCHERU

    2016-05-01

    Full Text Available Offset lithography is one of the most common ways of creating printed materials. Compared to other printing methods, offset printing is best suited for economically producing large volumes of high quality prints in a manner that requires little maintenance. Because of the high speed and the high volume of the printing press, we have to rely on automation for press control and not just to the printer’s eye. When printing an image that has more than one color, it is necessary to print each color separately and ensure each color overlaps the others precisely. If this is not done, the finished image will look fuzzy, blurred or "out of register". To help line the colors up correctly, a system of registration is necessary. Therefore, the use of an automated real time quality control system will result in a more consistent color for the customer and less waste for the printer.

  16. 3D-printed microwell arrays for Ciona microinjection and timelapse imaging.

    Directory of Open Access Journals (Sweden)

    Clint Gregory

    Full Text Available Ascidians such as Ciona are close chordate relatives of the vertebrates with small, simple embryonic body plans and small, simple genomes. The tractable size of the embryo offers considerable advantages for in toto imaging and quantitative analysis of morphogenesis. For functional studies, Ciona eggs are considerably more challenging to microinject than the much larger eggs of other model organisms such as zebrafish and Xenopus. One of the key difficulties is in restraining the eggs so that the microinjection needle can be easily introduced and withdrawn. Here we develop and test a device to cast wells in agarose that are each sized to hold a single egg. This injection mold is fabricated by micro-resolution stereolithography with a grid of egg-sized posts that cast corresponding wells in agarose. This 3D printing technology allows the rapid and inexpensive testing of iteratively refined prototypes. In addition to their utility in microinjection, these grids of embryo-sized wells are also valuable for timelapse imaging of multiple embryos.

  17. Digital Inkjet Textile Printing

    OpenAIRE

    Wang, Meichun

    2017-01-01

    Digital inkjet textile printing is an emerging technology developed with the rise of the digital world. It offers a possibility to print high-resolution images with unlimited color selection on fabrics. Digital inkjet printing brings a revolutionary chance for the textile printing industry. The history of textile printing shows the law how new technology replaces the traditional way of printing. This indicates the future of digital inkjet textile printing is relatively positive. Differen...

  18. Dramatic Advance in Quality in Flexographic Printing

    Directory of Open Access Journals (Sweden)

    Jochen Richter

    2004-12-01

    Full Text Available The enormous changes in flexography printing in recent years concerning the printing quality achievable cannot generally be ascribed to a single revolutionary invention, but are the result of continuous developments to the complete system. Thus the direct drive technology in all machine types and its associated advantages in terms of printing length corrections has become established since drupa 2000. The race for ever finer raster rolls has also been completed to the benefit of improvements in bowl geometry and in ceramic surfaces. Clearly improved colour transfer behaviour has become feasible as a result. In a closely intermeshed system such as flexography printing this naturally has to have an effect on the printing colours used. Further improvements in bonding agents and pigment concentrations now allow users to print ever thinner colour layers while maintaining all of the required authenticities.Furthermore, it has become possible to reduce additional disturbing characteristics in the UV colour area, such as the unpleasant odour. While the digital imaging of printing plates has primarily been improved in terms of economic efficiency by the use of up to eight parallel laser beams, extreme improvements in the system are noticeable especially in the area of directly engraved printing moulds. Whereas many still dismissed directly engraved polymer plates at the last drupa as a laboratory system, the first installation was recently placed on the market a mere three years later. A further noteworthy innovation of recent years that has reached market maturity is thin sleeve technology, which combines the advantages of a photopolymer plate with a round imaged printing mould. There are no high sleeve costs for each printing mould, except for one-off cost for an adapter sleeve. To conclude, it can be said that although flexography printing has experienced many new features in the time between drupa 2000 and today, it still has enormous potential for

  19. Design and 3D Printing of Scaffolds and Tissues

    Directory of Open Access Journals (Sweden)

    Jia An

    2015-06-01

    Full Text Available A growing number of three-dimensional (3D-printing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS and fused deposition modeling (FDM processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

  20. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  1. Printed photodetectors

    International Nuclear Information System (INIS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-01-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems. (paper)

  2. Printed photodetectors

    Science.gov (United States)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  3. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  4. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2018-01-01

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid: glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements. PMID:28244880

  5. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid

    International Nuclear Information System (INIS)

    Duarte Campos, Daniela F; Blaeser, Andreas; Weber, Michael; Fischer, Horst; Jäkel, Jörg; Neuss, Sabine; Jahnen-Dechent, Wilhelm

    2013-01-01

    Over the last decade, bioprinting technologies have begun providing important tissue engineering strategies for regenerative medicine and organ transplantation. The major drawback of past approaches has been poor or inadequate material-printing device and substrate combinations, as well as the relatively small size of the printed construct. Here, we hypothesise that cell-laden hydrogels can be printed when submerged in perfluorotributylamine (C 12 F 27 N), a hydrophobic high-density fluid, and that these cells placed within three-dimensional constructs remain viable allowing for cell proliferation and production of extracellular matrix. Human mesenchymal stem cells and MG-63 cells were encapsulated into agarose hydrogels, and subsequently printed in high aspect ratio in three dimensional structures that were supported in high density fluorocarbon. Three-dimensional structures with various shapes and sizes were manufactured and remained stable for more than six months. Live/dead and DAPI stainings showed viable cells 24 h after the printing process, as well as after 21 days in culture. Histological and immunohistochemical analyses after 14 and 21 days revealed viable cells with marked matrix production and signs of proliferation. The compressive strength values of the printed gels consequently increased during the two weeks in culture, revealing encouraging results for future applications in regenerative medicine. (paper)

  6. 48 CFR 952.208-70 - Printing.

    Science.gov (United States)

    2010-10-01

    ... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.208-70 Printing. As prescribed... reproduction in excess of the limits set forth above, the Contractor shall notify the Contracting Officer in...

  7. 3D-printed, sugar cube-size microplasma on a hybrid chip used as a spectral lamp to characterize UV-Vis transmission characteristics of polycarbonate chips for microfluidic applications

    Science.gov (United States)

    Devathasan, D.; Trebych, K.; Karanassios, Vassili

    2013-05-01

    A 3d-printed, solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube has been used as light source to document the Ultra Violet (UV) and visible transmission characteristics of differentthickness polycarbonate chips that are often used for microfluidic applications. The hybrid microplasma chip was fitted with a quartz plate because quartz is transparent to UV.

  8. Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics

    International Nuclear Information System (INIS)

    Zhang, Zhiliang; Zhu, Weiyue

    2015-01-01

    An effective and facile strategy was developed to successfully synthesize nearly uniform silver nanoparticles (AgNPs) with particle size of <10 nm, and demonstrated to achieve the sintering of AgNPs at room temperature for inkjet-printed flexible electronics. In such system, a series of different chain-length alkylamines were exploited as capped molecules to controllable synthesis of uniform AgNPs with the mean nanoparticle size in rang of 8.6 ± 0.9, 8.9 ± 1.2 and 9.2 ± 1.6 nm, and these ultra-small nanoparticles were very favorable to attain an excellent printing fluency. Based on the as-synthesized AgNPs, a sequence of flexible electrocircuits was successfully fabricated by ink-jet printing technique. After the dipped treatment, the printed AgNPs were achieved to spontaneous coalescence and aggregation at room temperature induced by preferential dissolution of capped molecules on AgNPs surfaces into methanol solution. These aggregated AgNPs demonstrated superior controllability, excellent stability and low resistivity in the range of 31.6–26.5 μΩ cm, and would have enormous potential in the application to be tailored for assembly of optoelectronics devices. - Highlights: • Silver nanoparticles with particle size of <10 nm was controllably synthesized. • The sintering of silver nanoparticles was conducted at room temperature. • The resistivity was reached as low as 26.5 μΩ cm for flexible electronics

  9. Definition of Quality Criteria of the Technological Process of Narrow Web UV-Printing

    Directory of Open Access Journals (Sweden)

    Volodymyr Shybanov

    2013-11-01

    Full Text Available The application of Narrow Web UV-flexographic printing has several advantages compared with offset printing. In particular, they are the lack of the operation of water-ink balance setting in the technological process, the ability to print on a wide range of materials and so on. Though the imprint quality is clearly based on standards in offset printing, there are no clearly indicated requirements for Narrow Web UV flexographic printing. The absence of such requirements on quality parameters of the technological process of Narrow Web UV-Printing predetermined conducting its analysis with the help of expert surveys.

  10. THE DISTRIBUTION NETWORK DEVELOPEMENT IN PRINT MEDIA

    Directory of Open Access Journals (Sweden)

    Loredana Iordache

    2012-09-01

    Full Text Available In this article, we identify the characteristics of the distribution networks in print media and the features ofmarketing in mass media, emphasising the attempts initiated by the press in the context of the financial crisis. Theresearch was conducted through a case study on regional newspaper,, Gazeta de Sud'' The main problems analyzedwere decreasing newspaper circulation and advertising. The research taken into account trends and developmentsworldwide print media as well as print media particularities of Romania, with a focus on identifying factors thatcontributed to the closure of a significant number of newspapers, or their transition from printed version online format.The paper is mainly focused on some practical issues related to the way of organizing the print media sales networks,the authors elaborating proposals for the implementation of certain measures to increase the circulation, on the onehand, and on the hand, to increase the sale of ad space in the newspaper. Compared with other products, thenewspaper has unique characteristics caused by daily changing content, and therefore the product itself. Having ahighly perishable, the content of media products should always seen in relation to time, which requires more rapiddistribution and continuous production.

  11. Algorithms of control parameters selection for automation of FDM 3D printing process

    Directory of Open Access Journals (Sweden)

    Kogut Paweł

    2017-01-01

    Full Text Available The paper presents algorithms of control parameters selection of the Fused Deposition Modelling (FDM technology in case of an open printing solutions environment and 3DGence ONE printer. The following parameters were distinguished: model mesh density, material flow speed, cooling performance, retraction and printing speeds. These parameters are independent in principle printing system, but in fact to a certain degree that results from the selected printing equipment features. This is the first step for automation of the 3D printing process in FDM technology.

  12. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...

  13. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells

    International Nuclear Information System (INIS)

    Othon, Christina M; Ringeisen, Bradley R; Wu Xingjia; Anders, Juanita J

    2008-01-01

    Biological laser printing (BioLP(TM)) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes (∼μLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 μm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth

  14. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Jong Woo Choi

    2015-05-01

    Full Text Available Three-dimensional (3D printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

  15. Future of the particle replication in nonwetting templates (PRINT) technology.

    Science.gov (United States)

    Xu, Jing; Wong, Dominica H C; Byrne, James D; Chen, Kai; Bowerman, Charles; DeSimone, Joseph M

    2013-06-24

    Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    Science.gov (United States)

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  17. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    Science.gov (United States)

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  18. Development of novel 3D-printed robotic prosthetic for transradial amputees.

    Science.gov (United States)

    Gretsch, Kendall F; Lather, Henry D; Peddada, Kranti V; Deeken, Corey R; Wall, Lindley B; Goldfarb, Charles A

    2016-06-01

    Upper extremity myoelectric prostheses are expensive. The Robohand demonstrated that three-dimensional printing reduces the cost of a prosthetic extremity. The goal of this project was to develop a novel, inexpensive three-dimensional printed prosthesis to address limitations of the Robohand. The prosthesis was designed for patients with transradial limb amputation. It is shoulder-controlled and externally powered with an anthropomorphic terminal device. The user can open and close all five fingers, and move the thumb independently. The estimated cost is US$300. After testing on a patient with a traumatic transradial amputation, several advantages were noted. The independent thumb movement facilitated object grasp, the device weighed less than most externally powered prostheses, and the size was easily scalable. Limitations of the new prosthetic include low grip strength and decreased durability compared to passive prosthetics. Most children with a transradial congenital or traumatic amputation do not use a prosthetic. A three-dimensional printed shoulder-controlled robotic prosthesis provides a cost effective, easily sized and highly functional option which has been previously unavailable. © The International Society for Prosthetics and Orthotics 2015.

  19. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  20. Optical 3D printing: bridging the gaps in the mesoscale

    Science.gov (United States)

    Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2018-05-01

    Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial

  1. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  2. Medical scientific publications printed and its evolution into the digital age

    Directory of Open Access Journals (Sweden)

    Tunia Gil Hernández

    2013-03-01

    Full Text Available This article analyzes the historical evolution of the Cuban medical publications over time, from its appearance in print to the digital age. Reference is made to the first forms of scientific communication in the world, the advent of printing in America and the historical and social events that favored the birth and development of printed publications on the island of Cuba, as well as its development in the digital age.

  3. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  4. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    Science.gov (United States)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  5. Printing Insecurity? The Security Implications of 3D-Printing of Weapons.

    Science.gov (United States)

    Walther, Gerald

    2015-12-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.

  6. EDMS based workflow for Printing Industry

    Directory of Open Access Journals (Sweden)

    Prathap Nayak

    2013-04-01

    Full Text Available Information is indispensable factor of any enterprise. It can be a record or a document generated for every transaction that is made, which is either a paper based or in electronic format for future reference. A Printing Industry is one such industry in which managing information of various formats, with latest workflows and technologies, could be a nightmare and a challenge for any operator or an user when each process from the least bit of information to a printed product are always dependendent on each other. Hence the information has to be harmonized artistically in order to avoid production downtime or employees pointing fingers at each other. This paper analyses how the implementation of Electronic Document Management System (EDMS could contribute to the Printing Industry for immediate access to stored documents within and across departments irrespective of geographical boundaries. The paper outlines initially with a brief history, contemporary EDMS system and some illustrated examples with a study done by choosing Library as a pilot area for evaluating EDMS. The paper ends with an imitative proposal that maps several document management based activities for implementation of EDMS for a Printing Industry.

  7. 3D printing of octacalcium phosphate bone substitutes

    Directory of Open Access Journals (Sweden)

    Vladimir S. Komlev

    2015-06-01

    Full Text Available Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here we proposed a relatively simple route for 3D printing of octacalcium phosphates in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed octacalcium phosphate blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed octacalcium phosphates bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  8. ACTIVATED ADSORPTION ON CLAY OF MICROPOLLUTANTS FROM PAPER PRINTING INDUSTRY

    Directory of Open Access Journals (Sweden)

    DIANA C. MIRILĂ

    2018-03-01

    Full Text Available The paper presents a preliminary study of chemisorption onto anionic and cationic clays, in order to reduce the content of pollutants from a paper printing effluent, collected after technological step named: printing of paper fabric manufacturing. The procedure of filtration fallowed by adsorption process is an effective, fast and low cost technique for treatment of black effluent resulting from paper printing industry. The key parameters tested to achieve a high efficiency for the movement of micropollutants from printing fluid were substrate dose and contact time. The highest treatment performance was obtained for cationic substrate at pH = 6.80, in contact and agitated magnetically for 30 respectively 90 minutes at room temperature.

  9. Inkjet printing technology and conductive inks synthesis for microfabrication techniques

    International Nuclear Information System (INIS)

    Dang, Mau Chien; Dung Dang, Thi My; Fribourg-Blanc, Eric

    2013-01-01

    Inkjet printing is an advanced technique which reliably reproduces text, images and photos on paper and some other substrates by desktop printers and is now used in the field of materials deposition. This interest in maskless materials deposition is coupled with the development of microfabrication techniques for the realization of circuits or patterns on flexible substrates for which printing techniques are of primary interest. This paper is a review of some results obtained in inkjet printing technology to develop microfabrication techniques at Laboratory for Nanotechnology (LNT). Ink development, in particular conductive ink, study of printed patterns, as well as application of these to the realization of radio-frequency identification (RFID) tags on flexible substrates, are presented. (paper)

  10. Robust Color Choice for Small-size League RoboCup Competition

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2004-10-01

    Full Text Available In this paper, the problem of choosing a set of most separable colors in a given environment is discussed. The proposed method models the process of generating theoretically computed best colors, printing of these colors through a color printer, and imaging the printed colors through a camera into an integrated framework. Thus, it provides a feasible way to generate practically best separable colors for a given environment with a set of given equipment. A real world application (robust color choice for small-size league RoboCup competition is used as an example to illustrate the proposed method. Experimental results on this example show the competitiveness of the colors learned from our algorithm compared to the colors adopted by other teams which are chosen via an extensive trial and error process using standard color papers.

  11. Why Are My Breasts Different Sizes? (For Teens)

    Science.gov (United States)

    ... Feelings Expert Answers Q&A Movies & More for Teens Teens site Sitio para adolescentes Body Mind Sexual Health ... Why Are My Breasts Different Sizes? KidsHealth / For Teens / Why Are My Breasts Different Sizes? Print Having ...

  12. Effect of Cartoon Illustrations on the Comprehension and Evaluation of Information Presented in the Print and Audio Mode.

    Science.gov (United States)

    Sewell, Edward H., Jr.

    This study investigates the effects of cartoon illustrations on female and male college student comprehension and evaluation of information presented in several combinations of print, audio, and visual formats. Subjects were assigned to one of five treatment groups: printed text, printed text with cartoons, audiovisual presentations, audio only…

  13. Influences of three-dimensional printing to product innovation design thinking

    Directory of Open Access Journals (Sweden)

    Liu Ling

    2017-01-01

    Full Text Available The increasing demand of individuation brings new challenges to traditional product design. This paper studies and analyzes three-dimensional print technology promotes the future development of product innovation design. The advantages of 3D printing equipment can help creative products enterprises shorten product manufacturing period and make them powerful in competition.

  14. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli

    Directory of Open Access Journals (Sweden)

    Feroze Mahmood

    2014-01-01

    Full Text Available Aims and Objectives: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. Materials and Methods: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Results: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Conclusions: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  15. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2015-07-01

    Full Text Available Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS and polylactic acid (PLA scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  16. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  17. Prevalence of bile duct cancer among printing industry workers in comparison with other industries.

    Science.gov (United States)

    Okamoto, Etsuji; Kikuchi, Kiyotaka; Endo, Ginji

    2013-01-01

    The aim of this study was to assess the risk of developing bile duct cancer among workers in the other printing industry in comparison with workers in all industries in general. Prevalence of bile duct cancer was compared between workers in the printing industry and age-standardized controls in all other industries using the claims database of the Japan Health Insurance Association, which insures workers of small-medium sized employers of all industries. Young (aged 30-49) male workers in the printing industry showed an elevated but insignificant standardized prevalence rate ratio (SPRR) for bile duct cancer in comparison with workers in all other industries (SPRR: 1.78; 95%CI: 0.63-5.00). The risk was higher for intrahepatic bile duct cancer but remained insignificant (SPRR: 3.03; 95%CI: 0.52-17.56). The sharply elevated risk of bile duct cancer observed among proof-printing workers of a printing factory in Osaka may not be generalizable to workers in the printing industry nationwide.

  18. Continuous Hydrothermal Flow Synthesis of Gd-doped CeO2 (GDC) Nanoparticles for Inkjet Printing of SOFC Electrolytes

    DEFF Research Database (Denmark)

    Xu, Yu; Farandos, Nicholas M.; Rosa, Massimo

    2018-01-01

    nanoparticles were further processed into inks for inkjet printing. Despite the small particle size/large surface area, inks with excellent printing behavior were formulated. For proof-of-concept, thin GDC layers were printed on a) green NiO-GDC substrates, and on b) pre-sintered NiO-YSZ substrates. While...... no dense layers could be obtained on the green NiO-GDC substrates, GDC nanoparticles printed on NiO-YSZ substrates formed a dense continuous layer after firing at 1300 °C....

  19. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  20. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies

    International Nuclear Information System (INIS)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-01-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  1. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    Science.gov (United States)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  2. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias, E-mail: ingo.wirth@ifam.frauhofer.d [Fraunhofer Institute for Manufacturing Technology and Applied Materials Research (IFAM), Wiener Strasse 12, 28359 Bremen (Germany)

    2010-03-15

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  3. From the printer: Potential of three-dimensional printing for orthopaedic applications

    Directory of Open Access Journals (Sweden)

    Sze-Wing Mok

    2016-07-01

    Full Text Available Three-dimensional (3D printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before “tissues from the printer” can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology.

  4. THE IDENTIFICATION OF EAR PRINTS USING COMPLEX GABOR FILTERS

    Directory of Open Access Journals (Sweden)

    Alexander A S Gunawan

    2012-05-01

    Full Text Available Biometrics is a method used to recognize humans based on one or a few characteristicsphysical or behavioral traits that are unique such as DNA, face, fingerprints, gait, iris, palm, retina,signature and sound. Although the facts that ear prints are found in 15% of crime scenes, ear printsresearch has been very limited since the success of fingerprints modality. The advantage of the useof ear prints, as forensic evidence, are it relatively unchanged due to increased age and have fewervariations than faces with expression variation and orientation. In this research, complex Gaborfilters is used to extract the ear prints feature based on texture segmentation. Principal componentanalysis (PCA is then used for dimensionality-reduction where variation in the dataset ispreserved. The classification is done in a lower dimension space defined by principal componentsbased on Euclidean distance. In experiments, it is used left and right ear prints of ten respondentsand in average, the successful recognition rate is 78%. Based on the experiment results, it isconcluded that ear prints is suitable as forensic evidence mainly when combined with otherbiometric modalities.Keywords: Biometrics; Ear prints; Complex Gabor filters; Principal component analysis;Euclidean distance

  5. A study of liberation and separation process of metals from printed circuit boards (PCBs) scrap

    International Nuclear Information System (INIS)

    Noorliyana, H.A.; Zaheruddin, K.; Mohd Fazlul Bari; M. Sri Asliza; Nurhidayah, A.Z.; Kamarudin, H.

    2009-01-01

    Since the metallic elements are covered with or encapsulated by various plastic or ceramic materials on printed circuit boards, a mechanical pre-treatment process allowing their liberation and separation is first needed in order to facilitate their efficient extraction with hydrometallurgy route. Even though many studies have been performed on the mechanical pre-treatment processing for the liberation and separation of the metallic components of printed circuit boards scrap, further studies are required to pave the way for efficient recycling of waste printed circuit boards through a combination of mechanical pre-treatment and hydrometallurgical technology. In this work, a fundamental study has been carried out on the mechanical pre-treatment that is necessary to recover metallic concentrates from printed circuit boards scraps. The most important problem is to separate or release particles from the associated gangue minerals at the possible liberation particle size. The distribution of metallic elements has been also investigated in relation to the particle size of the milled printed circuit boards. The samples of printed circuit boards were separated into the magnetic and non-magnetic fractions by Rare-earth Roll Magnetic separator. Thereafter, the magnetic and non-magnetic fractions were separated to heavy fraction (metallic elements) and light fraction (plastic) by Mozley Laboratory Table Separator. The recovery ratios and the evaluation of the metallic concentrates recovered by each separation process were also investigated. This study is expected to provide useful data for the efficient mechanical separation of metallic components from printed circuit boards scraps. (author)

  6. Development Directions of Innovative Processes in Publishing and Printing Industry

    Directory of Open Access Journals (Sweden)

    Kotlyarevsky, Ya.V.

    2015-03-01

    Full Text Available Provision of innovative development of publishing and printing industry in the context of global trends is investigated. Generalized characteristic of organizational and economic relations arising due to development of publishing and printing spheres on the basis of innovation is presented; an attempt to evaluate their impact and the prospects for the national economy is made.

  7. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  8. A guide to printed circuit board design

    CERN Document Server

    Hamilton, Charles

    1984-01-01

    A Guide to Printed Circuit Board Design discusses the basic design principles of printed circuit board (PCB). The book consists of nine chapters; each chapter provides both text discussion and illustration relevant to the topic being discussed. Chapter 1 talks about understanding the circuit diagram, and Chapter 2 covers how to compile component information file. Chapter 3 deals with the design layout, while Chapter 4 talks about preparing the master artworks. The book also covers generating computer aided design (CAD) master patterns, and then discusses how to prepare the production drawing a

  9. Laser Nanosoldering of Golden and Magnetite Particles and its Possible Application in 3D Printing Devices and Four-Valued Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-12-01

    Full Text Available In recent years the 3D printing methods have been developing rapidly. This article presents researches about a new composite consisted of golden and magnetite nanoparticles which could be used for this technique. Preparation of golden nanoparticles by laser ablation and their soldering by laser green light irradiation proceeded in water environment. Magnetite was obtained on chemical way. During experiments it was tested a change of a size of nanoparticles during laser irradiation, surface plasmon resonance, zeta potential. The obtained golden - magnetite composite material was magnetic after laser irradiation. On the end there was considered the application it for 3D printing devices, water filters and four-valued non-volatile memories.

  10. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing

    Science.gov (United States)

    Ji, Lina; Wang, Changzhen; Wu, Wenjie; Tan, Chao; Wang, Guoyu; Duan, Xuan-Ming

    2017-10-01

    Stainless steel 316L (SS 316L) powder was spheroidized by plasma processing to improve its suitability for powder 3D printing. The obtained spheroidized (sphero) powder was characterized in terms of its crystalline phases, elemental composition, morphology, particle size and distribution, light absorption, and flow properties. The elemental composition of the sphero powder met the Chinese standard for SS 316L except for its Si content. The volume fraction of ferrite increased after plasma processing. Furthermore, plasma processing was shown to not only reduce the mean size of the particles in the size range of 10 to 100 μm but also generate particles in the size range of 0.1 to 10 μm. The smaller particles filled the voids among larger particles, increasing the powder density. The light absorption was also increased owing to enhanced internal reflection. Although the basic flow energy decreased after plasma processing, the flow function (FF) value was smaller for the sphero powder, indicating a lower flowability of the sphero powder. However, the density of SS 316L pieces printed with commercial and sphero powders was 98.76 pct and 98.16 pct of the SS 316L bulk density, respectively, indicating the suitability of the sphero powder for 3D printing despite an FF below 10.

  11. Printed Organic and Inorganic Electronics: Devices To Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-11-11

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal\\\\text-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed.

  12. Printed Graphene Derivative Circuits as Passive Electrical Filters

    Directory of Open Access Journals (Sweden)

    Dogan Sinar

    2018-02-01

    Full Text Available The objective of this study is to inkjet print resistor-capacitor (RC low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  13. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    Science.gov (United States)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  14. Selecting Full-Text Undergraduate Periodicals Databases.

    Science.gov (United States)

    Still, Julie M.; Kassabian, Vibiana

    1999-01-01

    Examines how libraries and librarians can compare full-text general periodical indices, using ProQuest Direct, Periodical Abstracts (via Ovid), and EBSCOhost as examples. Explores breadth and depth of coverage; manipulation of results (email/download/print); ease of use (searching); and indexing quirks. (AEF)

  15. Effect of doctoring on the performance of direct gravure printing for conductive microfine lines

    Science.gov (United States)

    Phuong Hoang, Huu; Lim Ko, Sung

    2015-11-01

    Printed electronics on flexible thin film has challenged and inspired the motivation of scientists in many fields. Among traditional printing methods such as stamping, flexography, offset, screen-printing, and inkjet, the gravure method is expected to reduce costs and increase productivity for printed electronics applications. In this research, conductive microfine line patterns, which print out the layer as microelectrodes for organic thin film transistor (OTFT) or microcircuit lines, have been designed with different size widths and lengths according to the printing direction, MD (machine direction), and CMD (cross machine direction, or transverse direction, TD, which is popularly used in industry). These patterns were printed with nano-particle silver ink on PI thin film, but had some serious problems with discontinuity and less filling after doctoring and printing. To solve these problems, the doctoring effect is investigated and analyzed before ink transferring, mainly in the printing machine direction and CMD. The uniformity and accuracy of the microfine lines are controlled and improved in order to achieve the stability of the printed pattern lines. In this work, considering the effect of the deflection of the doctor blade in the CMD (transverse direction), a doctoring model in the CMD is proposed and compared with the experimental result. Experimentally, proper doctoring conditions like blade stiffness and doctoring pressure are sought.

  16. Effect of doctoring on the performance of direct gravure printing for conductive microfine lines

    International Nuclear Information System (INIS)

    Hoang, Huu Phuong; Ko, Sung Lim

    2015-01-01

    Printed electronics on flexible thin film has challenged and inspired the motivation of scientists in many fields. Among traditional printing methods such as stamping, flexography, offset, screen-printing, and inkjet, the gravure method is expected to reduce costs and increase productivity for printed electronics applications. In this research, conductive microfine line patterns, which print out the layer as microelectrodes for organic thin film transistor (OTFT) or microcircuit lines, have been designed with different size widths and lengths according to the printing direction, MD (machine direction), and CMD (cross machine direction, or transverse direction, TD, which is popularly used in industry). These patterns were printed with nano-particle silver ink on PI thin film, but had some serious problems with discontinuity and less filling after doctoring and printing. To solve these problems, the doctoring effect is investigated and analyzed before ink transferring, mainly in the printing machine direction and CMD. The uniformity and accuracy of the microfine lines are controlled and improved in order to achieve the stability of the printed pattern lines. In this work, considering the effect of the deflection of the doctor blade in the CMD (transverse direction), a doctoring model in the CMD is proposed and compared with the experimental result. Experimentally, proper doctoring conditions like blade stiffness and doctoring pressure are sought. (paper)

  17. The role and impact of 3D printing technologies in casting

    Directory of Open Access Journals (Sweden)

    Jin-wu Kang

    2017-05-01

    Full Text Available 3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry sector are profoundly reviewed. 3D printing has the potential to supplement or partially replace the casting method. Today, some castings can be directly printed by metal powders, for example, titanium alloys, nickel alloys and steel parts. Meanwhile, 3D printing has found an unique position in other casting aspects as well, such as printing the wax pattern, ceramic shell, sand core, sand mould, etc. Most importantly, 3D printing is not just a manufacturing method, it will also revolutionize the design of products, assemblies and parts, such as castings, patterns, cores, moulds and shells in casting production. The solid structure of castings and moulds will be redesigned in future into truss or spatially open and skeleton structures. This kind of revolution is just sprouting, but it will bring unimaginable impact on manufacturing including casting production. Nobody doubts the potential of 3D printing technologies in manufacturing, but they do have limitations and drawbacks.

  18. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Udayabhanu Jammalamadaka

    2018-03-01

    Full Text Available Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  19. Development of 3D printing system for human bone model manufacturing using medical images

    International Nuclear Information System (INIS)

    Oh, Wang Kyun

    2017-01-01

    The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals

  20. Development of 3D printing system for human bone model manufacturing using medical images

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Wang Kyun [Dept. of Radiology, Chungcheongbuk-do Cheongju Medical Center, Cheongju (Korea, Republic of)

    2017-09-15

    The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

  1. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    Science.gov (United States)

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  2. Special Issue: NextGen Materials for 3D Printing

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2018-04-01

    Full Text Available Only a handful of materials are well-established in three-dimensional (3D printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing.

  3. Engraving Print Classification

    International Nuclear Information System (INIS)

    Hoelck, Daniel; Barbe, Joaquim

    2008-01-01

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints

  4. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  5. Late Print Culture’s Social Media Revolution: Authorship, Collaboration and Copy Machines

    Directory of Open Access Journals (Sweden)

    Kate Eichhorn

    2013-05-01

    Full Text Available This article examines the impact of copy machines on late twentieth-century print cultures. Specifically, this article makes a case for “dry copying,” the method of print reproduction perfected by Xerox in the late 1950s, as a unique medium rather than a weak imitation of other printing methods. Following the claim that the widespread availability of copy machines in the late twentieth century represented the arrival of a new medium, this article further examines how understandings of authorship, established with print culture, came undone in the era of the copy machine. Finally, this paper makes a case for understanding copy machines as a form of “social media” that opened up opportunities for writers, readers and publishers to create, share, exchange and comment on texts and images in communities and networks of their own making in the decades preceding the development of the web.

  6. Support-free interior carving for 3D printing

    Directory of Open Access Journals (Sweden)

    Yue Xie

    2017-03-01

    Full Text Available Recent interior carving methods for functional design necessitate a cumbersome cut-and-glue process in fabrication. We propose a method to generate interior voids which not only satisfy the functional purposes but are also support-free during the 3D printing process. We introduce a support-free unit structure for voxelization and derive the wall thicknesses parametrization for continuous optimization. We also design a discrete dithering algorithm to ensure the printability of ghost voxels. The interior voids are iteratively carved by alternating the optimization and dithering. We apply our method to optimize the static and rotational stability, and print various results to evaluate the efficacy. Keywords: Interior carving, Support-free, Voxels dithering, Shape optimization, 3D printing

  7. Damage-free patterning of ferroelectric lead zirconate titanate thin films for microelectromechanical systems via contact printing

    Science.gov (United States)

    Welsh, Aaron

    This thesis describes the utilization and optimization of the soft lithographic technique, microcontact printing, to additively pattern ferroelectric lead zirconate titanate (PZT) thin films for application in microelectromechanical systems (MEMS). For this purpose, the solution wetting, pattern transfer, printing dynamics, stamp/substrate configurations, and processing damages were optimized for incorporation of PZT thin films into a bio-mass sensor application. This patterning technique transfers liquid ceramic precursors onto a device stack in a desired configuration either through pattern definition in the stamp, substrate or both surfaces. It was determined that for ideal transfer of the pattern from the stamp to the substrate surface, wetting between the solution and the printing surface is paramount. To this end, polyurethane-based stamp surfaces were shown to be wet uniformly by polar solutions. Patterned stamp surfaces revealed that printing from raised features onto flat substrates could be accomplished with a minimum feature size of 5 mum. Films patterned by printing as a function of thickness (0.1 to 1 mum) showed analogous functional properties to continuous films that were not patterned. Specifically, 1 mum thick PZT printed features had a relative permittivity of 1050 +/- 10 and a loss tangent of 2.0 +/- 0.4 % at 10 kHz; remanent polarization was 30 +/- 0.4 muC/cm 2 and the coercive field was 45 +/- 1 kV/cm; and a piezoelectric coefficient e31,f of -7 +/- 0.4 C/m2. No pinching in the minor hysteresis loops or splitting of the first order reversal curve (FORC) distributions was observed. Non-uniform distribution of the solution over the printed area becomes more problematic as feature size is decreased. This resulted in solutions printed from 5 mum wide raised features exhibiting a parabolic shape with sidewall angles of ˜ 1 degree. As an alternative, printing solutions from recesses in the stamp surface resulted in more uniform solution thickness

  8. Printing Insecurity? The Security Implications of 3D-Printing of Weapons

    OpenAIRE

    Walther, Gerald

    2014-01-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the US. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing te...

  9. Printed electronic on flexible and glass substrates

    Science.gov (United States)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  10. Weather resistance of inkjet prints on plastic substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2015-06-01

    Full Text Available The development of wide format inkjet printers made the technology available for large area commercials. Outdoor advertising uses a wide range of substrate including paperboard, vinyl, canvas, mesh; the material of the substrate itself has to endure the physical and chemical effects of local weather. Weather elements (humidity, wind, solar irradiation degrade printed products inevitably; plastic products have better resistance against them, than paper based substrates. Service life of the printed product for outdoor application is a key parameter from the customer’s point of view. There are two ways to estimate expected lifetime: on site outdoor testing or laboratory testing. In both cases weathering parameters can be monitored, however laboratory testing devices may produce the desired environmental effects and thus accelerate the aging process. Our research objective was to evaluate the effects of artificial weathering on prints produced by inkjet technology on plastic substrates. We used a large format CMYK inkjet printer (Mutoh Rockhopper II, with Epson DX 4 print heads to print our test chart on two similar substrates (PVC coated tarpaulins with grammages 400 g/m2 and 440 g/m2. Specimen were aged in an Atlas Suntest XLS+ material tester device for equal time intervals. We measured and calculated the gradual changes of the optical properties (optical density, tone value, colour shifts of the test prints.

  11. Design of Logistics Route Planning for Printing Enterprises Based on Baidu Map

    Directory of Open Access Journals (Sweden)

    Da Zhong-Yue

    2017-01-01

    Full Text Available As traditional printing industry is facing fierce competition in the market and logistics becomes a new sources of growth, the traditional printing enterprises want to build and improve their logistics system. So in this paper, the author has designed the logistics planning system based on the Baidu map development kit. It has the function of route planning and location tracking. This system meet the printing enterprise logistics route planning and tracking demand.

  12. THE ANALYSIS OF PARTICULARITIES AND POSSIBILITIES FOR ENSURING QUALITY IN FLEXO PRINTING

    Directory of Open Access Journals (Sweden)

    Gabriela Valeria FOLEA

    2017-11-01

    Full Text Available Training printing workers in the use of flexography requires extensive time, as they are expected to gain knowledge on-site, through hands-on practice, resulting in high costs for the employer. This paper addresses the issue by providing practical information up front. Applying this information correctly during the printing process leads to a quality product. The study was created to analyse the following aspects: problems in printing - nonconformities and defects; quality of the print - seen as a habit of working neatly and correctly; quality when working with die cuts; quality in the prepress process.

  13. Factors that affect micro-tooling features created by direct printing approach

    Science.gov (United States)

    Kumbhani, Mayur N.

    Current market required faster pace production of smaller, better, and improved products in shorter amount of time. Traditional high-rate manufacturing process such as hot embossing, injection molding, compression molding, etc. use tooling to replicate feature on a products. Miniaturization of many product in the field of biomedical, electronics, optical, and microfluidic is occurring on a daily bases. There is a constant need to produce cheaper, and faster tooling, which can be utilize by existing manufacturing processes. Traditionally, in order to manufacture micron size tooling features processes such as micro-machining, Electrical Discharge Machining (EDM), etc. are utilized. Due to a higher difficulty to produce smaller size features, and longer production cycle time, various additive manufacturing approaches are proposed, e.g. selective laser sintering (SLS), inkjet printing (3DP), fused deposition modeling (FDM), etc. were proposed. Most of these approaches can produce net shaped products from different materials such as metal, ceramic, or polymers. Several attempts were made to produce tooling features using additive manufacturing approaches. Most of these produced tooling were not cost effective, and the life cycle of these tooling was reported short. In this research, a method to produce tooling features using direct printing approach, where highly filled feedstock was dispensed on a substrate. This research evaluated different natural binders, such as guar gum, xanthan gum, and sodium carboxymethyl cellulose (NaCMC) and their combinations were evaluated. The best binder combination was then use to evaluate effect of different metal (316L stainless steel (3 mum), 316 stainless steel (45 mum), and 304 stainless steel (45 mum)) particle size on feature quality. Finally, the effect of direct printing process variables such as dispensing tip internal diameter (500 mum, and 333 mum) at different printing speeds were evaluated.

  14. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  15. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.

    Directory of Open Access Journals (Sweden)

    Martin D Brennan

    Full Text Available 3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.

  16. Influence of the surface roughness of coated and uncoated papers on the digital print mottle

    Directory of Open Access Journals (Sweden)

    Ivana Jurič

    2014-07-01

    Full Text Available Many factors influence the occurrence of print mottle in prints. In printing process three main components are involved: printing press, substrate and toner. They can be considered as separate components, but in most cases their interaction influences the quality of the print. The goal of this work was to examine the influence of surface roughness of different types of paper (coated and uncoated on print mottle of electrophotographic digital prints. We set up a hypothesis that print mottle will be more apparent on rougher surfaces. In the experimental part we printed four different substrates with different surface properties on electrophotographic printing press. Morphology of the papers surface was analysed using atomic force microscopy (AFM from which surface properties were calculated. For print mottle characterization Gray level co-occurrence matrix (GLCM method was used. Based on the measurements and results we can conclude, contrary to the initial hypothesis, that uncoated papers with rougher surfaces produce smaller print mottle values.

  17. Spectrophotometric Examination of Rough Print Surfaces

    Directory of Open Access Journals (Sweden)

    Erzsébet Novotny

    2011-05-01

    Full Text Available The objective was to assess the impact of the surface texture of individual creative paper types (coated or patternedon the quality of printing and to identify to what extent the various creative paper types require specific types ofspectrophotometers. We used stereomicroscopic images to illustrate unprinted and printed surfaces of creative papertypes. Surface roughness was measured to obtain data on the unevenness of surfaces. Spectrophotometric tests wereused to select the most suitable spectrophotometer from meters with different illumination setup for testing anygiven print. For the purpose of testing, we used spectrophotometers which are commonly available generally used totest print products for colour accuracy. With the improvement of measuring geometries, illumination setup, colourmeasurement becomes more and more capable of producing reliable results unaffected by surface textures. Our testshave proved this fact by showing that the GretagMacbeth Spectrolino with annular illumination is less sensitive tosurface texture than the X-Rite Spetrodensitometer and the Techkon SpetroDens with directional illumination. Furthertests have brought us to the conclusion that there is a difference even between the two devices with directionalillumination. While the X-Rite 530 Spectrodensitometer is more suitable for testing coated surfaces, the TechkonSpectroDens can come close to ΔE*ab values produced by the annular illuminated device for textured surfaces.

  18. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  19. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  20. Print mass media: territory of survival

    Directory of Open Access Journals (Sweden)

    Evgeny V. Akhmadulin

    2016-09-01

    Full Text Available The article is devoted to the problem of the survival of the print media in the information market in the conditions of intense competition with online journalism and the whole information flow on the Internet. Despite the predictions of the impending death of print periodicals, more than half of the world adult population read a daily newspaper. At the same time, the trends taking place in the media market, confirm the reduction of print media segment in favor of the Internet. According to TNS-Russia data, only in 2013 the Internet audience has grown by 6 %. At the same time the circulation of print media in the US fell by 15 % in 2008- 2014, in Western Europe – by a quarter. In Russia, subscription circulation periodicals in the second half of 2014 fell by 20.2 %, and on the basis of subscription for the first half of 2015, the national average – 22 % (data of Federal State Unitary Enterprise “Russian Post”. Finding ways to stabilize the fall of the print media, many US publishing houses see the transition from advertcentric business model to consumcentric model. It is necessary to use the specifics and advantages of newspapers and magazines (comfort, media planning logic, analytic, continuity and consistency of the content of individual and hypertext editions, and others to maintain the intellectual elite. Print media targeting to an elite audience (willing to pay for exclusiveness allows publishers to offset the rising cost of issuing paperbased, and consumers (subscribers will give a sense of communion to a certain social community, receiving verified and thorough information. In this case, the subscription to a newspaper or magazine (no retail outlet and online will be fashionable factor of association of elite communities and acquire new qualitative features in the development of civil society.

  1. FEM-based Printhead Intelligent Adjusting Method for Printing Conduct Material

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan

    2017-01-01

    Full Text Available Ink-jet printing circuit board has some advantage, such as non-contact manufacture, high manufacture accuracy, and low pollution and so on. In order to improve the and printing precision, the finite element technology is adopted to model the piezoelectric print heads, and a new bacteria foraging algorithm with a lifecycle strategy is proposed to optimize the parameters of driving waveforms for getting the desired droplet characteristics. Results of numerical simulation show such algorithm has a good performance. Additionally, the droplet jetting simulation results and measured results confirmed such method precisely gets the desired droplet characteristics.

  2. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing

    International Nuclear Information System (INIS)

    Lorber, Barbara; Martin, Keith R; Hsiao, Wen-Kai; Hutchings, Ian M

    2014-01-01

    We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine. (paper)

  3. 3D printing utility for surgical treatment of acetabular fractures.

    Science.gov (United States)

    Chana Rodríguez, F; Pérez Mañanes, R; Narbona Cárceles, F J; Gil Martínez, P

    2018-05-25

    Preoperative 3D modelling enables more effective diagnosis and simulates the surgical procedure. We report twenty cases of acetabular fractures with preoperative planning performed by pre-contouring synthesis plates on a 3D printed mould obtained from a computarized tomography (CT) scan. The mould impression was made with the DaVinci 1.0 printer model (XYZ Printing). After obtaining the printed hemipelvis, we proceeded to select the implant size (pelvic Matta system, Stryker ® ) that matched the characteristics of the fracture and the approach to be used. Printing the moulds took a mean of 385minutes (322-539), and 238grams of plastic were used to print the model (180-410). In all cases, anatomic reduction was obtained and intra-operative changes were not required in the initial contouring of the plates. The time needed to perform the full osteosynthesis, once the fracture had been reduced was 16.9minutes (10-24). In one case fixed with two plates, a postoperative CT scan showed partial contact of the implant with the surface of the quadrilateral plate. In the remaining cases, the contact was complete. In conclusion, our results suggest that the use of preoperative planning, by printing 3D mirror imaging models of the opposite hemipelvis and pre-contouring plates over the mould, might effectively achieve a predefined surgical objective and reduce the inherent risks in these difficult procedures. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  4. Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-01-01

    Full Text Available The 3D printing technology is catching attention nowadays. It has certain advantages over the traditional fabrication processes. We give a chronical review of the 3D printing technology from the time it was invented. This technology has also been used to fabricate millimeter-wave (mmWave and terahertz (THz passive devices. Though promising results have been demonstrated, the challenge lies in the fabrication tolerance improvement such as dimensional tolerance and surface roughness. We propose the design methodology of high order device to circumvent the dimensional tolerance and suggest specific modelling of the surface roughness of 3D printed devices. It is believed that, with the improvement of the 3D printing technology and related subjects in material science and mechanical engineering, the 3D printing technology will become mainstream for mmWave and THz passive device fabrication.

  5. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung-Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  6. Script-independent text line segmentation in freestyle handwritten documents.

    Science.gov (United States)

    Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi

    2008-08-01

    Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.

  7. Printed Electronics

    Science.gov (United States)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  8. Printing activity of the Metropolitan Gavriil Banulescu Bodoni

    Directory of Open Access Journals (Sweden)

    Nicolae Fustei

    2013-07-01

    Full Text Available The present study is dedicated to the printing activity of the Metropolitan Gavriil Bănulescu-Bodoni’s activity. The religious and secular prints made from Chisinau’s Diocesan typography by Metropolitan Gavriil promote the idea of national unity of people from Moldavia, Wallachia and Transylvania. Due to the new documents from archives, more evidences and „more light” are being spread over the activity of famous hierarch, whose life is linked with the history of culture of three nations – Romanians, Ukrainians and Russians.

  9. Application of 3-dimensional printing technology to construct an eye model for fundus viewing study.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available To construct a life-sized eye model using the three-dimensional (3D printing technology for fundus viewing study of the viewing system.We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs. Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D printing. Together with the main printed structure, polymethyl methacrylate(PMMA aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy.In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value.The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus range viewing research.

  10. Printing quality control automation

    Science.gov (United States)

    Trapeznikova, O. V.

    2018-04-01

    One of the most important problems in the concept of standardizing the process of offset printing is the control the quality rating of printing and its automation. To solve the problem, a software has been developed taking into account the specifics of printing system components and the behavior in printing process. In order to characterize the distribution of ink layer on the printed substrate the so-called deviation of the ink layer thickness on the sheet from nominal surface is suggested. The geometric data construction the surface projections of the color gamut bodies allows to visualize the color reproduction gamut of printing systems in brightness ranges and specific color sectors, that provides a qualitative comparison of the system by the reproduction of individual colors in a varying ranges of brightness.

  11. Francis Bacon's New Science: Rhetoric and the Transformative Power of Print.

    Science.gov (United States)

    Heckel, David

    The process of projecting textual models onto the phenomenal world began with the invention of writing and accelerated through the manuscript culture of classical antiquity and the Middle Ages into the age of print. In Francis Bacon's work, the book (a metaphor for the phenomenal world) adapted to the demands of the printed text and reflects the…

  12. Printed Self-Powered Miniature Air Sampling Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Birmingham

    2017-07-01

    Full Text Available The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE hazardous materials and relay the results. To address these issues, we have developed a self-powered 3-D chip architecture that processes air to produce concentrated size- sorted particle (and vapor samples that could be integrated with on-chip nanoelectronic detectors for the discovery of weapons of mass destruction (WMD. The unique air movement approach is composed of a nanoscale energy harvester that provides electricity to a printed ion-drag pump to push air through coated-microstructured arrays. The self-powered microstructured array air sampler was designed using computational fluid dynamics (CFD modeling to collect particles from 1-10 microns at greater than 99.9999 % efficiency with less than 100 Pascal [Pa] pressure drop at a specified air flow rate. Surprisingly, even at minimum air flow rates below specifications, these CFD predictions were matched by experimental results gathered in a Government aerosol chamber. The microstructured array engineered filter equaled the collection capability of a membrane or a high efficiency particle air (HEPA filter at a fraction of the filter pressure drop.

  13. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-01-01

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  14. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Matthew F. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, California 94305 (United States); Lee, Brian J. [Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, California 94305 (United States); Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Radiology, Physics, Bioengineering and Electrical Engineering, Stanford University, 300 Pasteur Dr., Stanford, California 94305-5128 (United States)

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  15. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    Science.gov (United States)

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to

  16. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  17. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill

    International Nuclear Information System (INIS)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-chun; Kim, Wonbaek

    2009-01-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to 5.0 mm. The fractions of milled printed circuit boards of size 5.0 mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards

  18. Printing at CERN

    CERN Multimedia

    Otto, R

    2007-01-01

    For many years CERN had a very sophisticated print server infrastructure which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today’s situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer regis...

  19. Banned prints in the National and University Library

    Directory of Open Access Journals (Sweden)

    Rozina Švent

    1997-01-01

    Full Text Available The article deals with the formation and operation of the D-collection (a special collection of banned prints in the National and University Library (NUL. The functioning of the collection was constantly faced with different complications caused either by legislation or by librarians themselves, due to a too strict adherence to some unwritten rules ("better one more then one less". In the 50-years period, a unique collection of at that tirne banned prints was formed,complemented by over 17000 articles indexed from different periodicals.

  20. Software System for Vocal Rendering of Printed Documents

    Directory of Open Access Journals (Sweden)

    Marian DARDALA

    2008-01-01

    Full Text Available The objective of this paper is to present a software system architecture developed to render the printed documents in a vocal form. On the other hand, in the paper are described the software solutions that exist as software components and are necessary for documents processing as well as for multimedia device controlling used by the system. The usefulness of this system is for people with visual disabilities that can access the contents of documents without that they be printed in Braille system or to exist in an audio form.

  1. Reading and Not-Printing: Obstruction at the Crater Press

    Directory of Open Access Journals (Sweden)

    Richard Parker

    2014-11-01

    Full Text Available I will begin this paper with a brief and partial history of American printing, detecting a shared predilection for a noticeably maverick relation to the printed page in the works (printed and otherwise of Samuel Keimer and Benjamin Franklin during the colonial period, and the works of Walt Whitman, Emily Dickinson and Mark Twain in the nineteenth-century. I term the interrupted, dialectical printing that connects all of these writer/printers ‘not-printing’, and offer some explanation of his term and a description of some of its manifestations. I will then move on to consider how the idea of ‘not-printing’ might be helpful for the consideration of some contemporary British and American poets and printers before concluding with a description of some of the ways that the productive constraints of such a practice have influenced my own work as editor and printer at the Crater Press.

  2. A 24 GHz CMOS oscillator transmitter with an inkjet printed on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    CMOS based RF circuits have demonstrated efficient performance over the decades. However, one bottle neck with this technology is its lossy nature for passive components such as inductors, antennas etc. Due to this drawback, passives are either implemented off chip or the designers work with the inefficient passives. This problem can be alleviated by using inkjet printing as a post process on CMOS chip. In this work, we demonstrate inkjet printing of a patterned polymer (SU8) layer on a 24 GHz oscillator chip to isolate the lossy Si substrate from the passives which are inkjet printed on top of the SU8 layer. As a proof of concept, a monopole antenna is printed on top of the SU8 layer integrating it with the oscillator through the exposed RF pads to realize an oscillator transmitter. The proposed hybrid fabrication technique can be extended to multiple dielectric and conductive printed layers to demonstrate complete RF systems on CMOS chips which are efficient, cost-effective and above all small in size. © 2016 IEEE.

  3. 3D printing of a wearable personalized oral delivery device: A first-in-human study

    Science.gov (United States)

    Brambilla, Davide

    2018-01-01

    Despite the burgeoning interest in three-dimensional (3D) printing for the manufacture of customizable oral dosage formulations, a U.S. Food and Drug Administration–approved tablet notwithstanding, the full potential of 3D printing in pharmaceutical sciences has not been realized. In particular, 3D-printed drug-eluting devices offer the possibility for personalization in terms of shape, size, and architecture, but their clinical applications have remained relatively unexplored. We used 3D printing to manufacture a tailored oral drug delivery device with customizable design and tunable release rates in the form of a mouthguard and, subsequently, evaluated the performance of this system in the native setting in a first-in-human study. Our proof-of-concept work demonstrates the immense potential of 3D printing as a platform for the development and translation of next-generation drug delivery devices for personalized therapy. PMID:29750201

  4. Micro-droplet formation via 3D printed micro channel

    Science.gov (United States)

    Jian, Zhen; Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T.

    2016-11-01

    Low cost, fast-designed and fast-fabricated 3D micro channel was used to create micro-droplets. Capillary with an outer diameter of 1.5 mm and an inner diameter of 150 μm was inserted into a 3D printed cylindrical channel with a diameter of 2 mm . Flow rate of the two inlets, insert depth, liquid (density, viscosity and surface tension) and solid (roughness, contact angle) properties all play a role in the droplet formation. Different regimes - dripping, jetting, unstable state - were observed in the micro-channel on varying these parameters. With certain parameter combinations, successive formation of micro-droplets with equal size was observed and its size can be much smaller than the smallest channel size. Based on our experimental results, the droplet formation via 3D printed micro T-junction was investigated through direct numerical simulations with a code called Gerris. Reynolds numbers Re = ρUL / μ and Weber numbers We = ρU2 L / σ of the two liquids were introduced to measure the liquid effect. The parameter regime where different physical dynamics occur was studied and the regime transition was observed with certain threshold values. Qualitative and quantitative analysis were performed as well between simulations and experiments.

  5. Aplikasi Campuran Alginat Dari Sargassum Crassifolium Dan Gum Sebagai Pengental Textile Printing

    Directory of Open Access Journals (Sweden)

    Subaryono Subaryono

    2015-12-01

    Full Text Available Penelitian aplikasi campuran alginat dari Sargassum crassifolium dan gum untuk meningkatkan viskositas alginat sebagai pengental pada textile printing telah dilakukan. Viskositas campuran alginat dengan guar gum, gum arab, dan locust bean gum diamati pada penyimpanan selama 8 jam. Produk terbaik diujikan sebagai pengental pada textile printing. Campuran alginat dengan guar gum pada perbandingan 90:10 dan 80:20 meningkatkan viskositas dan stabilitas alginat selama penyimpanan. Campuran alginat dengan gum arab dan locust bean gum akan menurunkan viskositas alginat sehingga tidak sesuai untuk aplikasi textile printing. Aplikasi campuran alginat dengan guar gum 90:10 dan 80:20 sebagai pengental pada tekstil printing menghasilkan produk akhir yang setara dengan pengental komersial manutex.

  6. Printing nanotube/nanowire for flexible microsystems

    Science.gov (United States)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  7. Laser-induced forward transfer of pure metals // Towards 3D printing

    NARCIS (Netherlands)

    Pohl, Ralph

    2015-01-01

    Additive manufacturing offers several advantages compared to conventional methods of production, such as an increased freedom of design and a toolless production suited for variable lot sizes. In particular the printing concept has gained momen- tum for rapid prototyping and manufacturing, since it

  8. Transfer Learning for OCRopus Model Training on Early Printed Books

    Directory of Open Access Journals (Sweden)

    Christian Reul

    2017-12-01

    Full Text Available A method is presented that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books when only small amounts of diplomatic transcriptions are available. This is achieved by building from already existing models during training instead of starting from scratch. To overcome the discrepancies between the set of characters of the pretrained model and the additional ground truth the OCRopus code is adapted to allow for alphabet expansion or reduction. The character set is now capable of flexibly adding and deleting characters from the pretrained alphabet when an existing model is loaded. For our experiments we use a self-trained mixed model on early Latin prints and the two standard OCRopus models on modern English and German Fraktur texts. The evaluation on seven early printed books showed that training from the Latin mixed model reduces the average amount of errors by 43% and 26%, compared to training from scratch with 60 and 150 lines of ground truth, respectively. Furthermore, it is shown that even building from mixed models trained on standard data unrelated to the newly added training and test data can lead to significantly improved recognition results.

  9. Public funding of innovation R and D y cooperation and membership in printing industry

    International Nuclear Information System (INIS)

    Guisado Tato, M.; Vila, M.; Guisado Gonzalez, M.

    2010-01-01

    This paper contrasts how business cooperation at the level of R and D, the size and the membership in printing industry determine the participation of innovative manufacturing companies in the systems of public support for innovation. Material and methods. From the microdata of the survey on technological innovation 1998-2000, of the National Institute of Statistics (INE), a database is created by the manufacturing Spanish companies involved in innovation. Afterwards, by univariate and multivariate statistical methods, we contrast whether cooperation, size and membership in printing industry determine the participation of the manufacturing innovative companies in the systems of public support for innovation, as well as the direction of that conditioning. Results. The tests carried out indicate that more cooperation between companies at the level of a larger size have a positive influence on the degree of business involvement in the systems of public support for innovation.Discussion. Public administrations seek to foster the development of innovation among manufacturing companies facilitating by providing funds to the companies that cooperate in the area of I and D. Likewise, public support for innovation are targeting in larger firms, while the companies, belonging to the printing industry have less likely to obtain public funding for their innovative projects that the remaining companies of the Spanish manufacturing sector. (Author).

  10. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  11. Colour changes in prints during long-term dark storage of prints

    International Nuclear Information System (INIS)

    Parraman, Carinna

    2010-01-01

    The most significant impact on colour fading in prints is exposure to light and air. However what happens to coloured prints during long-term storage in boxes, drawers and on shelves? Measurements of samples, printed in July 2005, stored in a range of light and darkened storage conditions have shown some interesting initial results. As more emphasis is placed on the effects of light, the dark stability of inkjet prints is relatively overlooked when considering how to preserve or store coloured prints. This study and presentation builds on previous research [1] and has concentrated on the changes to colour during storage. With reference to ASTM F2035 - 00(2006) Standard Practice for Measuring the Dark Stability of Ink Jet Prints, the Standards outline points out that whilst natural aging is the most reliable method of assessing image stability, materials and inks any data that is produced quickly becomes redundant; therefore accelerated aging is more preferred. However, the fine art materials in this study are still very much in circulation. The leading fine art papers, and pigmented ink-sets used in these trials are still being used by artists. We can therefore demonstrate the characteristics of colour changes and the impact of ink on paper that utilises natural aging methods.

  12. Fully Printed Flexible Single-Chip RFID Tag with Light Detection Capabilities

    Directory of Open Access Journals (Sweden)

    Aniello Falco

    2017-03-01

    Full Text Available A printed passive radiofrequency identification (RFID tag in the ultra-high frequency band for light and temperature monitoring is presented. The whole tag has been manufactured by printing techniques on a flexible substrate. Antenna and interconnects are realized with silver nanoparticles via inkjet printing. A sprayed photodetector performs the light monitoring, whereas temperature measurement comes from an in-built sensor in the silicon RFID chip. One of the advantages of this system is the digital read-out and transmission of the sensors information on the RFID tag that ensures reliability. Furthermore, the use of printing techniques allows large-scale manufacturing and the direct fabrication of the tag on the desired surface. This work proves for the first time the feasibility of the embedment of large-scale organic photodetectors onto inkjet printed RFID tags. Here, we solve the problem of integration of different manufacturing techniques to develop an optimal final sensor system.

  13. Modification of polymeric materials for 3D printing of external panels of nanosatellites

    Directory of Open Access Journals (Sweden)

    Isaeva Dariya

    2017-01-01

    Full Text Available The results of mechanical testing of plastic samples, produced by injection molding and 3D printing are shown. Strength properties of filled and non-filled polymers are compared. The applicability of 3D printing technology with filled polymer materials of external panels is evaluated.

  14. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  15. Applications of Open Source GMAW-Based Metal 3-D Printing

    Directory of Open Access Journals (Sweden)

    Yuenyong Nilsiam

    2018-03-01

    Full Text Available The metal 3-D printing market is currently dominated by high-end applications, which make it inaccessible for small and medium enterprises, fab labs, and individual makers who are interested in the ability to prototype and additively manufacture final products in metal. Recent progress led to low-cost open-source metal 3-D printers using a gas metal arc welding (GMAW-based print head. This reduced the cost of metal 3-D printers into the range of desktop prosumer polymer 3-D printers. Consequent research established good material properties of metal 3-D printed parts with readily-available weld filler wire, reusable substrates, thermal and stress properties, toolpath planning, bead-width control, mechanical properties, and support for overhangs. These previous works showed that GMAW-based metal 3-D printing has a good adhesion between layers and is not porous inside the printed parts, but they did not proceed far enough to demonstrate applications. In this study, the utility of the GMAW approach to 3-D printing is investigated using a low-cost open-source metal 3-D printer and a converted Computer Numerical Control router machine to make useful parts over a range of applications including: fixing an existing part by adding a 3-D metal feature, creating a product using the substrate as part of the component, 3-D printing in high resolution of useful objects, near net objects, and making an integrated product using a combination of steel and polymer 3-D printing. The results show that GMAW-based 3-D printing is capable of distributed manufacturing of useful products for a wide variety of applications for sustainable development.

  16. [Preparation of simulate craniocerebral models via three dimensional printing technique].

    Science.gov (United States)

    Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T

    2016-08-09

    Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.

  17. ANALYSIS OF PRINTING PARAMETERS FOR PRODUCTION OF COMPONENTS WITH ​EASY3DMAKER​ PRINTER

    Directory of Open Access Journals (Sweden)

    Alexander Rengevič

    2016-12-01

    Full Text Available The presented article deals with analyses and testing appropriate parameters for the production of components manufactured with rapid prototyping technology - Easy3DMaker printer. The quality of the printed component with a specific shape is analyzed. The analyzed materials are ABS Printplus and PLA Printplus. These materials are printed at different temperatures and speeds. combinations of different settings were tested in order to find the best conditions for printing with different nozzles. The quality of individual printed samples is assessed visually and by touch. The efficiency in terms of print time under various conditions was also analyzed. The main benefit of testing is the establishment of appropriate conditions for printing components on a Easy3DMaker printer. The article does not focus on mechanical properties of the examined samples.

  18. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  19. A 3D-Printed Sensor for Monitoring Biosignals in Small Animals

    Directory of Open Access Journals (Sweden)

    Sung-Joon Cho

    2017-01-01

    Full Text Available Although additive manufacturing technologies, also known as 3D printing, were first introduced in the 1980s, they have recently gained remarkable popularity owing to decreased costs. 3D printing has already emerged as a viable technology in many industries; in particular, it is a good replacement for microfabrication technology. Microfabrication technology usually requires expensive clean room equipment and skilled engineers; however, 3D printing can reduce both cost and time dramatically. Although 3D printing technology has started to emerge into microfabrication manufacturing and medical applications, it is typically limited to creating mechanical structures such as hip prosthesis or dental implants. There have been increased interests in wearable devices and the critical part of such wearable devices is the sensing part to detect biosignals noninvasively. In this paper, we have built a 3D-printed sensor that can measure electroencephalogram and electrocardiogram from zebrafish. Despite measuring biosignals noninvasively from zebrafish has been known to be difficult due to that it is an underwater creature, we were able to successfully obtain electrophysiological information using the 3D-printed sensor. This 3D printing technique can accelerate the development of simple noninvasive sensors using affordable equipment and provide an economical solution to physiologists who are unfamiliar with complicated microfabrication techniques.

  20. Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Abere, Michael J.; Schrider, Keegan J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-08-26

    We have developed a nanoparticle (NP) printing technique using Ni thin film lift-off from glass substrates after ultrafast irradiation in air. Unique interactions of ultrafast laser pulses with thin films allow for control over NP faceting and size distributions. Control is achieved by changing the laser fluence, film thickness, and film-substrate distance. We demonstrate 20 nm Ni film removal from substrates and rapid NP printing, with size distributions centered at a 6 nm diameter. When the Ni film thickness is lowered to 10 nm, NPs are printed with distributions peaked at a 2 nm diameter.

  1. 17 CFR 240.12b-12 - Requirements as to paper, printing and language.

    Science.gov (United States)

    2010-04-01

    ... requirements applicable to printed documents, such as paper size and type size and font, by presenting all... type at least as large and as legible as 10-point modern type. However, to the extent necessary for... in roman type at least as large and as legible as 8-point modern type. All such type shall be leaded...

  2. Color differences and perceptive properties of prints made with microcapsules

    Directory of Open Access Journals (Sweden)

    Raša Urbas

    2015-06-01

    Full Text Available The aim of the research was to establish whether addition on fragranced microcapsules influences on color values and perceptive properties of prints. For this purpose, three types of printing inks were used on two sets of the paper substrate. Color properties were measured by standard methods while perceptive properties were determined by subjective method. Research has shown that microcapsules cause small color differences while perceptive analyses gave very interesting results.

  3. The Influence of Print Exposure on the Body-Object Interaction Effect in Visual Word Recognition

    Directory of Open Access Journals (Sweden)

    Dana eHansen

    2012-05-01

    Full Text Available We examined the influence of print exposure on the body-object interaction (BOI effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations (Is the word easily imageable?; Experiment 1 or phonological lexical decisions (Does the item sound like a real English word?; Experiment 2. The results from Experiment 1 showed that there was a larger facilitatory BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that a facilitatory BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  4. Direct microcontact printing of oligonucleotides for biochip applications

    Directory of Open Access Journals (Sweden)

    Trévisiol E

    2005-07-01

    Full Text Available Abstract Background A critical step in the fabrication of biochips is the controlled placement of probes molecules on solid surfaces. This is currently performed by sequential deposition of probes on a target surface with split or solid pins. In this article, we present a cost-effective procedure namely microcontact printing using stamps, for a parallel deposition of probes applicable for manufacturing biochips. Results Contrary to a previous work, we showed that the stamps tailored with an elastomeric poly(dimethylsiloxane material did not require any surface modification to be able to adsorb oligonucleotides or PCR products. The adsorbed DNA molecules are subsequently printed efficiently on a target surface with high sub-micron resolution. Secondly, we showed that successive stamping is characterized by an exponential decay of the amount of transferred DNA molecules to the surface up the 4th print, then followed by a second regime of transfer that was dependent on the contact time and which resulted in reduced quality of the features. Thus, while consecutive stamping was possible, this procedure turned out to be less reproducible and more time consuming than simply re-inking the stamps between each print. Thirdly, we showed that the hybridization signals on arrays made by microcontact printing were 5 to 10-times higher than those made by conventional spotting methods. Finally, we demonstrated the validity of this microcontact printing method in manufacturing oligonucleotides arrays for mutations recognition in a yeast gene. Conclusion The microcontact printing can be considered as a new potential technology platform to pattern DNA microarrays that may have significant advantages over the conventional spotting technologies as it is easy to implement, it uses low cost material to make the stamp, and the arrays made by this technology are 10-times more sensitive in term of hybridization signals than those manufactured by conventional spotting

  5. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

    Science.gov (United States)

    Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal

    2017-11-01

    The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Christine Cheng

    2017-08-01

    Full Text Available 3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD process to coat 3D-printed shapes composed of poly(lactic acid and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics.

  7. Miniaturized Printed Inverted-F Antenna for Internet of Things: A Design on PCB with a Meandering Line and Shorting Strip

    Directory of Open Access Journals (Sweden)

    Cheuk Yin Cheung

    2018-01-01

    Full Text Available This paper focuses on a printed inverted-F antenna (PIFA with meandering line and meandering shorting strip under 2.4 GHz industrial, scientific, and medical (ISM band for Internet of things (IoT applications. Bluetooth Low Energy (BLE technology is one of potential platforms and technologies for IoT applications under ISM band. Printed circuit board (PCB antenna commonly used in commercial and medical applications because of its small size, low profile, and low cost compared to low temperature cofired ceramic (LTCC technology. The proposed structure of PIFA is implemented on PCB to gain all these advantages. Replacing conventional PCB line in PIFA by the meandering line and meandering shorting strip improves the efficiency of the PIFA as well as the bandwidth. As a case study, design and measurement results of the proposed PIFA are presented.

  8. Gsm 1900Umts Printed Monopole Antenna For Mobile Base Station

    Directory of Open Access Journals (Sweden)

    Nyi Nyi Lwin

    2015-08-01

    Full Text Available In this paper printed rectangular monopole antenna which is basically printed microstrip patch antenna with partial ground plane is designed for mobile base station. The substrate FR4 with a relative permittivity of 4.4 and thickness 1.8 is used in design. In addition the printed monopole antenna is of low profile in appearance and suitable for most application. The proposed antenna can cover GSM1900 1850-1990 MHz and UMTS 1920-2170 MHz bands. Design and simulation processes are carried out with the aid of FEKO software which is used for the analysis of electromagnetic problems. Simulation results of the return loss gain and radiation patterns are presented.

  9. Model-based Adjustment of Droplet Characteristic for 3D Electronic Printing

    Directory of Open Access Journals (Sweden)

    Lin Na

    2017-01-01

    Full Text Available The major challenge in 3D electronic printing is the print resolution and accuracy. In this paper, a typical mode - lumped element modeling method (LEM - is adopted to simulate the droplet jetting characteristic. This modeling method can quickly get the droplet velocity and volume with a high accuracy. Experimental results show that LEM has a simpler structure with the sufficient simulation and prediction accuracy.

  10. Colour printing techniques

    OpenAIRE

    Parraman, C.

    2017-01-01

    Invited chapter in the book Colour Design: Theories and Applications. In PART 3 COLOUR, DESIGN AND COLORATION this chapter covers:\\ud - Hardcopy colour: analogue versus digital\\ud - Colour theory in relation to printing\\ud - Overview of halftoning and digital print technologies\\ud - Overview and development of inks\\ud - Inkjet papers and inks\\ud - Recent and future trends in colour, printing inks and hardware.\\ud \\ud This book differs from other existing books in the field, with the aim of an...

  11. Print and Manuscript

    OpenAIRE

    Erne, Lukas Christian

    2007-01-01

    Positioning Shakespeare at the "crossroads of manuscript and print" and exploring what the choice of print or manuscript reveals about the poet's intended audience and the social persona the poet wanted to assume and fashion, argues that "Shakespeare's authorial self-presentation begins as a poet and, more specifically, as a print-published poet" with the publication of Venus and Adonis in 1593 and the allusion to the publication of Rape of Lucrece in the next year. Yet also considers the imp...

  12. SHEARING STRENGTH TEST OF ORTOPEDIC TITANIUM ALLOY SCREW PRODUCED IN THE PROCESS OF 3D TECHNOLOGY PRINTING

    Directory of Open Access Journals (Sweden)

    Patrycja Ruszniak

    2016-03-01

    Full Text Available The aim of the present dissertation is the assessment of technical shear resistance (technological shear of orthopedic screw made of titanium alloy Ti6Al4V, produced using incremental technology in the process of 3D printing process. The first part of the work presents incremental techniques in production engineering. The second part of the present work contains specification of the 3D printing process of samples as well as the description of the used material. The fundamental part of the article is composed out of endurance tests for orthopaedic screws as well as the analysis of the obtained results and conclusions. The method of incremental production SLM using SLM 280HL metal printer was used during the technological process. The resistance tests were performed using ZWICK/ROELL Z150 machines. Identical endurance trials were performed for monolithic bars made of titanium alloys (of bar core size made on a wire electric discharge machine Sodick SL600Q for comparative purposes. The obtained test results enabled comparative assessment of the value of shear resistance Rt in the conditions of technological shear. According to the performed tests, the shear resistance Rt of orthopaedic screws is nearly 33% lower than of monolithic bars of the same core size.

  13. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  14. Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure that all access is authorized, 3D printing models should be encrypted before being transmitted and stored. A novel perceptual encryption algorithm for 3D printing models for secure storage and transmission is presented in this paper. A facet of 3D printing model is extracted to interpolate a spline curve of degree 2 in three-dimensional space that is determined by three control points, the curvature coefficients of degree 2, and an interpolating vector. Three control points, the curvature coefficients, and interpolating vector of the spline curve of degree 2 are encrypted by a secret key. The encrypted features of the spline curve are then used to obtain the encrypted 3D printing model by inverse interpolation and geometric distortion. The results of experiments and evaluations prove that the entire 3D triangle model is altered and deformed after the perceptual encryption process. The proposed algorithm is responsive to the various formats of 3D printing models. The results of the perceptual encryption process is superior to those of previous methods. The proposed algorithm also provides a better method and more security than previous methods.

  15. Font size and viewing distance of handheld smart phones.

    Science.gov (United States)

    Bababekova, Yuliya; Rosenfield, Mark; Hue, Jennifer E; Huang, Rae R

    2011-07-01

    The use of handheld smart phones for written communication is becoming ubiquitous in modern society. The relatively small screens found in these devices may necessitate close working distances and small text sizes, which can increase the demands placed on accommodation and vergence. Font size and viewing distance were measured while subjects used handheld electronic devices in two separate trials. In the first study (n=129), subjects were asked to show a typical text message on their own personal phone and to hold the device "as if they were about to read a text message." A second trial was conducted in a similar manner except subjects (n=100) were asked to view a specific web page from the internet. For text messages and internet viewing, the mean font size was 1.1 M (range, 0.7 to 2.1 M) and 0.8 M (range, 0.3 to 1.4 M), respectively. The mean working distance for text messages and internet viewing was 36.2 cm (range, 17.5 to 58.0 cm) and 32.2 cm (range, 19 to 60 cm), respectively. The mean font size for both conditions was comparable with newspaper print, although some subjects viewed text that was considerably smaller. However, the mean working distances were closer than the typical near working distance of 40 cm for adults when viewing hardcopy text. These close distances place increased demands on both accommodation and vergence, which could exacerbate symptoms. Practitioners need to consider the closer distances adopted while viewing material on smart phones when examining patients and prescribing refractive corrections for use at near, as well as when treating patients presenting with asthenopia associated with nearwork. Copyright © 2011 American Academy of Optometry

  16. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    Directory of Open Access Journals (Sweden)

    Svіtlana HAVENKO

    2015-03-01

    Full Text Available In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Screen printing inks and inks with thermo-powder were chosen for the research. Carrying out the qualitative analysis of printouts with Braille, the thermal stability was evaluated by analyzing the thermograms obtained with derivatograph Q-1500. This paper presents the findings of the thermogravimetric (TG, differential thermogravimetric (DTG and differential thermal analysis (DTA of printouts printed on paperboard Plike and using traditional screen printing inks and screen printing inks with thermo-powder. Based on the testing findings it is determined that thermal stability of printouts printed with thermo-powder ink is higher than printed with screen printing inks. It is determined that the appropriate temperature range of screen printing inks with thermo-powder drying is 98 ºC – 198 ºC because in this case better relief of Braille dots is obtained.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5702

  17. Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists

    Directory of Open Access Journals (Sweden)

    Ji-Man Park

    2018-06-01

    Full Text Available 3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.

  18. Machine Directional Register System Modeling for Shaft-Less Drive Gravure Printing Machines

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available In the latest type of gravure printing machines referred to as the shaft-less drive system, each gravure printing roller is driven by an individual servo motor, and all motors are electrically synchronized. The register error is regulated by a speed difference between the adjacent printing rollers. In order to improve the control accuracy of register system, an accurate mathematical model of the register system should be investigated for the latest machines. Therefore, the mathematical model of the machine directional register (MDR system is studied for the multicolor gravure printing machines in this paper. According to the definition of the MDR error, the model is derived, and then it is validated by the numerical simulation and experiments carried out in the experimental setup of the four-color gravure printing machines. The results show that the established MDR system model is accurate and reliable.

  19. Inkjet-Printed Wideband Antenna on Resin-Coated Paper Substrate for Curved Wireless Devices

    KAUST Repository

    Abutarboush, Hattan; Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A low-cost, inkjet-printed multiband monopole antenna for conformal wireless applications is presented for the first time. The antenna is implemented on a low cost resin coated paper substrate which can be used for conformal devices. The antenna developed here is composed of four branch lines on the radiator and three L-shaped slots on the ground plane that help to generate multiple bands without increasing the size of the antenna. The antenna has a compact size, making it suitable for handheld and wearable wireless devices. Details of the inkjet printing fabrication processes and related issues are presented. The antennas were characterized under flat and bent conditions and the results indicate that the antennas can cover most bands for mobile and wireless applications such as PCS, UMTS, GSM1900 and WLAN

  20. Inkjet-Printed Wideband Antenna on Resin-Coated Paper Substrate for Curved Wireless Devices

    KAUST Repository

    Abutarboush, Hattan

    2015-04-28

    A low-cost, inkjet-printed multiband monopole antenna for conformal wireless applications is presented for the first time. The antenna is implemented on a low cost resin coated paper substrate which can be used for conformal devices. The antenna developed here is composed of four branch lines on the radiator and three L-shaped slots on the ground plane that help to generate multiple bands without increasing the size of the antenna. The antenna has a compact size, making it suitable for handheld and wearable wireless devices. Details of the inkjet printing fabrication processes and related issues are presented. The antennas were characterized under flat and bent conditions and the results indicate that the antennas can cover most bands for mobile and wireless applications such as PCS, UMTS, GSM1900 and WLAN

  1. Investigation into the Friction and Roughness Properties of Prints Using Conventional and UV Inks

    Directory of Open Access Journals (Sweden)

    Giedrė Giraitytė

    2015-03-01

    Full Text Available The article experimentally investigates the properties of offset print friction and determines static and kinetic coeffi­cients of friction. Conventional and UV inks have been found to increase the static friction coefficient and re­duce the kinetic friction coefficient between paper and print. The roughness pro­perties of two different types of paper and prints using conventional and UV inks have been examined and compared thus determining that conventional inks strongly increase the roughness of print surface and that the influence of UV inks depend on the type of paper.

  2. Poetic prayer as a "text in text" in Ukrainian Cyrillic editions of the Baroque age

    Directory of Open Access Journals (Sweden)

    Kurhanova O.

    2016-01-01

    Full Text Available The article observes a prayer as a meta-genre of Baroque Ukrainian poetry, found at the pages of Ukrainian Cyrillic religious editions of the late 16th - early 18th centuries. Double nature of baroque poetic prayer is underlined. Poetic prayer originates from the tradition of liturgical prayer and contains it as a "text in text", at the same time poetical prayer is inserted as a "text in text" into the editions, in which it is printed. Two types of semantic connections between baroque poetic prayers and the text of their editions are described. The first type is presented by the poetry, which contains an image of a person, who took part in the text creation and in the process of its edition: the author/editor (in the role of the prayer addresser or the patron of art (in the role of a person, about whom the prayer request was made. The topics of prayer appellations in the poetry of this group are requests for earthly and heavenly boons for the author/editor/patron of the edition, for positive reception of the book; thanksgivings for the help in the book writing/publishing etc. The poetry of the second type contains images, which are central for the text of an edition. These are, as a rule, addressees of the prayer text - God, Saint Virgin, Angels and Saints. The content of a prayer appeal in the poetry of this type is a request for salvation and help in spiritual self-perfection of a lyric hero or a church community. It is defined that the content of poetic prayers, printed at pages of Cyrillic editions of the late 16th - early 18th centuries, was influenced both by text elements of the edition (topic, central images, and by non-textual factors (illustration plot, accompanied by a poem, prayer intention of an author/editor, existence of a patron of edition, different circumstances of editorial process etc.

  3. Cost-estimating for commercial digital printing

    Science.gov (United States)

    Keif, Malcolm G.

    2007-01-01

    The purpose of this study is to document current cost-estimating practices used in commercial digital printing. A research study was conducted to determine the use of cost-estimating in commercial digital printing companies. This study answers the questions: 1) What methods are currently being used to estimate digital printing? 2) What is the relationship between estimating and pricing digital printing? 3) To what extent, if at all, do digital printers use full-absorption, all-inclusive hourly rates for estimating? Three different digital printing models were identified: 1) Traditional print providers, who supplement their offset presswork with digital printing for short-run color and versioned commercial print; 2) "Low-touch" print providers, who leverage the power of the Internet to streamline business transactions with digital storefronts; 3) Marketing solutions providers, who see printing less as a discrete manufacturing process and more as a component of a complete marketing campaign. Each model approaches estimating differently. Understanding and predicting costs can be extremely beneficial. Establishing a reliable system to estimate those costs can be somewhat challenging though. Unquestionably, cost-estimating digital printing will increase in relevance in the years ahead, as margins tighten and cost knowledge becomes increasingly more critical.

  4. 3D printing in orthognathic surgery − A literature review

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin

    2018-07-01

    Full Text Available With the recent advances in three-dimensional (3D imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Keywords: Orthognathic surgery, 3D printing, Computer-aided design, Computer-aided manufacturing, Rapid prototyping, Additive manufacturing

  5. Three-Dimensional (3D Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Susanna Fafenrot

    2017-10-01

    Full Text Available Fused deposition modeling (FDM is a three-dimensional (3D printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid (PLA printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  6. Embedded sensing: integrating sensors in 3-D printed structures

    Directory of Open Access Journals (Sweden)

    A. Dijkshoorn

    2018-03-01

    Full Text Available Current additive manufacturing allows for the implementation of electrically interrogated 3-D printed sensors. In this contribution various technologies, sensing principles and applications are discussed. We will give both an overview of some of the sensors presented in literature as well as some of our own recent work on 3-D printed sensors. The 3-D printing methods discussed include fused deposition modelling (FDM, using multi-material printing and poly-jetting. Materials discussed are mainly thermoplastics and include thermoplastic polyurethane (TPU, both un-doped as well as doped with carbon black, polylactic acid (PLA and conductive inks. The sensors discussed are based on biopotential sensing, capacitive sensing and resistive sensing with applications in surface electromyography (sEMG and mechanical and tactile sensing. As these sensors are based on plastics they are in general flexible and therefore open new possibilities for sensing in soft structures, e.g. as used in soft robotics. At the same time they show many of the characteristics of plastics like hysteresis, drift and non-linearity. We will argue that 3-D printing of embedded sensors opens up exciting new possibilities but also that these sensors require us to rethink how to exploit non-ideal sensors.

  7. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-05-01

    Full Text Available A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  8. "Handling" seismic hazard: 3D printing of California Faults

    Science.gov (United States)

    Kyriakopoulos, C.; Potter, M.; Richards-Dinger, K. B.

    2017-12-01

    As earth scientists, we face the challenge of how to explain and represent our work and achievements to the general public. Nowadays, this problem is partially alleviated by the use of modern visualization tools such as advanced scientific software (Paraview.org), high resolution monitors, elaborate video simulations, and even 3D Virtual Reality goggles. However, the ability to manipulate and examine a physical object in 3D is still an important tool to connect better with the public. For that reason, we are presenting a scaled 3D printed version of the complex network of earthquake faults active in California based on that used by the Uniform California Earthquake Rupture Forecast 3 (UCERF3) (Field et al., 2013). We start from the fault geometry in the UCERF3.1 deformation model files. These files contain information such as the coordinates of the surface traces of the faults, dip angle, and depth extent. The fault specified in the above files are triangulated at 1km resolution and exported as a facet (.fac) file. The facet file is later imported into the Trelis 15.1 mesh generator (csimsoft.com). We use Trelis to perform the following three operations: First, we scale down the model so that 100 mm corresponds to 100km. Second, we "thicken" the walls of the faults; wall thickness of at least 1mm is necessary in 3D printing. We thicken fault geometry by 1mm on each side of the faults for a total of 2mm thickness. Third, we break down the model into parts that will fit the printing bed size ( 25 x 20mm). Finally, each part is exported in stereolithography format (.stl). For our project, we are using the 3D printing facility within the Creat'R Lab in the UC Riverside Orbach Science Library. The 3D printer is a MakerBot Replicator Desktop, 5th Generation. The resolution of print is 0.2mm (Standard quality). The printing material is the MakerBot PLA Filament, 1.75 mm diameter, large Spool, green. The most complex part of the display model requires approximately 17

  9. A STUDY OF RELATIVE CORRELATION BETWEEN THE PATTERN OF FINGER PRINTS AND LIP PRINTS

    OpenAIRE

    Murugan; Karikalan

    2014-01-01

    BACKGROUND AND OBJECTIVE: The use of conventional methods such as dactylography (study of finger prints) & cheiloscopy (study of lip prints) is of paramount importance, since personal identification by other means such as DNA analysis is sophisticated and not available in rural and developing countries. Fingerprint in its narrow sense is an impression left by the friction ridges of human fingers. The second prints of interest are lip prints. Studies of association between ...

  10. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  11. Recent Advances in 3D Printing of Aliphatic Polyesters

    Directory of Open Access Journals (Sweden)

    Ioana Chiulan

    2017-12-01

    Full Text Available 3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid (PLA and polyhydroxyalkanoates (PHA, two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  12. The power of print reading: comics in the classroom.

    Science.gov (United States)

    Gabaron, Sabine

    2017-09-01

    Evidence from neuroscience and psychological studies supporting benefits of print reading over digital reading has recently been discussed in these columns (Perbal 2017 J. Cell Commun. Signal. 11:1-4). In the present commentary, I would like to add my perspective as a Humanities educator, and build upon the idea that print reading results in better comprehension, learning and communication. The argumentation that is presented herein is based on a study performed in a French Comics language class aimed at broadening students' knowledge and experience of graphic novels, and providing them with a cultural representation in the foreign language. The results that are discussed in this commentary indicate that upon reading printed books students created connections for a more meaningful learning experience, leading to personal growth and linguistic development. The impact these graphic novels had on students' learning capacity and relationship to reading was tremendous. The kinesthetic relationship with printed text was deeply enriching and gratifying. The stimulatory effects on their imagination allowed for a more creative reading, and a deeper comprehension, resulting in meaningful communication.

  13. A novel and simple method of printing flexible conductive circuits on PET fabrics

    International Nuclear Information System (INIS)

    Wang, Zehong; Wang, Wei; Jiang, Zhikang; Yu, Dan

    2017-01-01

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  14. A novel and simple method of printing flexible conductive circuits on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zehong; Wang, Wei [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Jiang, Zhikang [Saintyear Holding Group Co., Ltd. (China); Yu, Dan, E-mail: vchtian@163.com [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Saintyear Holding Group Co., Ltd. (China)

    2017-02-28

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  15. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.

    Science.gov (United States)

    Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni

    2015-01-01

    Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images.

  16. CERN printing infrastructure

    International Nuclear Information System (INIS)

    Otto, R; Sucik, J

    2008-01-01

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all (∼1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration

  17. 3D-Printing in Congenital Cardiology: From Flatland to Spaceland

    Directory of Open Access Journals (Sweden)

    Sébastien Deferm

    2016-01-01

    Full Text Available Medical imaging has changed to a great extent over the past few decades. It has been revolutionized by three-dimensional (3D imaging techniques. Despite much of modern medicine relying on 3D imaging, which can be obtained accurately, we keep on being limited by visualization of the 3D content on two-dimensional flat screens. 3D-printing of graspable models could become a feasible technique to overcome this gap. Therefore, we printed pre- and postoperative 3D-models of a complex congenital heart defect. With this example, we intend to illustrate that these models hold value in preoperative planning, postoperative evaluation of a complex procedure, communication with the patient, and education of trainees. At this moment, 3D printing only leaves a small footprint, but makes already a big impression in the domain of cardiology and cardiovascular surgery. Further studies including more patients and more validated applications are needed to streamline 3D printing in the clinical setting of daily practice.

  18. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  19. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    International Nuclear Information System (INIS)

    Yamane, Luciana Harue; Tavares de Moraes, Viviane; Crocce Romano Espinosa, Denise; Soares Tenorio, Jorge Alberto

    2011-01-01

    Highlights: → This paper presents new and important data on characterization of wastes of electric and electronic equipments. → Copper concentration is increasing in mobile phones and remaining constant in personal computers. → Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results

  20. Preliminary Study of Printed Circuit Heat Exchanger (PCHE) for various power conversion systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jinsu; Baik, Seungjoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The steam-Rankine cycle was the most widely used power conversion system for a nuclear power plant. The size of the heat exchanger is important for the modulation. Such a challenge was conducted by Kang et al. They change the steam generator type for the SMART from helical type heat exchanger to Printed Circuit Heat Exchanger (PCHE). Recently, there has been a growing interest in the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle as the most promising power conversion system. The reason is high efficiency with simple layout and compact power plant due to small turbomachinery and compact heat exchanger technology. That is why the SCO{sub 2} Brayton cycle can enhance the existing advantages of Small Modular Reactor (SMR) like SMART, such as reduction in size, capital cost, and construction period. Thermal hydraulic and geometric parameters of a PCHE for the S-CO{sub 2} power cycle coupled to SMART. The results show that the water - CO{sub 2} printed circuit heat exchanger size is smaller than printed circuit steam generator for the superheated steam Rankine cycle. This results show the potential benefit of using the S-CO-2 Brayton power cycle to a water-cooled small modular reactor.

  1. A relevance theoretic approach to intertextuality in print advertising

    African Journals Online (AJOL)

    Anonymous vs. acknowledged intertexts: A relevance theoretic approach to intertextuality in print advertising. ... make intertextual references to texts from mass media genres other than advertising as part of an ... AJOL African Journals Online.

  2. Simulation analysis of turbine blade in 3D printing aquarium

    Directory of Open Access Journals (Sweden)

    Chen Dyi-Cheng

    2017-01-01

    Full Text Available 3D printing of the flexibility is the most admirable place, no matter when or where, as long as the machine can make the abstract design of finished products or difficult to process the finished product printed out as a sample. And in the product design, through the 3D print out the entity, to more specific observation of the advantages and disadvantages of finished products, which shorten the time of many creative research and development, but also relatively reduce the defective factors. As in recent years, 3D printing technology is progressing, material adhesion, precision and parts of the degree of cooperation has increased, coupled with many parts taking into account the cost, production and other issues, and then let a lot of light load small parts or special parts choose to use 3D to print the finished product to replace. This study focuses on the plastic turbine blades that drive water in the aquarium, but the 3D printing is done by stacking. However, the general stress analysis software can set the material to analyze the deformation results of the force, nor the 3D to analyze the software. Therefore, this study first analyzes the deformation of turbine blade by software, and then verifies the situation of 3D printing turbine blade, and then compares the actual results of software analysis and 3D printing. The results can provide the future of 3D product consider the strength factor. The study found that the spiral blade design allows the force points to be dispersed to avoid hard focus.

  3. Issues in Text Design and Layout for Computer Based Communications.

    Science.gov (United States)

    Andresen, Lee W.

    1991-01-01

    Discussion of computer-based communications (CBC) focuses on issues involved with screen design and layout for electronic text, based on experiences with electronic messaging, conferencing, and publishing within the Australian Open Learning Information Network (AOLIN). Recommendations for research on design and layout for printed text are also…

  4. Making PMT halftone prints

    Energy Technology Data Exchange (ETDEWEB)

    Corey, J.D.

    1977-05-01

    In the printing process for technical reports presently used at Bendix Kansas City Division, photographs are reproduced by pasting up PMT halftone prints on the artwork originals. These originals are used to make positive-working plastic plates for offset lithography. Instructions for making good-quality halftone prints using Eastman Kodak's PMT materials and processes are given in this report. 14 figures.

  5. Initial Work on the Characterization of Additive Manufacturing (3D Printing Using Software Image Analysis

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2015-04-01

    Full Text Available A current challenge in additive manufacturing (commonly known as 3D printing is the detection of defects. Detection of defects (or the lack thereof in bespoke industrial manufacturing may be safety critical and reduce or eliminate the need for testing of printed objects. In consumer and prototype printing, early defect detection may facilitate the printer taking corrective measures (or pausing printing and alerting a user, preventing the need to re-print objects after the compounding of a small error occurs. This paper considers one approach to defect detection. It characterizes the efficacy of using a multi-camera system and image processing software to assess printing progress (thus detecting completion failure defects and quality. The potential applications and extrapolations of this type of a system are also discussed.

  6. Use of Electronic Versus Print Textbooks by Chilean Dental Students: A National Survey.

    Science.gov (United States)

    Aravena, Pedro Christian; Schulz, Karen; Parra, Annemarie; Perez-Rojas, Francisco; Rosas, Cristian; Cartes-Velásquez, Ricardo

    2017-03-01

    Electronic textbooks have become available in recent decades as replacements or alternatives for print versions. The aim of this descriptive cross-sectional study was to evaluate the use of electronic versus print textbooks by Chilean dental students. The target population was students from 14 Chilean dental schools. The questionnaire was adapted and translated to Spanish from a previous survey used in a similar study. It consisted of the following variables: preferred type, type used, frequency of use, source, electronic devices used to read, and disposal after use. The use of textbooks was analyzed and compared by gender and course (p≤0.05). The final sample consisted of 3,256 students (21.38±2.5 years of age, 50.8% women). Most of the participants reported using both types of texts, with most (63.9%) preferring print over electronic texts, including significantly more women (pelectronic books on a daily basis (47.3%) or at least twice a week (30.7%). The main source of electronic textbooks was the Internet (43.8%). A personal computer was the most widely used device for reading electronic texts (95.0%), followed by a cell phone (46.4%) and a tablet (24.5%). Overall, these Chilean dental students preferred print over electronic textbooks, despite having available electronic devices.

  7. Efficient Design of Flexible and Low Cost Paper-Based Inkjet-Printed Antenna

    Directory of Open Access Journals (Sweden)

    A. M. Mansour

    2015-01-01

    Full Text Available A new, efficient, flexible, and cheap antenna designed at 1.57 GHz microstrip patch antenna based on simple inkjet printer with improved performance using silver nanoparticles ink is developed. The antenna is printed on a kind of flexible substrate “glossy paper,” to offer the advantage of light and flexibility for different applications. The performance of silver nanoparticles ink has been studied through inkjet printing versus postsynthesis annealing and multilayer printing. The conductivity has been improved to have promising values up to 2 Ω/cm at temperatures up to 180°C. The surface morphology of the circuits has been analyzed using SEM with mean diameter of the nanoparticles around 100 nm, uniform surface distribution, and mean thickness of the printed layer around 230 microns. Also, a simple design of a coplanar waveguide (CPW monopole Z-shaped antenna has been considered as an application of fabricated printed antenna using the studied silver nanoparticles ink through a cheap printer.

  8. Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks

    Directory of Open Access Journals (Sweden)

    Rahela Kulcar

    2012-07-01

    Full Text Available Thermochromic printing inks change their colour regarding the change in temperature and they are one of the major groups of colour-changing inks. One of the most frequently used thermochromic material in printing inks are leuco dyes. The colour of thermochromic prints is dynamic, it is not just temperature-dependent, but it also depends on thermal history. The effect is described by colour hysteresis. This paper aims at discussing general aspects of thermochromic inks, dynamic colorimetric properties of leuco dye-based thermochromic inks, their stability and principle of variable-temperature colour measurement. Thermochromic material is protected in round-shaped capsules. They are much larger than pigments in conventional inks. The polymer envelopes of pigment capsules are more stable against oxidation than the binder. If these envelopes are damaged, the dynamic colour is irreversibly lost. Our aim is to analyse the colorimetric properties of several reversible screen-printed UV-curing leuco dye thermochromic inks with different activation temperatures printed on paper. A small analysis of irreversible thermochromic inks will be presented for comparison with reversible thermochromic inks. Moreover, so as to show interesting possibilities, a combination of different inks was made, an irreversible thermochromic ink was printed on top of the red and blue reversible thermochromic inks. Special attention was given to the characterization of colour hysteresis and the meaning of activation temperature.

  9. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  10. Texte, intertexte et iconotexte dans le message publicitaire

    Directory of Open Access Journals (Sweden)

    I. C. CORJAN

    2007-12-01

    Full Text Available The paper states the fact that although the roles of the text and of the image in an advertisement are dynamic and appear in variable proportions depending on numerous criteria, they are also beautifully balanced, especially if compared from a functional point of view, determining and depending upon each other in a coherent discursive unity. Between text and image there are usually the following relations of reciprocity: support (argumentation, redundancy, paraphrase; complementarity (in-formation that is autonomous in form, but convergent in content; rhetorical amplification (meaning transfer, metaphorisation, hyperbolisation etc.; opposition (antithesis, exaggeration, non-antagonistic contradiction etc.. In general, both the verbal and the iconic develop, much to their mutual advantage, an extra meaning which the former establishes linguistically, and the latter exaggerates visually. In this case, however, the image always goes beyond the verbal information, thanks to its deep-rooted polysemy. Thus, in the special case of printed advertising, there are a few prevalent icono-textual structures, with obvious intertextual and paratextual functions: intertextuality of the writ-ten text; figurative iconic intertextuality; icono-textual intertextuality; double intertextuality: verbal-written and icono-textual. The end of the study puts forward a new formulation of the icono-text and of the typology of printed advertising included in written media and indoor/ outdoor posting.

  11. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.

    Science.gov (United States)

    Coakley, Meghan F; Hurt, Darrell E; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C; Alekseyev, Vsevelod; Chen, David T; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S; Huyen, Yentram

    2014-09-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education.

  12. Fused filament 3D printing of ionic polymer-metal composites for soft robotics

    Science.gov (United States)

    Carrico, James D.; Leang, Kam K.

    2017-04-01

    Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.

  13. The Implications of the Appearance of the Printing Activity in the Romanian Space

    Directory of Open Access Journals (Sweden)

    Agnes Erich

    2006-01-01

    Full Text Available In the general context of the Cyrillic European print, the print from Wallachia is placed to leader place, reflecting a high cultural degree of development, a level and a tradition which is worth a special attention. A fact of culture, as the establishment of the typography, can't be studied apart from the society needs from that time. The appearance of Cyrillic print in Wallachia constituted a part of an European phenomenon, the reflect of it on the local plan and not at all an singular appearance, broken by the European culture.

  14. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2018-06-01

    Full Text Available 3D printing has attracted a lot of attention in recent years. Over the past three decades, various 3D printing technologies have been developed including photopolymerization-based, materials extrusion-based, sheet lamination-based, binder jetting-based, power bed fusion-based and direct energy deposition-based processes. 3D printing offers unparalleled flexibility and simplicity in the fabrication of highly complex 3D objects. Tactile sensors that emulate human tactile perceptions are used to translate mechanical signals such as force, pressure, strain, shear, torsion, bend, vibration, etc. into electrical signals and play a crucial role toward the realization of wearable electronics and electronic skin. To date, many types of 3D printing technologies have been applied in the manufacturing of various types of tactile sensors including piezoresistive, capacitive and piezoelectric sensors. This review attempts to summarize the current state-of-the-art 3D printing technologies and their applications in tactile sensors for wearable electronics and electronic skin. The applications are categorized into five aspects: 3D-printed molds for microstructuring substrate, electrodes and sensing element; 3D-printed flexible sensor substrate and sensor body for tactile sensors; 3D-printed sensing element; 3D-printed flexible and stretchable electrodes for tactile sensors; and fully 3D-printed tactile sensors. Latest advances in the fabrication of tactile sensors by 3D printing are reviewed and the advantages and limitations of various 3D printing technologies and printable materials are discussed. Finally, future development of 3D-printed tactile sensors is discussed.

  15. Generative Learning Strategy Use and Self-Regulatory Prompting in Digital Text

    Science.gov (United States)

    Reid, Alan J.; Morrison, Gary M.

    2014-01-01

    The digital revolution is shifting print-based textbooks to digital text, and it has afforded the opportunity to incorporate meaningful learning strategies and otherwise separate metacognitive activities directly into these texts as embedded support. A sample of 89 undergraduates read a digital, expository text on the basics of photography. The…

  16. CERN printing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Otto, R; Sucik, J [CERN, Geneva (Switzerland)], E-mail: Rafal.Otto@cern.ch, E-mail: Juraj.Sucik@cern.ch

    2008-07-15

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all ({approx}1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration.

  17. Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Zhang, Z; Zhu, D; Tudor, M J; Beeby, S P

    2013-01-01

    This paper reports the extended design and simulation of a screen printed piezoelectric energy harvester. The proposed design was based on a previous credit card sized smart tag sensor node, and packages the power conditioning circuit in the free space above the tungsten proof mass layer. This approach enables electronic components to be mounted onto the cantilever beam, which provides additional weight at the tip of the cantilever structure. The design structure contains a T-shape cantilever beam with size of 47 mm × 30 mm × 0.85 mm which is fabricated using screen printing. ANSYS simulation results predict the revised architecture can generate 421.9 μW approximately twice of the RMS power produced by the original design along with a higher open-circuit RMS Voltage of 8.0 V while the resonant frequency is dropped to 53.4 Hz

  18. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    Science.gov (United States)

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  20. Online press: The relations between the content in print and online editions of daily newspapers

    Directory of Open Access Journals (Sweden)

    Bajić Predrag

    2017-01-01

    Full Text Available The purpose of this article is to observe the connection between the same content in the print editions of daily newspapers in Serbia and on their web portals, i.e. the changes that occur in the digital world as compared to the 'static' content that can be seen on paper (text and photos. In the digital era, the newspapers is struggling to retain considerable influence and manages to do so through synchronization, promotion and transfer of media contents from one platform to another. At present, we see the attempts to maintain exclusivity of content in newspapers, as much as possible, just by promoting it on a web portal (through a single photograph or some previews of the whole text. They serve as 'bait' in an effort to increase interest for buying the newspapers. Also, unlike the situation with the print, the placement of the same contents on portals can be enriched by adding multimedia elements. There we encounter a 'paradox', i.e. the fact that on the internet, where space is practically unlimited, we have a shortening of the textual parts due to the explications that can be obtained through multimedia contents and links. On the other hand, that is impossible in the case of print, where a longer text is required, although there are clear spatial limitations. No matter the advantages of multimedia enrichments, there we also find a distinctive 'trap', in terms that there is a possibility that the content disappears. With print, where we do not have 'half-finished' product and the contents cannot change once printed, there is no such risk. Further, the digital age gave the print media a possibility to generate, transmit and distribute exclusive audio-visual content.

  1. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models

    Science.gov (United States)

    Paukstelis, Paul J.

    2018-01-01

    The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…

  2. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  3. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Science.gov (United States)

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  4. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications.

    Science.gov (United States)

    Blumenthal, Tyler; Meruga, Jeevan; Stanley May, P; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Luu, Quocanh N

    2012-05-11

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF₄:3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton®, and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to 'naked-eye' viewing at low concentrations of nanocrystals.

  5. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications

    International Nuclear Information System (INIS)

    Blumenthal, Tyler; Meruga, Jeevan; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Stanley May, P; Luu, QuocAnh N

    2012-01-01

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF 4 :3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton ® , and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to ‘naked-eye’ viewing at low concentrations of nanocrystals. (paper)

  6. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications

    Science.gov (United States)

    Blumenthal, Tyler; Meruga, Jeevan; May, P. Stanley; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Luu, QuocAnh N.

    2012-05-01

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF4:3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton®, and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to ‘naked-eye’ viewing at low concentrations of nanocrystals.

  7. Not just for printing: new services from the CERN Printshop

    CERN Multimedia

    Natalie Pocock and Joannah Caborn Wengler

    2012-01-01

    The CERN Printshop is introducing a series of new services to complement its existing ones. Laminating services, conference badges, tubes for posters and a new way of ordering external printing are all now available.   You probably already knew that the CERN Printshop offers some standard printing services, including CERN calendars, business cards and a scanning service. These are detailed in the box below. But it has now added some new services that will be useful for many different purposes at CERN. Do you need a notice that will last or a protective covering for a document that many people will use? The Printshop is now offering a lamination service for all documents in A5, A4 and A3 formats. Going to a conference? Or organising a meeting? You can get from the Printshop: - tubes for posters in various sizes; - plastic conference badges with pin and clip – don’t forget they can print your conference badges for you as well. The Printshop will have a limited stock of ...

  8. Digital Colour Printing on the Way to Offset Quality

    Directory of Open Access Journals (Sweden)

    Andrew Tribute

    2004-12-01

    Full Text Available Digital production colour printing is now more than ten years old. The first implementations of this technology from Indigo and Xeikon started the market but they suffered problems with reliability,quality and overall running costs. They produced a very good-looking printed image but it was notcomparable to offset. Quality problems were that tints often were streaky or banded, flat tints did notreproduce well, and the overall image had a somewhat harsh reflective look.Ongoing developments of digital colour printing mainly from Xerox and Canon developed the marketand improved the economics of the process. Certain elements of the quality also improved. Indigoand Xeikon also showed significant quality improvements and better economics. The improvedquality came closer to the look of offset, but in most cases was still obviously printed digitally.New developments are happening in what is termed "Digital Colour Lite." This is a range of new slower presses coming from Japan which run at around 30 pages/minute and cost well under 50.000 Euro. A few of these are getting almost offset quality through the use of new chemical toners that significantly improve printing quality.At the same time as the quality of digital colour printing has improved, so have the cost economics of running the presses. Potential buyers of presses will have to understand the different business models for running these presses. These are the "click" models from most suppliers, or the pay by usage model as offered by Heidelberg with the NexPress.

  9. Ultralow friction of ink-jet printed graphene flakes.

    Science.gov (United States)

    Buzio, R; Gerbi, A; Uttiya, S; Bernini, C; Del Rio Castillo, A E; Palazon, F; Siri, A S; Pellegrini, V; Pellegrino, L; Bonaccorso, F

    2017-06-08

    We report the frictional response of few-layer graphene (FLG) flakes obtained by the liquid phase exfoliation (LPE) of pristine graphite. To this end, we inkjet print FLG on bare and hexamethyldisilazane-terminated SiO 2 substrates, producing micrometric patterns with nanoscopic roughness that are investigated by atomic force microscopy. Normal force spectroscopy and atomically-resolved morphologies indicate reduced surface contamination by solvents after a vacuum annealing process. Notably, the printed FLG flakes show ultralow friction comparable to that of micromechanically exfoliated graphene flakes. Lubricity is retained on flakes with a lateral size of a few tens of nanometres, and with a thickness as small as ∼2 nm, confirming the high crystalline quality and low defects density in the FLG basal plane. Surface exposed step edges exhibit the highest friction values, representing the preferential sites for the origin of the secondary dissipative processes related to edge straining, wear or lateral displacement of the flakes. Our work demonstrates that LPE enables fundamental studies on graphene friction to the single-flake level. The capability to deliver ultralow-friction-graphene over technologically relevant substrates, using a scalable production route and a high-throughput, large-area printing technique, may also open up new opportunities in the lubrication of micro- and nano-electromechanical systems.

  10. Introduction to printed electronics

    CERN Document Server

    Suganuma, Katsuaki

    2014-01-01

    This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large, and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.

  11. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.

    Science.gov (United States)

    Burzyńska, Karolina; Morasiewicz, Piotr; Filipiak, Jarosław

    2016-01-01

    Significant developments in additive manufacturing technology have occurred in recent years. 3D printing techniques can also be helpful in the Ilizarov method treatment. The aim of this study was to evaluate the usefulness of 3D printing technology in the Ilizarov method treatment. Physical models of bones used to plan the spatial design of Ilizarov external fixator were manufactured by FDM (Fused Deposition Modeling) spatial printing technology. Bone models were made of poly(L-lactide) (PLA). Printed 3D models of both lower leg bones allow doctors to prepare in advance for the Ilizarov method treatment: detailed consideration of the spatial configuration of the external fixation, experimental assembly of the Ilizarov external fixator onto the physical models of bones prior to surgery, planning individual osteotomy level and Kirschner wires introduction sites. Printed 3D bone models allow for accurate preparation of the Ilizarov apparatus spatially matched to the size of the bones and prospective bone distortion. Employment of the printed 3D models of bone will enable a more precise design of the apparatus, which is especially useful in multiplanar distortion and in the treatment of axis distortion and limb length discrepancy in young children. In the course of planning the use of physical models manufactured with additive technology, attention should be paid to certain technical aspects of model printing that have an impact on the accuracy of mapping of the geometry and physical properties of the model. 3D printing technique is very useful in 3D planning of the Ilizarov method treatment.

  12. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    Science.gov (United States)

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prints Charles ja prints Michael külastasid Tallinna kirikuid / Allan Tammiku

    Index Scriptorium Estoniae

    Tammiku, Allan

    2001-01-01

    Prints Charles külastas 6. novembril Eesti-visiidi ajal Tallinna toomkirikut ja Pühavaimu kirikut, prints Michael viibis Tallinnas 11. novembril eravisiidil, ta külastas toomkirikut, Niguliste ja Pühavaimu kirikut

  14. Semiotic Analysis Of Mcdonald's Printed Advertisement

    OpenAIRE

    URAIDA, SITI

    2014-01-01

    Keywords: Semiotic, printed advertisement, sign, icon, symbol, index, connotation, myth Printed advertisement has a promotional function as medium to advertise aproduct. It implicitly persuades people to create demand of product which is being advertised. In this study, the writer uses printed advertisement of McDonald's fast food company as the object. The printed advertisement was analyzed by usingSemiotics study. There are seven printed advertisements that were analyzes in this study. All ...

  15. Vision based error detection for 3D printing processes

    Directory of Open Access Journals (Sweden)

    Baumann Felix

    2016-01-01

    Full Text Available 3D printers became more popular in the last decade, partly because of the expiration of key patents and the supply of affordable machines. The origin is located in rapid prototyping. With Additive Manufacturing (AM it is possible to create physical objects from 3D model data by layer wise addition of material. Besides professional use for prototyping and low volume manufacturing they are becoming widespread amongst end users starting with the so called Maker Movement. The most prevalent type of consumer grade 3D printers is Fused Deposition Modelling (FDM, also Fused Filament Fabrication FFF. This work focuses on FDM machinery because of their widespread occurrence and large number of open problems like precision and failure. These 3D printers can fail to print objects at a statistical rate depending on the manufacturer and model of the printer. Failures can occur due to misalignment of the print-bed, the print-head, slippage of the motors, warping of the printed material, lack of adhesion or other reasons. The goal of this research is to provide an environment in which these failures can be detected automatically. Direct supervision is inhibited by the recommended placement of FDM printers in separate rooms away from the user due to ventilation issues. The inability to oversee the printing process leads to late or omitted detection of failures. Rejects effect material waste and wasted time thus lowering the utilization of printing resources. Our approach consists of a camera based error detection mechanism that provides a web based interface for remote supervision and early failure detection. Early failure detection can lead to reduced time spent on broken prints, less material wasted and in some cases salvaged objects.

  16. AirPrint Forensics: Recovering the Contents and Metadata of Printed Documents from iOS Devices

    Directory of Open Access Journals (Sweden)

    Luis Gómez-Miralles

    2015-01-01

    data they may store, opens new opportunities in the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

  17. 3D Printing Aids Acetabular Reconstruction in Complex Revision Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Andrew J. Hughes

    2017-01-01

    Full Text Available Revision hip arthroplasty requires comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional (3D representation of osseous anatomy obtainable, which provide visual and tactile feedback. Such life-size 3D models were manufactured from computed tomography scans of three hip joints in two patients. The first patient had undergone multiple previous hip arthroplasties for bilateral hip infections, resulting in right-sided pelvic discontinuity and a severe left-sided posterosuperior acetabular deficiency. The second patient had a first-stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The images were imported into Materialise MIMICS 14.12®. The models were manufactured using selective laser sintering. Accurate templating was performed preoperatively. Acetabular cup, augment, buttress, and cage sizes were trialled using the models, before being adjusted, and resterilised, enhancing the preoperative decision-making process. Screw trajectory simulation was carried out, reducing the risk of neurovascular injury. With 3D printing technology, complex pelvic deformities were better evaluated and treated with improved precision. Life-size models allowed accurate surgical simulation, thus improving anatomical appreciation and preoperative planning. The accuracy and cost-effectiveness of the technique should prove invaluable as a tool to aid clinical practice.

  18. Luminous lip-prints as criminal evidence.

    Science.gov (United States)

    Castelló, Ana; Alvarez-Seguí, Mercedes; Verdú, Fernando

    2005-12-20

    Luminescence is specially a useful property for the search of invisible evidences at the scene of a crime. In the latent fingerprints particular case, there are at one's disposal fluorescent reagents for their localization. The study of latent lip prints (that is lip prints from protective lipstick, or permanent or long-lasting lipstick that do not leave any visible marks) is more recent than fingerprints study. Because of the different composition of both types of prints, different reagents have been tried out on their developing. Although, lysochromes are particularly useful reagents to obtain latent lip prints, it may occur on coloured or multicoloured surfaces, the developing is not perceived due to contrast problems between the reagent and the surface where the print is searched. Again, luminescence offers the possibility to solve this problem. Nile Red is being studied as a potential developer for latent lip prints. The results on very old prints (over 1year) indicate that this reagent is highly efficient to get latent lip prints.

  19. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?

    Directory of Open Access Journals (Sweden)

    Andrea Alice Konta

    2017-09-01

    Full Text Available The interindividual variability is an increasingly global problem when treating patients from different backgrounds with diverse customs, metabolism, and necessities. Dose adjustment is frequently based on empirical methods, and therefore, the chance of undesirable side effects to occur is high. Three-dimensional (3D Printed medicines are revolutionsing the pharmaceutical market as potential tools to achieve personalised treatments adapted to the specific requirements of each patient, taking into account their age, weight, comorbidities, pharmacogenetic, and pharmacokinetic characteristics. Additive manufacturing or 3D printing consists of a wide range of techniques classified in many categories but only three of them are mostly used in the 3D printing of medicines: printing-based inkjet systems, nozzle-based deposition systems, and laser-based writing systems. There are several drawbacks when using each technique and also the type of polymers readily available do not always possess the optimal properties for every drug. The aim of this review is to give an overview about the current techniques employed in 3D printing medicines, highlighting their advantages, disadvantages, along with the polymer and drug requirements for a successful printing. The major application of these techniques will be also discussed.

  20. Graphic Arts. A Bilingual Text = Artes Graficas. Un Texto Bilingue.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This bilingual instructional text, one in a series of six texts covering various vocational and technical topics, provides secondary level English and Spanish instruction in graphic arts. Addressed in the individual sections are basic graphic arts (composition, stone and press work, offset printing, silk screen, and photography) and allied graphic…

  1. Print-to-print: printer-enabled out-of-cleanroom multiobject microprinting method.

    Science.gov (United States)

    Xing, Siyuan; Zhao, Siwei; Pan, Tingrui

    2014-01-01

    Micropatterning techniques have gained growing interests from a broad range of engineering and biology researches as it realizes the high-throughput and highly quantitative investigations on miniature biological objects (e.g., cells and bacteria) by spatially defined micropatterns. However, most of the existing techniques rely on expensive instruments or intensive cleanroom access which may not be easy to be utilized in a regular biological laboratory. Here, we present the detailed procedures of a simple versatile microprinting process, referred to as Print-to-Print (P2P), to form multiobject micropatterns for potential biological applications. Only a solid-phase printer and custom-made superhydrophobic (SH) films are utilized for the printing and no thermal or chemical treatment is involved during the entire printing process. Moreover, the noncontact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. By the P2P process, a minimal feature resolution of 229 ± 17 μm has been successfully achieved. What's more, this approach has been applied to form micropatterning on various commonly used substrates in biology as well as multiobject co-patterns. In addition, the SH substrates have also been demonstrated to be reusable. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Clinical applications of 3-dimensional printing in radiation therapy

    International Nuclear Information System (INIS)

    Zhao, Yizhou; Moran, Kathryn; Yewondwossen, Mammo; Allan, James; Clarke, Scott; Rajaraman, Murali; Wilke, Derek; Joseph, Paul; Robar, James L.

    2017-01-01

    Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in

  3. Clinical applications of 3-dimensional printing in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yizhou, E-mail: yizhou.zhao@dal.ca [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Moran, Kathryn [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Yewondwossen, Mammo; Allan, James; Clarke, Scott [Department of Medical Physics, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Rajaraman, Murali; Wilke, Derek; Joseph, Paul [Department of Radiation Oncology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada); Robar, James L. [Department of Medical Physics, Dalhousie University, Queen Elizabeth II Health Sciences Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 2Y9 (Canada)

    2017-07-01

    Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in

  4. Unleash the building bots: 3d printing structures with an autonomous robot swarm

    Directory of Open Access Journals (Sweden)

    Aant van der Zee

    2017-12-01

    Full Text Available 3D printing techniques for the building industry are developing fast. Concepts like Contour printing, concrete printing concepts of the TU/E and D Shape are examples. Despite the range of techniques is broad (and vary from a large gantry system, to a supersized Delta printer for example, many of the developed 3D printing machines are constraint in their movement. Mobile 3D printers however show advantages in flexibility, as they can move outside the constraint of a large 3D printer and they can move in the highly unstructured and hazardous environment of the building site, which can be dangerous for people to work in. The Institute for advanced architecture of Catalonia developed vehicles, which they call minibuilders, each designed for a special task in the building process, printing the foundation, printing a wall, smoothing the outer-wall etc. The minibuilders are used in succession according the building process. However they are still limited in their autonomy and capability. The minibuilders are tethered with a hose to a vehicle, which carries the concrete supply.

  5. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data

    Directory of Open Access Journals (Sweden)

    Azad Mashari MD

    2016-12-01

    Full Text Available Three-dimensional (3D printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping derived from 3D transesophageal echocardiography (TEE has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology.

  6. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  7. Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing.

    Science.gov (United States)

    Milroy, Craig A; Jang, Seonpil; Fujimori, Toshihiko; Dodabalapur, Ananth; Manthiram, Arumugam

    2017-03-01

    Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO 2 ) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g -1 S initially and ≈700 mAh g -1 after 100 charge/discharge cycles at C/2 rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  9. Offset Printing Plate Quality Sensor on a Low-Cost Processor

    Directory of Open Access Journals (Sweden)

    Francisco Tirado

    2013-10-01

    Full Text Available The aim of this work is to develop a microprocessor-based sensor that measures the quality of the offset printing plate through the introduction of different image analysis applications. The main features of the presented system are the low cost, the low amount of power consumption, its modularity and easy integration with other industrial modules for printing plates, and its robustness against noise environments. For the sake of clarity, a viability analysis of previous software is presented through different strategies, based on dynamic histogram and Hough transform. This paper provides performance and scalability data compared with existing costly commercial devices. Furthermore, a general overview of quality control possibilities for printing plates is presented and could be useful to a system where such controls are regularly conducted.

  10. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  11. Large Area Projection Microstereolithography: Characterization and Optimization of 3D Printing Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Melissa R. [Ohlone College, Fremont, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Bryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bekker, Logan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dudukovic, Nikola [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    Large Area Projection Microstereolithography (LAPμSL) is a new technology that allows the additive manufacture of parts that have feature sizes spanning from centimeters to tens of microns. Knowing the accuracy of builds from a system like this is a crucial step in development. This project explored the capabilities of the second and newest LAPμSL system that was built by comparing the features of actual builds to the desired structures. The system was then characterized in order to achieve the best results. The photo polymeric resins that were used were Autodesk PR48 and HDDA. Build parameters for Autodesk PR48 were found that allowed the prints to progress while using the full capacity of the system to print quality parts in a relatively short amount of time. One of the larger prints in particular had a print time that was nearly eighteen times faster than it would have been had printed in the first LAPμSL system. The characterization of HDDA resin helped the understanding that the flux of the light projected into the resin also affected the quality of the builds, rather than just the dose of light given. Future work for this project includes exploring the use of other resins in the LAPμSL systems, exploring the use of Raman Spectroscopy to analyze builds, and completing the characterization of the LAPμSL system.

  12. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Florentina-Daniela Munteanu

    2018-03-01

    Full Text Available This review provides a brief overview of the fabrication and properties of screen-printed electrodes and details the different opportunities to apply them for the detection of antibiotics, detection of bacteria and antibiotic susceptibility. Among the alternative approaches to costly chromatographic or ELISA methods for antibiotics detection and to lengthy culture methods for bacteria detection, electrochemical biosensors based on screen-printed electrodes present some distinctive advantages. Chemical and (biosensors for the detection of antibiotics and assays coupling detection with screen-printed electrodes with immunomagnetic separation are described. With regards to detection of bacteria, the emphasis is placed on applications targeting viable bacterial cells. While the electrochemical sensors and biosensors face many challenges before replacing standard analysis methods, the potential of screen-printed electrodes is increasingly exploited and more applications are anticipated to advance towards commercial analytical tools.

  13. Characteristic Evaluation of Organic Light-Emitting Diodes Prepared with Stamp Printing Technique

    Directory of Open Access Journals (Sweden)

    Apisit Chittawanij

    2017-01-01

    Full Text Available We have reported on a stamp printing technique that uses PET release film as a printing stamp to deposit TPBi thin film served as the electron transport layer of the organic light-emitting diodes. TPBi thin film was printed with a good uniformity and resolution. Effect of deposition conditions on optical and electrical properties and surface roughness of TPBi thin film have been studied under spectroscopy and atomic force microscopy, respectively. It is found that characteristic of TPBi thin film is improved via controlled stamp temperature and time. Since TPBi thin film exhibits the surface morphology comparable to that of conventional spin-coating thin film, our findings suggest that PET release film-based stamp printing approach is possible to use as an alternative deposition of the organic thin film as compared with a traditional one.

  14. Application of the UV laser printing technique to soft gelatin capsules containing titanium dioxide in the shells.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2012-03-01

    The purpose of this study was to examine application of ultraviolet (UV) laser irradiation to printing soft gelatin capsules containing titanium dioxide (TiO(2)) in the shells and to study effect of UV laser power on the color strength of printing on the soft gelatin capsules. Size 6 Oval type soft gelatin capsules of which shells contained 0.685% TiO(2) and 0.005% ferric dioxide were used in this study. The capsules were irradiated pulsed UV laser at a wavelength 355 nm. The color strength of the printed capsules was determined by a spectrophotometer as total color difference (dE). The soft gelatin capsules which contained TiO(2) in the shells could be printed gray by the laser. Many black particles, which were associated with the printing, were formed at the colored parts of the shells. It was found that there were two inflection points in relationship between output laser energy of a pulse and dE. Below the lower point, the capsules were not printed. From the lower point to the upper point, the capsules were printed gray and total color difference of the printing increased linearly in proportion with the output laser energy. Beyond the upper point, total color difference showed saturation because of micro-bubbles formation at the laser irradiated spot. Soft gelatin capsules containing TiO(2) in the shells could be performed stable printing using the UV laser printing technique. Color strength of the printing could be controlled by regulating the laser energy between the two inflection points.

  15. Disposable screen-printed sensors for determination of duloxetine hydrochloride

    Directory of Open Access Journals (Sweden)

    Alarfaj Nawal A

    2012-01-01

    Full Text Available Abstract A screen-printed disposable electrode system for the determination of duloxetine hydrochloride (DL was developed using screen-printing technology. Homemade printing has been characterized and optimized on the basis of effects of the modifier and plasticizers. The fabricated bi-electrode potentiometric strip containing both working and reference electrodes was used as duloxetine hydrochloride sensor. The proposed sensors worked satisfactorily in the concentration range from 1.0 × 10-6-1.0 × 10-2 mol L-1 with detection limit reaching 5.0 × 10-7 mol L-1 and adequate shelf life of 6 months. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically by recovery studies.

  16. Methodical bases of perceptual mapping of printing industry companies

    Directory of Open Access Journals (Sweden)

    Kalinin Pavel

    2017-01-01

    Full Text Available This is to study the methodological foundations of perceptual mapping in printing industry enterprises. This research has a practice focus which affects the choice of its methodological framework. The authors use such scientific research as analysis of cause-effect relationships, synthesis, problem analysis, expert evaluation and image visualization methods. In this paper, the authors present their assessment of the competitive environment of major printing industry companies in Kirov oblast; their assessment employs perceptual mapping enables by Minitab 14. This technique can be used by experts in the field of marketing and branding to assess the competitive environment in any market. The object of research is printing industry in Kirov oblast. The most important conclusion of this study is that in perceptual mapping, all the parameters are integrated in a single system and provide a more objective view of the company’s market situation.

  17. Emotiogenic Cognitive Function of Modern School Teaching Texts

    Directory of Open Access Journals (Sweden)

    Любовь Васильевна Ерохина

    2015-12-01

    Full Text Available The article is devoted to the analysis of emotional attractiveness of modern school educational texts and ecological/non-ecological influence upon pupils’ cognition in teaching communication. Reasoning is based on the thesis that - emotional attractiveness of modern school educational texts opposes their cognitive function. Emotional educational text profile and its components are under consideration. The article is concerned with ecological and cognitive and emotional asymmetry content. The material under focus is printed texts of some of modern school textbooks, teaching methodical aids, academic competitions, mass media information from the cognitive ecology point of view.

  18. Printings, Political Parties and Public Opinion at the Province of Popayán, 1832-1853

    Directory of Open Access Journals (Sweden)

    Willian Alfredo Chapman Quevedo

    2017-01-01

    Full Text Available This article analyzes the incidences caused by printings and written texts during the public’s opinion creation between 1832 and 1853 at Popayan province. Thus, the public opinion was linked to the newspaper’s circulation, rags, scandal sheets and printed images. Likewise, it evidences that these printings and images were not exclusively design for a qualified audience but, the intention also was to reach the common people who were illiterate most of them. But, through orality and images, these people constructed an idea about the politic reality at that time. Hence, we conclude that writing and printed images, along with orality, were essential items to the intention of building a different reality. This last idea does not suggest that this experience was not mediated by comments but, it did influence the society of Popayan, and also interceding on the individual’s perception, a politic party and even the State.

  19. The effect of font size and type on reading performance with Arabic words in normally sighted and simulated cataract subjects.

    Science.gov (United States)

    Alotaibi, Abdullah Z

    2007-05-01

    Previous investigations have shown that reading is the most common functional problem reported by patients at a low vision practice. While there have been studies investigating effect of fonts in normal and low vision patients in English, no study has been carried out in Arabic. Additionally, there has been no investigation into the use of optimum print sizes or fonts that should be used in Arabic books and leaflets for low vision patients. Arabic sentences were read by 100 normally sighted volunteers with and without simulated cataract. Subjects read two font types (Times New Roman and Courier) in three different sizes (N8, N10 and N12). The subjects were asked to read the sentences aloud. The reading speed was calculated as number of words read divided by the time taken, while reading rate was calculated as the number of words read correctly divided by the time taken. There was an improvement in reading performance of normally sighted and simulated visually impaired subjects when the print size increased. There was no significant difference in reading performance between the two types of font used at small print size, however the reading rate improved as print size increased with Times New Roman. The results suggest that the use of N12 print in Times New Roman enhanced reading performance in normally sighted and simulated cataract subjects.

  20. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.

    Science.gov (United States)

    Lacey, Steven D; Kirsch, Dylan J; Li, Yiju; Morgenstern, Joseph T; Zarket, Brady C; Yao, Yonggang; Dai, Jiaqi; Garcia, Laurence Q; Liu, Boyang; Gao, Tingting; Xu, Shaomao; Raghavan, Srinivasa R; Connell, John W; Lin, Yi; Hu, Liangbing

    2018-03-01

    A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL -1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O 2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 3D Printing in Surgical Management of Double Outlet Right Ventricle

    Directory of Open Access Journals (Sweden)

    Shi-Joon Yoo

    2018-01-01

    Full Text Available Double outlet right ventricle (DORV is a heterogeneous group of congenital heart diseases that require individualized surgical approach based on precise understanding of the complex cardiovascular anatomy. Physical 3-dimensional (3D print models not only allow fast and unequivocal perception of the complex anatomy but also eliminate misunderstanding or miscommunication among imagers and surgeons. Except for those cases showing well-recognized classic surgical anatomy of DORV such as in cases with a typical subaortic or subpulmonary ventricular septal defect, 3D print models are of enormous value in surgical decision and planning. Furthermore, 3D print models can also be used for rehearsal of the intended procedure before the actual surgery on the patient so that the outcome of the procedure is precisely predicted and the procedure can be optimally tailored for the patient’s specific anatomy. 3D print models are invaluable resource for hands-on surgical training of congenital heart surgeons.

  2. Initial investment to 3D printing technologies in a construction company

    Directory of Open Access Journals (Sweden)

    Cernohorsky, Zdenek

    2017-06-01

    Full Text Available This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot project. In the second part, there will be a more detailed discussion of the pilot project, more about each activities which should be its parts and which should analyze cost categories. These categories will be about particular lifecycle stages of the pilot project. In the third part, a summary is done. This article could be a handout for a construction company in a term of an initial investment to 3D printing.

  3. Merging polygons on two-layer printed circuit board

    Directory of Open Access Journals (Sweden)

    Murov S. Yu.

    2011-12-01

    Full Text Available A method is proposed for solving the problem of connection of maximum number of isolated islands of metallized areas of the same chain, located on different layers of the printed circuit board. The method can be used in the automatic tracing of the boards.

  4. Software for Quantitative Estimation of Coefficients of Ink Transfer on the Printed Substrate in Offset Printing

    Science.gov (United States)

    Varepo, L. G.; Trapeznikova, O. V.; Panichkin, A. V.; Roev, B. A.; Kulikov, G. B.

    2018-04-01

    In the framework of standardizing the process of offset printing, one of the most important tasks is the correct selection of the printing system components, taking into account the features of their interaction and behavior in the printing process. The program allows to calculate the transfer of ink on the printed material between the contacting cylindrical surfaces of the sheet-fed offset printing apparatus with the boundaries deformation. A distinctive feature of this software product is the modeling of the liquid flow having free boundaries and causing deformation of solid boundaries when flowing between the walls of two cylinders.

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Stéphanie Giraud

    2017-06-01

    Full Text Available Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  6. Application of Biomaterials and Inkjet Printing to Develop Bacterial Culture System

    Directory of Open Access Journals (Sweden)

    Tithimanan Srimongkon

    2015-01-01

    Full Text Available We created an automated bioassay system based on inkjet printing. Compared to conventional manual bacterial culture systems our printing approach improves the quality as well as the processing speed. A hydrophobic/hydrophilic pattern as a container supporting a culture medium was built on filter paper using a toluene solution of polystyrene for hydrophobization, followed by toluene printing to create several hydrophilic areas. As culture media we used a novel poly(vinyl alcohol based hydrogel and a standard calcium alginate hydrogel. The poly(vinyl alcohol hydrogel was formed by physical crosslinking poly(vinyl alcohol with adipic acid dihydrazide solutions. The conditions of poly(vinyl alcohol gelation were optimized for inkjet printability and the optimum mixture ratio was determined. The calcium alginate hydrogel was formed by chemical reaction between sodium alginate and CaCl2 solutions. Together with nutrients both hydrogel solutions were successfully printed on paper by means of the modified inkjet printer. The amount of each solution was demanded simply by outputting CMYK values. In the last step bacterial cells were printed on both hydrogel media. For both media we achieved a stable bacteria growth which was confirmed by microscopical imaging of the developed bacterial colonies.

  7. Selecting suitable enclosures for digitally printed materials

    International Nuclear Information System (INIS)

    Burge, D; Rima, L

    2010-01-01

    It cannot be assumed that storage enclosures considered safe for traditionally printed images and documents are suitable for modern, digitally printed materials. In this project, a large variety of digital print types were tested using a modified version of the ISO 18916 Imaging materials-Processed imaging materials-Photographic activity test for enclosure materials standard to assess the risk to digital prints by paper enclosures known to be inert or reactive with traditional photographic prints. The types of enclosures tested included buffered and non-buffered cotton papers, and groundwood paper. In addition, qualitative filter paper that had been wetted and dried with either an acidic or basic solution was also tested to determine the effects of enclosure pH on digitally printed materials. It was determined that, in general, digital prints tended to be less reactive with various enclosure types than traditional prints. Digital prints were most sensitive to paper that contained groundwood. The enclosure reactivity test results were then integrated with previous published work on the tendencies of various enclosure types to abrade, ferrotype, or block to digital prints in order to create a comprehensive set of recommendations for digital print storage enclosures.

  8. 3D printed 20/30-GHz dual-band offset stepped-reflector antenna

    DEFF Research Database (Denmark)

    Menendez, Laura G.; Kim, Oleksiy S.; Persson, Frank

    2015-01-01

    with a peak directivity of 36.7 dB and 40.4 dB at 20 and 30 GHz, respectively; this corresponds to an aperture efficiency of 61 % and 64 %, respectively. These results demonstrate that 3D printing is a viable manufacturing technology for medium-sized high-frequency antennas....

  9. Inkjet printed electronics using copper nanoparticle ink

    OpenAIRE

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200 °C of low temperature in N2 gas condition. The printed electrodes were made with various widths and thickness. In order to control the thickness of the printed electrode, number of printing was varied. Resistivity of printed electrode was calculated from the cross-sectional area measure...

  10. Checking a printed board

    CERN Multimedia

    1977-01-01

    An 'Interactive Printed Circuit Board Design System' has been developed by a company in a Member-State. Printed circuits are now produced at the SB's surface treatment workshop using a digitized photo-plotter.

  11. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  12. Fabricating Optical Fiber Imaging Sensors Using Inkjet Printing Technology: a pH Sensor Proof-of-Concept

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J C; Alvis, R M; Brown, S B; Langry, K C; Wilson, T S; McBride, M T; Myrick, M L; Cox, W R; Grove, M E; Colston, B W

    2005-03-01

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photopolymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micron-sized polymer) sensor diameter (92.2 {+-} 2.2 microns), height (35.0 {+-} 1.0 microns), and roundness (0.00072 {+-} 0.00023). pH sensors were evaluated in terms of pH sensing ability ({le}2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.

  13. Scholarly Electronic Full-Text Publications via the Internet: Issues and Impacts

    Science.gov (United States)

    Kosmin, Linda J.

    1999-01-01

    On-line access to complete texts of scholarly journal articles, conference papers, and books is facilitated by rapidly developing World-wide Web Internet access and capabilities. Meanwhile, print publications continue to be produced and read in spite of the proliferation of many networked electronic publications. The purpose of this presentation is to highlight fundamental issues impacting stakeholder groups, as the trend continues towards migration from paper to affordable ubiquitous networked full-text publications. Librarians, publishers, authors and end-users have various viewpoints, interests, and concerns. There are many issues challenging all stakeholder groups. For instance, all share concerns about administering copyright compliance and enforcing fair use. Uncontrollable electronic downstreaming could result in infringed copyright, while limiting a publisher's entitled revenue stream. Moreover, metered fee-based access may hamper scholarly information research. And, self-authoring on the Internet without peer filtering could lead to information clutter. Many related issues challenge librarians in particular. Among these are rising journal subscription prices, regardless if offered in print or electronic. Some electronic offerings are independent of print, others supplement or duplicate print; several publishers presently require subscribing to print in order to access electronic. Furthermore, numbers of publications are n'ow being marketed via the Internet directly to end-users, which can be viewed as encouraging users to bypass the traditional library. A key issue challenging publishers today is the rapidly expanding electronic user base that is demanding delivery of added-value full-text to desktop computers. Also of growing concern appears to be the decline in print sales to libraries, thereby reducing traditional revenue stream potential. Nowadays, publishers are more hesitant about investing in the production of publications geared toward small niche

  14. Influence of Gloss and Surface Roughness of Coated Ink Jet Papers on Print Uniformity

    Directory of Open Access Journals (Sweden)

    Ivana Jurič

    2013-12-01

    Full Text Available The final print quality depends on the quality of the digital image as well as the properties of the printing system, the inks and the paper used. One of the most widely used digital printing technologies is ink jet, where ink is ejected directly onto a substrate from a jet device driven by an electronic signal. Most ink jet inks have low viscosity and low surface tension, which pose high demands upon the surface properties of the paper. The aim of this study was to investigate the influence of paper properties of commercially available papers suitable for ink jet printing on print mottle, non-uniformity. We used two high glossy, one glossy, one semi-glossy and two matte papers. For the assessment of the surface properties, we measured surface roughness with the portable Roughness Tester TR 200. We also measured surface gloss with QIP Glossmaster. To characterise the print mottle we used the image analysis method – Gray level co-occurrence matrix (GLCM. Print mottle was estimated according to five GLCM parameters: Contrast, Correlation, Entropy, Energy and Homogeneity. Results obtained in this paper showed that the surface properties of paper are not in any direct relation with print uniformity.

  15. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    Science.gov (United States)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  16. Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Marcin Słoma

    2014-01-01

    Full Text Available We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices.

  17. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  18. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing

    Directory of Open Access Journals (Sweden)

    Ludovic Serex

    2018-02-01

    Full Text Available Advances in 3D printing have enabled the use of this technology in a growing number of fields, and have started to spark the interest of biologists. Having the particularity of being cell friendly and allowing multimaterial deposition, extrusion-based 3D printing has been shown to be the method of choice for bioprinting. However as biologically relevant constructs often need to be of high resolution and high complexity, new methods are needed, to provide an improved level of control on the deposited biomaterials. In this paper, we demonstrate how microfluidics can be used to add functions to extrusion 3D printers, which widens their field of application. Micromixers can be added to print heads to perform the last-second mixing of multiple components just before resin dispensing, which can be used for the deposition of new polymeric or composite materials, as well as for bioprinting new materials with tailored properties. The integration of micro-concentrators in the print heads allows a significant increase in cell concentration in bioprinting. The addition of rapid microfluidic switching as well as resolution increase through flow focusing are also demonstrated. Those elementary implementations of microfluidic functions for 3D printing pave the way for more complex applications enabling new prospects in 3D printing.

  19. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.

  20. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    International Nuclear Information System (INIS)

    Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S

    2015-01-01

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy

  1. MONITORING DIAGNOSTIC INDICATORS DURING OPERATION OF A PRINT MACHIN

    Directory of Open Access Journals (Sweden)

    Jozef Dobránsky

    2015-11-01

    Full Text Available This article deals with monitoring diagnostic indicators during the operation of a machine used for production of packing materials with a print. It analyses low-frequency vibrations measured in individual spherical roller bearings in eight print positions. The rollers in these positions have a different pressure based on positioning these rollers in relation to the central roller. As a result, the article also deals with a correlation of pressure and level of measured low-frequency vibrations. The speed of the print machine (the speed of a line in meters per minute is a very important variable during its operation, this is why it is important to verify the values of vibrations in various speeds of the line, what can lead to revelation of one or more resonance areas. Moreover, it examines vibrations of the central roller drive and measurement of backlash of transmission cogs of this drive. Based on performed analyses recommendations for an operator of the machine have been conceived.

  2. 3D Printing of Biosamples: A Concise Review

    Science.gov (United States)

    Zhao, Victoria Xin Ting; Wong, Ten It; Zhou, Xiaodong

    This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.

  3. Study on the relationship of continuous laser printing and the distance of trace on the OPC

    Directory of Open Access Journals (Sweden)

    Xingzhou Han

    2017-01-01

    Full Text Available This thesis aims to seek the relationship between photosensitive drum cyclical trace distance of two pages (shorted for L' and continuity printing of laser printers. Characteristics quantification, statistics are chosen to evaluate the data and results. It is indicated that the regularity is existed between L' and continuity printing, and regular performance between different models of HP and Canon printers are consistent. According to the data, L' of continuous printing are summed up, the probability of replacing the front page and the middle page which can meet the continuity regularity are analyzed. The numerical interval is given of noncontinuous printing. The study can enhance the scientificity of printing document examination and have innovation and practical significance in civil disputes, criminal cases, and social community.

  4. Formation and Characterization of Inkjet-Printed Nanosilver Lines on Plasma-Treated Glass Substrates

    Directory of Open Access Journals (Sweden)

    Jae-Sung Kwon

    2018-02-01

    Full Text Available In this study, we investigated geometrical characteristics of the inkjet-printed lines with non-zero receding contact angle (CA on plasma-treated substrates in terms of various printing variables and analyzed the fluidic behavior and hydrodynamic instability involved in the line formation process. The printing variables included surface energy, droplet overlap ratio, printing frequency, a number of ink droplets, substrate temperature and printing procedures. For the study, a colloidal suspension containing 56 wt % silver nanoparticles in tetradecane solvent was used as a printing ink. It has electrical resistivity of 4.7 μΩ·cm. The substrates were obtained by performing a plasma enhanced chemical vapor deposition (PECVD process with C4F8 and O2 under various treatment conditions. As results of the experiments, the surface shape and pattern of the inkjet-printed Ag lines were dominantly influenced by the surface energy of the substrates, among the printing variables. Accordingly even when the receding CA was non-zero, bulging instability of the lines occurred forming separate circular patterns or regular bulges connected by ridges. It is a new finding of this study, which is completely different with the bulging instability of inkjet lines with zero receding CA specified by previous researches. The bulging instability decreased by increasing surface temperature of the substrates or employing interlacing procedure instead of continuous procedure for printing. The interlacing procedure also was advantageous to fabricate thick and narrow Ag lines with well-defined shape through overprinting on a hydrophobic substrate. These results will contribute greatly to not only the production of various printed electronics containing high-aspect-ratio structures but also the improvement of working performance of the devices.

  5. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  6. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  7. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  8. 3D Printing: Print the future of ophthalmology.

    Science.gov (United States)

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments

    Directory of Open Access Journals (Sweden)

    Ahmad Mostafa

    2017-05-01

    Full Text Available 3D printing results in anisotropy in the microstructure and mechanical properties. The focus of this study is to investigate the structure, texture and phase evolution of the as-printed and heat treated IN718 superalloy. Cylindrical specimens, printed by powder-bed additive manufacturing technique, were subjected to two post-treatments: homogenization (1100 °C, 1 h, furnace cooling and hot isostatic pressing (HIP (1160 °C, 100 MPa, 4 h, furnace cooling. The Selective laser melting (SLM printed microstructure exhibited a columnar architecture, parallel to the building direction, due to the heat flow towards negative z-direction. Whereas, a unique structural morphology was observed in the x-y plane due to different cooling rates resulting from laser beam overlapping. Post-processing treatments reorganized the columnar structure of a strong {002} texture into fine columnar and/or equiaxed grains of random orientations. Equiaxed structure of about 150 µm average grain size, was achieved after homogenization and HIP treatments. Both δ-phase and MC-type brittle carbides, having rough morphologies, were formed at the grain boundaries. Delta-phase formed due to γ″-phase dissolution in the γ matrix, while MC-type carbides nucleates grew by diffusion of solute atoms. The presence of (Nb0.78Ti0.22C carbide phase, with an fcc structure having a lattice parameter a = 4.43 Å, was revealed using Energy dispersive spectrometer (EDS and X-ray diffractometer (XRD analysis. The solidification behavior of IN718 alloy was described to elucidate the evolution of different phases during selective laser melting and post-processing heat treatments of IN718.

  10. Research on the Mass Digitization of the Print Collection

    Directory of Open Access Journals (Sweden)

    Li Yongmei

    2017-10-01

    Full Text Available [Purpose/significance] The mass digitization of the print collection is an inevitable action for digital libraries. It has enlarged the depth and breadth of library services, and has enormously promoted the development and progress of academic exchange and academic research. [Method/process] This paper analyzed the global mass digitization of the print collection in terms of the origin, environmental factors, development status and current problems. It took HathiTrust as a case study. [Result/conclusion] Building the principles, solving the copyright problems with fair use and establishing a multi-stage and multi-sided framework for cooperation are important measures to promote the full realization of the mass digitization.

  11. Application to printed resistors

    International Nuclear Information System (INIS)

    Hachiyanagi, Yoshimi; Uraki, Hisatsugu; Sawamura, Masashi

    1989-01-01

    Most of printed circuit boards are made at present by etching copper foils which are laminated on insulating composite boards of paper/phenol resin or glass nonwoven fabric/epoxy rein. This is called subtractive process, and since this is a wet process, the problem of coping with the pollution due to etching solution, plating solution and others is involved. As the method of solving this problem, attention has been paid to the dry process which forms conductor patterns by screen printing using electro-conductive paste. For such resin substrates, generally polymer thick films (PTF) using thermosetting resin as the binder are used. Also the research on the formation of resistors, condensers and other parts by printing using the technology of cermet thick films (CTF) and PTF is active, and it is partially put in practical use. The problems are the deformation and deterioration of substrates, therefore, as the countermeasures, electron beam hardening type PTF has been studied, and various pastes have been developed. In this paper, electron beam hardening type printed resistors are reported. The features, resistance paste, and a number of the experiments on printed resistors are described. (K.I.)

  12. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  13. The Application of Ultrasound in 3D Bio-Printing.

    Science.gov (United States)

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  14. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  15. A flexible-dose dispenser for immediate and extended release 3D printed tablets.

    Science.gov (United States)

    Pietrzak, Katarzyna; Isreb, Abdullah; Alhnan, Mohamed A

    2015-10-01

    The advances in personalised medicine increased the demand for a fast, accurate and reliable production method of tablets that can be digitally controlled by healthcare staff. A flexible dose tablet system is presented in this study that proved to be suitable for immediate and extended release tablets with a realistic drug loading and an easy-to-swallow tablet design. The method bridges the affordable and digitally controlled Fused Deposition Modelling (FDM) 3D printing with a standard pharmaceutical manufacturing process, Hot Melt Extrusion (HME). The reported method was compatible with three methacrylic polymers (Eudragit RL, RS and E) as well as a cellulose-based one (hydroxypropyl cellulose, HPC SSL). The use of a HME based pharmaceutical filament preserved the linear relationship between the mass and printed volume and was utilized to digitally control the dose via an input from computer software with dose accuracy in the range of 91-95%. Higher resolution printing quality doubled the printing time, but showed a little effect on in vitro release pattern of theophylline and weight accuracy. Physical characterization studies indicated that the majority of the model drug (theophylline) in the 3D printed tablet exists in a crystal form. Owing to the small size, ease of use and the highly adjustable nature of FDM 3D printers, the method holds promise for future individualised treatment. Copyright © 2015. Published by Elsevier B.V.

  16. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Ge, Qi; Qi, H Jerry; Dunn, Martin L; Dunn, Conner K

    2014-01-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  17. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  18. Inkjet and screen printing for electronic applications

    OpenAIRE

    Medina Rodríguez, Beatriz

    2016-01-01

    Printed electronics (PE) is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. Electrically functional, electronic or optical inks are deposited on the substrate, creating active or passive devices. PE offers a great advantage when compared to traditional processes or microelectronics du...

  19. Can lip prints provide biologic evidence?

    Science.gov (United States)

    Sharma, Preeti; Sharma, Neeraj; Wadhwan, Vijay; Aggarwal, Pooja

    2016-01-01

    Lip prints are unique and can be used in personal identification. Very few studies are available which establish them as biological evidence in the court of law. Thus, the objective of this study was to attempt to isolate DNA and obtain full short tandem repeat (STR) loci of the individual from the lip prints on different surfaces. Twelve lip prints were procured on different surfaces such as tissue paper, cotton cloth, ceramic tile, and glass surface. Latent lip prints were developed using fingerprint black powder. Lipstick-coated lip prints were also collected on the same supporting items. DNA was isolated, quantified, and amplified using Identifiler™ kit to type 15 STR loci. Ample quantity of DNA was extracted from all the lip print impressions and 15 loci were successfully located in seven samples. Fourteen loci were successfully typed in 3 lip impressions while 13 loci were typed in 2 samples. This study emphasizes the relevance of lip prints at the scene of crime. Extraction of DNA followed by typing of STR loci establishes the lip prints as biological evidence too. Tissue papers, napkins, cups, and glasses may have imprints of the suspect's lips. Thus, the full genetic profile is extremely useful for the forensic team.

  20. 3D printed e-tongue

    Science.gov (United States)

    Gaál, Gabriel; da Silva, Tatiana A.; Gaál, Vladimir; Hensel, Rafael C.; Amaral, Lucas R.; Rodrigues, Varlei; Riul, Antonio

    2018-05-01

    Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 minutes with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.

  1. Plasma jet printing for flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Koehne, Jessica; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  2. Networked Print Production: Does JDF Provide a Perfect Workflow?

    Directory of Open Access Journals (Sweden)

    Bernd Zipper

    2004-12-01

    Full Text Available The "networked printing works" is a well-worn slogan used by many providers in the graphics industry and for the past number of years printing-works manufacturers have been working on the goal of achieving the "networked printing works". A turning point from the concept to real implementation can now be expected at drupa 2004: JDF (Job Definition Format and thus "networked production" will form the center of interest here. The first approaches towards a complete, networked workflow between prepress, print and postpress in production are already available - the products and solutions will now be presented publicly at drupa 2004. So, drupa 2004 will undoubtedly be the "JDF-drupa" - the drupa where machines learn to communicate with each other digitally - the drupa, where the dream of general system and job communication in the printing industry can be first realized. CIP3, which has since been renamed CIP4, is an international consortium of leading manufacturers from the printing and media industry who have taken on the task of integrating processes for prepress, print and postpress. The association, to which nearly all manufacturers in the graphics industry belong, has succeeded with CIP3 in developing a first international standard for the transmission of control data in the print workflow.Further development of the CIP4 standard now includes a more extensive "system language" called JDF, which will guarantee workflow communication beyond manufacturer boundaries. However, not only data for actual print production will be communicated with JDF (Job Definition Format: planning and calculation data for MIS (Management Information systems and calculation systems will also be prepared. The German printing specialist Hans-Georg Wenke defines JDF as follows: "JDF takes over data from MIS for machines, aggregates and their control desks, data exchange within office applications, and finally ensures that data can be incorporated in the technical workflow

  3. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Directory of Open Access Journals (Sweden)

    Simon J Leigh

    Full Text Available 3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping' before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  4. What is happening with our printed newspapers?

    Directory of Open Access Journals (Sweden)

    Jevtović Zoran

    2013-01-01

    Full Text Available The changes that have occurred in the first decade of this century have dramatically shook the media, especially printed newspapers. Based on the comparative studies on media system in wealthy, developing countries and southern European countries, we came to conclusion that the internet is not the main cause of the newspaper industry collapse, at the time of the increased use of the internet and the decline of newspaper circulation. Internet is and will always be the important factor, but this is the crisis that has hit the media the most, especially the advertising the newspapers depended on. Although internet did not kill printed newspapers, some sites destroyed profitable category of advertising in newspapers, which evolved along with them. In such circumstances, printed newspapers, if tailored to measure the audience, can still play an important role in society. Journalism remains the basis of the media, as the largest source of information, and newspapers content, in new circumstances, is not used for news, but for reflection and background. All this indicates that we now have the domination of mixed media use, the coexistence of old and new, because wherever they are, new media always complement the old media, rather than change them. Most of the news that is shared on-line is manufactured in traditional media organizations, and newspapers and television produce more news and reach larger audience than any other media organization. That is how the new time has imposed the new modified business model that combines print and digital edition, sales and advertising and is based on loyal audience.

  5. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints

    OpenAIRE

    Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram

    2014-01-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print ...

  6. Production and 3D printing processing of bio-based thermoplastic filament

    Directory of Open Access Journals (Sweden)

    Gkartzou Eleni

    2017-01-01

    Full Text Available In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid (PLA with low-cost kraft lignin. In Fused Filament Fabrication (FFF 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minimum material waste. A sustainable material consisting of lignin biopolymer blended with poly(lactic acid was examined for its physical properties and for its melt processability during the FFF process. Samples with different PLA/lignin weight ratios were prepared and their mechanical (tensile testing, thermal (Differential Scanning Calorimetry analysis and morphological (optical and scanning electron microscopy, SEM properties were studied. The composition with optimum properties was selected for the production of 3D-printing filament. Three process parameters, which contribute to shear rate and stress imposed on the melt, were examined: extrusion temperature, printing speed and fiber’s width varied and their effect on extrudates’ morphology was evaluated. The mechanical properties of 3D printed specimens were assessed with tensile testing and SEM fractography.

  7. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  8. One Size Does Not Fit All: Older Adults Benefit From Redundant Text in Multimedia Instruction

    Directory of Open Access Journals (Sweden)

    Barbara eFenesi

    2015-07-01

    Full Text Available The multimedia design of presentations typically ignores that younger and older adults have varying cognitive strengths and weaknesses. We examined whether differential instructional design may enhance learning in these populations. Younger and older participants viewed one of three computer-based presentations: Audio only (narration, Redundant (audio narration with redundant text, or Complementary (audio narration with non–redundant text and images. Younger participants learned better when audio narration was paired with relevant images compared to when audio narration was paired with redundant text. However, older participants learned best when audio narration was paired with redundant text. Younger adults, who presumably have a higher working memory capacity, appear to benefit more from complementary information that may drive deeper conceptual processing. In contrast, older adults learn better from presentations that support redundant coding across modalities, which may help mitigate the effects of age-related decline in working memory capacity. Additionally, several misconceptions of design quality appeared across age groups: both younger and older participants positively rated less effective designs. Findings suggest that one-size does not fit all, with older adults requiring unique multimedia design tailored to their cognitive abilities for effective learning.

  9. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  10. Open source 3D-printed 1000 μL micropump

    Directory of Open Access Journals (Sweden)

    Jorge Bravo-Martinez

    2018-04-01

    Full Text Available Scientific innovation goes hand in hand with technological innovation, so scientific work depends to a great extent on the hardware available in the laboratory. The investment in developing countries is still far below that of OECD countries, which was about 2.4% of the gross domestic product (GDP in 2015. In stark contrast, Brazil made the highest investment of Latin American countries at just 1.2%. Today, the “open-source revolution” appears more than ever to be a powerful ally for the promotion of development and the narrowing of the economic gap between developed and developing countries. In this context, this article presents the design of a 1000 μl 3D printed micropump. It is a practical and simple design inspired by pipette pumps. The present design was printed with a 3D printer and assembled very easily with common tools. Upon comparison of the micropump’s performance, it exhibits a systematic error between 1.4 and 3.8% of the volume and a random error between 0.38 and 9.5% of the volumen. Keywords: Open source, 3D printed micropump, 3D printing, DIY labware

  11. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  12. The accuracy of a method for printing three-dimensional spinal models.

    Directory of Open Access Journals (Sweden)

    Ai-Min Wu

    Full Text Available To study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined.Forty-five computed tomography (CT scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again.Paired t-tests were used to determine the significance, set to P0.800. The other ICC values were 0.600; none were <0.600.In this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research.

  13. Comparison of inkjet-printed silver conductors on different microsystem substrates

    CSIR Research Space (South Africa)

    Kruger, Jene

    2016-09-01

    Full Text Available Applications for diagnostic and environmental point-of-need require processes and building blocks to add smart features to disposable biosensors on low-cost substrates. A novel method for producing such biosensors is printing electronics using...

  14. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  15. Customizing digital printing for fine art practice

    Science.gov (United States)

    Parraman, Carinna E.; Thirkell, Paul; Hoskins, Steve; Wang, Hong Qiang; Laidler, Paul

    2005-01-01

    The presentation will demonstrate how through alternative methods of digital print production the Centre for Fine Print Research (CFPR) is developing methodologies for digital printing that attempt to move beyond standard reproductive print methods. Profiling is used for input and output hardware, along with bespoke profiling for fine art printmaking papers. Examples of artist's work, and examples from the Perpetual Portfolio are included - an artist in residence scheme for selected artists wanting to work at the Centre and to make a large-format digital print. Colour is an important issue: colour fidelity, colour density on paper, colour that can be achieved through multiple-pass printing. Research is also underway to test colour shortfalls in the current inkjet ink range, and to extend colour through the use of traditional printing inks.

  16. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    Science.gov (United States)

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  17. Dynamics of wetting explored with inkjet printing

    Directory of Open Access Journals (Sweden)

    Völkel Simeon

    2017-01-01

    Full Text Available An inkjet printer head, which is capable of depositing liquid droplets with a resolution of 22 picoliters and high repeatability, is employed to investigate the wetting dynamics of drops printed on a horizontal plane as well as on a granular monolayer. For a sessile drop on a horizontal plane, we characterize the contact angle hysteresis, drop volume and contact line dynamics from side view images. We show that the evaporation rate scales with the dimension of the contact line instead of the surface area of the drop. We demonstrate that the system evolves into a closed cycle upon repeating the depositing-evaporating process, owing to the high repeatability of the printing facility. Finally, we extend the investigation to a granular monolayer in order to explore the interplay between liquid deposition and granular particles.

  18. Functional changes through the usage of 3D-printed transitional prostheses in children.

    Science.gov (United States)

    Zuniga, Jorge M; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Than, Nicholas A; Stergiou, Nicholas

    2017-11-08

    There is limited knowledge on the use of 3 D-printed transitional prostheses, as they relate to changes in function and strength. Therefore, the purpose of this study was to identify functional and strength changes after usage of 3 D-printed transitional prostheses for multiple weeks for children with upper-limb differences. Gross manual dexterity was assessed using the Box and Block Test and wrist strength was measured using a dynamometer. This testing was conducted before and after a period of 24 ± 2.61 weeks of using a 3 D-printed transitional prosthesis. The 11 children (five girls and six boys; 3-15 years of age) who participated in the study, were fitted with a 3 D-printed transitional partial hand (n = 9) or an arm (n = 2) prosthesis. Separate two-way repeated measures ANOVAs were performed to analyze function and strength data. There was a significant hand by time interaction for function, but not for strength. Conclusion and relevance to the study of disability and rehabilitation: The increase in manual gross dexterity suggests that the Cyborg Beast 2 3 D-printed prosthesis can be used as a transitional device to improve function in children with traumatic or congenital upper-limb differences. Implications for Rehabilitation Children's prosthetic needs are complex due to their small size, rapid growth, and psychosocial development. Advancements in computer-aided design and additive manufacturing offer the possibility of designing and printing transitional prostheses at a very low cost, but there is limited knowledge on the function of this type of devices. The use of 3D printed transitional prostheses may improve manual gross dexterity in children after several weeks of using it.

  19. Two-Dimensional (2D Slices Encryption-Based Security Solution for Three-Dimensional (3D Printing Industry

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-05-01

    Full Text Available Nowadays, three-dimensional (3D printing technology is applied to many areas of life and changes the world based on the creation of complex structures and shapes that were not feasible in the past. But, the data of 3D printing is often attacked in the storage and transmission processes. Therefore, 3D printing must be ensured security in the manufacturing process, especially the data of 3D printing to prevent attacks from hackers. This paper presents a security solution for 3D printing based on two-dimensional (2D slices encryption. The 2D slices of 3D printing data is encrypted in the frequency domain or in the spatial domain by the secret key to generate the encrypted data of 3D printing. We implemented the proposed solution in both the frequency domain based on the Discrete Cosine Transform and the spatial domain based on geometric transform. The entire 2D slices of 3D printing data is altered and secured after the encryption process. The proposed solution is responsive to the security requirements for the secured storage and transmission. Experimental results also verified that the proposed solution is effective to 3D printing data and is independent on the format of 3D printing models. When compared to the conventional works, the security and performance of the proposed solution is also better.

  20. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    Science.gov (United States)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  1. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  2. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  3. Printing and civilization; Insatsu to bunmei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T. [Dainippon Ink and Chemicals Inc., Tokyo (Japan)

    1995-01-01

    It can be said that the printing has not been only a barometer of culture, but also has formed a foundation of culture as the facilities of civilization, and has shouldered a role to drag the culture. In modern nation, that the freedom of speech and press has been clearly pointed out as the fundamental human right, shows straightforwardly an important significance of such a printing. Though it is also statistically clear that there is an exact relation between GNP and printed materials per capita, in this paper centering around the examples in Japan, a relation between the printing and civilization/culture is introduced like the episodes. It does not yet become definite that what kind of influence a proposition so called `printing is a barometer of culture` is affected by the information/communication revolution which is regarded to be advanced very rapidly. However, speaking conclusively it can not be thought that a demand for the printing which can produce the information in a great deal of quantity with a low cost, and for the printing which does not need special output terminal and is excellent in portability and glance ability, may largely be reduced. 1 fig.

  4. Text and graphics: manipulating nutrition brochures to maximize recall.

    Science.gov (United States)

    Clark, K L; AbuSabha, R; von Eye, A; Achterberg, C

    1999-08-01

    This study examined how altering text and graphics of a nutrition brochure could affect the ability to remember the content of the message. Two theoretical models were used to guide alterations: dual-coding theory and the communications model. Three brochure formats were tested: the original brochure containing abstract text and abstract graphics, a modified brochure with relatively concrete text and abstract graphics, and a relatively concrete text brochure with concrete graphics. Participants (N = 239 women) were divided into four age groups: 20-30, 40-50, 60-70 and over 70 years. Women were randomly assigned into each of the three experimental brochure formats or a control group. Participants completed recalled materials from the assigned brochures (the no treatment control group did not include a brochure) at two different sessions, 30 days apart. Data were content analyzed and results were compared using analysis of covariance to test differences by age and brochure types. Younger women (20-30 and 40-50 years) recalled more information than women over 60 years. More concrete nutrition education print materials enhanced recall of information presented immediately after reading the material; however, this effect was transient and lasted less than 30 days after a one-time reading. The implications of these data for communicating nutrition messages with print materials are discussed.

  5. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    Science.gov (United States)

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  7. Active materials by four-dimension printing

    Science.gov (United States)

    Ge, Qi; Qi, H. Jerry; Dunn, Martin L.

    2013-09-01

    We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.

  8. PEMBERDAYAAN MASYARAKAT KEPULAUAN TALANGO KABUPATEN SUMENEP MELALUI USAHA PERCETAKAN DAN SABLON DIGITAL PRINTING

    Directory of Open Access Journals (Sweden)

    Budi Dwi Satoto

    2014-08-01

    Full Text Available The role of youth in development is very important because it is considered to be in the productive age to support various development activities in various sectors. Most youth can be absorbed in the labor market, and partly eliminated from the competition and become a static group. Not a few who engage in the business world ranging from the small to large, one form of business that is highly demanded by the youth is the Small and Medium Enterprises and Silk Screen Printing. However, the form of efforts among youth most still use manual design and printing due to lack of capital and expertise. With this activity, try to solve them with IBM is working with partners Silk Screen Printing Industry centers in villages Talango, Talango islands, Sumenep, Disperindag and local cooperative activities such as application of digital printing techniques, the design theme oflocal wisdom Madura images with coloror multi color mono color and entrepreneurship training and business management. IBM activity was done in the form of training, coaching and mentoring the youth group field of screen printing and printing for souvenirs and handicrafts which aims to: 1 increase the motivation of entrepreneurial partners; 2 improve the understanding of partner business planning and business management; 3 improve human resource capabilities in the production and marketing techniques; 4 develop a network to support youth entrepreneurship development of the creative economy. Youth empowerment group is expected to produce a model that can be used as a model youth entrepreneurial development youth empowerment-based society.Keywords: training, coaching, mentoring, printingandscreen printing, digital printing

  9. READ-EVAL-PRINT in Parallel and Asynchronous Proof-checking

    Directory of Open Access Journals (Sweden)

    Makarius Wenzel

    2013-07-01

    Full Text Available The LCF tradition of interactive theorem proving, which was started by Milner in the 1970-ies, appears to be tied to the classic READ-EVAL-PRINT-LOOP of sequential and synchronous evaluation of prover commands. We break up this loop and retrofit the read-eval-print phases into a model of parallel and asynchronous proof processing. Thus we explain some key concepts of the Isabelle/Scala approach to prover interaction and integration, and the Isabelle/jEdit Prover IDE as front-end technology. We hope to open up the scientific discussion about non-trivial interaction models for ITP systems again, and help getting other old-school proof assistants on a similar track.

  10. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  11. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.

    Science.gov (United States)

    Song, Jiwon; Millman, Jeffrey R

    2016-12-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

  12. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.

    2013-10-07

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  13. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.; Irvine, J. T. S.; Traversa, Enrico; Boulfrad, S.

    2013-01-01

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  14. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    International Nuclear Information System (INIS)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin; Kim, Seong Jip; Nahm, Sahn

    2013-01-01

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process

  15. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    Energy Technology Data Exchange (ETDEWEB)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2013-12-16

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

  16. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects.

    Science.gov (United States)

    Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won

    2016-06-01

    The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.

  17. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  18. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    International Nuclear Information System (INIS)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan; Sowade, Enrico; Baumann, Reinhard R.; Feng, Zhe-Sheng

    2017-01-01

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  19. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Sowade, Enrico; Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz, 09126 (Germany); Feng, Zhe-Sheng, E-mail: fzs@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-02-28

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  20. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    Science.gov (United States)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-06-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  1. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    Science.gov (United States)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-03-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  2. Colour print workflow and methods for multilayering of colour and decorative inks using UV inkjet for fine art printing

    Science.gov (United States)

    Parraman, Carinna

    2012-01-01

    In order to increase density of colour and improve ink coverage when printing onto a range of non standard substrates, this paper will present research into multi-layering of colour and the appearance of colour at 'n' levels of ink coverage. Returning to our original investigation of artist's requirements when making inkjet prints, these observations are based on empirical approaches that address the need to present physical data that is more useful and meaningful to the designer. The study has used multi-pass printed colour charts to measure colour and to provide users with an understanding at a soft-preview level to demonstrate the appearance of printed colour on different substrates. Test results relating to the appearance of print on different surfaces, and a series of case studies will be presented using recent research into the capabilities of UV printing technology, which has widened the opportunities for the designer to print onto non-standard materials. It will also present a study into layering of greys and gloss in order to improve the appearance of printed images onto metal.

  3. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    Directory of Open Access Journals (Sweden)

    Célia M. Silveira

    2016-09-01

    Full Text Available From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.

  4. Electroless Deposition of Palladium on Macroscopic 3D-Printed Polymers with Dense Microlattice Architectures for Development of Multifunctional Composite Materials

    International Nuclear Information System (INIS)

    Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; Robinson, David B.

    2017-01-01

    A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.

  5. Three-dimensional printing in surgical planning: A case of aortopulmonary window with interrupted aortic arch

    Directory of Open Access Journals (Sweden)

    Ryan A Moore

    2018-01-01

    Full Text Available Better anatomical understanding and conceptualization of complex congenital heart defects using three-dimensional (3D printing may improve surgical planning, especially in rare defects. In this report, we utilized 3D printing to delineate the exact cardiac anatomy of a neonate with an aortopulmonary window associated with interrupted aortic arch to devise a novel approach to the repair.

  6. Experimental Study on Inkjet-Printed Passive UHF RFID Tags on Versatile Paper-Based Substrates

    Directory of Open Access Journals (Sweden)

    Han He

    2016-01-01

    Full Text Available We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.

  7. Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Cai Run-Nan

    2012-01-01

    Full Text Available A printed director antenna with compact structure is proposed. The antenna is fed by a balanced microstrip-slotline and makes good use of space to reduce feeding network area and the size of antenna. According to the simulation results of CST MICROWAVE STUDIO software, broadband characteristics and directional radiation properties of the antenna are explained. The operating bandwidth is 1.8 GHz–3.5 GHz with reflection coefficient less than −10 dB. Antenna gain in band can achieve 4.5–6.8 dBi, and the overall size of antenna is smaller than 0.34λ0×0.58λ0. Then the antenna is developed to a two-element antenna array, working frequency and relative bandwidth of which are 2.15–2.87 GHz and 28.7%, respectively. Compared with antenna unit, the gain of the antenna array has increased by 2 dB. Thus the proposed antenna has characteristics of compact structure, relatively small size, and wideband, and it can be widely used in PCS/UMTS/WLAN/ WiMAX fields.

  8. Ultra-Wideband Printed Slot Radiators with Controllable Frequency Characteristics

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available We have studied the possibility of creating ultra-wideband (UWB antennas with controlled frequency response of matching based on the printed slot antenna Vivaldi by introducing controlled resonators directly into the structure of the radiator. In the area of irregular slotline there are printed switched resonators with variable capacitance (varactor model, which allow tuning the frequency characteristics for each state of switching cavities, providing bandpass and band-barrage properties of the antenna. The investigation of reconfigurable printed resonators in the system of reconfigurable resonators of a bandpass filter is conducted. The paper considers filter to provide restructuring in the band (3-9 GHz. Electrodynamic simulation of the device was carried out in the time domain using a finite integration method. A bandstop reconfigurable filter is also investigated. The filter located on the substrate opposite the slit is based on tunable L-shaped resonator that has one end connected to the short-circuitor through the board metallization; the other end remains open and is brought into the region of interaction with the slotline. Such filter provides an effective narrow-band suppression and can be easily tuned to the desired frequency channel. The combination of these two types of filters allows you to create a controlled print Vivaldi slot antenna with combined properties. The paper investigates parameters of the scattering and radiation pattern of the antenna in different modes.

  9. Electroanalytical Sensing of Flunitrazepam Based on Screen Printed Graphene Electrodes

    Directory of Open Access Journals (Sweden)

    Enriqueta Garcia-Gutierrez

    2013-12-01

    Full Text Available We present a new electrochemical sensor for Flunitrazepam using disposable and economic Screen Printed Graphene Electrodes. It was found that the electrochemical response of this sensor was improved compared to Screen Printed Graphite Electrodes and displayed an excellent analytical performance for the detection of Flunitrazepam. Those characteristics could be attributed to the high Flunitrazepam loading capacity on the electrode surface and the outstanding electric conductivity of graphene. The methodology is shown to be useful for quantifying low levels of Flunitrazepam in a buffer solution. The protocol is also shown to be applicable for the sensing of Flunitrazepam in an alcoholic beverage e.g., Gordon’s Gin & Tonic.

  10. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing

    International Nuclear Information System (INIS)

    Galkin, K I; Ananikov, V P

    2016-01-01

    The current level of scientific and technological development requires the formation of general tools and techniques. One of the most versatile technologies is 3D printing, which allows fast and efficient creation of materials and biological objects of desired shape and composition. Today, methods have been developed for 3D printing of macro- and nano-sized objects and for production of films and deposited materials with molecular precision but the most promising technology is printing at the molecular level (molecular 3D printing) for the purpose of direct construction of molecular complexity. This process is currently at the initial stage concerning selection of simple molecules to be used as building blocks possessing flexibility, availability and ease of modification. In this review, we examine the possible versatile synthons suitable for preparation of the main types of organic compounds using molecular 3D printing. The surveyed data strongly indicate that alkyne molecules may be used as a building material in a molecular 3D printer working on hydrocarbons. The bibliography includes 428 references

  11. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  12. One size does not fit all: older adults benefit from redundant text in multimedia instruction.

    Science.gov (United States)

    Fenesi, Barbara; Vandermorris, Susan; Kim, Joseph A; Shore, David I; Heisz, Jennifer J

    2015-01-01

    The multimedia design of presentations typically ignores that younger and older adults have varying cognitive strengths and weaknesses. We examined whether differential instructional design may enhance learning in these populations. Younger and older participants viewed one of three computer-based presentations: Audio only (narration), Redundant (audio narration with redundant text), or Complementary (audio narration with non-redundant text and images). Younger participants learned better when audio narration was paired with relevant images compared to when audio narration was paired with redundant text. However, older participants learned best when audio narration was paired with redundant text. Younger adults, who presumably have a higher working memory capacity (WMC), appear to benefit more from complementary information that may drive deeper conceptual processing. In contrast, older adults learn better from presentations that support redundant coding across modalities, which may help mitigate the effects of age-related decline in WMC. Additionally, several misconceptions of design quality appeared across age groups: both younger and older participants positively rated less effective designs. Findings suggest that one-size does not fit all, with older adults requiring unique multimedia design tailored to their cognitive abilities for effective learning.

  13. Print like an Egyptian.

    Science.gov (United States)

    Weisensee, Marilyn

    1990-01-01

    Describes a relief printmaking unit for sixth graders with the objective of decorating the inside of a pyramid. Ancient Egyptian imagery was used to help students become familiar with the style. Students designed and printed linoleum prints in different colors. They then critiqued their work and made their selection for the pyramid. (KM)

  14. Development of tactile floor plan for the blind and the visually impaired by 3D printing technique

    Directory of Open Access Journals (Sweden)

    Raša Urbas

    2016-07-01

    Full Text Available The aim of the research was to produce tactile floor plans for blind and visually impaired people for the use in the museum. For the production of tactile floor plans 3D printing technique was selected among three different techniques. 3D prints were made of white and colored ABS polymer materials. Development of different elements of tactile floor plans, as well as the problems and the solutions during 3D printing, are described in the paper.

  15. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    thickness, in the Z direction, and in drop-per-inch, in X and Y directions. 3D printing is also an easy and quick production technique, which can become useful in the ad-hoc realization of mechanical components for optical setups to be used in a laboratory for new concept studies and validation, reducing the manufacturing time. With this technique, indeed, it is possible to realize in few hours custom-made mechanical parts, without any specific knowledge and expertise in tool machinery, as long as the resolution and size are compliant with the requirements.

  16. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  17. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  18. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication

    Directory of Open Access Journals (Sweden)

    Long Yang

    2016-01-01

    Full Text Available To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A and the no-3D printing assisted-design group (Group B. In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P<0.05. Patient satisfaction using the 3D-printed prototype and the communication score were 9.3±0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  19. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  20. All-printed capacitors with continuous solution dispensing technology

    Science.gov (United States)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.