WorldWideScience

Sample records for texas low-rank coals

  1. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  2. CO{sub 2} SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    Energy Technology Data Exchange (ETDEWEB)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-02-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. There were three main objectives for this reporting period, which related to obtaining accurate parameters for reservoir model description and modeling reservoir performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. The first objective was to collect and desorb gas from 10 sidewall core coal samples from an Anadarko Petroleum Corporation well (APCL2 well) at approximately 6,200-ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. The second objective was to measure sorptive capacities of these Wilcox coal samples for CO{sub 2}, CH{sub 4}, and N{sub 2}. The final objective was to contract a service company to perform pressure transient testing in Wilcox coal beds in a shut-in well, to determine permeability of deep Wilcox coal. Bulk density of the APCL2 well sidewall core samples averaged 1.332 g/cc. The 10 sidewall core samples were placed in 4 sidewall core canisters and desorbed. Total gas content of the coal (including lost gas and projected residual gas) averaged 395 scf/ton on an as-received basis. The average lost gas estimations were approximately 45% of the bulk sample total gas. Projected residual gas was 5% of in-situ gas content. Six gas samples desorbed from the sidewall cores were analyzed to determine gas composition. Average gas composition was approximately 94.3% methane, 3.0% ethane, and 0.7% propane, with traces of heavier hydrocarbon gases. Carbon dioxide averaged 1.7%. Coal from the 4 canisters was mixed to form one composite sample that was used for pure CO{sub 2}, CH{sub 4}, and N{sub 2} isotherm analyses. The composite sample was 4.53% moisture, 37.48% volatile matter, 9.86% ash, and 48.12% fixed carbon. Mean vitrinite reflectance was 0

  3. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  4. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    Science.gov (United States)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-06-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  5. Evaluation of the technical and economic feasibility of CO{sub 2} sequestration and enhanced coalbed-methane recovery in Texas low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, G.A.; Bello, R.O.; McVay, D.A.; Ayers, W.B.; Ramazanova, R.I. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., Austin, TX (United States); Rushing, J.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Anadarko Petroleum Corp., Spring, TX (United States); Ruhl, S.K.; Hoffmann, M.F. [Anadarko Petroleum Corp., Spring, TX (United States)

    2006-07-01

    Texas emits about 10 per cent of the total carbon dioxide (CO{sub 2}) emitted in the United States. Any method that reduces net CO{sub 2} emissions would help mitigate the global greenhouse effect. The sequestration of carbon dioxide in coals is one method that could help achieve this goal. Carbon dioxide injection in coal beds also has the added benefit of enhanced coalbed methane (ECBM) recovery. It can also help maintain reservoir pressure, thereby lowering operational costs. Low rank coals in the Texas Gulf Coast area could be potential targets for CO{sub 2} sequestration and ECBM recovery. The area is well suited for testing the viability of CO{sub 2} sequestration in low-rank coals because of the proximity of Texas power plants to abundant, well-characterized coal deposits. As such, the area is well suited to test whether the technology can be transferred to other low-rank coals around the world. This study focused on CO{sub 2} sequestration potential on low-rank coals of the Wilcox Group in east-central Texas. The study involved an extensive coal characterization program, deterministic and probabilistic simulation studies, and economic evaluations. Both CO{sub 2} and flue gas injection scenarios were evaluated. It was concluded that the methane resources and CO{sub 2} sequestration potential of the Wilcox coals in east-central Texas are significant. Based on the results of this field study, average volumes of CO{sub 2} sequestered range from 1.55 to 1.75 Bcf and average volumes of methane produced range between 0.54 and 0.67 Bcf. Sequestration projects will be most viable when gas prices and carbon market prices are at the higher ends of the ranges investigated. With increasing nitrogen content in the injected gas, CO{sub 2} sequestration volumes decrease and ECBM production increases. The total volumes of CO{sub 2} sequestered and methane produced on a uni-area basis do not change much with spacings up to 240 acres per well. The economic viability of a

  6. Low-rank coal oil agglomeration

    Science.gov (United States)

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  7. The solubilization of low-ranked coals by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola could solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.

  8. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  9. Utilization of low rank coal and agricultural by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ekinci, E.; Yardim, M.F.; Petrova, B.; Budinova, T.; Petrov, N. [Istanbul Technical University, Maslak-Istanbul (Turkey). Department of Chemical Engineering

    2007-07-01

    The present investigation deals with alternative utilization processes to convert low rank coal and agricultural by products into solid, liquid and gaseous products for a more efficient exploitation of these materials. Low rank coals and different agricultural by-products were subjected to different thermochemical treatments. The composition and physico-chemical properties of liquid products obtained from agricultural by-products were investigated. The identified compounds are predominantly oxygen derivatives of phenol, dihydroxybenzenes, guaiacol, syringol, vanilin, veratrol, furan and acids. Liquids from low rank coals contain higher quality of aromatic compounds predominantly mono- and bicyclic. The amount of oxygen containing structures is high as well. By thermo-chemical treatment of liquid products from agricultural by-products, low rank coals and their mixtures with H{sub 2}SO{sub 4} carbon adsorbents with very low ash and sulfur content are obtained. Using different activation reagents large scale carbon adsorbents are prepared from agricultural by-products and coals. The results of the investigations open-up possibilities for utilization of low rank coals and agricultural by-products. 18 refs., 5 figs., 7 tabs.

  10. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  11. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  12. Moving Bed Gasification of Low Rank Alaska Coal

    Directory of Open Access Journals (Sweden)

    Mandar Kulkarni

    2012-01-01

    Full Text Available This paper presents process simulation of moving bed gasifier using low rank, subbituminous Usibelli coal from Alaska. All the processes occurring in a moving bed gasifier, drying, devolatilization, gasification, and combustion, are included in this model. The model, developed in Aspen Plus, is used to predict the effect of various operating parameters including pressure, oxygen to coal, and steam to coal ratio on the product gas composition. The results obtained from the simulation were compared with experimental data in the literature. The predicted composition of the product gas was in general agreement with the established results. Carbon conversion increased with increasing oxygen-coal ratio and decreased with increasing steam-coal ratio. Steam to coal ratio and oxygen to coal ratios impacted produced syngas composition, while pressure did not have a large impact on the product syngas composition. A nonslagging moving bed gasifier would have to be limited to an oxygen-coal ratio of 0.26 to operate below the ash softening temperature. Slagging moving bed gasifiers, not limited by operating temperature, could achieve carbon conversion efficiency of 99.5% at oxygen-coal ratio of 0.33. The model is useful for predicting performance of the Usibelli coal in a moving bed gasifier using different operating parameters.

  13. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  14. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    Science.gov (United States)

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  15. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  16. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  17. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  18. 30 CFR 870.20 - How to calculate excess moisture in LOW-rank coals.

    Science.gov (United States)

    2010-07-01

    ... coals. 870.20 Section 870.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION ABANDONED MINE RECLAMATION FUND-FEE COLLECTION AND COAL PRODUCTION REPORTING § 870.20 How to calculate excess moisture in LOW-rank coals. Here are the...

  19. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  20. Alkaloid-derived molecules in low rank Argonne premium coals.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  1. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  2. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  3. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  4. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  5. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  6. A case study of PFBC for low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, S.A. [ABB Carbon AB, Finspong (Sweden)

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  7. Evaluation of elemental sulphur in biodesulphurized low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    L. Gonsalvesh; S.P. Marinov; M. Stefanova; R. Carleer; J. Yperman [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Organic Chemistry

    2011-09-15

    A new procedure for elemental sulphur (S{sup el}) determination in coal and its fractions is offered. It includes exhaustive CHCl{sub 3} extraction and subsequent quantitative analysis of the extracts by HPLC using C{sub 18} reversed phase column. Its application gives ground to achieve better sulphur balance and to specify the changes in the organic and elemental sulphur as a result of biotreatments. Two Bulgarian high sulphur containing coal samples, i.e. subbituminious (Pirin) and lignite (Maritza East), and one Turkish lignite (Cayirhan-Beypazari) are used. Prior to biotreatments, the samples are demineralized and depyritized. In the biodesulphurization processes, the applied microorganisms are: the white rot fungi 'Phanerochaeta Chrysosporium' - ME446 and the thermophilic and acidophilic archae 'Sulfolobus Solfataricus' - ATCC 35091. In the preliminary demineralized and depyritized coals, the highest presence of S{sup el} is registered, which is explained by their natural weathering. As a result of the implemented biotreatments, the amount of S{sup el} could be reduced in the range of 16.1-53.8%. The content of S{sub el} is also assessed as part of the total sulphur and organic sulphur. The following range of S{sup el} content is measured: 0.01-0.16 wt.% or 0.3-4.6% of total sulphur and 0.3-5.1% of organic sulphur. In this way, more precise information is obtained concerning the content of organic sulphur presence. 31 refs., 4 figs., 6 tabs.

  8. Low-rank coal study. Volume 5. RD and D program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    A national program is recommended for research, development, and demonstration (RD and D) of improved technologies for the enviromentally acceptable use of low-rank coals. RD and D project recommendations are outlined in all applicable technology areas, including extraction, transportation, preparation, handling and storage, conventional combustion and environmental control technology, fluidized bed combustion, gasification, liquefaction, and pyrolysis. Basic research topics are identified separately, as well as a series of crosscutting research activities addressing environmental, economic, and regulatory issues. The recommended RD and D activities are classified into Priority I and Priority II categories, reflecting their relative urgency and potential impact on the advancement of low-rank coal development. Summaries of ongoing research projects on low-rank coals in the US are presented in an Appendix, and the relationships of these ongoing efforts to the recommended RD and D program are discussed.

  9. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  10. Soil attenuation of leachates from low-rank coal combustion wastes: a literature survey. [116 references

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, R. O.; DeOtte, R. E.; Slowey, J. F.; McFarland, A. R.

    1984-01-01

    In parallel with pursuing the goal of increased utilization of low-rank solid fuels, the US Department of Energy is investigating various aspects associated with the disposal of coal-combustion solid wastes. Concern has been expressed relative to the potential hazards presented by leachates from fly ash, bottom ash and scrubber wastes. This is of particular interest in some regions where disposal areas overlap aquifer recharge regions. The western regions of the United States are characterized by relatively dry alkaline soils which may effect substantial attenuation of contaminants in the leachates thereby reducing the pollution potential. A project has been initiated to study the contaminant uptake of western soils. This effort consists of two phases: (1) preparation of a state-of-the-art document on soil attenuation; and (2) laboratory experimental studies to characterize attenuation of a western soil. The state-of-the-art document, represented herein, presents the results of studies on the characteristics of selected wastes, reviews the suggested models which account for the uptake, discusses the specialized columnar laboratory studies on the interaction of leachates and soils, and gives an overview of characteristics of Texas and Wyoming soils. 116 references, 10 figures, 29 tables.

  11. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  12. Studies of the relationship between mineral matter and grinding properties for low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Ural, Suphi [Department of Mining Engineering, Cukurova University, 01330 Adana (Turkey); Akildiz, Mustafa [Department of Geological Engineering, Cukurova University, 01330, Adana (Turkey)

    2004-10-22

    Investigations into the effects of mineral matter content on Hardgrove Grindability Index (HGI) were carried out on some low-rank Turkish coals. Quantitative X-ray diffraction (XRD) analyses were carried out using an interactive data processing system (SIROQUANT(TM)) based on Rietveld interpretation methods. Selective leaching processes were used to determine the water and acid-soluble contents of coal samples. Among the coal seams tested, the HGI values of Elbistan coal samples presented a large range from 39 to 83, whereas Tufanbeyli coal samples ranged from 48 to 69. Treatment of the coal with water, ammonium acetate, and hydrochloric acid showed that a considerable part of the ash-forming inorganic matter occurs in water-soluble, acid-soluble, or ion-exchangeable form. Grindability tests on samples of varied water and acid-soluble content showed a significant effect of water and acid-soluble contents on HGI.

  13. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  14. Anaerobic biprocessing of low rank coals. Final technical report, September 12, 1990--August 10, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Narayan, R.

    1993-08-05

    Coal solubilization under aerobic conditions results in oxygenated coal product which, in turn, makes the coal poorer fuel than the starting material. A novel approach has been made in this project is to remove oxygen from coal by reductive decarboxylation. In Wyodak subbituminous coal the major oxygen functionality is carboxylic groups which exist predominantly as carboxylate anions strongly chelating metal cations like Ca{sup 2+} and forming strong macromolecular crosslinks which contribute in large measure to network polymer structure. Removal of the carboxylic groups at ambient temperature by anaerobic organisms would unravel the macromoleculer network, resulting in smaller coal macromolecules with increased H/C ratio which has better fuel value and better processing prospects. These studies described here sought to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. Efforts were made to establish anaerobic microbial consortia having decarboxylating ability, decarboxylate coal with the adapted microbial consortia, isolate the organisms, and characterize the biotreated coal products. Production of CO{sup 2} was used as the primary indicator for possible coal decarboxylation.

  15. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J.P. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Graham, L.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Catcheside, D.E.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences

    1996-12-31

    The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0{<=}pH{<=}6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400 nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100 mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A{sub 400} of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A{sub 400}, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation. (orig.)

  16. Processing of Low Rank Coal and Ultrafine Particle Processing by Hydrophobic-Hydrophilic Separation (HHS)

    OpenAIRE

    Jain, Riddhika

    2013-01-01

    This thesis pertains to the processing of ultra-fine mineral particles and low rank coal using the hydrophobic--hydrophilic separation (HHS) method. Several explorative experimental tests have been carried out to study the effect of the various physical and chemical parameters on the HHS process. In this study, the HHS process has been employed to upgrade a chalcopyrite ore. A systematic experimental study on the effects of various physical and chemical parameters such as particle size, re...

  17. The role of IGCC technology in power generation using low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Juangjandee, Pipat

    2010-09-15

    Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.

  18. Bio-coal briquettes made from South Sumatera low rank coal and palm shell charcoal for using in small industries

    Directory of Open Access Journals (Sweden)

    Sipahutar Riman

    2017-01-01

    Full Text Available The objective of this study is to blend the South Sumatera low rank coal and palm shell charcoal for producing bio-coal briquettes which have better fuel properties. The experimental study for making bio-coal briquettes was carried out to examine the effect of raw material composition and binder type on the quality of the briquettes produced. A screw conveyor machine equipped with a three blade stirred and designed with the length of 40 cm, mixing process diameter of 10 cm and the capacity of 2 kg bio-coal briquettes per hour was used to produce bio-coal briquettes ready to use in small industries. Proxymate analyses of the South Sumatera low rank coal, palm shell charcoals and bio-coal briquettes were conducted in accordance with the American Society of Testings and Materials (ASTM standards and the calorific value was determined by using a Bomb calorimeter. The experimental results showed that the calorific value of bio-coal briquette was greatly influenced by the raw material composition and the binder type. The highest calorific value was 6438 (cal/g at the sampel of SSC65-PSC20-B15(2.

  19. Bio-coal briquettes made from South Sumatera low rank coal and palm shell charcoal for using in small industries

    OpenAIRE

    Sipahutar Riman; Bizzy Irwin; Faizal Muhammad; Maussa Olistiyo

    2017-01-01

    The objective of this study is to blend the South Sumatera low rank coal and palm shell charcoal for producing bio-coal briquettes which have better fuel properties. The experimental study for making bio-coal briquettes was carried out to examine the effect of raw material composition and binder type on the quality of the briquettes produced. A screw conveyor machine equipped with a three blade stirred and designed with the length of 40 cm, mixing process diameter of 10 cm and the capacity of...

  20. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    Energy Technology Data Exchange (ETDEWEB)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Kuzu, H.; Peksel, A. [Yildiz Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained by microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.

  1. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  2. An environmentally friendly technology for the carbonisation of low ranked coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wirtgen, G.; Weigandt, J.; Heil, J.; Thoste, V. [Aachen University of Technology, Aachen (Germany)

    2002-07-01

    Between 1997 and 2001 the Federal Institute for Geosciences and Natural Resources in connection with the Coking Group of the Aachen University of Technology developed a environmentally friendly process for the carbonisation of low ranked coals and biomass. The main tasks of finished investigations have been, to produce an economically competitive carbonisate to substitute wood and charcoal on local markets and to protect local forests. So far the project covered examinations on the behaviour of the pyrolysis of brown coals and biomass in a shaft reactor at Kuching, Malaysia, and a pilot rotary kiln reactor at Aachen. During test runs burning and briquetting tests were carried out with selected coals and biomass from Brazil, Thailand, Malaysia, Indonesia and the Phillipines. Also some coals from near east countries have been tested. To ensure thermally autarkic operation, the appropriate moisture and ash contents of the feed material were determined and a temperature based controlling system has been developed. Finally all tested materials allowed the production of a smokeless carbonisate under thermically autarkic operation. After finishing the test with a shaft reactor (feed up to 100 kg/h) the building of a rotary kiln pilot plant (feed 300 kg/h) as preproduction phase for commercial use (feed 3 - 5 t/h) is scheduled in 2002. First economic calculations on a rotary kiln operation demonstrated, that the carbonisate is competitive with local fuels such as kerosene, petroleum and gas. Additionally some carbonisates fit the quality standards for direct activation. 3 refs., 11 figs., 2 tabs.

  3. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  4. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-04-30

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

  5. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-10-29

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  6. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  7. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.

    Science.gov (United States)

    Lee, Dong-Wook; Bae, Jong-Soo; Lee, Young-Joo; Park, Se-Joon; Hong, Jai-Chang; Lee, Byoung-Hwa; Jeon, Chung-Hwan; Choi, Young-Chan

    2013-02-05

    Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition. Here, we first show a hybrid coal that can solve these two problems simultaneously while using existing power plants. Hybrid coal is defined as a two-in-one fuel combining low rank coal with a sugar cane-derived bioliquid, such as molasses and sugar cane juice, by bioliquid diffusion into coal intrapores and precarbonization of the bioliquid. Unlike the simple blend of biomass and coal showing dual combustion behavior, hybrid coal provided a single coal combustion pattern. If hybrid coal (biomass/coal ratio = 28 wt %) is used as a fuel for 500 MW power generation, the net CO(2) emission is 21.2-33.1% and 12.5-25.7% lower than those for low rank coal and designed coal, and the required coal supply can be reduced by 33% compared with low rank coal. Considering high oil prices and time required before a stable renewable energy supply can be established, hybrid coal could be recognized as an innovative low-carbon-emission energy technology that can bridge the gulf between fossil fuels and renewable energy, because various water-soluble biomass could be used as an additive for hybrid coal through proper modification of preparation conditions.

  8. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-07-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a review of the available data on mercury oxidation across SCR catalysts from small, laboratory-scale experiments, pilot-scale slipstream reactors and full-scale power plants was carried out. Data from small-scale reactors obtained with both simulated flue gas and actual coal combustion flue gas demonstrated the importance of temperature, ammonia, space velocity and chlorine on mercury oxidation across SCR catalyst. SCR catalysts are, under certain circumstances, capable of driving mercury speciation toward the gas-phase equilibrium values at SCR temperatures. Evidence suggests that mercury does not always reach equilibrium at the outlet. There may be other factors that become apparent as more data become available.

  9. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  10. Development of low rank coals upgrading and their CWM producing technology; Teihin`itan kaishitsu ni yoru CWM seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsurui, M.; Suto, Y.; Asakura, M. [JGC Corp., Tokyo (Japan); Ogawa, J.; Yui, M.; Takano, S. [Japan COM Co. Ltd., Japan, Tokyo (Japan)

    1996-09-01

    A CWM manufacturing technology was developed by means of upgrading low rank coals. Even though some low rank coals have such advantages as low ash, low sulfur and high volatile matter content, many of them are merely used on a small scale in areas near the mine-mouths because of high moisture content, low calorification and high ignitability. Therefore, discussions were given on a coal fuel manufacturing technology by which coal will be irreversibly dehydrated with as much volatile matters as possible remaining in the coal, and the coal is made high-concentration CWM, thus the coal can be safely transported and stored. The technology uses a method to treat coal with hot water under high pressure and dry it with hot water. The method performs not only removal of water, but also irreversible dehydration without losing volatile matters by decomposing hydrophilic groups on surface and blocking micro pores with volatile matters in the coal (wax and tar). The upgrading effect was verified by processing coals in a pilot plant, which derived greater calorification and higher concentration CWM than with the conventional processes. A CWM combustion test proved lower NOx, lower SOx and higher combustion rate than for bituminous coal. The ash content was also found lower. This process suits a Texaco-type gasification furnace. For a production scale of three million tons a year, the production cost is lower by 2 yen per 10 {sup 3} kcal than for heavy oil with the same sulfur content. 11 figs., 15 tabs.

  11. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  12. A comparison between alkaline and decomplexing reagents to extract humic acids from low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D.; Cegarra, J.; Abad, M. [CSIC, Madrid (Spain). Centro de Edafologia y Biologia Aplicada del Segura

    1996-07-01

    Humic acids (HAs) were obtained from two low rank coals (lignite and leonardite) by using either alkali extractants (0.1 M NaOH, 0.1 M KOH or 0.25 M KOH) or solutions containing Na{sub 4}P{sub 2}O{sub 7} (0.1 M Na{sub 4}P{sub 2}O{sub 7} or 0.1 M NaOH/Na{sub 4}P{sub 2}O{sub 7}). In both coals, the greatest yields were obtained with 0.25 M KOH and the lowest with the 0.1 M alkalis, whereas the extractions based on Na{sub 4}P{sub 2}O{sub 7} yielded intermediate values and were more effective on the lignite. Chemical analysis showed that the leonardite HAs consisted of molecules that were less oxidized and had fewer functional groups than the HAs released form the lignite. Moreover, the HAs extracted by reagents containing Na{sub 4}P{sub 2}O{sub 7} exhibited more functional groups than those extracted with alkali, this effect being more apparent in lignite because of its greater cation exchange capacity. Gel permeation chromatography indicated that the leonardite HAs contained a greater proportion of higher molecular size compounds than the lignite HAs, and that both solutions containing Na{sub 4}P{sub 2}O{sub 7} released HAs with a greater proportion of smaller molecular compounds from the lignite than did the alkali extractants. 16 refs., 3 figs., 2 tabs.

  13. Advanced CO2 Capture Technology for Low Rank Coal IGCC System

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [Tda Research, Inc., Wheat Ridge, CO (United States)

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO2 scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO2 emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO2 above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO2 scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO2 emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO2 above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO2. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent

  14. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  15. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  16. Thermolysis of phenethyl phenyl ether: a model for ether linkages in lignin and low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C.; Malcolm, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Division of Chemistry and Analytical Science

    1995-10-06

    The thermolysis of phenethyl phenyl ether (PPE) was studied at 330-425{degree}C to resolve the discrepancies in the reported mechanisms of this important model of the beta-ether linkage found in lignin and low rank coal. Cracking of PPE proceeded by two competitive pathways that produced styrene plus phenol and two previously undetected products, benzaldehyde plus toluene. The ratio of these pathways, defined as the alpha/beta selectivity, was 3.1 +/- 0.3 at 375{degree}C and independent of the PPE concentration. Thermolysis of PPE in tetralin, a model hydrogen donor solvent, increased the alpha/beta selectivity to 7 and accelerated the formation of secondary products. All the data were consistent with a free-radical chain mechanism for the decomposition of PPE. Styrene and phenol are produced by hydrogen abstraction at the alpha-carbon, beta-scission to form styrene and the phenoxy radical, followed by hydrogen abstraction. Benzaldehyde and toluene are formed by hydrogen abstraction at the beta-carbon, 1,2-phenyl migration from oxygen to carbon, beta-scission to form benzaldehyde, and the benzyl radical followed by hydrogen abstraction. Thermochemical kinetic estimates indicate that product formation is controlled by the relative rate of hydrogen abstraction at the alpha- and beta-carbons by the phenoxy radical (dominant) and benzyl radical (minor) since beta-scission and 1,2-phenyl migration are fast relative to hydrogen abstraction. Thermolysis of PhCD{sub 2}CH{sub 2}OPh and PhCH{sub 2}CD{sub 2}OPh was consistent with the previous results, indicating that there was no significant contribution of a concerted retro-ene pathway to the thermolysis of PPE.

  17. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y.; Kato, K.; Kuroda, M.; Nakagawa, N. [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  18. Change in surface characteristics of coal in upgrading of low-rank coals; Teihin`itan kaishitsu process ni okeru sekitan hyomen seijo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Oki, A.; Xie, X.; Nakajima, T.; Maeda, S. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1996-10-28

    With an objective to learn mechanisms in low-rank coal reformation processes, change of properties on coal surface was discussed. Difficulty in handling low-rank coal is attributed to large intrinsic water content. Since it contains highly volatile components, it has a danger of spontaneous ignition. The hot water drying (HWD) method was used for reformation. Coal which has been dry-pulverized to a grain size of 1 mm or smaller was mixed with water to make slurry, heated in an autoclave, cooled, filtered, and dried in vacuum. The HWD applied to Loy Yang and Yallourn coals resulted in rapid rise in pressure starting from about 250{degree}C. Water content (ANA value) absorbed into the coal has decreased largely, with the surface made hydrophobic effectively due to high temperature and pressure. Hydroxyl group and carbonyl group contents in the coal have decreased largely with rising reformation treatment temperature (according to FT-IR measurement). Specific surface area of the original coal of the Loy Yang coal was 138 m{sup 2}/g, while it has decreased largely to 73 m{sup 2}/g when the reformation temperature was raised to 350{degree}C. This is because of volatile components dissolving from the coal as tar and blocking the surface pores. 2 refs., 4 figs.

  19. Research on Improving Low Rank Coal Caking Ability by Moderate Hydrogenation

    Science.gov (United States)

    Huang, Peng

    2017-12-01

    The hydrogenation test of low metamorphic coal was carried out by using a continuous hydrogen reactor at the temperature of (350-400)°C and the initial hydrogen pressure of 3 ~ 6Mpa. The purpose of the experiment was to increase the caking property, and the heating time was controlled from 30 to 50min. The test results show that the mild hydrogenation test, no adhesion of low metamorphic coal can be transformed into a product having adhesion, oxygen elements in coal have good removal, the calorific value of the product has been improved significantly and coal particles during pyrolysis, swelling, catalyst, hydrogenation, structural changes and the combined effects of particles a new component formed between financial and is a major cause of coal caking enhancement and lithofacies change, coal blending test showed that the product can be used effectively in the coking industry.

  20. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  1. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    2017-03-21

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  2. Low-rank coal research semiannual report, January 1992--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  4. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  5. Conversions of low-rank coals by water under hydrogen starvation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Y.; Hashimoto, J.

    1984-02-01

    This work is to study the reactions of coals with water. All the reactions of Yokote peat (C=60.3%) and Wakimoto Seam II lignite (C=62.2%) with water were carried out in a batch-autoclave at 300-400C under hydrogen starvation conditions. Two kinds of catalysts, alumina-supported MoO3 and WO3, were used. WO3 catalyst facilitated the reactions of peat and of lignite with water to give much larger amount of benzene-soluble matter and gaseous product than that of non-catalytic reaction, whereas MoO3 catalyst was practically inert toward the reactions of these coals. Otherwise, the reactions of benzyl ether with water were performed with both the catalysts, respectively, to elucidate the above mentioned experimental results of coals. On MoO3 catalyst were formed dibenzyl and equimolar toluene and benzaldehyde.

  6. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  7. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  8. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  9. Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2012-12-01

    Full Text Available NOx and N2O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, green house and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NOx and N2O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NOx concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N2O is less than 0.25 ppm in all cases. Keywords: low-rank coal, N2O emission, NOx emission, palm kernel shell

  10. Investigation of the existence of coal matrix effects on the hydroliquefaction of vitrinites derived from low rank Spanish coals

    Energy Technology Data Exchange (ETDEWEB)

    Cebolla, V.L.; Martinez, M.T.; Prado, J.G.; Miranda, J.L.; Fernandez, I.; Benito, A.M. (Instituto de Carboquimica, Zaragoza (Spain))

    1994-01-01

    Two lignites (Mequinenza, Spain) and two subbituminous coals (Teruel, Spain), their demineralized derivatives (HCl/HF+HCl) and their corresponding derived vitrinite concentrates were submitted to hydroliquefaction in tetralin in fixed conditions to study a possible synergism of vitrinite concentrates in the original coal matrix. Sufficiently pure amounts of vitrinite concentrates were isolated by a method based on differential centrifugation in CsCl. The coals were characterized by densimetric and petrographic analyses including reflectance-frequency distributions. A synergism for vitrinite concentrates related to the demineralized coals has not been found here because all the vitrinite concentrates, once separated, have similar or higher reactivity than in the corresponding original coal matrix. On the other hand, the studied lignite-derived vitrinite concentrates have proved to be much more reactive than the subbituminous-derived ones. Displacements of Absorbance-Density curves and maxima toward higher densities (densimetric analyses data) and appearance of V-4 vitrinite type structures (coal reflectograms) in the case of the subbituminous coals imply differences in chemical structures for the lignite and the subbituminous derived vitrinite concentrates which could explain the differences in reactivity. 22 refs., 3 figs., 2 tabs.

  11. Characterization of lignin monomers in low rank coal humic acids using the derivatization/reductive cleavage method

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, L.; Vlckova, Z.; Kucerik, J.; Ambles, A. [University of Poitiers, Poitiers (France)

    2010-09-15

    Traditional CuO oxidation and thermochemolysis with tetramethylammonium hydroxide are the two main methods for lignin characterization in gymnosperm wood, and in soils and sediments formed from degraded gymnosperm wood, or for assessing the supply of terrestrial organic matter to marine sediments. In some cases, the overall lignin yield and the compound ratios used as plant source proxies have been found to be considerably different, depending on the method used. Thus, there is a need for finding efficient and more selective methods for lignin alpha- and beta-aryl ether cleavage. Derivatization followed by reductive cleavage (the DFRC method) is suitable for lignocellulose material. Results from the DFRC method applied to the characterization of humic acids of a lignite (low rank coal) from the Czech Republic show that they contain intact lignin monomers with a dominance of coniferyl units, in accord with the gymnosperm origin of the lignite. It is expected that DFRC will be suitable also for tracing lignin in other sediments.

  12. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  13. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: Effects of Nannochloropsis and Chlorella.

    Science.gov (United States)

    Wu, Zhiqiang; Yang, Wangcai; Yang, Bolun

    2018-02-01

    In this work, the influence of Nannochloropsis and Chlorella on the thermal behavior and surface morphology of char during the co-pyrolysis process were explored. Thermogravimetric and iso-conversional methods were applied to analyzing the pyrolytic and kinetic characteristics for different mass ratios of microalgae and low-rank coal (0, 3:1, 1:1, 1:3 and 1). Fractal theory was used to quantitatively determine the effect of microalgae on the morphological texture of co-pyrolysis char. The result indicated that both the Nannochloropsis and Chlorella promoted the release of volatile from low-rank coal. Different synergistic effects on the thermal parameters and yield of volatile were observed, which could be attributed to the different compositions in the Nannochloropsis and Chlorella and operating condition. The distribution of activation energies shows nonadditive characteristics. Fractal dimensions of the co-pyrolysis char were higher than the individual char, indicating the promotion of disordered degree due to the addition of microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  15. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  16. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  17. Comparison of molecular sieve properties in microporous chars from low-rank bituminous coal activated by steam and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jasienko-Halat, M.; Kedzior, K. [Wroclaw Univ. of Technology (Poland). Inst. of Chemistry and Technology of Petroluem and Coal

    2005-07-01

    A Polish high volatile bituminous coal was subjected to air oxidation, carbonization and gaseous activation. The activation with steam and carbon dioxide was performed to low levels of burn-off: 5-25%. Sorption measurements Of CO{sub 2}, as well as of organic vapours with increasing molecular sizes (CH{sub 2}Cl{sub 2}, C{sub 6}H{sub 6}, C{sub 6}H{sub 12}, CCl{sub 4}) were applied to evaluate the porous structure of the activated chars. Steam and carbon dioxide develop the microporous system according to the same mechanism-opening (burn-off 5-10%) and then widening of the narrow micropores. For char from the oxidized coal mainly a widening of the narrow micropores takes place. Comparing both activating agents, it was stated that for steam greater micropore volumes were obtained. This was confirmed by other authors for chars from brown coal and coking coal, but was in disagreement with the results for olive stones and carbon fibres. This would indicate the importance of the carbon precursor in the formation of the porous structure of carbon materials by different activating agents. In the region of studied burn-offs, among the micropore sizes useful for separation of gases and vapours with small molecules, micropore volumes with widths close to 0.4-0.5 nm are dominating. At very low burn-offs (5-10%), steam activation renders greater micropore volumes within these sizes, than does activation with carbon dioxide. But with increasing burn-off (15-25%), this phenomenon becomes reversed. This effect is still more accentuated for the preoxidized coal.

  18. Energy and environmental research emphasizing low-rank coal: Task 6.1. Corrosion of advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Nowok, J.W.; Strobel, T.M.; Bieber, J.A.; Hurley, J.P.

    1995-04-01

    In order to increase national energy self-sufficiency for the near future, energy systems will be required to fire low-grade fuels and use more efficient energy cycles than those available today. The steam cycle used at present is limited to a maximum steam temperature of 550{degrees}C and thus a conversion efficiency of 35%. To boost efficiency significantly, much higher working fluid temperatures are required, compelling subsystems to operate at much higher temperatures and, therefore, in much more corrosive environments than those currently used. Problems of special concern are corrosion and fatigue of direct-fired turbine blades, corrosion and blinding of hot-gas cleanup filters, catastrophic failure of high-temperature heat exchangers, and spalling and dissolution of refractory materials. The extreme conditions will require the use of advanced structural materials such as high-temperature ceramics for the construction of the subsystems. Unfortunately, little is known of the performance of these materials in actual coal combustion environments. Although some corrosion testing has been performed in the past, most has been done by groups experimenting with ash or slag stimulants composed of only one or two simple compounds. For this project performed at the Energy & Environmental Research Center (EERC), actual coal ash and slag will be used in simulated combustion conditions so that more realistic determinations of the mechanisms of corrosion can be made. The work includes three main research areas focusing on two fossil energy subsystems: high-temperature heat exchangers and hot-gas cleanup filters. The first area involves developing existing abilities in thermodynamic equilibrium calculations to determine the most appropriate corroding agents to include in the tests; the second area involves coal slag corrosion of high temperature heat exchangers; and the third, lower-temperature ash and gas corrosion hot-gas cleanup filters.

  19. Simulations and experimental investigations of the competitive adsorption of CH4 and CO2 on low-rank coal vitrinite.

    Science.gov (United States)

    Yu, Song; Bo, Jiang; Jiahong, Li

    2017-09-16

    The mechanism for the competitive adsorption of CH4 and CO2 on coal vitrinite (DV-8, maximum vitrinite reflectance R o,max = 0.58%) was revealed through simulation and experimental methods. A saturated state was reached after absorbing 17 CH4 or 22 CO2 molecules per DV-8 molecule. The functional groups (FGs) on the surface of the vitrinite can be ranked in order of decreasing CH4 and CO2 adsorption ability as follows: [-CH3] > [-C=O] > [-C-O-C-] > [-COOH] and [-C-O-C-] > [-C=O] > [-CH3] > [-COOH]. CH4 and CO2 distributed as aggregations and they were both adsorbed at the same sites on vitrinite, indicating that CO2 can replace CH4 by occupying the main adsorption sites for CH4-vitrinite. High temperatures are not conducive to the adsorption of CH4 and CO2 on vitrinite. According to the results of density functional theory (DFT) and grand canonical Monte Carlo (GCMC) calculations, vitrinite has a higher adsorption capacity for CO2 than for CH4, regardless of whether a single-component or binary adsorbate is considered. The equivalent adsorption heat (EAH) of CO2-vitrinite (23.02-23.17) is higher than that of CH4-vitrinite (9.04-9.40 kJ/mol). The EAH of CO2-vitrinite decreases more rapidly with increasing temperature than the EAH of CH4-vitrinite does, indicating in turn that the CO2-vitrinite bond weakens more quickly with increasing temperature than the CH4-vitrinite bond does. Simulation data were found to be in good accord with the corresponding experimental results.

  20. Proceedings of the sixteenth biennial low-rank fuels symposium

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.

  1. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  3. OBTENCIÓN DE BACTERIAS BIOTRANSFORMADORAS DE CARBÓN DE BAJO RANGO A PARTIR DE MICROHÁBITATS CON PRESENCIA DE RESIDUOS CARBONOSOS Obtaining Low Rank Coal Biotransforming Bacteria from Microhabitats Enriched with Carbonaceos Residues

    Directory of Open Access Journals (Sweden)

    NELSON VALERO VALERO

    2012-05-01

    Full Text Available Se aislaron bacterias con actividad biotransformadora de carbón de bajo rango (CBR a partir de muestras ambientales con presencia de residuos de carbón en la mina "El Cerrejón". Se aislaron 75 morfotipos bacterianos de los cuales 32 presentaron crecimiento en medio sólido mínimo de sales con carbón a 5 %. Se diseño un protocolo para la selección de los morfotipos con mayor actividad biotransformadora de CBR, el protocolo incluye el aislamiento en un medio selectivo con CBR en polvo, pruebas cualitativas y cuantitativas de solubilización de CBR en medios sólidos y líquido. El mecanismo de solubilización en las cepas que producen mayores valores de sustancias húmicas (SH estuvo asociado a cambios de pH en el medio, probablemente por la producción de sustancias alcalinas extracelulares. El mayor número de aislamientos y los aislamientos con mayor actividad solubilizadora sobre el CBR provienen de lodo con alto contenido de residuos de carbón y las rizósferas de Typha domingensis y Cenchrus ciliaris que crecen sobre sedimentos mezclados con partículas de carbón, este resultado sugiere que la obtención y capacidad de solubilización de CBR por parte de bacterias puede estar relacionada con el microhábitat donde se desarrollan las poblaciones.Bacteria capable of low rank coal (LRC biotransform were isolated from environmental samples altered with coal in the mine "The Cerrejon". A protocol was designed to select strains more capable of LRC biotransform, the protocol includes isolation in a selective medium with LRC powder, qualitative and quantitative tests for LRC solubilization in solid and liquid culture medium. Of 75 bacterial strains isolated, 32 showed growth in minimal salts agar with 5 % carbon. The strains that produce higher values of humic substances (HS have a mechanism of solubilization associated with pH changes in the culture medium, probably related to the production of extracellular alkaline substances by bacteria

  4. Low Rank Approximation Algorithms, Implementation, Applications

    CERN Document Server

    Markovsky, Ivan

    2012-01-01

    Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...

  5. Coal Rank and Stratigraphy of Pennsylvanian Coal and Coaly Shale Samples, Young County, North-Central Texas

    Science.gov (United States)

    Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.

    2007-01-01

    Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.

  6. Low-rank quadratic semidefinite programming

    KAUST Repository

    Yuan, Ganzhao

    2013-04-01

    Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

  7. Probabilistic Low-Rank Multitask Learning.

    Science.gov (United States)

    Kong, Yu; Shao, Ming; Li, Kang; Fu, Yun

    2017-01-04

    In this paper, we consider the problem of learning multiple related tasks simultaneously with the goal of improving the generalization performance of individual tasks. The key challenge is to effectively exploit the shared information across multiple tasks as well as preserve the discriminative information for each individual task. To address this, we propose a novel probabilistic model for multitask learning (MTL) that can automatically balance between low-rank and sparsity constraints. The former assumes a low-rank structure of the underlying predictive hypothesis space to explicitly capture the relationship of different tasks and the latter learns the incoherent sparse patterns private to each task. We derive and perform inference via variational Bayesian methods. Experimental results on both regression and classification tasks on real-world applications demonstrate the effectiveness of the proposed method in dealing with the MTL problems.

  8. Implicit Block Diagonal Low-Rank Representation.

    Science.gov (United States)

    Xie, Xingyu; Guo, Xianglin; Liu, Guangcan; Wang, Jun

    2017-10-17

    While current block diagonal constrained subspace clustering methods are performed explicitly on the original data space, in practice it is often more desirable to embed the block diagonal prior into the reproducing kernel Hilbert feature space by kernelization techniques, as the underlying data structure in reality is usually nonlinear. However, it is still unknown how to carry out the embedding and kernelization in the models with block diagonal constraints. In this work, we shall take a step in this direction. First, we establish a novel model termed Implicit Block Diagonal Low-Rank Representation (IBDLR), by incorporating the implicit feature representation and block diagonal prior into the prevalent Low-Rank Representation (LRR) method. Second, mostly important, we show that the model in IBDLR could be kernelized by making use of a smoothed dual representation and the specifics of a proximal gradient based optimization algorithm. Finally, we provide some theoretical analyses for the convergence of our optimization algorithm. Comprehensive experiments on synthetic and realworld datasets demonstrate the superiorities of our IBDLR over state-of-the-art methods.While current block diagonal constrained subspace clustering methods are performed explicitly on the original data space, in practice it is often more desirable to embed the block diagonal prior into the reproducing kernel Hilbert feature space by kernelization techniques, as the underlying data structure in reality is usually nonlinear. However, it is still unknown how to carry out the embedding and kernelization in the models with block diagonal constraints. In this work, we shall take a step in this direction. First, we establish a novel model termed Implicit Block Diagonal Low-Rank Representation (IBDLR), by incorporating the implicit feature representation and block diagonal prior into the prevalent Low-Rank Representation (LRR) method. Second, mostly important, we show that the model in IBDLR could be

  9. Fermentation characteristics in conversion of organic acids obtained by oxidation of low-rank coals to poly({beta}-hydroxybutyrate) using A. eutrophus cells with some analysis on metabolic flux distribution; Kattan no ekisosanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan (PHB) ni henkansaseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Shoko.; Shin, Huidong.; Shimizu, Kazuyuki. [Kyushu Institute of Technology, Fukuoka (Japan). Department of Biochemical engineering and science; Mae, Kazuhiro.; Miura, Koichi. [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    1999-03-10

    Fermentation characteristics are investigated for the conversion of glycolate, acetate, formate, and malonate obtained by the oxidation of low-rank coals to poly ({beta}-hydrox butyrate) (PHB) using A. eutrophus cells. Based on the cultivation experiments using one of the organic acids as a sole carbon source, it is found that acetate is the most effectively converted to PHB. When mixed organic acids are used, formate is preferentially consumed, followed by acetate, and finally glycolate. Although malate can not be utilized, it is implied that it might change the pathway flux distributions based on the metabolic flux analysis. Namely, it shows competitive inhibition to succinate dehydrogenase so that its addition during fermentation results in flux reduction from succinate to maleic acid as well as glyoxylate flux and gluconeogenesis flux. It is also found that NADPH generated from isocitrate is preferentially utilized for the reaction from {alpha}-ketoglutarate to glutamate when NH{sub 3} concentration is high, while it is eventually used for the PHB production from acetoacetyl CoA as NH{sub 3} concentration decreases. (author)

  10. Global Low-Rank Image Restoration With Gaussian Mixture Model.

    Science.gov (United States)

    Zhang, Sibo; Jiao, Licheng; Liu, Fang; Wang, Shuang

    2017-06-27

    Low-rank restoration has recently attracted a lot of attention in the research of computer vision. Empirical studies show that exploring the low-rank property of the patch groups can lead to superior restoration performance, however, there is limited achievement on the global low-rank restoration because the rank minimization at image level is too strong for the natural images which seldom match the low-rank condition. In this paper, we describe a flexible global low-rank restoration model which introduces the local statistical properties into the rank minimization. The proposed model can effectively recover the latent global low-rank structure via nuclear norm, as well as the fine details via Gaussian mixture model. An alternating scheme is developed to estimate the Gaussian parameters and the restored image, and it shows excellent convergence and stability. Besides, experiments on image and video sequence datasets show the effectiveness of the proposed method in image inpainting problems.

  11. Aumento del contenido de ácidos húmicos en un carbón de bajo rango a través de la oxidación con aire y con peróxido de hidrogeno o ácido nítrico Increase of the content of humic acids in a low rank coal by oxidation with air and with hydrogen peroxide or nitric acid

    Directory of Open Access Journals (Sweden)

    Ruben Anillo-Correa

    2013-01-01

    Full Text Available Low-rank coals are an important source of humic acids, which are important in retention processes of water and nutrients in plants. In this study coal samples of Montelibano, Colombia, were oxidized with air at different temperatures and subsequently with H2O2 and HNO3. The materials were characterized by FTIR, proximate and elemental analysis, and quantification of humic acids. The oxidation process led to an increased content of oxygenated groups and humic acids in the carbonaceous structure. The solid oxidized with air at 200 ºC for 12 h and re-oxidized with HNO3 for 12 h showed the highest percentage of humic acids (85.3%.

  12. Information Theoretic Bounds for Low-Rank Matrix Completion

    CERN Document Server

    Vishwanath, Sriram

    2010-01-01

    This paper studies the low-rank matrix completion problem from an information theoretic perspective. The completion problem is rephrased as a communication problem of an (uncoded) low-rank matrix source over an erasure channel. The paper then uses achievability and converse arguments to present order-wise optimal bounds for the completion problem.

  13. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    Science.gov (United States)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods.

  14. Low-Rank Sparse Coding for Image Classification

    KAUST Repository

    Zhang, Tianzhu

    2013-12-01

    In this paper, we propose a low-rank sparse coding (LRSC) method that exploits local structure information among features in an image for the purpose of image-level classification. LRSC represents densely sampled SIFT descriptors, in a spatial neighborhood, collectively as low-rank, sparse linear combinations of code words. As such, it casts the feature coding problem as a low-rank matrix learning problem, which is different from previous methods that encode features independently. This LRSC has a number of attractive properties. (1) It encourages sparsity in feature codes, locality in codebook construction, and low-rankness for spatial consistency. (2) LRSC encodes local features jointly by considering their low-rank structure information, and is computationally attractive. We evaluate the LRSC by comparing its performance on a set of challenging benchmarks with that of 7 popular coding and other state-of-the-art methods. Our experiments show that by representing local features jointly, LRSC not only outperforms the state-of-the-art in classification accuracy but also improves the time complexity of methods that use a similar sparse linear representation model for feature coding.

  15. Low-rank and sparse modeling for visual analysis

    CERN Document Server

    Fu, Yun

    2014-01-01

    This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applic

  16. Low-rank sparse learning for robust visual tracking

    KAUST Repository

    Zhang, Tianzhu

    2012-01-01

    In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1]. © 2012 Springer-Verlag.

  17. Low-Rank Affinity Based Local-Driven Multilabel Propagation

    Directory of Open Access Journals (Sweden)

    Teng Li

    2013-01-01

    Full Text Available This paper presents a novel low-rank affinity based local-driven algorithm to robustly propagate the multilabels from training images to test images. A graph is constructed over the segmented local image regions. The labels for vertices from the training data are derived based on the context among different training images, and the derived vertex labels are propagated to the unlabeled vertices via the graph. The multitask low-rank affinity, which jointly seeks the sparsity-consistent low-rank affinities from multiple feature matrices, is applied to compute the edge weights between graph vertices. The inference process of multitask low-rank affinity is formulated as a constrained nuclear norm and ℓ2,1-norm minimization problem. The optimization is conducted efficiently with the augmented Lagrange multiplier method. Based on the learned local patch labels we can predict the multilabels for the test images. Experiments on multilabel image annotation demonstrate the encouraging results from the proposed framework.

  18. Combinatorial conditions for low rank solutions in semidefinite programming

    NARCIS (Netherlands)

    A. Varvitsiotis (Antonios)

    2013-01-01

    htmlabstractIn this thesis we investigate combinatorial conditions that guarantee the existence of low-rank optimal solutions to semidefinite programs. Results of this type are important for approximation algorithms and for the study of geometric representations of graphs. The structure of the

  19. Combinatorial conditions for low rank solutions in semidefinite programming

    NARCIS (Netherlands)

    Varvitsiotis, A.

    2013-01-01

    In this thesis we investigate combinatorial conditions that guarantee the existence of low-rank optimal solutions to semidefinite programs. Results of this type are important for approximation algorithms and for the study of geometric representations of graphs. The structure of the thesis is as

  20. Low-rank approximation pursuit for matrix completion

    Science.gov (United States)

    Xu, An-Bao; Xie, Dongxiu

    2017-10-01

    We consider the matrix completion problem that aims to construct a low rank matrix X that approximates a given large matrix Y from partially known sample data in Y . In this paper we introduce an efficient greedy algorithm for such matrix completions. The greedy algorithm generalizes the orthogonal rank-one matrix pursuit method (OR1MP) by creating s ⩾ 1 candidates per iteration by low-rank matrix approximation. Due to selecting s ⩾ 1 candidates in each iteration step, our approach uses fewer iterations than OR1MP to achieve the same results. Our algorithm is a randomized low-rank approximation method which makes it computationally inexpensive. The algorithm comes in two forms, the standard one which uses the Lanzcos algorithm to find partial SVDs, and another that uses a randomized approach for this part of its work. The storage complexity of this algorithm can be reduced by using an weight updating rule as an economic version algorithm. We prove that all our algorithms are linearly convergent. Numerical experiments on image reconstruction and recommendation problems are included that illustrate the accuracy and efficiency of our algorithms.

  1. Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

    KAUST Repository

    Zhang, Tianzhu

    2014-06-19

    Object tracking is the process of determining the states of a target in consecutive video frames based on properties of motion and appearance consistency. In this paper, we propose a consistent low-rank sparse tracker (CLRST) that builds upon the particle filter framework for tracking. By exploiting temporal consistency, the proposed CLRST algorithm adaptively prunes and selects candidate particles. By using linear sparse combinations of dictionary templates, the proposed method learns the sparse representations of image regions corresponding to candidate particles jointly by exploiting the underlying low-rank constraints. In addition, the proposed CLRST algorithm is computationally attractive since temporal consistency property helps prune particles and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25 challenging image sequences. Experimental results show that the CLRST algorithm performs favorably against state-of-the-art tracking methods in terms of accuracy and execution time.

  2. Constrained low-rank gamut completion for robust illumination estimation

    Science.gov (United States)

    Zhou, Jianshen; Yuan, Jiazheng; Liu, Hongzhe

    2017-02-01

    Illumination estimation is an important component of color constancy and automatic white balancing. According to recent survey and evaluation work, the supervised methods with a learning phase are competitive for illumination estimation. However, the robustness and performance of any supervised algorithm suffer from an incomplete gamut in training image sets because of limited reflectance surfaces in a scene. In order to address this problem, we present a constrained low-rank gamut completion algorithm, which can replenish gamut from limited surfaces in an image, for robust illumination estimation. In the proposed algorithm, we first discuss why the gamut completion is actually a low-rank matrix completion problem. Then a constrained low-rank matrix completion framework is proposed by adding illumination similarities among the training images as an additional constraint. An optimization algorithm is also given out by extending the augmented Lagrange multipliers. Finally, the completed gamut based on the proposed algorithm is fed into the support vector regression (SVR)-based illumination estimation method to evaluate the effect of gamut completion. The experimental results on both synthetic and real-world image sets show that the proposed gamut completion model not only can effectively improve the performance of the original SVR method but is also robust to the surface insufficiency in training samples.

  3. Low-rank regularization for learning gene expression programs.

    Science.gov (United States)

    Ye, Guibo; Tang, Mengfan; Cai, Jian-Feng; Nie, Qing; Xie, Xiaohui

    2013-01-01

    Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.

  4. Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products

    Energy Technology Data Exchange (ETDEWEB)

    Yesim Basaran; Adil Denizli; Billur Sakintuna; Alpay Taralp; Yuda Yurum [Hacettepe University, Ankara (Turkey). Department of Environmental Sciences

    2003-08-01

    The effect of some white-rot fungi on the bio-liquefaction/solubilization of two low-rank Turkish coals and the chemical composition of the liquid products and the microbial mechanisms of coal conversion were investigated. Turkish Elbistan and Beypazari lignites were used in this study. The white-rot fungi received from various laboratories used in the bio-liquefaction/solubilization of the lignites were Pleurotus sajor-caju, Pleurotus sapidus, Pleurotus florida, Pleurotus ostreatus, Phanerochaete chrysosporium, and Coriolus versicolor. FT-IR spectra of raw and treated coal samples were measured, and bio-liquefied/solubilized coal samples were investigated by FT-IR and LC-MS techniques. The Coriolus versicolor fungus was determined to be most effective in bio-liquefying/solubilizing nitric acid-treated Elbistan lignite. In contrast, raw and nitric acid-treated Beypazari lignite seemed to be unaffected by the action of any kind of white-rot fungi. The liquid chromatogram of the water-soluble bio-liquefied/solubilized product contained four major peaks. Corresponding mass spectra of each peak indicated the presence of very complicated structures. 17 refs., 9 figs., 2 tabs.

  5. Moving object detection via low-rank total variation regularization

    Science.gov (United States)

    Wang, Pengcheng; Chen, Qian; Shao, Na

    2016-09-01

    Moving object detection is a challenging task in video surveillance. Recently proposed Robust Principal Component Analysis (RPCA) can recover the outlier patterns from the low-rank data under some mild conditions. However, the l-penalty in RPCA doesn't work well in moving object detection because the irrepresentable condition is often not satisfied. In this paper, a method based on total variation (TV) regularization scheme is proposed. In our model, image sequences captured with a static camera are highly related, which can be described using a low-rank matrix. Meanwhile, the low-rank matrix can absorb background motion, e.g. periodic and random perturbation. The foreground objects in the sequence are usually sparsely distributed and drifting continuously, and can be treated as group outliers from the highly-related background scenes. Instead of l-penalty, we exploit the total variation of the foreground. By minimizing the total variation energy, the outliers tend to collapse and finally converge to be the exact moving objects. The TV-penalty is superior to the l-penalty especially when the outlier is in the majority for some pixels, and our method can estimate the outlier explicitly with less bias but higher variance. To solve the problem, a joint optimization function is formulated and can be effectively solved through the inexact Augmented Lagrange Multiplier (ALM) method. We evaluate our method along with several state-of-the-art approaches in MATLAB. Both qualitative and quantitative results demonstrate that our proposed method works effectively on a large range of complex scenarios.

  6. Domain Generalization and Adaptation using Low Rank Exemplar SVMs.

    Science.gov (United States)

    Li, Wen; Xu, Zheng; Xu, Dong; Dai, Dengxin; Van Gool, Luc

    2017-05-16

    Domain adaptation between diverse source and target domains is a challenging research problem, especially in the real-world visual recognition tasks where the images and videos consist of significant variations in viewpoints, illuminations, qualities, etc. In this paper, we propose a new approach for domain generalization and domain adaptation based on exemplar SVMs. Specifically, we decompose the source domain into many subdomains, each of which contains only one positive training sample and all negative samples. Each subdomain is relatively less diverse, and is expected to have a simpler distribution. By training one exemplar SVM for each subdomain, we obtain a set of exemplar SVMs. To further exploit the inherent structure of source domain, we introduce a nuclear-norm based regularizer into the objective function in order to enforce the exemplar SVMs to produce a low-rank output on training samples. In the prediction process, the confident exemplar SVM classifiers are selected and reweigted according to the distribution mismatch between each subdomain and the test sample in the target domain. We formulate our approach based on the logistic regression and least square SVM algorithms, which are referred to as low rank exemplar SVMs (LRE-SVMs) and low rank exemplar least square SVMs (LRE-LSSVMs), respectively. A fast algorithm is also developed for accelerating the training of LRE-LSSVMs. We further extend Domain Adaptation Machine (DAM) to learn an optimal target classifier for domain adaptation, and show that our approach can also be applied to domain adaptation with evolving target domain, where the target data distribution is gradually changing. The comprehensive experiments for object recognition and action recognition demonstrate the effectiveness of our approach for domain generalization and domain adaptation with fixed and evolving target domains.

  7. Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit

    Science.gov (United States)

    Olea, R.A.; Luppens, J.A.; Tewalt, S.J.

    2011-01-01

    A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.

  8. Analysis of linear dynamic systems of low rank

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2003-01-01

    We present here procedures of how obtain stable solutions to linear dynamic systems can be found. Different types of models are considered. The basic idea is to use the H-principle to develop low rank approximations to solutions. The approximations stop, when the prediction ability of the model...... cannot be improved for the present data. Therefore, the present methods give better prediction results than traditional methods that give exact solutions. The vectors used in the approximations can be used to carry out graphic analysis of the dynamic systems. We show how score vectors can display the low...

  9. Low-Rank Linear Dynamical Systems for Motor Imagery EEG

    Science.gov (United States)

    Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from “BCI Competition III Dataset IVa” and “BCI Competition IV Database 2a.” The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP. PMID:28096809

  10. Low-Rank Linear Dynamical Systems for Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Wenchang Zhang

    2016-01-01

    Full Text Available The common spatial pattern (CSP and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from “BCI Competition III Dataset IVa” and “BCI Competition IV Database 2a.” The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  11. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-12-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  12. Tensor Factorization for Low-Rank Tensor Completion.

    Science.gov (United States)

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  13. Fast Low-Rank Shared Dictionary Learning for Image Classification

    Science.gov (United States)

    Vu, Tiep Huu; Monga, Vishal

    2017-11-01

    Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image datasets establish the advantages of our method over state-of-the-art dictionary learning methods.

  14. De-biasing low-rank projection for matrix completion

    Science.gov (United States)

    Foucart, Simon; Needell, Deanna; Plan, Yaniv; Wootters, Mary

    2017-08-01

    We study matrix completion with non-uniform, deterministic sampling patterns. We introduce a computable parameter, which is a function of the sampling pattern, and show that if this parameter is small, then we may recover missing entries of the matrix, with appropriate weights. We theoretically analyze a simple and well-known recovery method, which simply projects the (zero-padded) subsampled matrix onto the set of low-rank matrices. We show that under non-uniform deterministic sampling, this method yields a biased solution, and we propose an algorithm to de-bias it. Numerical simulations demonstrate that de-biasing significantly improves the estimate. However, when the observations are noisy, the error of this method can be sub-optimal when the sampling is highly non-uniform. To remedy this, we suggest an alternative which is based on projection onto the max-norm ball whose robustness to noise tolerates arbitrarily non-uniform sampling. Finally, we analyze convex optimization in this framework.

  15. Statistical analysis of compressive low rank tomography with random measurements

    Science.gov (United States)

    Acharya, Anirudh; Guţă, Mădălin

    2017-05-01

    We consider the statistical problem of ‘compressive’ estimation of low rank states (r\\ll d ) with random basis measurements, where r, d are the rank and dimension of the state respectively. We investigate whether for a fixed sample size N, the estimation error associated with a ‘compressive’ measurement setup is ‘close’ to that of the setting where a large number of bases are measured. We generalise and extend previous results, and show that the mean square error (MSE) associated with the Frobenius norm attains the optimal rate rd/N with only O(r log{d}) random basis measurements for all states. An important tool in the analysis is the concentration of the Fisher information matrix (FIM). We demonstrate that although a concentration of the MSE follows from a concentration of the FIM for most states, the FIM fails to concentrate for states with eigenvalues close to zero. We analyse this phenomenon in the case of a single qubit and demonstrate a concentration of the MSE about its optimal despite a lack of concentration of the FIM for states close to the boundary of the Bloch sphere. We also consider the estimation error in terms of a different metric-the quantum infidelity. We show that a concentration in the mean infidelity (MINF) does not exist uniformly over all states, highlighting the importance of loss function choice. Specifically, we show that for states that are nearly pure, the MINF scales as 1/\\sqrt{N} but the constant converges to zero as the number of settings is increased. This demonstrates a lack of ‘compressive’ recovery for nearly pure states in this metric.

  16. Image Inpainting Algorithm Based on Low-Rank Approximation and Texture Direction

    Directory of Open Access Journals (Sweden)

    Jinjiang Li

    2014-01-01

    Full Text Available Existing image inpainting algorithm based on low-rank matrix approximation cannot be suitable for complex, large-scale, damaged texture image. An inpainting algorithm based on low-rank approximation and texture direction is proposed in the paper. At first, we decompose the image using low-rank approximation method. Then the area to be repaired is interpolated by level set algorithm, and we can reconstruct a new image by the boundary values of level set. In order to obtain a better restoration effect, we make iteration for low-rank decomposition and level set interpolation. Taking into account the impact of texture direction, we segment the texture and make low-rank decomposition at texture direction. Experimental results show that the new algorithm is suitable for texture recovery and maintaining the overall consistency of the structure, which can be used to repair large-scale damaged image.

  17. Desulphurization of some low-rank Turkish lignites with crude laccase produced from Trametes versicolor ATCC 200801

    Energy Technology Data Exchange (ETDEWEB)

    Aytar, Pinar; Gedikli, Serap [Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University (Turkey); Sam, Mesut [Department of Biology, Faculty of Arts and Science, Aksaray University (Turkey); Uenal, Arzu [Ministry of Agriculture and Rural Affairs, General Directorate of Agricultural Research, Ankara (Turkey); Cabuk, Ahmet [Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University (Turkey); Kolankaya, Nazif [Department of Biology, Division of Biotechnology, Faculty of Science, Hacettepe University, Ankara (Turkey); Yueruem, Alp [Grand Water Research Institute, Technion Israel Institute of Technology, Haifa (Israel)

    2011-01-15

    In this paper, data obtained during the oxidative desulphurization of some low-rank Turkish lignites with crude laccase enzyme produced from Trametes versicolor ATCC 200801 are presented. In order to optimize desulphurization conditions, effects of incubation time, pulp density, incubation temperature, medium pH, and also lignite source on the desulphurization have been examined. The values for incubation period, pulp density, temperature and pH in optimum incubation condition were found as 30 min, 5%, 35 C, and pH 5.0, respectively. Under optimum conditions, treatment of coal samples with crude laccase has caused nearly 29% reduction in their total sulphur content. During the study, the rate of desulphurization of coal sample provided from Tuncbilek with crude laccase was found to be relatively higher than the other examined coal samples. Results of analytical assays have indicated that the treatment of coals with crude laccase has caused no change in their calorific values but reduced their sulphur emissions. 35%, 13%, and 25% reductions of pyritic sulphur, sulphate and organic sulphur in a period of 30 min were achieved, for a particle size of 200 {mu}m under optimal conditions with enzymatic desulphurization. Also, statistical analyses such as Tukey Multiple Comparison tests and ANOVA were performed. (author)

  18. Acceleration of MR parameter mapping using annihilating filter‐based low rank hankel matrix (ALOHA)

    National Research Council Canada - National Science Library

    Lee, Dongwook; Jin, Kyong Hwan; Kim, Eung Yeop; Park, Sung‐Hong; Ye, Jong Chul

    2016-01-01

    .... However, increased scan time makes it difficult for routine clinical use. This article aims at developing an accelerated MR parameter mapping technique using annihilating filter based low-rank Hankel matrix approach (ALOHA...

  19. Low-rank coal study: national needs for resource development. Volume 6. Peat

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  20. GoDec+: Fast and Robust Low-Rank Matrix Decomposition Based on Maximum Correntropy.

    Science.gov (United States)

    Guo, Kailing; Liu, Liu; Xu, Xiangmin; Xu, Dong; Tao, Dacheng

    2017-04-24

    GoDec is an efficient low-rank matrix decomposition algorithm. However, optimal performance depends on sparse errors and Gaussian noise. This paper aims to address the problem that a matrix is composed of a low-rank component and unknown corruptions. We introduce a robust local similarity measure called correntropy to describe the corruptions and, in doing so, obtain a more robust and faster low-rank decomposition algorithm: GoDec+. Based on half-quadratic optimization and greedy bilateral paradigm, we deliver a solution to the maximum correntropy criterion (MCC)-based low-rank decomposition problem. Experimental results show that GoDec+ is efficient and robust to different corruptions including Gaussian noise, Laplacian noise, salt & pepper noise, and occlusion on both synthetic and real vision data. We further apply GoDec+ to more general applications including classification and subspace clustering. For classification, we construct an ensemble subspace from the low-rank GoDec+ matrix and introduce an MCC-based classifier. For subspace clustering, we utilize GoDec+ values low-rank matrix for MCC-based self-expression and combine it with spectral clustering. Face recognition, motion segmentation, and face clustering experiments show that the proposed methods are effective and robust. In particular, we achieve the state-of-the-art performance on the Hopkins 155 data set and the first 10 subjects of extended Yale B for subspace clustering.

  1. Adaptive low-rank subspace learning with online optimization for robust visual tracking.

    Science.gov (United States)

    Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan

    2017-04-01

    In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low-Rank Representation-Based Object Tracking Using Multitask Feature Learning with Joint Sparsity

    Directory of Open Access Journals (Sweden)

    Hyuncheol Kim

    2014-01-01

    Full Text Available We address object tracking problem as a multitask feature learning process based on low-rank representation of features with joint sparsity. We first select features with low-rank representation within a number of initial frames to obtain subspace basis. Next, the features represented by the low-rank and sparse property are learned using a modified joint sparsity-based multitask feature learning framework. Both the features and sparse errors are then optimally updated using a novel incremental alternating direction method. The low-rank minimization problem for learning multitask features can be achieved by a few sequences of efficient closed form update process. Since the proposed method attempts to perform the feature learning problem in both multitask and low-rank manner, it can not only reduce the dimension but also improve the tracking performance without drift. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art tracking methods for tracking objects in challenging image sequences.

  3. Low-rank approximations with sparse factors II: Penalized methods with discrete Newton-like iterations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenyue [Zhejiang Univ., Hangzhou (People' s Republic of China); Zha, Hongyuan [Pennsylvania State Univ., University Park, PA (United States); Simon, Horst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2006-07-31

    In this paper, we developed numerical algorithms for computing sparse low-rank approximations of matrices, and we also provided a detailed error analysis of the proposed algorithms together with some numerical experiments. The low-rank approximations are constructed in a certain factored form with the degree of sparsity of the factors controlled by some user-specified parameters. In this paper, we cast the sparse low-rank approximation problem in the framework of penalized optimization problems. We discuss various approximation schemes for the penalized optimization problem which are more amenable to numerical computations. We also include some analysis to show the relations between the original optimization problem and the reduced one. We then develop a globally convergent discrete Newton-like iterative method for solving the approximate penalized optimization problems. We also compare the reconstruction errors of the sparse low-rank approximations computed by our new methods with those obtained using the methods in the earlier paper and several other existing methods for computing sparse low-rank approximations. Numerical examples show that the penalized methods are more robust and produce approximations with factors which have fewer columns and are sparser.

  4. CT image sequence restoration based on sparse and low-rank decomposition.

    Directory of Open Access Journals (Sweden)

    Shuiping Gou

    Full Text Available Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA, Linearized Alternating Direction Method with Adaptive Penalty (LADMAP and Go Decomposition (GoDec. Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images.

  5. Patch-Based Image Inpainting via Two-Stage Low Rank Approximation.

    Science.gov (United States)

    Guo, Qiang; Gao, Shanshan; Zhang, Xiaofeng; Yin, Yilong; Zhang, Caiming

    2017-05-09

    To recover the corrupted pixels, traditional inpainting methods based on low-rank priors generally need to solve a convex optimization problem by an iterative singular value shrinkage algorithm. In this paper, we propose a simple method for image inpainting using low rank approximation, which avoids the time-consuming iterative shrinkage. Specifically, if similar patches of a corrupted image are identified and reshaped as vectors, then a patch matrix can be constructed by collecting these similar patch-vectors. Due to its columns being highly linearly correlated, this patch matrix is low-rank. Instead of using an iterative singular value shrinkage scheme, the proposed method utilizes low rank approximation with truncated singular values to derive a closed-form estimate for each patch matrix. Depending upon an observation that there exists a distinct gap in the singular spectrum of patch matrix, the rank of each patch matrix is empirically determined by a heuristic procedure. Inspired by the inpainting algorithms with component decomposition, a two-stage low rank approximation (TSLRA) scheme is designed to recover image structures and refine texture details of corrupted images. Experimental results on various inpainting tasks demonstrate that the proposed method is comparable and even superior to some state-of-the-art inpainting algorithms.

  6. CT image sequence restoration based on sparse and low-rank decomposition.

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images.

  7. Image restoration via patch orientation-based low-rank matrix approximation and nonlocal means

    Science.gov (United States)

    Zhang, Di; He, Jiazhong; Du, Minghui

    2016-03-01

    Low-rank matrix approximation and nonlocal means (NLM) are two popular techniques for image restoration. Although the basic principle for applying these two techniques is the same, i.e., similar image patches are abundant in the image, previously published related algorithms use either low-rank matrix approximation or NLM because they manipulate the information of similar patches in different ways. We propose a method for image restoration by jointly using low-rank matrix approximation and NLM in a unified minimization framework. To improve the accuracy of determining similar patches, we also propose a patch similarity measurement based on curvelet transform. Extensive experiments on image deblurring and compressive sensing image recovery validate that the proposed method achieves better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception.

  8. Low-rank Atlas Image Analyses in the Presence of Pathologies

    Science.gov (United States)

    Liu, Xiaoxiao; Niethammer, Marc; Kwitt, Roland; Singh, Nikhil; McCormick, Matt; Aylward, Stephen

    2015-01-01

    We present a common framework, for registering images to an atlas and for forming an unbiased atlas, that tolerates the presence of pathologies such as tumors and traumatic brain injury lesions. This common framework is particularly useful when a sufficient number of protocol-matched scans from healthy subjects cannot be easily acquired for atlas formation and when the pathologies in a patient cause large appearance changes. Our framework combines a low-rank-plus-sparse image decomposition technique with an iterative, diffeomorphic, group-wise image registration method. At each iteration of image registration, the decomposition technique estimates a “healthy” version of each image as its low-rank component and estimates the pathologies in each image as its sparse component. The healthy version of each image is used for the next iteration of image registration. The low-rank and sparse estimates are refined as the image registrations iteratively improve. When that framework is applied to image-to-atlas registration, the low-rank image is registered to a pre-defined atlas, to establish correspondence that is independent of the pathologies in the sparse component of each image. Ultimately, image-to-atlas registrations can be used to define spatial priors for tissue segmentation and to map information across subjects. When that framework is applied to unbiased atlas formation, at each iteration, the average of the low-rank images from the patients is used as the atlas image for the next iteration, until convergence. Since each iteration’s atlas is comprised of low-rank components, it provides a population-consistent, pathology-free appearance. Evaluations of the proposed methodology are presented using synthetic data as well as simulated and clinical tumor MRI images from the brain tumor segmentation (BRATS) challenge from MICCAI 2012. PMID:26111390

  9. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  10. Speech Denoising in White Noise Based on Signal Subspace Low-rank Plus Sparse Decomposition

    Directory of Open Access Journals (Sweden)

    yuan Shuai

    2017-01-01

    Full Text Available In this paper, a new subspace speech enhancement method using low-rank and sparse decomposition is presented. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank for the underlying human speech signal. Then the low-rank and sparse decomposition is performed with the guidance of speech rank value to remove the noise. Extensive experiments have been carried out in white Gaussian noise condition, and experimental results show the proposed method performs better than conventional speech enhancement methods, in terms of yielding less residual noise and lower speech distortion.

  11. PAH Concentrations Decline Following 2006 Ban on Coal-Tar-Based Pavement Sealants in Austin, Texas

    Science.gov (United States)

    Van Metre, P. C.; Mahler, B. J.

    2013-12-01

    Recent studies have concluded that coal-tar-based pavement sealants (CT sealants) are a major source of polycyclic aromatic hydrocarbons (PAHs) in non-industrial urban settings in the United States. In 2006, Austin, TX, became the first jurisdiction in the U.S. to ban the use of CT sealants. We evaluated PAH concentrations following the ban by analyzing sediment cores collected from Lady Bird Lake in 2012; Lady Bird Lake impounds the Colorado River in central Austin and receives runoff from much of the greater Austin area. The mean sum concentration of the 16 U.S. Environmental Protection Agency Priority Pollutant PAHs (∑PAH16) in one of two 2012 sediment cores analyzed for PAHs declined 75% from before 2006 (mean of 4 samples=8,090 μg kg-1) to 2012 (mean of 2 samples=2,030 μg kg-1), reversing a 40-year (1959-1999) upward trend in PAH concentrations that was previously documented. The downward trend in PAH concentrations in the seven uppermost 1 cm sampling intervals in the first 2012 core was statistically significant (r=0.93, p-value=0.002). Post-2008 PAH trends in the second 2012 core were similar (significant downward trend in the six uppermost 1 cm sampling intervals and mean 2012 ∑PAH16 of 2,390 μg kg-1); however, pre-2007 sediment did not appear to have been preserved in this core likely because of the effects of flooding on sediment deposition and mixing at this site--the largest flood on the Colorado River in Austin in 20 years was in 2007. On the basis of a comparison of lake-sediment PAH profiles to 22 PAH source profiles, the PAH loading to lake sediment continues to be dominated by CT sealants. The continued dominance of proportional PAH loading by CT sealants in spite of decreased concentrations since 2006 might be because legacy CT sealant and contaminated soils and sediments continue to yield PAHs to runoff. A previous study using source-receptor modeling concluded that CT sealants were the largest PAH source to 40 urban lakes studied in the

  12. Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

    Science.gov (United States)

    Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie

    2017-09-12

    In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.

  13. An Approach to Streaming Video Segmentation With Sub-Optimal Low-Rank Decomposition.

    Science.gov (United States)

    Li, Chenglong; Lin, Liang; Zuo, Wangmeng; Wang, Wenzhong; Tang, Jin

    2016-05-01

    This paper investigates how to perform robust and efficient video segmentation while suppressing the effects of data noises and/or corruptions, and an effective approach is introduced to this end. First, a general algorithm, called sub-optimal low-rank decomposition (SOLD), is proposed to pursue the low-rank representation for video segmentation. Given the data matrix formed by supervoxel features of an observed video sequence, SOLD seeks a sub-optimal solution by making the matrix rank explicitly determined. In particular, the representation coefficient matrix with the fixed rank can be decomposed into two sub-matrices of low rank, and then we iteratively optimize them with closed-form solutions. Moreover, we incorporate a discriminative replication prior into SOLD based on the observation that small-size video patterns tend to recur frequently within the same object. Second, based on SOLD, we present an efficient inference algorithm to perform streaming video segmentation in both unsupervised and interactive scenarios. More specifically, the constrained normalized-cut algorithm is adopted by incorporating the low-rank representation with other low level cues and temporal consistent constraints for spatio-temporal segmentation. Extensive experiments on two public challenging data sets VSB100 and SegTrack suggest that our approach outperforms other video segmentation approaches in both accuracy and efficiency.

  14. Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures

    KAUST Repository

    Akbudak, Kadir

    2017-05-11

    Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to 200K×200K covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.

  15. Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations

    KAUST Repository

    Giraldi, Loic

    2017-06-30

    This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.

  16. Kriging accelerated by orders of magnitude: combining low-rank with FFT techniques

    KAUST Repository

    Litvinenko, Alexander

    2014-05-04

    Kriging algorithms based on FFT, the separability of certain covariance functions and low-rank representations of covariance functions have been investigated. The current study combines these ideas, and so combines the individual speedup factors of all ideas. The reduced computational complexity is O(dLlogL), where L := max ini, i = 1

  17. Depth Image Inpainting: Improving Low Rank Matrix Completion With Low Gradient Regularization

    Science.gov (United States)

    Xue, Hongyang; Zhang, Shengming; Cai, Deng

    2017-09-01

    We consider the case of inpainting single depth images. Without corresponding color images, previous or next frames, depth image inpainting is quite challenging. One natural solution is to regard the image as a matrix and adopt the low rank regularization just as inpainting color images. However, the low rank assumption does not make full use of the properties of depth images. A shallow observation may inspire us to penalize the non-zero gradients by sparse gradient regularization. However, statistics show that though most pixels have zero gradients, there is still a non-ignorable part of pixels whose gradients are equal to 1. Based on this specific property of depth images , we propose a low gradient regularization method in which we reduce the penalty for gradient 1 while penalizing the non-zero gradients to allow for gradual depth changes. The proposed low gradient regularization is integrated with the low rank regularization into the low rank low gradient approach for depth image inpainting. We compare our proposed low gradient regularization with sparse gradient regularization. The experimental results show the effectiveness of our proposed approach.

  18. Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications

    Science.gov (United States)

    Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka

    2017-07-01

    This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.

  19. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, Andrew [Southern Research Institute, Durham, NC (United States); Goyal, Amit [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States); Gangwal, Santosh [Southern Research Institute, Durham, NC (United States)

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  20. A low-rank approach to off-the-grid sparse deconvolution

    Science.gov (United States)

    Catala, Paul; Duval, Vincent; Peyré, Gabriel

    2017-10-01

    We propose a new solver for the sparse spikes deconvolution problem over the space of Radon measures. A common approach to off-the-grid deconvolution considers semidefinite (SDP) relaxations of the total variation (the total mass of the measure) minimization problem. The direct resolution of this SDP is however intractable for large scale settings, since the problem size grows as f c 2d where fc is the cutoff frequency of the filter. Our first contribution introduces a penalized formulation of this semidefinite lifting, which has low-rank solutions. Our second contribution is a conditional gradient optimization scheme with non-convex updates. This algorithm leverages both the low-rank and the convolutive structure of the problem, resulting in an O(fc d log fc) complexity per iteration. Numerical simulations are promising and show that the algorithm converges in exactly k steps, k being the number of Diracs composing the solution.

  1. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.

    Science.gov (United States)

    Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai

    2017-07-15

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating lp-norm and Schatten p-norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.

  2. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol

    2017-03-01

    In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doubles (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.

  3. On low-rank updates to the singular value and Tucker decompositions

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, M J

    2009-10-06

    The singular value decomposition is widely used in signal processing and data mining. Since the data often arrives in a stream, the problem of updating matrix decompositions under low-rank modification has been widely studied. Brand developed a technique in 2006 that has many advantages. However, the technique does not directly approximate the updated matrix, but rather its previous low-rank approximation added to the new update, which needs justification. Further, the technique is still too slow for large information processing problems. We show that the technique minimizes the change in error per update, so if the error is small initially it remains small. We show that an updating algorithm for large sparse matrices should be sub-linear in the matrix dimension in order to be practical for large problems, and demonstrate a simple modification to the original technique that meets the requirements.

  4. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  5. A Class of Weighted Low Rank Approximation of the Positive Semidefinite Hankel Matrix

    Directory of Open Access Journals (Sweden)

    Jianchao Bai

    2015-01-01

    Full Text Available We consider the weighted low rank approximation of the positive semidefinite Hankel matrix problem arising in signal processing. By using the Vandermonde representation, we firstly transform the problem into an unconstrained optimization problem and then use the nonlinear conjugate gradient algorithm with the Armijo line search to solve the equivalent unconstrained optimization problem. Numerical examples illustrate that the new method is feasible and effective.

  6. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    Science.gov (United States)

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    Science.gov (United States)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  8. Reference Information Based Remote Sensing Image Reconstruction with Generalized Nonconvex Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-06-01

    Full Text Available Because of the contradiction between the spatial and temporal resolution of remote sensing images (RSI and quality loss in the process of acquisition, it is of great significance to reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference image-based reconstruction methods have great potential for higher reconstruction performance, while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing objective function incorporating a reference image as prior information is developed. We resort to the reference prior information inherent in interior and exterior data simultaneously to build a new generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the innovation of this paper consists of the following three respects: (1 we propose a nonconvex low-rank approximation for reconstructing RSI; (2 we inject reference prior information to overcome over smoothed edges and texture detail losses; (3 on this basis, we combine conjugate gradient algorithms and a single-value threshold (SVT simultaneously to solve the proposed algorithm. The performance of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR and preserves image details significantly compared to most of the current approaches without reference images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy inputs in a more unified framework.

  9. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2012-04-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model in the same porous medium. Because of different sources of uncertainties, this coupled model might not be able to accurately track the contaminant state. Incorporating observations through the process of data assimilation can guide the model toward the true trajectory of the system. The Kalman filter (KF), or its nonlinear invariants, can be used to tackle this problem. To overcome the prohibitive computational cost of the KF, the singular evolutive Kalman filter (SEKF) and the singular fixed Kalman filter (SFKF) are used, which are variants of the KF operating with low-rank covariance matrices. Experimental results suggest that under perfect and imperfect model setups, the low-rank filters can provide estimates as accurate as the full KF but at much lower computational effort. Low-rank filters are demonstrated to significantly reduce the computational effort of the KF to almost 3%. © 2012 American Society of Civil Engineers.

  10. Robust Alternating Low-Rank Representation by joint Lp- and L2,p-norm minimization.

    Science.gov (United States)

    Zhang, Zhao; Zhao, Mingbo; Li, Fanzhang; Zhang, Li; Yan, Shuicheng

    2017-12-01

    We propose a robust Alternating Low-Rank Representation (ALRR) model formed by an alternating forward-backward representation process. For forward representation, ALRR first recovers the low-rank PCs and random corruptions by an adaptive local Robust PCA (RPCA). Then, ALRR performs a joint L p -norm and L 2,p -norm minimization (0representation, while the L 2,p -norm on the reconstruction error can handle outlier pursuit. After that, ALRR returns the coefficients as adaptive weights to local RPCA for updating PCs and dictionary in the backward representation process. Thus, ALRR is regarded as an integration of local RPCA with adaptive weights plus sparse LRR with a self-expressive low-rank dictionary. To enable ALRR to handle outside data efficiently, a projective ALRR that can extract features from data directly by embedding is also derived. To solve the L 2,p -norm based minimization problem, a new iterative scheme based on the Iterative Shrinkage/Thresholding (IST) approach is presented. The relationship analysis with other related criteria show that our methods are more general. Visual and numerical results demonstrate the effectiveness of our algorithms for representation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. OCT despeckling via weighted nuclear norm constrained non-local low-rank representation

    Science.gov (United States)

    Tang, Chang; Zheng, Xiao; Cao, Lijuan

    2017-10-01

    As a non-invasive imaging modality, optical coherence tomography (OCT) plays an important role in medical sciences. However, OCT images are always corrupted by speckle noise, which can mask image features and pose significant challenges for medical analysis. In this work, we propose an OCT despeckling method by using non-local, low-rank representation with weighted nuclear norm constraint. Unlike previous non-local low-rank representation based OCT despeckling methods, we first generate a guidance image to improve the non-local group patches selection quality, then a low-rank optimization model with a weighted nuclear norm constraint is formulated to process the selected group patches. The corrupted probability of each pixel is also integrated into the model as a weight to regularize the representation error term. Note that each single patch might belong to several groups, hence different estimates of each patch are aggregated to obtain its final despeckled result. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the proposed method compared with other state-of-the-art speckle removal techniques.

  12. Color correction with blind image restoration based on multiple images using a low-rank model

    Science.gov (United States)

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  13. Efficient completion for corrupted low-rank images via alternating direction method

    Science.gov (United States)

    Li, Wei; Zhao, Lei; Xu, Duanqing; Lu, Dongming

    2014-05-01

    We propose an efficient and easy-to-implement method to settle the inpainting problem for low-rank images following the recent studies about low-rank matrix completion. In general, our method has three steps: first, corresponding to the three channels of RGB color space, an incomplete image is split into three incomplete matrices; second, each matrix is restored by solving a convex problem derived from the nuclear norm relaxation; at last, the three recovered matrices are merged to produce the final output. During the process, in order to efficiently solve the nuclear norm minimization problem, we employ the alternating direction method. Except for the basic image inpainting problem, we also enable our method to handle cases where corrupted images not only have missing values but also have noisy entries. Our experiments show that our method outperforms the existing inpainting techniques both quantitatively and qualitatively. We also demonstrate that our method is capable of processing many other situations, including block-wise low-rank image completion, large-scale image restoration, and object removal.

  14. Organic geochemistry and petrology of subsurface Paleocene-Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA

    Science.gov (United States)

    Hackley, Paul C.; Warwick, Peter D.; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.

    2012-01-01

    Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical

  15. Regional Haze Plan for Texas and Oklahoma

    Science.gov (United States)

    EPA partially approved and partially disapproved the Texas regional haze plan. EPA also finalized a plan to limit sulfur dioxide emissions from eight Texas coal-fired electricity generating facilities

  16. The optimized expansion based low-rank method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  17. Robust cardiac motion estimation using ultrafast ultrasound data: a low-rank topology-preserving approach

    Science.gov (United States)

    Aviles, Angelica I.; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje M.; Ammari, Habib

    2017-06-01

    Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.

  18. Low-rank spectral expansions of two electron excitations for the acceleration of quantum chemistry calculations.

    Science.gov (United States)

    Schwerdtfeger, Christine A; Mazziotti, David A

    2012-12-28

    Treatment of two-electron excitations is a fundamental but computationally expensive part of ab initio calculations of many-electron correlation. In this paper we develop a low-rank spectral expansion of two-electron excitations for accelerated electronic-structure calculations. The spectral expansion differs from previous approaches by relying upon both (i) a sum of three expansions to increase the rank reduction of the tensor and (ii) a factorization of the tensor into geminal (rank-two) tensors rather than orbital (rank-one) tensors. We combine three spectral expansions from the three distinct forms of the two-electron reduced density matrix (2-RDM), (i) the two-particle (2)D, (ii) the two-hole (2)Q, and the (iii) particle-hole (2)G matrices, to produce a single spectral expansion with significantly accelerated convergence. While the resulting expansion is applicable to any quantum-chemistry calculation with two-particle excitation amplitudes, it is employed here in the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. The low-rank parametric 2-RDM method scales quartically with the basis-set size, but like its full-rank version it can capture multi-reference correlation effects that are difficult to treat efficiently by traditional single-reference wavefunction methods. Applications are made to computing potential energy curves of HF and triplet OH(+), equilibrium bond distances and frequencies, the HCN-HNC isomerization, and the energies of hydrocarbon chains. Computed 2-RDMs nearly satisfy necessary N-representability conditions. The low-rank spectral expansion has the potential to expand the applicability of the parametric 2-RDM method as well as other ab initio methods to large-scale molecular systems that are often only treatable by mean-field or density functional theories.

  19. Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver

    Science.gov (United States)

    Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo

    2017-06-01

    We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3-D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so-called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3-D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10, 30 and 40 per cent of their full-rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O(N2) for the full-rank solver to O(Nm) with m = 1.4-1.6. The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3-D controlled-source electromagnetic Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.

  20. On matrices with low-rank-plus-shift structure: Partial SVD and latent semantic indexing

    Energy Technology Data Exchange (ETDEWEB)

    Zha, H.; Zhang, Z.

    1998-08-01

    The authors present a detailed analysis of matrices satisfying the so-called low-rank-plus-shift property in connection with the computation of their partial singular value decomposition. The application they have in mind is Latent Semantic Indexing for information retrieval where the term-document matrices generated from a text corpus approximately satisfy this property. The analysis is motivated by developing more efficient methods for computing and updating partial SVD of large term-document matrices and gaining deeper understanding of the behavior of the methods in the presence of noise.

  1. Two-Step Proximal Gradient Algorithm for Low-Rank Matrix Completion

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2016-06-01

    Full Text Available In this paper, we  propose a two-step proximal gradient algorithm to solve nuclear norm regularized least squares for the purpose of recovering low-rank data matrix from sampling of its entries. Each iteration generated by the proposed algorithm is a combination of the latest three points, namely, the previous point, the current iterate, and its proximal gradient point. This algorithm preserves the computational simplicity of classical proximal gradient algorithm where a singular value decomposition in proximal operator is involved. Global convergence is followed directly in the literature. Numerical results are reported to show the efficiency of the algorithm.

  2. Robust subspace estimation using low-rank optimization theory and applications

    CERN Document Server

    Oreifej, Omar

    2014-01-01

    Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundame

  3. Kriging accelerated by orders of magnitude: combining low-rank with FFT techniques

    KAUST Repository

    Litvinenko, Alexander

    2014-01-08

    Kriging algorithms based on FFT, the separability of certain covariance functions and low-rank representations of covariance functions have been investigated. The current study combines these ideas, and so combines the individual speedup factors of all ideas. For separable covariance functions, the results are exact, and non-separable covariance functions can be approximated through sums of separable components. Speedup factor is 1e+8, problem sizes 1.5e+13 and 2e+15 estimation points for Kriging and spatial design.

  4. Kriging accelerated by orders of magnitude: combining low-rank with FFT techniques

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Kriging algorithms based on FFT, the separability of certain covariance functions and low-rank representations of covariance functions have been investigated. The current study combines these ideas, and so combines the individual speedup factors of all ideas. The reduced computational complexity is O(dLlogL), where L := max ini, i = 1..d. For separable covariance functions, the results are exact, and non-separable covariance functions can be approximated through sums of separable components. Speedup factor is 10 8, problem sizes 15e + 12 and 2e + 15 estimation points for Kriging and spatial design.

  5. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; Brune, P. [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  6. Multi-shot multi-channel diffusion data recovery using structured low-rank matrix completion

    CERN Document Server

    Mani, Merry; Kelley, Douglas; Magnotta, Vincent

    2016-01-01

    Purpose: To introduce a novel method for the recovery of multi-shot diffusion weighted (MS-DW) images from echo-planar imaging (EPI) acquisitions. Methods: Current EPI-based MS-DW reconstruction methods rely on the explicit estimation of the motion- induced phase maps to recover the unaliased images. In the new formulation, the k-space data of the unaliased DWI is recovered using a structured low-rank matrix completion scheme, which does not require explicit estimation of the phase maps. The structured matrix is obtained as the lifting of the multi-shot data. The smooth phase-modulations between shots manifest as null-space vectors of this matrix, which implies that the structured matrix is low-rank. The missing entries of the structured matrix are filled in using a nuclear-norm minimization algorithm subject to the data-consistency. The formulation enables the natural introduction of smoothness regularization, thus enabling implicit motion-compensated recovery of fully-sampled as well as under-sampled MS-DW ...

  7. Accurate low-rank matrix recovery from a small number of linear measurements

    CERN Document Server

    Candes, Emmanuel J

    2009-01-01

    We consider the problem of recovering a lowrank matrix M from a small number of random linear measurements. A popular and useful example of this problem is matrix completion, in which the measurements reveal the values of a subset of the entries, and we wish to fill in the missing entries (this is the famous Netflix problem). When M is believed to have low rank, one would ideally try to recover M by finding the minimum-rank matrix that is consistent with the data; this is, however, problematic since this is a nonconvex problem that is, generally, intractable. Nuclear-norm minimization has been proposed as a tractable approach, and past papers have delved into the theoretical properties of nuclear-norm minimization algorithms, establishing conditions under which minimizing the nuclear norm yields the minimum rank solution. We review this spring of emerging literature and extend and refine previous theoretical results. Our focus is on providing error bounds when M is well approximated by a low-rank matrix, and ...

  8. SAR Target Recognition via Local Sparse Representation of Multi-Manifold Regularized Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Meiting Yu

    2018-02-01

    Full Text Available The extraction of a valuable set of features and the design of a discriminative classifier are crucial for target recognition in SAR image. Although various features and classifiers have been proposed over the years, target recognition under extended operating conditions (EOCs is still a challenging problem, e.g., target with configuration variation, different capture orientations, and articulation. To address these problems, this paper presents a new strategy for target recognition. We first propose a low-dimensional representation model via incorporating multi-manifold regularization term into the low-rank matrix factorization framework. Two rules, pairwise similarity and local linearity, are employed for constructing multiple manifold regularization. By alternately optimizing the matrix factorization and manifold selection, the feature representation model can not only acquire the optimal low-rank approximation of original samples, but also capture the intrinsic manifold structure information. Then, to take full advantage of the local structure property of features and further improve the discriminative ability, local sparse representation is proposed for classification. Finally, extensive experiments on moving and stationary target acquisition and recognition (MSTAR database demonstrate the effectiveness of the proposed strategy, including target recognition under EOCs, as well as the capability of small training size.

  9. Piecewise-constant and low-rank approximation for identification of recurrent copy number variations.

    Science.gov (United States)

    Zhou, Xiaowei; Liu, Jiming; Wan, Xiang; Yu, Weichuan

    2014-07-15

    The post-genome era sees urgent need for more novel approaches to extracting useful information from the huge amount of genetic data. The identification of recurrent copy number variations (CNVs) from array-based comparative genomic hybridization (aCGH) data can help understand complex diseases, such as cancer. Most of the previous computational methods focused on single-sample analysis or statistical testing based on the results of single-sample analysis. Finding recurrent CNVs from multi-sample data remains a challenging topic worth further study. We present a general and robust method to identify recurrent CNVs from multi-sample aCGH profiles. We express the raw dataset as a matrix and demonstrate that recurrent CNVs will form a low-rank matrix. Hence, we formulate the problem as a matrix recovering problem, where we aim to find a piecewise-constant and low-rank approximation (PLA) to the input matrix. We propose a convex formulation for matrix recovery and an efficient algorithm to globally solve the problem. We demonstrate the advantages of PLA compared with alternative methods using synthesized datasets and two breast cancer datasets. The experimental results show that PLA can successfully reconstruct the recurrent CNV patterns from raw data and achieve better performance compared with alternative methods under a wide range of scenarios. The MATLAB code is available at http://bioinformatics.ust.hk/pla.zip. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Sampling and Low-Rank Tensor Approximation of the Response Surface

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Most (quasi)-Monte Carlo procedures can be seen as computing some integral over an often high-dimensional domain. If the integrand is expensive to evaluate-we are thinking of a stochastic PDE (SPDE) where the coefficients are random fields and the integrand is some functional of the PDE-solution-there is the desire to keep all the samples for possible later computations of similar integrals. This obviously means a lot of data. To keep the storage demands low, and to allow evaluation of the integrand at points which were not sampled, we construct a low-rank tensor approximation of the integrand over the whole integration domain. This can also be viewed as a representation in some problem-dependent basis which allows a sparse representation. What one obtains is sometimes called a "surrogate" or "proxy" model, or a "response surface". This representation is built step by step or sample by sample, and can already be used for each new sample. In case we are sampling a solution of an SPDE, this allows us to reduce the number of necessary samples, namely in case the solution is already well-represented by the low-rank tensor approximation. This can be easily checked by evaluating the residuum of the PDE with the approximate solution. The procedure will be demonstrated in the computation of a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. © Springer-Verlag Berlin Heidelberg 2013.

  11. Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA).

    Science.gov (United States)

    Lee, Dongwook; Jin, Kyong Hwan; Kim, Eung Yeop; Park, Sung-Hong; Ye, Jong Chul

    2016-12-01

    MR parameter mapping is one of clinically valuable MR imaging techniques. However, increased scan time makes it difficult for routine clinical use. This article aims at developing an accelerated MR parameter mapping technique using annihilating filter based low-rank Hankel matrix approach (ALOHA). When a dynamic sequence can be sparsified using spatial wavelet and temporal Fourier transform, this results in a rank-deficient Hankel structured matrix that is constructed using weighted k-t measurements. ALOHA then utilizes the low rank matrix completion algorithm combined with a multiscale pyramidal decomposition to estimate the missing k-space data. Spin-echo inversion recovery and multiecho spin echo pulse sequences for T1 and T2 mapping, respectively, were redesigned to perform undersampling along the phase encoding direction according to Gaussian distribution. The missing k-space is reconstructed using ALOHA. Then, the parameter maps were constructed using nonlinear regression. Experimental results confirmed that ALOHA outperformed the existing compressed sensing algorithms. Compared with the existing methods, the reconstruction errors appeared scattered throughout the entire images rather than exhibiting systematic distortion along edges and the parameter maps. Given that many diagnostic errors are caused by the systematic distortion of images, ALOHA may have a great potential for clinical applications. Magn Reson Med 76:1848-1864, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Shape-Constrained Sparse and Low-Rank Decomposition for Auroral Substorm Detection.

    Science.gov (United States)

    Yang, Xi; Gao, Xinbo; Tao, Dacheng; Li, Xuelong; Han, Bing; Li, Jie

    2016-01-01

    An auroral substorm is an important geophysical phenomenon that reflects the interaction between the solar wind and the Earth's magnetosphere. Detecting substorms is of practical significance in order to prevent disruption to communication and global positioning systems. However, existing detection methods can be inaccurate or require time-consuming manual analysis and are therefore impractical for large-scale data sets. In this paper, we propose an automatic auroral substorm detection method based on a shape-constrained sparse and low-rank decomposition (SCSLD) framework. Our method automatically detects real substorm onsets in large-scale aurora sequences, which overcomes the limitations of manual detection. To reduce noise interference inherent in current SLD methods, we introduce a shape constraint to force the noise to be assigned to the low-rank part (stationary background), thus ensuring the accuracy of the sparse part (moving object) and improving the performance. Experiments conducted on aurora sequences in solar cycle 23 (1996-2008) show that the proposed SCSLD method achieves good performance for motion analysis of aurora sequences. Moreover, the obtained results are highly consistent with manual analysis, suggesting that the proposed automatic method is useful and effective in practice.

  13. Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Yubin Niu

    2016-03-01

    Full Text Available In this paper, a novel hyperspectral anomaly detector based on low-rank representation (LRR and learned dictionary (LD has been proposed. This method assumes that a two-dimensional matrix transformed from a three-dimensional hyperspectral imagery can be decomposed into two parts: a low rank matrix representing the background and a sparse matrix standing for the anomalies. The direct application of LRR model is sensitive to a tradeoff parameter that balances the two parts. To mitigate this problem, a learned dictionary is introduced into the decomposition process. The dictionary is learned from the whole image with a random selection process and therefore can be viewed as the spectra of the background only. It also requires a less computational cost with the learned dictionary. The statistic characteristic of the sparse matrix allows the application of basic anomaly detection method to obtain detection results. Experimental results demonstrate that, compared to other anomaly detection methods, the proposed method based on LRR and LD shows its robustness and has a satisfactory anomaly detection result.

  14. Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation

    KAUST Repository

    Song, Xiaolei

    2013-06-04

    Wavefield extrapolation in pseudoacoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We use the dispersion relation for scalar wave propagation in pseudoacoustic orthorhombic media to model acoustic wavefields. The wavenumber-domain application of the Laplacian operator allows us to propagate the P-waves exclusively, without imposing any conditions on the parameter range of stability. It also allows us to avoid dispersion artifacts commonly associated with evaluating the Laplacian operator in space domain using practical finite-difference stencils. To handle the corresponding space-wavenumber mixed-domain operator, we apply the low-rank approximation approach. Considering the number of parameters necessary to describe orthorhombic anisotropy, the low-rank approach yields space-wavenumber decomposition of the extrapolator operator that is dependent on space location regardless of the parameters, a feature necessary for orthorhombic anisotropy. Numerical experiments that the proposed wavefield extrapolator is accurate and practically free of dispersion. Furthermore, there is no coupling of qSv and qP waves because we use the analytical dispersion solution corresponding to the P-wave.

  15. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    Science.gov (United States)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  16. Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation

    KAUST Repository

    Yokota, Rio

    2018-01-03

    There has been a large increase in the amount of work on hierarchical low-rank approximation methods, where the interest is shared by multiple communities that previously did not intersect. This objective of this article is two-fold; to provide a thorough review of the recent advancements in this field from both analytical and algebraic perspectives, and to present a comparative benchmark of two highly optimized implementations of contrasting methods for some simple yet representative test cases. The first half of this paper has the form of a survey paper, to achieve the former objective. We categorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.

  17. A Batch-Incremental Video Background Estimation Model using Weighted Low-Rank Approximation of Matrices

    KAUST Repository

    Dutta, Aritra

    2017-07-02

    Principal component pursuit (PCP) is a state-of-the-art approach for background estimation problems. Due to their higher computational cost, PCP algorithms, such as robust principal component analysis (RPCA) and its variants, are not feasible in processing high definition videos. To avoid the curse of dimensionality in those algorithms, several methods have been proposed to solve the background estimation problem in an incremental manner. We propose a batch-incremental background estimation model using a special weighted low-rank approximation of matrices. Through experiments with real and synthetic video sequences, we demonstrate that our method is superior to the state-of-the-art background estimation algorithms such as GRASTA, ReProCS, incPCP, and GFL.

  18. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  19. Image Registration based on Low Rank Matrix: Rank-Regularized SSD.

    Science.gov (United States)

    Ghaffari, Aboozar; Fatemizadeh, Emad

    2017-08-25

    Similarity measure is a main core of image registration algorithms. Spatially varying intensity distortion is an important challenge which affects the performance of similarity measures. Correlation among pixels is the main characteristic of this distortion. Similarity measures such as sum-of-squareddifferences (SSD) and mutual information (MI) ignore this correlation; Hence, perfect registration cannot be achieved in the presence of this distortion. In this paper, we model this correlation with the aid of the low rank matrix theory. Based on this model, we compensate this distortion analytically and introduce Rank-Regularized SSD (RRSSD). This new similarity measure is a modified SSD based on singular values of difference image in mono-modal imaging. In fact, image registration and distortion correction are performed simultaneously in the proposed model. Based on our experiments, the RRSSD similarity measure achieves clinically acceptable registration results, and outperforms other state-of-the-art similarity measures such as the well-known method of residual complexity.

  20. Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable

    Energy Technology Data Exchange (ETDEWEB)

    Menkov, V. [Indiana Univ., Bloomington, IN (United States)

    1996-12-31

    An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.

  1. Mapping of coal quality using stochastic simulation and isometric logratio transformation with an application to a Texas lignite

    Science.gov (United States)

    Olea, Ricardo A.; Luppens, James A.

    2015-01-01

    Coal is a chemically complex commodity that often contains most of the natural elements in the periodic table. Coal constituents are conventionally grouped into four components (proximate analysis): fixed carbon, ash, inherent moisture, and volatile matter. These four parts, customarily measured as weight losses and expressed as percentages, share all properties and statistical challenges of compositional data. Consequently, adequate modeling should be done in terms of a logratio transformation, a requirement that is commonly overlooked by modelers. The transformation of choice is the isometric logratio transformation because of its geometrical and statistical advantages. The modeling is done through a series of realizations prepared by applying sequential simulation for the purpose of displaying the parts in maps incorporating uncertainty. The approach makes realistic assumptions and the results honor the data and basic considerations, such as percentages between 0 and 100, all four parts adding to 100% at any location in the study area, and a style of spatial fluctuation in the realizations equal to that of the data. The realizations are used to prepare different results, including probability distributions across a deposit, E-type maps displaying average properties, and probability maps summarizing joint fluctuations of several parts. Application of these maps to a lignite bed clearly delineates the deposit boundary, reveals a channel cutting across, and shows that the most favorable coal quality is to the north and deteriorates toward the southeast.

  2. PAH concentrations in lake sediment decline following ban on coal-tar-based pavement sealants in Austin, Texas

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.

    2013-01-01

    Recent studies have concluded that coal-tar-based pavement sealants are a major source of polycyclic aromatic hydrocarbons (PAHs) in urban settings in large parts of the United States. In 2006, Austin, TX, became the first jurisdiction in the U.S. to ban the use of coal-tar sealants. We evaluated the effect of Austin’s ban by analyzing PAHs in sediment cores and bottom-sediment samples collected in 1998, 2000, 2001, 2012, and 2014 from Lady Bird Lake, the principal receiving water body for Austin urban runoff. The sum concentration of the 16 EPA Priority Pollutant PAHs (∑PAH16) in dated core intervals and surficial bottom-sediment samples collected from sites in the lower lake declined about 44% from 1998–2005 to 2006–2014 (means of 7980 and 4500 μg kg–1, respectively), and by 2012–2014, the decline was about 58% (mean of 3320 μg kg–1). Concentrations of ∑PAH16 in bottom sediment from two of three mid-lake sites decreased by about 71 and 35% from 2001 to 2014. Concentrations at a third site increased by about 14% from 2001 to 2014. The decreases since 2006 reverse a 40-year (1959–1998) upward trend. Despite declines in PAH concentrations, PAH profiles and source-receptor modeling results indicate that coal-tar sealants remain the largest PAH source to the lake, implying that PAH concentrations likely will continue to decline as stocks of previously applied sealant gradually become depleted.

  3. PAH concentrations in lake sediment decline following ban on coal-tar-based pavement sealants in Austin, Texas.

    Science.gov (United States)

    Van Metre, Peter C; Mahler, Barbara J

    2014-07-01

    Recent studies have concluded that coal-tar-based pavement sealants are a major source of polycyclic aromatic hydrocarbons (PAHs) in urban settings in large parts of the United States. In 2006, Austin, TX, became the first jurisdiction in the U.S. to ban the use of coal-tar sealants. We evaluated the effect of Austin's ban by analyzing PAHs in sediment cores and bottom-sediment samples collected in 1998, 2000, 2001, 2012, and 2014 from Lady Bird Lake, the principal receiving water body for Austin urban runoff. The sum concentration of the 16 EPA Priority Pollutant PAHs (∑PAH16) in dated core intervals and surficial bottom-sediment samples collected from sites in the lower lake declined about 44% from 1998-2005 to 2006-2014 (means of 7980 and 4500 μg kg(-1), respectively), and by 2012-2014, the decline was about 58% (mean of 3320 μg kg(-1)). Concentrations of ∑PAH16 in bottom sediment from two of three mid-lake sites decreased by about 71 and 35% from 2001 to 2014. Concentrations at a third site increased by about 14% from 2001 to 2014. The decreases since 2006 reverse a 40-year (1959-1998) upward trend. Despite declines in PAH concentrations, PAH profiles and source-receptor modeling results indicate that coal-tar sealants remain the largest PAH source to the lake, implying that PAH concentrations likely will continue to decline as stocks of previously applied sealant gradually become depleted.

  4. Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection

    Science.gov (United States)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang

    2017-07-01

    It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the

  5. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition.

    Science.gov (United States)

    Yano, Ken; Suyama, Takayuki

    2016-01-01

    This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI) systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a "bottom-up" manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  6. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Ken Yano

    2016-01-01

    Full Text Available This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a “bottom-up” manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  7. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  8. L1 -norm low-rank matrix factorization by variational Bayesian method.

    Science.gov (United States)

    Zhao, Qian; Meng, Deyu; Xu, Zongben; Zuo, Wangmeng; Yan, Yan

    2015-04-01

    The L1 -norm low-rank matrix factorization (LRMF) has been attracting much attention due to its wide applications to computer vision and pattern recognition. In this paper, we construct a new hierarchical Bayesian generative model for the L1 -norm LRMF problem and design a mean-field variational method to automatically infer all the parameters involved in the model by closed-form equations. The variational Bayesian inference in the proposed method can be understood as solving a weighted LRMF problem with different weights on matrix elements based on their significance and with L2 -regularization penalties on parameters. Throughout the inference process of our method, the weights imposed on the matrix elements can be adaptively fitted so that the adverse influence of noises and outliers embedded in data can be largely suppressed, and the parameters can be appropriately regularized so that the generalization capability of the problem can be statistically guaranteed. The robustness and the efficiency of the proposed method are substantiated by a series of synthetic and real data experiments, as compared with the state-of-the-art L1 -norm LRMF methods. Especially, attributed to the intrinsic generalization capability of the Bayesian methodology, our method can always predict better on the unobserved ground truth data than existing methods.

  9. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  10. Conflict-cost based random sampling design for parallel MRI with low rank constraints

    Science.gov (United States)

    Kim, Wan; Zhou, Yihang; Lyu, Jingyuan; Ying, Leslie

    2015-05-01

    In compressed sensing MRI, it is very important to design sampling pattern for random sampling. For example, SAKE (simultaneous auto-calibrating and k-space estimation) is a parallel MRI reconstruction method using random undersampling. It formulates image reconstruction as a structured low-rank matrix completion problem. Variable density (VD) Poisson discs are typically adopted for 2D random sampling. The basic concept of Poisson disc generation is to guarantee samples are neither too close to nor too far away from each other. However, it is difficult to meet such a condition especially in the high density region. Therefore the sampling becomes inefficient. In this paper, we present an improved random sampling pattern for SAKE reconstruction. The pattern is generated based on a conflict cost with a probability model. The conflict cost measures how many dense samples already assigned are around a target location, while the probability model adopts the generalized Gaussian distribution which includes uniform and Gaussian-like distributions as special cases. Our method preferentially assigns a sample to a k-space location with the least conflict cost on the circle of the highest probability. To evaluate the effectiveness of the proposed random pattern, we compare the performance of SAKEs using both VD Poisson discs and the proposed pattern. Experimental results for brain data show that the proposed pattern yields lower normalized mean square error (NMSE) than VD Poisson discs.

  11. Data Compression for the Tomo-e Gozen Using Low-rank Matrix Approximation

    Science.gov (United States)

    Morii, Mikio; Ikeda, Shiro; Sako, Shigeyuki; Ohsawa, Ryou

    2017-01-01

    Optical wide-field surveys with a high cadence are expected to create a new field of astronomy, so-called “movie astronomy,” in the near future. The amount of data from the observations will be huge, and hence efficient data compression will be indispensable. Here we propose a low-rank matrix approximation with sparse matrix decomposition as a promising solution to reduce the data size effectively while preserving sufficient scientific information. We apply one of the methods to the movie data obtained with the prototype model of the Tomo-e Gozen mounted on the 1.0 m Schmidt telescope of Kiso Observatory. Once full-scale observation with the Tomo-e Gozen commences, it will generate ˜30 TB of data per night. We demonstrate that the data are compressed by a factor of about 10 in size without losing transient events like optical short transient point sources and meteors. The intensity of point sources can be recovered from the compressed data. The processing runs sufficiently fast, compared with the expected data-acquisition rate in the actual observing runs.

  12. Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery.

    Science.gov (United States)

    Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin

    2017-05-01

    This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays.

  13. Ultra low radiation dose digital subtraction angiography (DSA) imaging using low rank constraint

    Science.gov (United States)

    Niu, Kai; Li, Yinsheng; Schafer, Sebastian; Royalty, Kevin; Wu, Yijing; Strother, Charles; Chen, Guang-Hong

    2015-03-01

    In this work we developed a novel denoising algorithm for DSA image series. This algorithm takes advantage of the low rank nature of the DSA image sequences to enable a dramatic reduction in radiation and/or contrast doses in DSA imaging. Both spatial and temporal regularizers were introduced in the optimization algorithm to further reduce noise. To validate the method, in vivo animal studies were conducted with a Siemens Artis Zee biplane system using different radiation dose levels and contrast concentrations. Both conventionally processed DSA images and the DSA images generated using the novel denoising method were compared using absolute noise standard deviation and the contrast to noise ratio (CNR). With the application of the novel denoising algorithm for DSA, image quality can be maintained with a radiation dose reduction by a factor of 20 and/or a factor of 2 reduction in contrast dose. Image processing is completed on a GPU within a second for a 10s DSA data acquisition.

  14. Low-Rank Latent Pattern Approximation With Applications to Robust Image Classification.

    Science.gov (United States)

    Shuo Chen; Jian Yang; Lei Luo; Yang Wei; Kaihua Zhang; Ying Tai

    2017-11-01

    This paper develops a novel method to address the structural noise in samples for image classification. Recently, regression-related classification methods have shown promising results when facing the pixelwise noise. However, they become weak in coping with the structural noise due to ignoring of relationships between pixels of noise image. Meanwhile, most of them need to implement the iterative process for computing representation coefficients, which leads to the high time consumption. To overcome these problems, we exploit a latent pattern model called low-rank latent pattern approximation (LLPA) to reconstruct the test image having structural noise. The rank function is applied to characterize the structure of the reconstruction residual between test image and the corresponding latent pattern. Simultaneously, the error between the latent pattern and the reference image is constrained by Frobenius norm to prevent overfitting. LLPA involves a closed-form solution by the virtue of a singular value thresholding operator. The provided theoretic analysis demonstrates that LLPA indeed removes the structural noise during classification task. Additionally, LLPA is further extended to the form of matrix regression by connecting multiple training samples, and alternating direction of multipliers method with Gaussian back substitution algorithm is used to solve the extended LLPA. Experimental results on several popular data sets validate that the proposed methods are more robust to image classification with occlusion and illumination changes, as compared to some existing state-of-the-art reconstruction-based methods and one deep neural network-based method.

  15. Accelerated cardiac cine MRI using locally low rank and finite difference constraints.

    Science.gov (United States)

    Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S

    2016-07-01

    To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark

    Energy Technology Data Exchange (ETDEWEB)

    Gittens, Alex; Kottalam, Jey; Yang, Jiyan; Ringenburg, Michael, F.; Chhugani, Jatin; Racah, Evan; Singh, Mohitdeep; Yao, Yushu; Fischer, Curt; Ruebel, Oliver; Bowen, Benjamin; Lewis, Norman, G.; Mahoney, Michael, W.; Krishnamurthy, Venkat; Prabhat, Mr

    2017-07-27

    We investigate the performance and scalability of the randomized CX low-rank matrix factorization and demonstrate its applicability through the analysis of a 1TB mass spectrometry imaging (MSI) dataset, using Apache Spark on an Amazon EC2 cluster, a Cray XC40 system, and an experimental Cray cluster. We implemented this factorization both as a parallelized C implementation with hand-tuned optimizations and in Scala using the Apache Spark high-level cluster computing framework. We obtained consistent performance across the three platforms: using Spark we were able to process the 1TB size dataset in under 30 minutes with 960 cores on all systems, with the fastest times obtained on the experimental Cray cluster. In comparison, the C implementation was 21X faster on the Amazon EC2 system, due to careful cache optimizations, bandwidth-friendly access of matrices and vector computation using SIMD units. We report these results and their implications on the hardware and software issues arising in supporting data-centric workloads in parallel and distributed environments.

  17. Hydrothermally treated coals for pulverized coal injection. [Quarterly] technical progress report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-04-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and the Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products are being characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey is being conducted.

  18. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  19. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  20. An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion.

    Science.gov (United States)

    Liu, Yuanyuan; Jiao, L C; Shang, Fanhua; Yin, Fei; Liu, F

    2013-12-01

    In recent years, matrix rank minimization problems have aroused considerable interests from machine learning, data mining and computer vision communities. All of these problems can be solved via their convex relaxations which minimize the trace norm instead of the rank of the matrix, and have to be solved iteratively and involve singular value decomposition (SVD) at each iteration. Therefore, those algorithms for trace norm minimization problems suffer from high computation cost of multiple SVDs. In this paper, we propose an efficient Matrix Bi-Factorization (MBF) method to approximate the original trace norm minimization problem and mitigate the computation cost of performing SVDs. The proposed MBF method can be used to address a wide range of low-rank matrix recovery and completion problems such as low-rank and sparse matrix decomposition (LRSD), low-rank representation (LRR) and low-rank matrix completion (MC). We also present three small scale matrix trace norm models for LRSD, LRR and MC problems, respectively. Moreover, we develop two concrete linearized proximal alternative optimization algorithms for solving the above three problems. Experimental results on a variety of synthetic and real-world data sets validate the efficiency, robustness and effectiveness of our MBF method comparing with the state-of-the-art trace norm minimization algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    Science.gov (United States)

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    Science.gov (United States)

    Tang, Xin; Feng, Guo-Can; Li, Xiao-Xin; Cai, Jia-Xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  3. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC. Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our

  4. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  5. Clustered Low-Rank Tensor Format: Introduction and Application to Fast Construction of Hartree-Fock Exchange.

    Science.gov (United States)

    Lewis, Cannada A; Calvin, Justus A; Valeev, Edward F

    2016-12-13

    We describe the clustered low-rank (CLR) framework for block-sparse and block-low-rank tensor representation and computation. The CLR framework exploits the tensor structure revealed by basis clustering; computational savings arise from low-rank compression of tensor blocks and performing block arithmetic in the low-rank form whenever beneficial. The precision is rigorously controlled by two parameters, avoiding ad-hoc heuristics, such as domains: one controls the CLR block rank truncation, and the other controls screening of small contributions in arithmetic operations on CLR tensors to propagate sparsity through expressions. As these parameters approach zero, the CLR representation and arithmetic become exact. As a pilot application, we considered the use of the CLR format for the order-2 and order-3 tensors in the context of the density fitting (DF) evaluation of the Hartree-Fock (exact) exchange (DF-K). Even for small systems and realistic basis sets, CLR-DF-K becomes more efficient than the standard DF-K approach, and it has significantly reduced asymptotic storage and computational complexities relative to the standard [Formula: see text] and [Formula: see text] DF-K figures. CLR-DF-K is also significantly more efficient-all while negligibly affecting molecular energies and properties-than the conventional (non-DF) [Formula: see text] exchange algorithm for applications to medium-sized systems (on the order of 100 atoms) with diffuse Gaussian basis sets, a necessity for applications to negatively charged species, molecular properties, and high-accuracy correlated wave functions.

  6. Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation

    Science.gov (United States)

    Tang, Chang; Cao, Lijuan; Chen, Jiajia; Zheng, Xiao

    2017-05-01

    In this work, a non-local weighted group low-rank representation (WGLRR) model is proposed for speckle noise reduction in optical coherence tomography (OCT) images. It is based on the observation that the similarity between patches within the noise-free OCT image leads to a high correlation between them, which means that the data matrix grouped by these similar patches is low-rank. Thus, the low-rank representation (LRR) is used to recover the noise-free group data matrix. In order to maintain the fidelity of the recovered image, the corrupted probability of each pixel is integrated into the LRR model as a weight to regularize the error term. Considering that each single patch might belong to several groups, and multiple estimates of this patch can be obtained, different estimates of each patch is aggregated to obtain its denoised result. The aggregating weights are exploited depending on the rank of each group data matrix, which can assign higher weights to those better estimates. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the WGLRR model compared with other state-of-the-art speckle removal techniques.

  7. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    Science.gov (United States)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  8. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states

    Science.gov (United States)

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  9. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  10. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  11. Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data.

    Science.gov (United States)

    Fan, Jicong; Tian, Zhaoyang; Zhao, Mingbo; Chow, Tommy W S

    2018-02-02

    The scalability of low-rank representation (LRR) to large-scale data is still a major research issue, because it is extremely time-consuming to solve singular value decomposition (SVD) in each optimization iteration especially for large matrices. Several methods were proposed to speed up LRR, but they are still computationally heavy, and the overall representation results were also found degenerated. In this paper, a novel method, called accelerated LRR (ALRR) is proposed for large-scale data. The proposed accelerated method integrates matrix factorization with nuclear-norm minimization to find a low-rank representation. In our proposed method, the large square matrix of representation coefficients is transformed into a significantly smaller square matrix, on which SVD can be efficiently implemented. The size of the transformed matrix is not related to the number of data points and the optimization of ALRR is linear with the number of data points. The proposed ALRR is convex, accurate, robust, and efficient for large-scale data. In this paper, ALRR is compared with state-of-the-art in subspace clustering and semi-supervised classification on real image datasets. The obtained results verify the effectiveness and superiority of the proposed ALRR method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems

    Science.gov (United States)

    Fairbanks, Hillary R.; Doostan, Alireza; Ketelsen, Christian; Iaccarino, Gianluca

    2017-07-01

    Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) simulation that achieves variance reduction by simulating the governing equations on a series of spatial (or temporal) grids with increasing resolution. Instead of directly employing the fine grid solutions, MLMC estimates the expectation of the quantity of interest from the coarsest grid solutions as well as differences between each two consecutive grid solutions. When the differences corresponding to finer grids become smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to compute the difference expectations, thus leading to a reduction in the overall work. This paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), where a low-rank approximation to the solution on each grid, obtained primarily based on coarser grid solutions, is used as a control variate for estimating the expectations involved in MLMC. Cost estimates as well as numerical examples are presented to demonstrate the advantage of this new MLCV approach over the standard MLMC when the solution of interest admits a low-rank approximation and the cost of simulating finer grids grows fast.

  13. Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation

    Science.gov (United States)

    Benner, Peter; Dolgov, Sergey; Khoromskaia, Venera; Khoromskij, Boris N.

    2017-04-01

    In this paper, we propose and study two approaches to approximate the solution of the Bethe-Salpeter equation (BSE) by using structured iterative eigenvalue solvers. Both approaches are based on the reduced basis method and low-rank factorizations of the generating matrices. We also propose to represent the static screen interaction part in the BSE matrix by a small active sub-block, with a size balancing the storage for rank-structured representations of other matrix blocks. We demonstrate by various numerical tests that the combination of the diagonal plus low-rank plus reduced-block approximation exhibits higher precision with low numerical cost, providing as well a distinct two-sided error estimate for the smallest eigenvalues of the Bethe-Salpeter operator. The complexity is reduced to O (Nb2) in the size of the atomic orbitals basis set, Nb, instead of the practically intractable O (Nb6) scaling for the direct diagonalization. In the second approach, we apply the quantized-TT (QTT) tensor representation to both, the long eigenvectors and the column vectors in the rank-structured BSE matrix blocks, and combine this with the ALS-type iteration in block QTT format. The QTT-rank of the matrix entities possesses almost the same magnitude as the number of occupied orbitals in the molecular systems, No chain-type molecules, while supporting sufficient accuracy.

  14. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. First annual report, April 1, 1991--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-08-01

    The overall objective of this project is elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project will be an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectivity modified coals in order to provide specific information relevant to the reactions of real coals. The investigations will include liquefaction experiments in microautoclave reactors along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts will be made to incorporate the results of experiments on the different systems into a liquefaction model.

  15. Drogue detection for vision-based autonomous aerial refueling via low rank and sparse decomposition with multiple features

    Science.gov (United States)

    Gao, Shibo; Cheng, Yongmei; Song, Chunhua

    2013-09-01

    The technology of vision-based probe-and-drogue autonomous aerial refueling is an amazing task in modern aviation for both manned and unmanned aircraft. A key issue is to determine the relative orientation and position of the drogue and the probe accurately for relative navigation system during the approach phase, which requires locating the drogue precisely. Drogue detection is a challenging task due to disorderly motion of drogue caused by both the tanker wake vortex and atmospheric turbulence. In this paper, the problem of drogue detection is considered as a problem of moving object detection. A drogue detection algorithm based on low rank and sparse decomposition with local multiple features is proposed. The global and local information of drogue is introduced into the detection model in a unified way. The experimental results on real autonomous aerial refueling videos show that the proposed drogue detection algorithm is effective.

  16. Coal Formation and Geochemistry

    Science.gov (United States)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    technological behavior, by-product characteristics, and environmental and human health impacts. In this chapter, we will try to make geochemical sense of this wonderfully complex and important resource. (5K)Figure 1. Photograph of a low rank coal bed (lignite of Pliocene age) from southwestern Romania.

  17. Efficient l1 -norm-based low-rank matrix approximations for large-scale problems using alternating rectified gradient method.

    Science.gov (United States)

    Kim, Eunwoo; Lee, Minsik; Choi, Chong-Ho; Kwak, Nojun; Oh, Songhwai

    2015-02-01

    Low-rank matrix approximation plays an important role in the area of computer vision and image processing. Most of the conventional low-rank matrix approximation methods are based on the l2 -norm (Frobenius norm) with principal component analysis (PCA) being the most popular among them. However, this can give a poor approximation for data contaminated by outliers (including missing data), because the l2 -norm exaggerates the negative effect of outliers. Recently, to overcome this problem, various methods based on the l1 -norm, such as robust PCA methods, have been proposed for low-rank matrix approximation. Despite the robustness of the methods, they require heavy computational effort and substantial memory for high-dimensional data, which is impractical for real-world problems. In this paper, we propose two efficient low-rank factorization methods based on the l1 -norm that find proper projection and coefficient matrices using the alternating rectified gradient method. The proposed methods are applied to a number of low-rank matrix approximation problems to demonstrate their efficiency and robustness. The experimental results show that our proposals are efficient in both execution time and reconstruction performance unlike other state-of-the-art methods.

  18. Correlated Spatio-Temporal Data Collection in Wireless Sensor Networks Based on Low Rank Matrix Approximation and Optimized Node Sampling

    Directory of Open Access Journals (Sweden)

    Xinglin Piao

    2014-12-01

    Full Text Available The emerging low rank matrix approximation (LRMA method provides an energy efficient scheme for data collection in wireless sensor networks (WSNs by randomly sampling a subset of sensor nodes for data sensing. However, the existing LRMA based methods generally underutilize the spatial or temporal correlation of the sensing data, resulting in uneven energy consumption and thus shortening the network lifetime. In this paper, we propose a correlated spatio-temporal data collection method for WSNs based on LRMA. In the proposed method, both the temporal consistence and the spatial correlation of the sensing data are simultaneously integrated under a new LRMA model. Moreover, the network energy consumption issue is considered in the node sampling procedure. We use Gini index to measure both the spatial distribution of the selected nodes and the evenness of the network energy status, then formulate and resolve an optimization problem to achieve optimized node sampling. The proposed method is evaluated on both the simulated and real wireless networks and compared with state-of-the-art methods. The experimental results show the proposed method efficiently reduces the energy consumption of network and prolongs the network lifetime with high data recovery accuracy and good stability.

  19. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    Science.gov (United States)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  20. Reference-free single-pass EPI Nyquist ghost correction using annihilating filter-based low rank Hankel matrix (ALOHA).

    Science.gov (United States)

    Lee, Juyoung; Jin, Kyong Hwan; Ye, Jong Chul

    2016-12-01

    MR measurements from an echo-planar imaging (EPI) sequence produce Nyquist ghost artifacts that originate from inconsistencies between odd and even echoes. Several reconstruction algorithms have been proposed to reduce such artifacts, but most of these methods require either additional reference scans or multipass EPI acquisition. This article proposes a novel and accurate single-pass EPI ghost artifact correction method that does not require any additional reference data. After converting a ghost correction problem into separate k-space data interpolation problems for even and odd phase encoding, our algorithm exploits an observation that the differential k-space data between the even and odd echoes is a Fourier transform of an underlying sparse image. Accordingly, we can construct a rank-deficient Hankel structured matrix, whose missing data can be recovered using an annihilating filter-based low rank Hankel structured matrix completion approach. The proposed method was applied to EPI data for both single and multicoil acquisitions. Experimental results using in vivo data confirmed that the proposed method can completely remove ghost artifacts successfully without prescan echoes. Owing to the discovery of the annihilating filter relationship from the intrinsic EPI image property, the proposed method successfully suppresses ghost artifacts without a prescan step. Magn Reson Med 76:1775-1789, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints.

    Science.gov (United States)

    Liu, Ryan Wen; Shi, Lin; Yu, Simon Chun Ho; Xiong, Naixue; Wang, Defeng

    2017-03-03

    Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.

  2. Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints

    Directory of Open Access Journals (Sweden)

    Ryan Wen Liu

    2017-03-01

    Full Text Available Dynamic magnetic resonance imaging (MRI has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.

  3. Biotechnology and microbiology of coal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fakoussa, R.M. [Inst. fuer Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Univ. Bonn, Bonn (Germany); Hofrichter, M. [Inst. fuer Mikrobiologie, Friedrich Schiller-Univ. Jena, Jena (Germany)

    1999-07-01

    For several years it has been known that fungi and bacteria can attack and even liquefy low rank coals. This review covers the progress in coal biotechnology and microbiology, mainly during the last decade, from describing the first effects to elucidating the mechanisms used by the microorganisms. More than one mechanism is responsible for microbial coal degradation/liquefaction: oxidative enzymes (peroxidases, laccases), hydrolytic enzymes (esterases), alkaline metabolites and natural chelators. Due to the heterogeneous structure of coal, which is described in one section, and for economic reasons the review focuses on the enzymatic depolymerization of brown coal. Approaches which seem not so promising are discussed (anaerobic, reductive pathways, chemical pretreatment). Finally the possible applications and products in this field are summarized, as lignite with a worldwide production of about 940 million tons a year will continue to play an important economic role in the future. (orig.)

  4. Regulation of coal polymer degradation by fungi, Second quarterly report, [October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1995-01-26

    Since our last quarterly report our research activities have focused on characterization of coal macromolecule by P. chrysosporium in vivo in ;two different culture media and by sodium oxalate in vitro. Wood rotting fungi mediate solubilization of low rank coal by secreting oxalic acid which chelates metal ions whose chelating metal ions oxalic acid breaks these ionic bridges rendering the coal macromolecules water soluble. Thus solubization by sodium oxalate in vitro represents a biomimetic process.

  5. Investigation on characterization of Ereen coal deposit

    Directory of Open Access Journals (Sweden)

    S. Jargalmaa

    2016-03-01

    Full Text Available The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8 at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter.Mongolian Journal of Chemistry 16 (42, 2015, 18-21

  6. Gondwana coals of Bhutan Himalaya - occurrence, properties and petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.K.; Alam, M.M.; Ghose, S.

    1988-03-01

    A narrow belt of highly inclined coal-bearing Gondwana strata occurs in the extreme southeastern part of Bhutan Himalaya. Recently, a systematic survey was undertaken along this coal belt and coals of three areas were analyzed in detail for the evaluation of their physico-chemical properties and petrographic characteristics. The entire region is in the midst of the Great Himalayan orogenic belt, and the whole stratigraphic sequence underwent several diastrophic movements in the geological past. The massive effects of these orogenies is more pronounced in the coal beds, of Gondwana sequence, and due to severe crushing and tectonic shearing these coals became powdery and flaky in nature. Significantly, the coals retained their pre-deformational rank exhibiting typical high-volatile, low-rank, bituminous characters, with mild caking propensities. Also these coals are markedly low in sulphur, phosphorus, chlorine and carbonate content like that of Peninsular Gondwana coals. Petrographic studies of these Bhutan coals revealed a close similarity with the eastern Raniganj coals (Upper Permian) of Peninsular India. The tectonic shearing and crushing of the coals are exhibited by the frequent presence of microfolding, microfaulting, and other compressional structures. However, the coals of all the three areas have shown a consistently low order of reflectance values. This typical retention of pre-deformational low-rank bituminous character is a significant feature of Bhutan coals. It shows that massive orogenic movements were only able to physically crush these coals but could not generate the requisite thermal regime to raise the rank of these coals. 35 refs., 4 figs., 5 tabs.

  7. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    Science.gov (United States)

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  8. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-02-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  9. a Comparison of δ13C & pMC Values for Ten Cretaceous-Jurassic Dinosaur Bones from Texas to Alaska USA, China and Europe with that of Coal and Diamonds Presented in the 2003 Agu Meeting

    Science.gov (United States)

    Miller, H. R.; Dennett, R.; de Pontcharra, J.; Giertych, M.; Kline, O.; van Oosterwych, M. C.; Owen, H.; Taylor, J. D.

    2014-12-01

    There is convincing evidence that soft tissue and other biomolecules can survive long periods of fossilization by their interaction with blood iron and/or carbonate absorption. Here are presented the results of investigations showing that ancient biomolecules and their decay products contain significantly more pMC's (% modern 14C) than diamond and coal presented during a poster session held at the AGU 2003 SF convention. The title was: The Enigma of the Ubiquity of 14C in organic samples older than 100,000 K. The given range for five diamonds from Botswana and South Africa ranged from 0.096 to 0.146 pMC. Ten coal specimens from the United States from the Eocene to Pennsylvanian geologic interval yielded 0.1 to 0.46 pMC's. In our extensive field and lab study ten dinosaurs from Texas to Alaska, and China yielded much higher pMC's of 0.76 to 5.59 after pretreatment to remove modern contaminants. When 2g of a Belgium Mosasaur from Europe was pretreated to remove contaminants the pMC was 4.68 or 24,600 RC years on Lund Un AMS in Sweden (Lindgren et al. 2011, PloS ONE, page 9). The endogenous sources of dinosaur pMC's were further enhanced by the δ13C range of -20.1 to -23.8 for collagen, 16.6-28.4 for bulk organic and -3.1 to -9.1 for CO3 fractions. The δ13C values compare favorably to δ13C values of -23 to -27 in a similar study of dinosaur δ13C values from the Judith River formation in Alberta, Canada that (Ostrom et al. 1993, Geology, v. 21). . Diamonds from South America (Taylor-Southon, Nuclear Instruments 2007 ) yielded ages of 66,000 to 80,000 years leaving little doubt that at least the dinosaur ages of 22,020 ± 50 to 39,230 ± 140 were not machine error or a result of contamination anymore than the coal samples. This data explains more clearly why such biomolecules have persisted and therefore should not be ignored as the implications are of utmost importance to science and humanity. Thus the experimental results presented here demonstrate the need for

  10. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  11. Texas Yehaa !!!

    DEFF Research Database (Denmark)

    Kjellberg, Kurt

    2001-01-01

    Indtryk fra et besøg på SLA, Special Libraries Associations årlige konference, San Antonio, Texas, USA, 9.-13. juni 2001. "An Information Odyssey: Seizing the Competitive Advantage"......Indtryk fra et besøg på SLA, Special Libraries Associations årlige konference, San Antonio, Texas, USA, 9.-13. juni 2001. "An Information Odyssey: Seizing the Competitive Advantage"...

  12. 30 CFR 943.25 - Approval of Texas abandoned mine land reclamation plan amendments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Texas abandoned mine land... STATE TEXAS § 943.25 Approval of Texas abandoned mine land reclamation plan amendments. The following is... reclamation on all lands adversely impacted by past coal mining. August 24, 1997 January 30, 1997...

  13. Improved pyrite rejection by chemically-modified fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Ye, Y.; Jin, R.

    1989-01-01

    Improved pyrite rejection during fine coal flotation can be achieved by chemical pretreatment of the coal prior to flotation. The process involves conditioning the suspension with potassium monopersulfate or other peroxy compounds followed by conventional flotation. The ambient-temperature treatment seems to improve the hydrophobic character of certain low-rank coals as is evident from induction time measurements and bench-scale flotation experiments. In addition, the chemical pretreatment leads to an improvement in ash rejection and to enhanced depression of pyrite. 23 refs., 9 figs., 2 tabs.

  14. Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media

    KAUST Repository

    Cheng, Jiubing

    2014-08-05

    In elastic imaging, the extrapolated vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, which characterize reflectivity of different reflection types. Conventionally, wavefield decomposition in anisotropic media is costly as the operators involved is dependent on the velocity, and thus not stationary. In this abstract, we propose an efficient approach to directly extrapolate the decomposed elastic waves using lowrank approximate mixed space/wavenumber domain integral operators for heterogeneous transverse isotropic (TI) media. The low-rank approximation is, thus, applied to the pseudospectral extrapolation and decomposition at the same time. The pseudo-spectral implementation also allows for relatively large time steps in which the low-rank approximation is applied. Synthetic examples show that it can yield dispersionfree extrapolation of the decomposed quasi-P (qP) and quasi- SV (qSV) modes, which can be used for imaging, as well as the total elastic wavefields.

  15. Computing Low-Rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and Its Application to Solving a Hierarchically Semiseparable Linear System of Equations

    Directory of Open Access Journals (Sweden)

    Ichitaro Yamazaki

    2015-01-01

    of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore CPUs with a GPU. We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting, on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and restricted pivoting. Our performance results on two eight-core Intel Sandy Bridge CPUs with one NVIDIA Kepler GPU demonstrate that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson's equations demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs, and the construction time can be further reduced by 10%–50% using the GPU.

  16. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  17. 77 FR 8144 - Texas Regulatory Program

    Science.gov (United States)

    2012-02-14

    ... new definition for ``Previously mined land,'' adding new language on the effects of previous mining...-FOR. Texas proposed revisions in TX-061-FOR by ] adding language that no longer requires an operation... new language explaining performance standards for revegetation liability timeframes for coal mining...

  18. Relationship between weathered coal deposits and the etiology of Balkan endemic nephropathy.

    Science.gov (United States)

    Feder, G L; Radovanović, Z; Finkelman, R B

    1991-11-01

    Field studies in epidemiology and environmental geochemistry in areas in Yugoslavia containing villages with a high incidence of Balkan endemic nephropathy (BEN), indicate a possible relationship between the presence of low-rank coal deposits and the etiology of BEN. Preliminary results from qualitative chemical analyses of drinking water from shallow farm wells indicate the presence of soluble polar aromatic and polynuclear aromatic hydrocarbons. These compounds may be derived from weathering of low-rank coals occurring in the vicinity of the endemic villages. All of the endemic villages are in alluvial valleys of tributaries to the Danube River. All except one of the clusters of endemic villages are located in the vicinity of known Pliocene age coals. Detailed sampling of the drinking waters and the nearby coals are being undertaken to identify a possible etiologic factor.

  19. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  20. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  1. Identification of aliphatic biological markers in brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Hazai, I.; Alexander, G.; Essiger, B.; Szekely, T.

    1988-07-01

    Ten coal samples were subjected to solvent extraction and aliphatic hydrocarbon fractions were obtained by open column chromatography. The fractions were analysed by gas chromatography-mass spectrometry: n-alkanes, di- and triterpenoid hydrocarbons and (in lesser amounts) sterenes were found. The distribution of the biological markers found indicated the low rank of the samples, but contradictions in the composition of hopanoids were observed. Some compounds not previously reported in the literature were also present. 44 refs., 8 figs., 4 tabs.

  2. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  3. Lower Gondwana coals of India - paleobotany, petrology and genesis

    Energy Technology Data Exchange (ETDEWEB)

    Navale, G.K.B.

    1984-01-01

    The beginning of coal formation in the Lower Gondwana in India coincided, more or less, with the waning of the Late Palaeozoic Ice Age. Geological and palaeobotanical evidence suggest that temperate conditions existing at the time in Peninsular India were responsible for the develoment of a special flora dominated by Gangamopteris, Glossopteris and allied groups. Transformations in the vegetal material during diagenesis and categenesis, as inferred from biopetrological and rank investigations, reveal that the coal seams of the Karharbari Formation (basal portion of Lower Gondwana coals) experienced high oxidation resulting in excessive fusinization, probably due to rapid sedimentation, shallow basin condition and extensive microbiological action. It has also been surmized that the geothermal gradient during Lower Gondwana sedimentation was low throughout and that the coal seams attained only low rank. However, in the Damodar and Satpura Gondwana basins, where igneous intrusions occurred during the later phase of Lower Gondwana sedimentation, the rank of coal seams increased abnormally. 14 refs.

  4. Coal geology

    National Research Council Canada - National Science Library

    Thomas, Larry

    2013-01-01

    This book provides a comprehensive overview of the field of coal geology. All aspects of coal geology are covered in one volume, bridgint the gap between the academic aspects and the practical role of geology in the coal industry...

  5. Fuel Characterization of Newly Discovered Nigerian Coals

    Science.gov (United States)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study seeks to characterize and highlight the fuel properties, rank, and classification of coals from Ihioma (IHM) and Ogboligbo (OGB) in Imo and Kogi states of Nigeria, respectively. The fuel properties were examined based on ultimate, proximate, and bomb calorific analyses. The results indicated that IHM coal contains comparatively higher C and H but lower O, N, and S content than OGB. In addition, the nitrogen (N) and sulphur (S) content for both coal samples were above 0.7 wt.% and 1.5 wt.%, respectively, which indicates high potential for pollutant emissions. Furthermore, the coal proximate properties were below 5 wt.% for Moisture; Volatiles (70 wt.%); Fixed Carbon (45 wt.%) and Ash (2.5 wt.%) on average. IHM coal has an HHV of 19.40 MJ/kg whereas OGB is 15.55 MJ/kg. This is due to the low carbon (C), hydrogen (H) and high oxygen (O) content in OGB whereas IHM contains higher VM and HHV. Furthermore, OGB presents better handling, storage, and transport potential. Furthermore, OGB has a higher fuel ratio and value index due to lower moisture, ash content, and volatiles. Based on the ASTM D388 standard, the coals were classified as Lignite (Brown) Low-Rank Coals (LRCs) with potential for energy recovery.

  6. Multi-Task Joint Sparse and Low-Rank Representation for the Scene Classification of High-Resolution Remote Sensing Image

    Directory of Open Access Journals (Sweden)

    Kunlun Qi

    2016-12-01

    Full Text Available Scene classification plays an important role in the intelligent processing of High-Resolution Satellite (HRS remotely sensed images. In HRS image classification, multiple features, e.g., shape, color, and texture features, are employed to represent scenes from different perspectives. Accordingly, effective integration of multiple features always results in better performance compared to methods based on a single feature in the interpretation of HRS images. In this paper, we introduce a multi-task joint sparse and low-rank representation model to combine the strength of multiple features for HRS image interpretation. Specifically, a multi-task learning formulation is applied to simultaneously consider sparse and low-rank structures across multiple tasks. The proposed model is optimized as a non-smooth convex optimization problem using an accelerated proximal gradient method. Experiments on two public scene classification datasets demonstrate that the proposed method achieves remarkable performance and improves upon the state-of-art methods in respective applications.

  7. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  8. DRAFT LANDSAT DATA MOSAIC: MONTGOMERY COUNTY, TEXAS; HARRIS COUNTY, TEXAS; FORT BEND COUNTY, TEXAS; BRAZORIA COUNTY, TEXAS; GALVESTON COUNTY, TEXAS

    Science.gov (United States)

    This is a draft Landsat Data Mosaic, which contains remote sensing information for Montgomery County, Texas Harris County, Texas Fort Bend County, Texas Brazoria County, Texas Galveston County, and Texas Imagery dates on the following dates: October 6, 1999 and September 29, 200...

  9. Advanced coal conversion process demonstration. Progress report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5500--9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,0 00 Btu/lb. The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercia; facility. The demonstration drying and cooling equipment is currently commercial size.

  10. Theory and practice of coal flotation in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Zhovtyuk, G.V.; Liber, L.A.; Polotskii, V.A.; Tyurnikova, V.I.

    1980-07-01

    This paper discusses problems of black coal flotation and new flotation reagents and equipment in various Soviet coal basins. AAR-1 and AAR-2 apolar aromatized reagents, produced from natural oil, are characterized. In comparison to reagents used until now, AAR contain 3 to 4 times more active aromatic hydrocarbons. Using AAR reagents in flotation of low rank coals characterized by high ash content and low flotation capacity brings about significant increase in concentrate yield. AAR reagents are nontoxic and their production is not expensive. Applying surface-active agents to improve efficiency of flotation reagents is also discussed. Lotos, Kristall and Aina surface-active agents and their efficiency in 6 coal preparation plants are evaluated. Results are given in a table. New flotation machines are described. Among others, the FPPM-20 double chamber counterflow flotation machine is characterized: chamber volume 40 m3, capacity 800 m3 of slurry per hour and 80 to 120 t/h of flotation concentrate.

  11. Kinetic study of Mongolian coals by thermal analysis

    Directory of Open Access Journals (Sweden)

    Jargalmaa S

    2018-02-01

    Full Text Available Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG and derivative thermogravimetry (DTG were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea was calculated from the experimental results by using an Arrhenius type kinetic model.

  12. Effects of coal properties on the production rate of combustion solid residue

    Energy Technology Data Exchange (ETDEWEB)

    Durgun, D. [Catalagzi Thermal Plant, Catalagzi, Zonguldak (Turkey); Genc, A. [Department of Environmental Engineering, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)

    2009-11-15

    The production rates of furnace bottom ash in a pulverized coal-fired power plant were monitored for a two-year period and its variations with respect to coal properties were analyzed. The power plant was originally designed to fire the coal sludge generated from a washing process; however, the coal sludge and its mixture with low-rank bituminous coal have been started to be used as the main fuel with time. The results of the hardgrove grindability measurements have shown that the grinding properties of sludge or its mixtures could not be predicted based on proximate analysis (moisture, ash, carbon and volatile contents); it could only be determined by experiments. The production rate of bottom ash in this particular power plant remained relatively insensitive to the high ash and moisture contents and could be estimated almost only by knowing the calorific value of the source coal. The evaluated dependency was linear. (author)

  13. Energy-technological method for utilization of coal of the Kansko-Achinskii basin

    Science.gov (United States)

    Islamov, S. R.

    2013-11-01

    The state of the market segments connected with coal fuel consumption is estimated. As a whole it is characterized by the shortage of high-calorific coals for special purposes and the excess of offerings of low-rank coals. The classic method for firing coal has substantially exhausted its potential and is not in the condition to meet the ever increasing needs of power efficiency and environmental safety. For resolution of the existing situation the author proposes to use the technology of internal partial coal gasification with the parallel production of heat energy and brown-coal coke. Scopes of new products are briefly described with the prevailing orientation on the replacement of classic coke in metallurgy.

  14. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  15. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  17. Coal desulfurization

    Science.gov (United States)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  18. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  19. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein

    2000-01-01

    Using a reactor in which the coal is physically separated from the solid catalyst by a porous wall permeable to the hydrogen donor solvent, it was shown that direct contact between the catalyst and the coal is not required for catalyzed coal liquefaction. This occurs however only when there is a hydrogen atmosphere, as liquefaction with catalyst participation does not occur in a nitrogen atmosphere. Liquefaction by hydrogen transfer from the donor solvent itself does occur. This suggests that there is transfer of hydrogen from the catalyst to the coal via the solvent. The character of the solvent makes a significant difference, the better solvents being good hydrogen donors. These results indicate that the role of the catalyst may be to regenerate the spent hydrogen donor solvent during the liquefaction process. The peak temperature for volatiles evolution has been shown to be a reproducible measure of the coal rank. This was shown by an excellent correlation (R2 = 0.998) between peak volatiles temperatures (by TGA) and vitrinite reflectance. Using TG/MS, the volatiles contents of coals of a wide range of ranks was determined. The low rank coals emit largely phenols and some other oxygen compounds and olefins. The higher rank coals emit largely aromatic hydrocarbons and some olefins.

  20. A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison.

    Science.gov (United States)

    Zhang, Tingting; Pham, Minh; Sun, Jianhui; Yan, Guofen; Li, Huazhang; Sun, Yinge; Gonzalez, Marlen Z; Coan, James A

    2017-12-26

    The focus of this paper is on evaluating brain responses to different stimuli and identifying brain regions with different responses using multi-subject, stimulus-evoked functional magnetic resonance imaging (fMRI) data. To jointly model many brain voxels' responses to designed stimuli, we present a new low-rank multivariate general linear model (LRMGLM) for stimulus-evoked fMRI data. The new model not only is flexible to characterize variation in hemodynamic response functions (HRFs) across different regions and stimulus types, but also enables information "borrowing" across voxels and uses much fewer parameters than typical nonparametric models for HRFs. To estimate the proposed LRMGLM, we introduce a new penalized optimization function, which leads to temporally and spatially smooth HRF estimates. We develop an efficient optimization algorithm to minimize the optimization function and identify the voxels with different responses to stimuli. We show that the proposed method can outperform several existing voxel-wise methods by achieving both high sensitivity and specificity. We apply the proposed method to the fMRI data collected in an emotion study, and identify anterior dACC to have different responses to a designed threat and control stimuli. Copyright © 2017. Published by Elsevier Inc.

  1. Fast alogorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations

    Energy Technology Data Exchange (ETDEWEB)

    Akcelik, Volkan [ORNL; Flath, Pearl [University of Texas, Austin; Ghattas, Omar [University of Texas, Austin; Hill, Judith C [ORNL; Van Bloemen Waanders, Bart [Sandia National Laboratories (SNL); Wilcox, Lucas [University of Texas, Austin

    2011-01-01

    We consider the problem of estimating the uncertainty in large-scale linear statistical inverse problems with high-dimensional parameter spaces within the framework of Bayesian inference. When the noise and prior probability densities are Gaussian, the solution to the inverse problem is also Gaussian, and is thus characterized by the mean and covariance matrix of the posterior probability density. Unfortunately, explicitly computing the posterior covariance matrix requires as many forward solutions as there are parameters, and is thus prohibitive when the forward problem is expensive and the parameter dimension is large. However, for many ill-posed inverse problems, the Hessian matrix of the data misfit term has a spectrum that collapses rapidly to zero. We present a fast method for computation of an approximation to the posterior covariance that exploits the lowrank structure of the preconditioned (by the prior covariance) Hessian of the data misfit. Analysis of an infinite-dimensional model convection-diffusion problem, and numerical experiments on large-scale 3D convection-diffusion inverse problems with up to 1.5 million parameters, demonstrate that the number of forward PDE solves required for an accurate low-rank approximation is independent of the problem dimension. This permits scalable estimation of the uncertainty in large-scale ill-posed linear inverse problems at a small multiple (independent of the problem dimension) of the cost of solving the forward problem.

  2. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  3. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-10-04

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  4. Treasured Texas Theaters

    Science.gov (United States)

    Horton, Anita

    2012-01-01

    Dallas artist Jon Flaming's deep love of Texas is evident in his paintings and sculpture. Although he has created one sculptural Texas theater, his work primarily showcases old Texas barbershops, vacant homes, and gas stations. In this article, the author describes how her students, inspired by Flaming's works, created three-dimensional historical…

  5. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  6. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  7. Research on the thermal decomposition of Mongolian Baganuur lignite and Naryn sukhait bituminous coal

    Directory of Open Access Journals (Sweden)

    A. Ariunaa

    2016-03-01

    Full Text Available The technical characteristics, elemental composition of the organic and mineral matters, ash melting behaviors and carbonization and gasification reactivities of coals from Baganuur and Naryn sukhait deposits were investigated. The results of proximate and ultimate analysis confirmed that the coal from Baganuur deposit can be graded as a low rank lignite B2 mark coal and Naryn sukhait coal is a bituminous G mark one. The carbonization and gasification experiments were performed using TGA apparatus and fixed bed quartz reactor. The data obtained with two experimental reactors showed that Baganuur lignite had lower thermal stability and much higher CO2 gasification reactivity at 950°C as compared to those for Naryn sukhait bituminous coal.Mongolian Journal of Chemistry 16 (42, 2015, 22-29

  8. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  9. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  10. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes

    Directory of Open Access Journals (Sweden)

    Ivan Gregor

    2016-02-01

    Full Text Available Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into ‘bins’ representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies ‘training’ sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S software. The new (+ component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4–6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.

  11. The vis/UV spectrum of coals and the interstellar extinction curve

    Science.gov (United States)

    Papoular, R.; Breton, J.; Gensterblum, G.; Nenner, I.; Papoular, R. J.; Pireaux, J.-J.

    1993-03-01

    Photoreflectance measurements followed by a Kramers-Kronig analysis have yielded the dielectric constants and refractive indices of polycrystalline graphite and two high-ranking coals. All three display pi and sigma+pi features which change regularly with the extent of graphitization. These results were confirmed by electron energy loss spectroscopy. Comparison of the deduced Q(ext)s with the IS extinction curve shows that anthracite is the closest fit to the 2175-A feature, while the carrier of the underlying continuum must be similar to low-rank, poorly graphitized coals. About 1/3 of the cosmic carbon is involved in the feature, if in the form of anthracite.

  12. Regulation of coal polymer degradation by fungi. Tenth Quartery report, October 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L. [Univ. of Notre Dame, IN (United States). Dept. of Civil Engineering and Geological Sciences; Bumpus, J.A. [Univ. of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1997-01-28

    It has long been known that low rank coal such as leonardite can be solubilized by strong base (>pH 12). Recent discoveries have also shown that leonardite is solubilized by Lewis bases at considerably lower pH values and by fungi that secrete certain Lewis bases (i.e., oxalate ion). During the current reporting period we have studied the ability of a strong base (sodium hydroxide, pH 12), and two fungi, Phanerochaete chrysosporium and Trametes versicolor, to solubilize Argonne Premium Coals. In general, Argonne Premium Coals were relatively resistant to base mediated solubilization. However, when these coals were preoxidized (150{degrees}C for seven days), substantial amounts of several coals were solubilized. Most affected were the Lewiston-Stockton bituminous coal, the Beulah-Zap lignite, the Wyodak-Anderson subbituminous coal and the Blind Canyon bituminous coal. Argonne Premium Coals were previously shown by us to be relatively resistant to solubilization by sodium oxalate. When preoxidized coals were treated with sodium oxalate, only the Beulah-Zap lignite was substantially solubilized. Although very small amounts of the other preoxidized coals were solubilized by treatment with oxalate, the small amount of solubilization that did take place was generally increased relative to that observed for coals that were not preoxidized. None of the Argonne Premium Coals were solubilized by P. chrysosporium or T. versicolor. Of considerable interest, however, is the observation that P. chrysosporium and T. versicolor mediated extensive solubilization of Lewiston-Stockton bituminous coal, the Beulah-Zap lignite and the Wyodak-Anderson subbituminous coal.

  13. Organic geochemistry of the Lower Suban coal seam, South Sumatra Basin, Indonesia: Palaeoecological and thermal metamorphism implications

    Energy Technology Data Exchange (ETDEWEB)

    Amijaya, H.; Schwarzbauer, J.; Littke, R. [University of Aachen, Aachen (Germany)

    2006-07-01

    Hydrocarbons extracted from the Tertiary age coals from the Lower Suban seam, South Sumatra Basin, Indonesia have been investigated using gas chromatography (GC) and combined gas chromatography/mass spectrometry (GC/MS). Low rank (vitrinite-huminite reflectance about to 0.41-0.45%) coals from the Tambang Air Laya mine represent different maceral assemblages of an ideal succession of ombrogenous palaeo-peat development in a vertical section. High rank coals (vitrinite reflectance about to 1.42-5.18%) from the Suban mine have been thermally metamorphosed by an andesitic intrusion. Variations in the distributions of n-alkanes, isoprenoids and saturated and aromatic biomarkers in the low rank coals reflect variations in local source input and palaeomire conditions. Terpenoid biomarkers, such as cadinane- and eudesmane-type sesquiterpenoids and oleanane- and ursane-type triterpenoids, indicate the predominance of angiosperm plants in the palaeomire, particularly Dipterocarpaceae. The distribution of hopanoids is affected by the organic facies of the coal and their maturity, and correlates with the palaeomire evolution as derived from petrological studies. Close to the igneous intrusion, rapid thermal stress has destroyed most of the biomarkers, but variations in n-alkane distributions, attributable to palaeomire conditions, remain. Reversals in the trends for molecular parameters based on aliphatic hydrocarbons (n-alkane distribution and pristane/phytane ratio) and aromatic hydrocarbons (methyl phenanthrenes) with coal rank are observed.

  14. Proposal of a new rheological model of a highly loaded coal-water mixture (CWM)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, S. [University of Tokyo, Tokyo (Japan). School for Engineering

    2003-07-01

    Effective use of coal has been increasingly highlighted by the growing needs for energy sources. Among them low-rank coal including sub-bituminous coal and brown coal is an abundant resource, but it has not been competitive in thermal coal markets due to its low heating value and a tendency for spontaneous combustion. One solution to this problem is the Coal-Water Mixture (CWM) technique. This paper proposes a new rheological model of CWM. Several reports that have described the importance of a particle size distribution minimizes the void fraction among the coal particles in a low viscosity CWM. This model was semi-empirically derived from the concept of the average thickness of liquid layer among coal particles, and the relative viscosity of the slurry was described as a function of the void fraction and specific surface area of particles. The extension of the model to non-Newtonian fluids based on coagulation process was also discussed. The relative viscosity of CWM estimated by this model was compared with experimental data. The results were in good agreement with the experimental data when the void fraction of sample could be accurately calculated from the particle size distribution. In particular, a sample in which the void fraction of coal particles is minimal does not always show the lowest viscosity. It became clear that in theory, the relative viscosity of CWM is influenced not only by the void fraction but also by the specific surface area of particles.

  15. Condensation of phenolic groups during coal liquefaction model compound studies

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, M.J.; Grint, A.

    1988-08-01

    The pyrolysis of 1-naphthol in nitrogen and hydrogen, with and without a donor solvent, has been studied. The results show that in the absence of a source of donatable hydrogen, phenolic groups can condense at around 450 degrees C to form fused furan type structures. The presence of a hydrogen donor (e.g. tetralin) or, to a lesser extent, gaseous hydrogen, eliminates this reaction. In the condensation reaction of 1-naphthol to dibenzofuran, the inhibition by tetralin and the product distribution were, in all cases, consistent with a mechanism involving the generation of free radicals via a bimolecular hydrogen atom transfer reaction. This is distinctly different from other commonly accepted radical production mechanisms involved in coal liquefaction or pyrolysis. The implications for low-rank coal hydroliquefaction are discussed in the light of these findings. 3 refs., 3 figs., 2 tabs.

  16. Texas motorcycle crash countermeasure workshop.

    Science.gov (United States)

    2013-06-01

    The Texas Department of Transportation (TxDOT) contracted with the Texas A&M : Transportation Institute (TTI) to develop a 5-year strategic plan for improving motorcycle safety : in the State of Texas. The Texas Strategic Action Plan for Motorcycl...

  17. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  18. Sylvatic trichinellosis in Texas

    Directory of Open Access Journals (Sweden)

    Pence D.B.

    2001-06-01

    Full Text Available There are no published reports of domestic or sylvatic trichinellosis in Texas. The aim of the present survey was to determine the presence of Trichinella species in selected representative species of potential wildlife reservoirs in southern Texas. In 1998-99, tongues of 211 wild mammals were collected in southern Texas: 154 coyotes (Canis latrans, three bobcats (Lynx rufus, 32 racoons (Procyon lotor, 1 3 opossum (Didelphis marsupialis, four ocelots (Leopardus pardalis and five wild boars (Sus scrofa. Presence of Trichinella sp. larvae was investigated by artificial digestion and larvae of positive samples were identified at the species level by a multiple-polymerase chain reaction analysis. Nine (5.8 % coyotes had trichinellosis ; in the muscles of seven of these coyotes, the larvae were identified as Trichinella murrelli. This is the first report of sylvatic trichinellosis in Texas.

  19. Texas MODIS Experiment 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra eXperiment 2001 was conducted from Kelly AFB San Antonio, Texas from March 14 to April 4 to improve calibration of the MODerate resolution Imaging...

  20. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  1. Typhus in Texas

    Centers for Disease Control (CDC) Podcasts

    2017-07-06

    Dr. Kristy Murray, an associate professor in pediatrics and assistant dean of the National School of Tropical Medicine at Baylor College of Medicine and Texas Children’s Hospital, discusses increased cases of typhus in southern Texas.  Created: 7/6/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/6/2017.

  2. Model predictions and experimental results on self-heating prevention of stockpiled coals

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andres, J.M.; Arriaga, A.; Schmal, D. [Instituto de Carboquimica, Zaragoza (Spain)

    2001-01-01

    The spontaneous combustion of coal stockpiles is a serious economic and safety problem. This phenomenon is analysed using a TNO-model modified to predict the spontaneous heating behaviour of coal piles built with 'Mezcla', a mixture of low rank coals from Teruel (Spain). The simulation carried out with the mathematical model for this coal showed that the pile porosity or voidage and wind speed play an important role, although voidage is decisive and controls the effect of the wind velocity. To reduce the negative effects of both factors, five test coal piles (2000-3000 t) were built and several measures were applied to four of them: periodic compaction, use of a low angle slope, protection of the stockpiled coal with an artificial wind barrier and covering it with an ash-water slurry. The heat losses were experimentally determined and it was found that the mathematical model gave predictions of the right order of magnitude of time, site of spontaneous combustion and magnitude of calorific losses. All the methods of protection applied to decrease the self-heating of coal were effective, but the experimental results indicate that the most economical way to avoid the heat losses is the use of an ash-water slurry to cover the coal pile. 28 refs., 8 figs., 5 tabs.

  3. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  4. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  6. Microbial solubilization of coal

    Science.gov (United States)

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  7. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    The energy sector is the source of two-thirds of global greenhouse-gas emissions, and is the main target ofclimate policies among authorities and governments. The share of fossil coals (hard coal and lignite) in world total net electricity generation is 40% in 2010. Demineralization or ash removal...... generation will affect the environment.The results showed that demineralization in some cases were beneficial for regional impacts such asparticulate matter formation because emission of particles and SO2 were reduce. In the contrary globalimpacts such as climate change did not benefit from demineralization...... because of the large energy use forrunning the demineralization process. Local and regional environmental impacts were shown to improve from demineralization for low ranking coals or lignite where the ash content is above ≈25 % and the carboncontent is less than ≈50 %. Overall, it can be concluded...

  8. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  9. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  10. Mercury capture by native fly ash carbons in coal-fired power plants

    Science.gov (United States)

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  11. Transforming Developmental Education in Texas

    Science.gov (United States)

    Journal of Developmental Education, 2014

    2014-01-01

    In recent years, with support from the Texas Legislature, the Texas Higher Education Coordinating Board has funded various developmental education initiatives, including research and evaluation efforts, to help Texas public institutions of higher education provide more effective programs and services to underprepared students. Based on evaluation…

  12. Forests of east Texas, 2015

    Science.gov (United States)

    Kerry J.W. Dooley

    2017-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station (SRS) in cooperation with Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey units—Southeast (unit 1),...

  13. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions

    Science.gov (United States)

    Orem, W.H.; Voytek, M.A.; Jones, E.J.; Lerch, H.E.; Bates, A.L.; Corum, M.D.; Warwick, P.D.; Clark, A.C.

    2010-01-01

    Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19-C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane. ?? 2010.

  14. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Orem, W.H.; Voytek, M.A.; Jones, E.J.; Lerch, H.E.; Bates, A.L.; Corum, M.D.; Warwick, P.D.; Clark, A.C. [US Geological Survey, Reston, VA (United States)

    2010-09-15

    Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C{sub 19}-C{sub 36}) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane.

  15. 78 FR 5196 - Notice of Invitation To Participate; Exploration for Coal in Colorado License Application COC-75642

    Science.gov (United States)

    2013-01-24

    ...Pursuant to the Mineral Leasing Act of 1920, as amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM) regulations, all interested parties are hereby invited to participate with Texas and Oklahoma Coal Company, LLC, on a pro rata cost-sharing basis, in its program for the exploration of coal deposits owned by the United States of America on lands located in Las Animas County, Colorado.

  16. Tornado from Texas.

    Science.gov (United States)

    Vail, Kathleen

    1996-01-01

    Santa Fe School Superintendent Yvonne Gonzales, the "Texas Tornado," was hired to fix a 40% student-dropout rate and a white/Hispanic gap in achievement test scores. Gonzales is an avid integrationist; relies on humor, appeasement, and persuasion tactics; and has alienated some school employees by increasing central office…

  17. Outdoor Education in Texas.

    Science.gov (United States)

    Myers, Ray H.

    In Dallas in 1970, high school outdoor education began as a cocurricular woods and waters boys' club sponsored by a community sportsman. Within one year, it grew into a fully accredited, coeducational, academic course with a curriculum devoted to the study of wildlife in Texas, ecology, conservation, hunting, firearm safety, fishing, boating and…

  18. Coal liquefaction

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  19. Catalogue of Texas spiders

    Science.gov (United States)

    Dean, David Allen

    2016-01-01

    Abstract This catalogue lists 1,084 species of spiders (three identified to genus only) in 311 genera from 53 families currently recorded from Texas and is based on the “Bibliography of Texas Spiders” published by Bea Vogel in 1970. The online list of species can be found at http://pecanspiders.tamu.edu/spidersoftexas.htm. Many taxonomic revisions have since been published, particularly in the families Araneidae, Gnaphosidae and Leptonetidae. Many genera in other families have been revised. The Anyphaenidae, Ctenidae, Hahniidae, Nesticidae, Sicariidae and Tetragnathidae were also revised. Several families have been added and others split up. Several genera of Corinnidae were transferred to Phrurolithidae and Trachelidae. Two genera from Miturgidae were transferred to Eutichuridae. Zoridae was synonymized under Miturgidae. A single species formerly in Amaurobiidae is now in the Family Amphinectidae. Some trapdoor spiders in the family Ctenizidae have been transferred to Euctenizidae. Gertsch and Mulaik started a list of Texas spiders in 1940. In a letter from Willis J. Gertsch dated October 20, 1982, he stated “Years ago a first listing of the Texas fauna was published by me based largely on Stanley Mulaik material, but it had to be abandoned because of other tasks.” This paper is a compendium of the spiders of Texas with distribution, habitat, collecting method and other data available from revisions and collections. This includes many records and unpublished data (including data from three unpublished studies). One of these studies included 16,000 adult spiders belonging to 177 species in 29 families. All specimens in that study were measured and results are in the appendix. Hidalgo County has 340 species recorded with Brazos County at 323 and Travis County at 314 species. These reflect the amount of collecting in the area. PMID:27103878

  20. Weathering of stockpiled coals and the resulting losses of calorific value

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.L.; Romero, C.; Ibarra, J.V.; Schmal, D.; Martinez, D. [Instituto de Carboquimica, Zaragoza (Spain)

    1994-07-01

    The behavior and the evaluation of calorific losses of two types of low rank coals from Aragon (Spain) basins, stored for 11 months at the thermal power station of Endesa in Andorra (Teruel), have been studied. The roles of the most important variables in the oxidation and spontaneous heating processes quality/reactivity of the coal, characteristics of the pile and climatological conditions were investigated. Four experimental piles were formed (three with Endesa coal and one with Mequinenza coal) with different geometry and several levels of porosity. For Endesa coal the pile porosities were 30%, 15% and 10%, and for Mequinenza coal 17%. Probes, designed specially for this experimental work, were put into the piles to collect samples of gases and to record temperatures. The experimental results point out that compaction is the most important parameter which can be influenced to prevent or reduce the effects of oxidation and spontaneous heating. The calorific losses varied from 19% per year for Endesa coal loosely piled (30% porosity) to 1.1% per year for the same coal with high compaction (10% porosity). The data predicted by a mathematical model showed that, in general, the order of magnitude of the times and sites of dry spot formation, where spontaneous combustion starts, as well as the calorific losses agree well with those measured. This study has been used to evaluate the calorific losses in coal storage of 2 million tons of coal for a year in the thermal power station of ENDESA in Andorra (Teruel). 16 refs., 12 figs., 7 tabs.

  1. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  2. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  3. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  4. Performance of Low-rank STAP detectors

    NARCIS (Netherlands)

    Anitori, L.; Srinivasan, R.; Rangaswamy, M.

    2008-01-01

    In this paper the STAP detector based on the lowrank approximation of the normalized adaptive matched filter (LRNAMF) is investigated for its false alarm probability (FAP) performance. An exact formula for the FAP of the LRNAMF detector is derived using the g-method estimator [4]. The non CFAR

  5. Low Rank Sparse Coding for Image Classification

    Science.gov (United States)

    2013-12-08

    Singapore 4 Institute of Automation, Chinese Academy of Sciences, P. R. China 5 University of Illinois at Urbana -Champaign, Urbana , IL USA Abstract In this...which contain 200 to 400 images each. The categories vary from outdoor scenes like mountain and forest to indoor environments like living room and

  6. Abandoned Texas oil fields

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  7. Production of humic substances through coal-solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Nelson Valero

    2014-09-01

    Full Text Available In this paper, the production of humic substances (HS through the bacterial solubilization of low rank coal (LRC was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O, IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L-1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils.

  8. Relationships between data from Rock-Eval pyrolysis and proximate, ultimate, petrographic, and physical analyses of 142 diverse U.S. coal samples

    Science.gov (United States)

    Bostick, N.H.; Daws, T.A.

    1994-01-01

    Basic research on coal and oil shale led to automated pyrolysis analysis of petroleum source rocks; most widely used is the Rock-Eval equipment. In order to interpret Rock-Eval analyses in relation to traditional coal data, we analyzed 142 commercial coals with diverse rank, age, maceral and sulfur contents, for most regions of the United States. We compared the Rock-Eval data with traditional industrial coal data, including volatile matter, calorific value, hydrogen and oxygen content, free swelling index, and vitrinite reflectance. We found: (1) there is a close relationship between Tmax and vitrinite reflectance in the ranges 420-590??C Tmax and 0.4-3%Romax of most coals. (2) A close relationship between Tmax and volatile matter (%VM) extends through the entire sample range, including low-rank samples with 35-70% VM, a range where %VM is not considered to be a useful rank parameter. (3) TOC of medium- and high-rank coals is seriously under-measured by Rock-Eval; TOC of low-rank coals (less than 0.8%Romax) is close to "dry basis" carbon from ultimate analysis. (4) The direct relationships between oxygen index (OI) and %O and between hydrogen index (HI) and %H are clear, though only broadly defined. However, there is virtually no band of concentrated data points on the HI versus OI pseudo-Van Krevelen diagram comparable to the "development line" on the H/C versus O/C diagram. (5) There are systematic relationships between Rock-Eval and industrial coal parameters such as calorific value and FSI, but much standardization would be needed before Rock-Eval could find a place in the coal industry. Tests with blends of coal and quartz sand and with various loads of coal alone showed that the amount of organic matter in the Rock-Eval load greatly influences results. Total load in the crucible, if largely inert, plays a small role, however. Increasing absolute or relative coal content causes under-evaluation of Rock-Eval TOC and over-rating of hydrogen. Blends of several

  9. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. Sixth quarterly report, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Charpenay, S.; Solomon, P.R.

    1992-12-31

    It is known from our results and the literature that the moisture is associated with cations in raw low rank coals. Consequently, an investigation was made to determine if the deleterious effects of cations could be mitigated by adding water to the donor solvent liquefaction system. Experiments were done with raw and demineralized Zap at three different temperature levels. At temperature near or below the critical temperature of water (374{degree}C), it appears that there is profound beneficial effect of added water for the raw coal. Conversely, there is a significant deleterious effect of added water for the demineralized coals. The ability of water to interact with cations and affect the course of the thermal decomposition behavior is consistent with results that have been observed in hydrothermal treatment of coal, which mimics the geological aging process in many respects.

  10. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.A.; Hatcher, P.G.; Schobert, H.H.

    1994-02-01

    In this quarter, progress has been made in the following two aspects: The influences of temperature, dispersed Mo catalyst, and solvent on the liquefaction conversion and composition of products from low-rank coals; and the hydrous pyrolysis of a lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. The analytical work described in this quarter also represents molecular-level characterization of products. The purpose of the first part of the work described in this quarter is to study the influences of temperature, solvent and dispersed Mo catalyst on the liquefaction conversion and chemical composition of the products. Many specialty chemicals, including one- to four-ring aromatics, could potentially be produced by liquefying coal. To achieve this goal, not only a high coal conversion but also a desirable product distribution is necessary. Therefore, it is of great importance to understand the structural changes of the coal during reaction and to investigate the conditions under which the aliphatics or aromatics can be removed from the macromolecular structure of coal. This quarterly report also describes the hydrous pyrolysis of Potapsco lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. This work has some implications both on the structural changes of low-rank coals during pretreatment and on the geochemical reactions during coalification stage. Vitrinite, a major component of most coals, is derived from degraded wood in ancient peat swamps. Organic geochemical studies conducted on a series of coalified wood samples derived mostly from gymnosperms have allowed the development of a chemical reaction series to characterize the major coalification reactions which lignin, the major coal-producing component of wood, undergoes.

  12. Solar Hot Water for Motor Inn--Texas City, Texas

    Science.gov (United States)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  13. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  14. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  15. Forests of East Texas, 2014

    Science.gov (United States)

    Thomas J. Brandeis

    2015-01-01

    This resource update provides an overview of forest resources in east Texas derived from an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program at the Southern Research Station in cooperation with the Texas A&M Forest Service. These estimates are based on field data collected using the FIA annualized sample design and are...

  16. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  17. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  18. Coal terminal project report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Malaysia is building the necessary infrastructure to cope with an increasing demand for electricity. Its restructured energy policy has led to construction of the 2,100 MW Manjung coal-fired power plant in the state of Perak, for which coal has to be imported via the new Lekiv Bulk Terminal (LBT) adjacent to the plant. Contracts for the LBC and the TNBJ coal stockyard were awarded to the Koch Consortium. The article describes equipment for handling and storing coal. 4 photos.

  19. Inorganic constituents in coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Radenovic [University of Zagreb, Sisak (Croatia). Faculty of Metallurgy

    2006-07-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More than one hundred different minerals and virtually every element in the periodic table have been found in coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates), minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the order of w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprised in coal. The fractions of trace elements usually decrease when the rank of coal increases. Fractions of the inorganic elements are different, depending on the coal bed and basin. A variety of analytical methods and techniques can be used to determine the mass fractions, mode of occurrence, and distribution of organic constituents in coal. There are many different instrumental methods for analysis of coal and coal products but atomic absorption spectroscopy (AAS) is the one most commonly used. Fraction and mode of occurrence are one of the main factors that have influence on transformation and separation of inorganic constituents during coal conversion. Coal, as an important world energy source and component for non-fuels usage, will be continuously and widely used in the future due to its relatively abundant reserves. However, there is a conflict between the requirements for increased use of coal on the one hand and less pollution on the other. It's known that the environmental impacts, due to either coal mining or coal usage, can be: air, water and land pollution. Although, minor components, inorganic constituents can exert a significant influence on the economic value, utilization, and environmental impact of the coal.

  20. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  1. Evaluating the Energy Recovery Potential of Nigerian Coals under Non-Isothermal Thermogravimetry

    Science.gov (United States)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study investigated the fuel properties and energy recovery potential of two coal samples from Ihioma (IHM) and Ogboligbo (OGB) environs in Nigeria. The ultimate, proximate, and bomb calorimetric analyses of the coal were examined. Next, the rank classification and potential application of the coals were evaluated according to the ASTM standard D388. Lastly, thermal decomposition behaviour was examined by non-isothermal thermogravimetry (TG) under pyrolysis conditions from 30 - 900 °C. The results indicated IHM and OGB contain high proportions of combustible elements for potential thermal conversion. The higher heating value (HHV) of IHM was 20.37 MJ/kg whereas OGB was 16.33 MJ/kg. TG analysis revealed 55% weight loss for OGB and 76% for IHM. The residual mass was 23% for IHM and 44% for OGB. Based on the temperature profile characteristics (TPCs); Ton , Tmax , and Toff , IHM was more reactive than OGB due to its higher volatile matter (VM). Overall, results revealed the coals are Lignite (Brown) low-rank coals (LRCs) with potential for electric power generation.

  2. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  3. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein

    2000-01-01

    temperature for volatile evolution from coal was a reliable measure of coal rank. Because of this observation, a wide variety of coals of a wide range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatile evolution was quite a precise indicator of rank and correlated closely wit the rank values obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile materials evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amount of alkenes and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolitic products and not volatilization products of coal. Solvent extraction experiments coupled with TG-PI-MS indicates that the low oiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight and therefor less extractable.

  4. Texas Affordable Baccalaureate Program: A Collaboration between the Texas Higher Education Coordinating Board, South Texas College, and Texas A&M University-Commerce. CBE Case Study

    Science.gov (United States)

    Klein-Collins, Rebecca; Glancey, Kathleen

    2015-01-01

    This case study is part of a series on newer competency-based degree programs that have been emerging in recent years. In January 2014, the Texas Higher Education Coordinating Board (THECB), South Texas College (STC), and Texas A&M University-Commerce (A&M Commerce) launched the Texas Affordable Baccalaureate Program, the state's first…

  5. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  6. The importance of thermal behaviour and petrographic composition for understanding the characteristics of a Portuguese perhydrous Jurassic coal

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. [Centro de Geologia, Universidade do Porto (Portugal); Flores, D. [Centro de Geologia, Universidade do Porto (Portugal); Departamento de Geociencias, Ambiente e Ordenamento do Territorio, Faculdade de Ciencias, Universidade do Porto (Portugal); Suarez-Ruiz, I.; Pevida, C.; Rubiera, F. [Instituto Nacional del Carbon, (INCAR-CSIC), Oviedo (Spain); Iglesias, M.J. [Area de Quimica Organica, Universidad de Almeria (Spain)

    2010-12-01

    The perhydrous Batalha coal (Portugal) is found in the Cabacos and Montejunto Formation of the Oxfordian-Kimeridgian, Upper Jurassic age. From the macroscopic point of view, its appearance is similar to other perhydrous coals. Microscopically, the maceral group of huminite is the main organic component (96%), ulminite being the most important petrographic component, followed by textinite with resinite (4%) lumina filled. The huminite random reflectance is 0.33%. This coal is characterized by high H/C atomic ratio, and anomalous physical and chemical properties that are characteristic of perhydrous coals such as: (i) the absence of any correlation between reflectance and the chemical rank parameters; (ii) a lower real density than that of non-perhydrous coals; (iii) a high hydrogen content; and (iv) suppressed reflectance. Using its calorific value (moist, ash-free basis) as rank parameter, Batalha coal must be considered a subbituminous A coal. Hydrogen enrichment due to the presence of resinite has influenced the technological properties of this coal, namely: (i) reduction of the thermostability and decrease in the temperature of initial thermal decomposition due to, among other reasons, the existence of aliphatic structures with low dissociation energy bonds resulting from the presence of resinite; (ii) from the DTG profile, the volatile matter combustion and char combustion is not evident; (iii) development of chars made up of isotropic particles with angular edges, which is typical of a low rank coal; (iv) the evolution trend of gaseous compounds (CO, CO{sub 2} and CH{sub 4}) during pyrolysis; and, (v) an increase in its calorific value due to its hydrogen content. The study of this coal which is interbedded in Jurassic formations in the Lusitanian Basin of Portugal is a new contribution to the assessment of the evolution of organic matter in this area. (author)

  7. Texas floods of 1940

    Science.gov (United States)

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  8. Estimation of Basis Line-Integrals in a Spectral Distortion-Modeled Photon Counting Detector Using Low-Rank Approximation-Based X-Ray Transmittance Modeling: K-Edge Imaging Application.

    Science.gov (United States)

    Lee, Okkyun; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2017-11-01

    Photon counting detectors (PCDs) provide multiple energy-dependent measurements for estimating basis line-integrals. However, the measured spectrum is distorted from the spectral response effect (SRE) via charge sharing, K-fluorescence emission, and so on. Thus, in order to avoid bias and artifacts in images, the SRE needs to be compensated. For this purpose, we recently developed a computationally efficient three-step algorithm for PCD-CT without contrast agents by approximating smooth X-ray transmittance using low-order polynomial bases. It compensated the SRE by incorporating the SRE model in a linearized estimation process and achieved nearly the minimum variance and unbiased (MVU) estimator. In this paper, we extend the three-step algorithm to K-edge imaging applications by designing optimal bases using a low-rank approximation to model X-ray transmittances with arbitrary shapes (i.e., smooth without the K-edge or discontinuous with the K-edge). The bases can be used to approximate the X-ray transmittance and to linearize the PCD measurement modeling and then the three-step estimator can be derived as in the previous approach: estimating the x-ray transmittance in the first step, estimating basis line-integrals including that of the contrast agent in the second step, and correcting for a bias in the third step. We demonstrate that the proposed method is more accurate and stable than the low-order polynomial-based approaches with extensive simulation studies using gadolinium for the K-edge imaging application. We also demonstrate that the proposed method achieves nearly MVU estimator, and is more stable than the conventional maximum likelihood estimator in high attenuation cases with fewer photon counts.

  9. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  10. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  11. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  12. Water Finance Forum-Texas

    Science.gov (United States)

    Regional Finance Forum: Financing Resilient and Sustainable Water Infrastructure, held in Addison, Texas, September 10-11, 2015.Co-sponsored by EPA's Water Infrastructure and Resiliency Finance Center and the Environmental Finance Center Network.

  13. 2001 Harris County, Texas Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was received by the NOAA Coastal Services Center from the Texas Natural Resources Information System. The data was collected in October of 2001 by...

  14. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  15. Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version

    Energy Technology Data Exchange (ETDEWEB)

    Raman, S.V.

    1983-09-01

    A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

  16. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  17. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  18. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  19. Microbial desulfurization of coal

    Science.gov (United States)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  20. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  1. Fluidized bed coal desulfurization

    Science.gov (United States)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  2. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  3. Chagas disease risk in Texas.

    Science.gov (United States)

    Sarkar, Sahotra; Strutz, Stavana E; Frank, David M; Rivaldi, Chissa-Louise; Sissel, Blake; Sánchez-Cordero, Victor

    2010-10-05

    Chagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species) in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae. The spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five-stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post-1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc-minute). The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence-based relative risk was computed at the county level using the Bayesian Besag-York-Mollié model and post-1960 T. cruzi incidence data. This risk is concentrated in south Texas. 3. The

  4. Chagas disease risk in Texas.

    Directory of Open Access Journals (Sweden)

    Sahotra Sarkar

    Full Text Available BACKGROUND: Chagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae. METHODS AND FINDINGS: The spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five-stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post-1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc-minute. The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence-based relative risk was computed at the county level using the Bayesian Besag-York-Mollié model and post-1960 T. cruzi incidence data. This

  5. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  6. Coal data base - thesaurus 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The thesaurus contains the vocabulary used to index the Coal Data Base maintained by IEA Coal Research Technical Information Service. The Data Base contains indexed and abstracted references to publicly-available literature covering all aspects of the coal industry. The subject areas covered include: economics and management, reserves and exploration, mining, preparation, transport and handling, coal properties and constitution, processing and conversion, combustion, waste management, environ mental aspects, coal products, and health and safety. The indexing terms are used in the preparation of the annual subject index to Coal Abstracts and should be useful in searching other data bases for material relevant to the coal industry. (Available from IEA Coal Research)

  7. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  8. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  9. DNA contents in Texas bluegrass (Poa arachnifera) selected in Texas and Oklahoma determined by flow cytometry

    Science.gov (United States)

    Texas bluegrass (Poa arachnifera Torr.) is a dioecious, perennial, cool-season grass native to southern Kansas, Oklahoma, western Arkansas and most of Texas. Its major use has been for forage on rangelands in Texas and Oklahoma. More recently, interspecific hybrids between Texas bluegrass and Kentuc...

  10. Diterpanes, triterpanes, steranes and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.T.; Kaplan, I.R. (California University, Los Angeles, CA (USA). Inst. of Geophysics and Planetary Physics)

    1992-07-01

    There is a significant difference in the distribution of terpanes in natural bitumen extracted from Rocky Mountain coal (RMC), Australian Gippsland Latrobe Eocene coal (GEC), Australian Gippsland Latrobe Eocene Cretaceous coal (GCC), and Texas Wilcox lignite (WL). Pentacyclic triterpanes are dominant in GEC, GCC, and WL, diterpanes strongly predominate in the bitumen of RMC indicating that resin is a more important constituent of RMC than in the other coals and releases the diterpenoids at an early stage of diagenesis. Furthermore, the composition of diterpanes is also different among these coals. The diterpenoid content is negligible in the pyrolysates of all coals. The sterane and triterpane distributions in the natural bitumen of coals are very different from those in pyrolysates e.g. C31 alpha-beta-22R hopane predominates in the m/z 191 mass fragmentograms of the natural bitumens, whereas a homologous series of hopanes (C27-C35; except C28) is present in the coal pyrolysates. C27 steranes are absent in the natural bitumen, but are generated in pyrolysates during lengthy heating of coal kerogen. C29 monoaromatic steroid hydrocarbons are abundant in the natural bitumen of the four coals. Triaromatic steroid hydrocarbons are only present in GCC, whereas significant amounts of tetra- and triaromatic triterpenoid hydrocarbons are present in the other three coals (GEC, RMC, and WL). The ratio of benzo(e)pyrene/perylene may be potentially useful as a maturity parameter because the amount of benzo(e)pyrene increases with thermal stress, whereas perylene decreases with heating time. Benzohopanes are widely present in four humic coals.

  11. Carbonization and liquid-crystal (mesophase) development. 8. The co-carbonization of coals with acenaphthylene and decacyclene

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, I.; Marsh, H.; Grint, A.

    1979-09-01

    Several coals of different rank have been carbonized singly and also co-carbonized with acenaphthylene and decacyclene. The resultant cokes were mounted in resin and polished surfaces were examined for optical texture using a polarized-light optical microscope fitted with a half-wave retarder plate. The optical texture can be assessed qualitatively (visually) or quantitatively by a point-counting technique in terms of size and shape of constituent isochromatic anisotropic units. Some cokes from coals were isotropic. Acenaphthylene was only able to exert a smaller influence than decacyclene on the optical texture of the resultant cokes from co-carbonizations. Decacyclene was able to modify the optical texture for both the low-rank non-fusible and the caking coals. The effects of changing the proportions of coal to additive were examined. Results are interpreted in terms of 'depolymerization' of the coal by the action of the additive (as solvent) and also by the action of the additive in modifying the processes of formation of semi-coke via nematic liquid crystals.

  12. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  13. Improving coal handling effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.

    2003-10-01

    Appropriate coal handling systems are essential for successful coal utilisation. The paper looks at some of the options available, including crushers and hammer mills, wear-resistant liners for chutes and wagons, and dewatering systems. These are individual components within larger systems such as stockyard stacking and reclaiming installations. 5 photos.

  14. Management of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.M. [IEA Coal Research, London (United Kingdom)

    1999-10-01

    Stockpile management is an important part of the coal handling process from mine to customer. Virtually all coal producers and consumers make use of stockpiles at their facilities, either to serve as a buffer between material delivery and processing or to enable coal blending to meet quality requirements. This report begins by examining why stockpiles are employed. The stacking and reclaiming of piles, and the reduction of noise arising from the handling equipment is then discussed, along with stockpile automation and management. Good sampling and analysis procedures are essential for coal quality management. Sampling systems, representative samples and on-line analysis are described. Stock auditing to reconcile the amount of coal in the stockpiles is also covered. Coals are susceptible to weathering and atmospheric oxidation during storage in open-air piles. Properties and processes affected by coal oxidation and weathering, including heating value losses, handleability, cleaning, combustion and coking are examined. Spontaneous combustion poses safety, environmental, economic and handling problems if it becomes established in stockpiles. Factors affecting spontaneous combustion are discussed with the emphasis on prevention, detection and control. Stockyard operators are under constant social and political pressures to improve the environmental acceptability of their operations. Thus the control, prevention, and monitoring of fugitive dust emissions, and the composition, collection and treatment of stockpile runoff are addressed. The prevention and control of flowslides is also covered. Experience has shown that with good stockpile design and management, most coals can be safely stored in an environmentally acceptable way. 187 refs., 41 figs., 8 tabs.

  15. Biostimulators from coal

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1984-04-01

    A report is presented on a meeting of the Bureau of the Scientific Council of the Ministry of Coal Industry of the USSR on chemistry of fossil fuels held on 21-22 November 1983 in Moscow. Papers delivered during the meeting are evaluated. Chemistry of black and brown coal from the USSR was analyzed. Chemical coal properties which are of particular significance for coal use as an agricultural fertilizer (biostimulator of plant growth) were investigated. Brown and black coal with the highest oxidation level used as a fuel by power plants could be used for production of fertilizers with a high content of humic acids. Tests carried out in the USSR in various climatic zones (in the North and in Central Asia) showed that biostimulators from coal improved plant growth, reduced ripening period, increased crops, improved physical properties of soils (prevented moisture losses). Utilizing selected wastes from coal processing for production of biostimulators was also discussed. Methods for coal preparation for biostimulant production (crushing, screening, chemical processing) were evaluated. Prospects of biostimulator use in land reclamation were discussed.

  16. Coal for the world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    With reserves of 7 billion t of coal, Colombia is the world's fourth-largest exporter of bituminous coal and has the potential to grow further. The paper discusses current production and the future potential of the La Guajira reserves with Carbones del Cerrejon Ltd., Colombia. 1 ref.

  17. Biodesulphurisation of coal

    OpenAIRE

    Prayuenyong, P.

    2001-01-01

    The emission of sulphur oxides during the combustion of coal is one of the causes of an environmental problem known as acid rain. Biodesulphurisation technology applied as a method to remove sulphur before coal combustion was investigated in this work. The desulphurisation abilities of three specific bacterial strains including Rhodococcus erythropolis IGTS8, R. erythropolis X309 and Shewanella putrefaciens strain NCIMB 8...

  18. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  19. Electrolysis of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, K.E.; Tran, T.; Swinkels, D.

    1984-01-01

    The major aims of the project were: to verify early reports of the American workers and demonstrate the feasibility of the concept of electrolysis of coal slurries; investigate reaction mechanisms and the stoichiometry; measure the reducing power and oxidation kinetics of selected Australian coals; investigate some process variables, and demonstrate an electrolysis cell with practical electrode geometry.

  20. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  1. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  2. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  3. Texas Real Estate Curriculum Workshop Summary Report.

    Science.gov (United States)

    Lyon, Robert

    The Texas Real Estate Research Center-Texas Education Agency (TRERC-TEA) curriculum workshop was attended by over 40 participants representing 26 Texas community colleges. These participants divided into eight small groups by real estate specialty area and developed curriculum outlines and learning objectives for the following real estate courses:…

  4. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  5. Environmentally conscious coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P. [and others

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  6. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. South Texas Maquiladora Suppliers Project.

    Science.gov (United States)

    Patrick, J. Michael

    This project was undertaken to assist South Texas industries in improving export to nearby Mexican maquiladoras (factories). The maquiladora program is based on co-production by two plants under a single management, one on each side of the border. Activities addressed four objectives: (1) to determine the dollar value, quantity, and source of the…

  8. Coal desulfurization by aqueous chlorination

    Science.gov (United States)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  9. Coal. A human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-07-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. Yet the mundane mineral that built our global economy and even today powers our electrical plants, has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. This book describes the history of coal, that began three hundred million years ago and spans the globe.

  10. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  11. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin

    2011-03-10

    This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.

  12. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  13. Development of alternative fuels from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-22

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

  14. Red Tide off Texas Coast

    Science.gov (United States)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  15. Coal handling for IPPs

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.

    2000-02-01

    Demand for seaborne steam coal in Asia is expected to increase. By 2010, for example, Japan alone is expected to double its coal-fired power generating electricity capacity. At end-FY 1999 an extra 13 IPPs should come on line. Demand for new materials handling equipment at ports will increase. In terms of scraper reclaimers for stockyard storing and homogenising systems for coal handling and blending, Gustac Schade of Germany is a world leader. Schade introduced the first cantilever scraper reclaimer system at Scholven power station of VKR in Germany in 1968. Later designs have incorporated portal scraper reclaimers. Systems are available for longtidunal and circular coal storage systems, both open and enclosed. 3 photos.

  16. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  17. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. [Quarterly] technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Saini, A.K.; Schobert, H.H.; Hatcher, P.G.

    1993-07-01

    In this quarter, progress has been made in the following two aspects: (1) effects of drying and mild oxidation on conversion and product distribution during non-catalytic and catalytic liquefaction of a Montana subbituminous coal (DECS-9); and (2) effects of solvent and catalyst on conversion and structural changes of a Texas subbituminous coal (DECS-1). Influence of drying and mild oxidation on catalytic and non-catalytic liquefaction (at 350C for 30 min with 6.9 MPa (cold) H{sub 2} was studied using Wyodak subbituminous coal. For non-catalytic runs, fresh raw coal gave higher conversion and higher oil yield than both the vacuum- and air-dried coals, regardless of the solvent. Compared to the vacuum-dried coal, the coal dried in air in 100C for 2 h gave a better conversion in the presence of either a hydrogen donor tetralin or a non-donor 1-methylnaphthalene (1-MN) solvent. Catalytic runs were performed using in-situ generated molybdenum sulfide catalyst from ammonium tetrathiomolybdate (ATTM) precursor impregnated on either raw coal or predried coal samples. The solvent-free runs using ATTM loaded on the raw coal gave higher conversion and higher oil yield than loading ATTM on vacuum- or air-dried coal. In the presence of either tetralin or 1-MN, however, the runs using ATTM loaded on air-dried coal afford better conversions and oil yields as compared to the runs using vacuum-dried coal. Upon drying coal in air at 150C for 20 h, the conversion significantly decreased to a lower value than that of the vacuum-dried coal in the non-catalytic runs, and the same trend was observed in the runs of the dried coals loaded with ATTM. Physical, chemical, and surface chemical aspects of effects of drying and oxidation and the role of water are also discussed in the report.

  18. High-resolution X-ray computed tomography observations of the thermal drying of lump-sized subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Jonathan P. [Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA (United States); EMS Energy Institute, University Park, PA (United States); Pone, J. Denis N. [ConocoPhilips Technology Center, Bartlesville, Oklahoma (United States); Mitchell, Gareth D.; Halleck, Phillip [EMS Energy Institute, University Park, PA (United States)

    2011-01-15

    Drying of low-rank coals affects: coal cleaning, combustion, comminution, gasification, liquefaction, and in-seam fluid-flow (water, coalbed methane, and carbon dioxide for sequestration/enhanced coalbed methane). To evaluate the extent of drying-induced transitions, 3 lump-sized (approximately 6 x 2 x 2 cm) Powder River Basin subbituminous coal samples were thermally dried in an air-drying coal oven at 50 C over two weeks. A high-resolution industrial X-ray computed tomography scanner was utilized to generate (non-destructively) three-dimensional regional volumetric renderings, as-received and over 3-stages of drying. The lumps had cleats, both open and mineral filled, with a degree of fracture diversity along the longitudinal plane. Comparison of the virtual slice surfaces, at identifiable locations, allowed the induced cracking and shrinkage accompanying the transitions during 19% moisture loss to almost dry to be observed. Under these drying conditions, the heat transfer, and thus extent of drying, proceeded radially inward. With increased drying time the fractures extend and become larger in aperture as the coal shrinks. The major fractures mostly followed the existing cleat system. With additional drying, these cleats widened and the aperture increase propagated deeper into the coal extended into the butt cleats. New fractures were located mostly perpendicular to the cleat fracture surface. The external volume of the coal lumps had limited shrinkage. The axial extent of the shrinkage length (lump edge to lump edge) was on the order of 4-6%, the bulk of the shrinkage being accommodated by the internal shrinkage between cleats. (author)

  19. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  20. Coal stockyard systems

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.

    2001-10-01

    Selection criteria for coal stockyard materials handling systems at bulk terminals is far more complex than it appears at first sight. Criteria for the selection of the best suitable layout and equipment for coal terminals, include the homogenisation of material and the layout of the stockpile in the form of conventional longitudinal piles or circular piles. The article reviews the current state-of-the-art concepts for coal terminals, and groups these ideas into a workable set of guidelines for the coal mine or stockyard operator. As priorities for each application are different, utmost flexibility in the layout and design of bulk terminals is required. It describes storage systems chosen for the transhipment terminal at the Port of Koper in Slovenia, the Callide coal mine in Queensland, Australia, and the Ho-Ping coal-fired power plant in Taiwan. The recent agreement for a combined sales and marketing cooperation between Aumund in Germany and BLW Mechanical Handling in the UK is mentioned. 3 photos.

  1. Australian coal conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    Almost 600 people attended this year's Australian Coal Conference on Queensland's Gold Coast. The article reports on issues raised at the conference which included the effects of globalisation and the difficulties of raising funds faced by the coal industry and environmental issues. A life cycle analysis of coal's emissions compared to other fuels, released at the conference had demonstrated that coal was a legitimate part of the world's future energy mix. Conference speakers included Michael Pinnock, Queensland Mining Council Chief Executive Officer, Dr Louis Wibberley and Rich Gazzard of BHP, Robin Batterham, the Australian Governments Chief Scientist, Mark Vale, Federal Minister for Trade, Tony Armor of EPRI, Daren Fooks, Clayton Utz Lawyers, Ron Knapp, Chief Executive of the World Coal Institute and Andrew Tucker, Australian Competition and Consumer Commission. Highlights of their addresses are given. Winners of the five research awards presented by the Australian Coal Association at the conference are reported. 11 photos.

  2. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  3. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  4. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  5. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  6. Method of extracting coal from a coal refuse pile

    Science.gov (United States)

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  7. Mill performance of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Bennett; G. O' Brien; D. Holcombe [CoalTech Pty Ltd. (Australia)

    2005-07-01

    Evaluating the potential performance of coal blends for use as pulverised fuel (PF) in power plants and pulverised coal injection (PCI) into blast furnaces requires knowledge of the size distribution of the organic and mineral matter components of a blend, especially when there are significant differences in the Hardgrove Grindability Index (HGI) of the component coals. The size distribution of the organic matter impacts on combustibility of thermal and PCI coal blends and handleability of PCI coal blends. Petrography techniques were used to examine four size fractions from the PF of single coals and blends to measure the size distribution of maceral groups. For most coals, a good estimate of a blend's size distribution can be made assuming that the size distribution of the individual coals, milled under the same conditions, are added together in the proportions of the blend. The exception is when a very soft coal (HGI 90) is blended with a very hard coal (HGI 35). In this case preferential milling (more reporting to the smaller size fractions) of the softer coal occurred. All coals studied in this project show some sign of preferential grinding of the softer maceral group when the coal was milled individually or in a blend. It is only when there is a large difference in the relative strength of the maceral groups of the coals blended that the preferential milling of a coal in a blend is observed in the size distribution of the blend. The results indicate that the breakage characteristics (change in size reduction per unit of energy) of maceral groups in individual coals do not change when they are blended with other coals. 12 refs., 5 figs., 2 tabs.

  8. Exchange of experience: sieve analyses of coal and coal paste

    Energy Technology Data Exchange (ETDEWEB)

    1943-02-01

    This report consisted of a cover letter (now largely illegible) and a graph. The graph showed percentages of material left behind as residue on sieves of various mesh sizes, graphed against the mesh sizes themselves. The materials for which data were shown were both dry coal and coal paste from Ludwigshafen, Scholven, Gelsenberg, and Poelitz. The dry coal from Poelitz seemed to be by far the least finely-ground, but the coal paste from Poelitz seemed to be the most finely-ground. The values for coal paste from the other three plants were very close together over most of the range of mesh sizes. The dry coal from Gelsenberg seemed to be the most finely-ground dry coal, while the dry coals from Scholven and Ludwigshafen gave similar values over most of the range of mesh sizes. In all cases, the coal paste from a plant was more finely-ground than the dry coal from the same plant, but for Gelsenberg, the difference between the two was not nearly as great as it was for the other plants, especially Poelitz. For example, for a sieve with about 3,600 cells per square centimeter, only about 10% of the Poelitz coal paste was retained versus about 85% of the Poelitz dry coal retained, whereas the corresponding figures for Gelsenberg materials were about 36% versus about 53%.

  9. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...

  10. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...

  11. Oceanographic measurements from the Texas Automated Buoy System (TABS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Texas Automated Buoy System contains daily oceanographic measurements from seven buoys off the Texas coast from Brownsville to Sabine. The Texas General Land...

  12. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  13. AVO forward modeling for VTI coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.; Cui, R.; Liu, E. [China University of Mining and Technology, Xuzhou (China). School of Resource and Earth Science

    2009-04-15

    The article discusses the possibility of prospecting primary coal, tectonic coal, soft coal and vertical transverse-isotropic (VTI) coal by P- wave amplitude variation with offset (AVO) forward modeling. For thick coal bed, the P-wave AVO curves of primary coal, tectonic coal and soft coal were achieved by the Zoeppritz equation. For a thick VTI coal bed, its stiffness matrix was first calculated by effective media's theory; then the P-wave AVO curve of this coal was calculated by the propagation matrix method which is based on anisotropy theory. In this way the synthetic seismogram was attained by combining the seismic wavelet with AVO curves. At the same time, thin coal seams of AVO curves and a synthetic seismogram were simulated. It is shown that the coal roof's P-wave AVO of thick coal has the AVO character of class IV and the AVO gradient and intercept of the coal beds diverge from each other. For thin coal seams, the reflection waves are composite waves. In this case, the primary coal and tectonic coal's reflection amplitude is small and its AVO with obvious class IV, the VTI coal and soft coal's reflection amplitude is larger, and its AVO curves fluctuate acutely. In summary, the AVO technique could be used to identify primary coal, tectonic coal, soft coal and VTI coal. 12 refs., 4 figs., 2 tabs.

  14. Hydroliquefaction of coal

    Science.gov (United States)

    Sze, Morgan C.; Schindler, Harvey D.

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  15. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  16. Coal desulfurization with iron pentacarbonyl

    Science.gov (United States)

    Hsu, G. C.

    1979-01-01

    Coal desulfurization with iron pentacarbonyl treatment under mild conditions removes up to eighty percent of organic sulfur. Preliminary tests on treatment process suggest it may be economical enough to encourage investigation of use for coal desulfurization. With mild operating conditions, process produces environmentally-acceptable clean coal at reasonable cost.

  17. Microscopic coal research in Canada

    NARCIS (Netherlands)

    Hacquebard, P.A.

    1955-01-01

    Since the industrial developments of Europe and North America in the nineteenth century, coal has been considered as the most important mineral wealth a country could possess. Coal was often referred to as King Coal, and it was not until around 1950 that its position as the major fuel for modern

  18. Future Impacts of Coal Distribution Constraints on Coal Cost

    OpenAIRE

    McCollum, David L

    2007-01-01

    After years of relatively slow growth, coal is undergoing a renaissance. Some 140 coal power plants are planned, and the Energy Information Administration (EIA) projects that the U.S. will consume almost 1,800 million tons of coal in 2030, up from about 1,150 million tons this year. In addition, while EIA’s estimates do not take coal-to-hydrogen production into consideration, several recent studies suggest that if the hydrogen economy ever comes to fruition coal could be a feedstock of choice...

  19. Big coal book 2002. 3rd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The book provides a wide collection of information for the international coal market. An introductory review of the coal market in 2001 and insight into 2002 is followed by a chapter giving statistics (of exports, imports, coal production, consumption and freight rates). Chapter 3 reviews issues facing coal producers and gives a company listing of major coal producers throughout the world. This format is followed for coal consumers, coal traders, coal ports, and the coal transportation sector. Company listings are also given for ship owners, shipbrokers, rail companies, barge companies and petcoke producers. Detailed coal specifications are given for both producers and consumers and there is a complete set of indexes.

  20. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple of sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  1. Angiostrongylus cantonensis Meningitis and Myelitis, Texas, USA.

    Science.gov (United States)

    Al Hammoud, Roukaya; Nayes, Stacy L; Murphy, James R; Heresi, Gloria P; Butler, Ian J; Pérez, Norma

    2017-06-01

    Infection with Angiostrongylus cantonensis roundworms is endemic in Southeast Asia and the Pacific Basin. A. cantonensis meningitis and myelitis occurred in summer 2013 in a child with no history of travel outside of Texas, USA. Angiostrongyliasis is an emerging neurotropic helminthic disease in Texas and warrants increased awareness among healthcare providers.

  2. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  3. Coal in Spain

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Includes estimates of coal reserves in the following regions of Spain - Asturias, El Bierzo, Villablino, North of Leon, Guardo/Barruelo, Suroccidental, Teruel, Pyrenees and the Balearics. Four types of estimate are given per region - very probably, probable, possible and hypothetical.

  4. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  5. NSW clean coal summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The presentations (overheads/viewgraphs) include: Otway CO{sub 2} storage project (P. Cook); alternative pathways to low emission electricity (L. Wibberley); Delta Electricity pilot capture project (G. Everett); international developments for CO{sub 2} capture and storage and clean coal (K. Thambimutu); NSW storage opportunities (B. Mullard); NSW opportunities (M. O'Neil); and the Climate Institute (J. Connor).

  6. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  7. Methanol from coal

    Science.gov (United States)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  8. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  9. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  10. Preliminary study of uranium favorability of the Wilcox and Claiborne Groups (Eocene) in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilbert, W.P.; Templain, C.J.

    1978-01-01

    Rocks of the Wilcox and Claiborne Groups crop out in the Texas Gulf Coastal Plain and are represented by a series of sands and shales which reflect oscillation of the strandline. The Wilcox Group (lower Eocene), usually undifferentiated in Texas, consists of very fine sands and clays and abundant lignite. The Claiborne Group (middle Eocene) comprises, in ascending order, Carrizo Sand, Reklaw Formation (clay), Queen City Sand, Weches Formation (clay), Sparta Sand, Cook Mountain Formation (clay), and Yegua Formation (sand). Fluvial systems of the Wilcox and Claiborne Groups exist in east Texas and trend perpendicular to the present coastline. In central Texas, sand bodies are parallel to the present coastline and are strand-plain, barrier-bar systems. Since the time of deposition of the Queen City Sand, a significant fluvial sand buildup occurred in the area of the present Rio Grande embayment where the marine clays pinch out. Known occurrences of mineral matter in the Wilcox and Claiborne (up to the Yegua) are limited to lignite (particularly in the Wilcox), cannel coal in the upper Claiborne, and hydrocarbons throughout. No uranium mineralization is known, and no uranium is likely to be discovered in the Claiborne and Wilcox. Approximately 50 surface samples and many gamma-ray logs showed no significant anomalies. The sands are very good potential host rocks, but no uranium source was discovered. During deposition of the Wilcox and Claiborne Groups, there was no volcanism to serve as a source of uranium (as with the prolific occurrences in the younger rocks of south Texas); also, Precambrian crystalline rocks in the Llano uplift were not exposed.

  11. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  12. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  13. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  14. High-sulfur coal research at the SIUC (Southern Illinois University at Carbondale) Coal Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-01-01

    Research on high-sulfur coal which is taking place at the Coal Technology Laboratory at Southern Illinois University at Carbondale is divided into four general categories: coal science, coal preparation, coal conversion, and coal utilization. The work in these four areas covers a broad spectrum of high-sulfur coal research from the very fundamental aspects of the coal, through its physical beneficiation and possible conversion, to its ultimate utilization and overall economic modeling. Individual projects are processed separately for the databases.

  15. Prospects for coal and clean coal technologies in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    John Kessels [IEA Clean Coal Centre, London (United Kingdom)

    2010-03-15

    This report examines the prospects for coal and clean coal technologies in Thailand. The country's existing coal reserves are examined and the probable need to import coal to meet the future coal is explained. A discussion on the generation capacity in Thailand examines the current and future prospects for coal-fired power generation. The role of the government in the coal sector is discussed along with the power development plan being implemented to meet increasing energy demand. Environmental issues related to coal are a major issue in Thailand particularly because of problems with SO{sub 2} emissions at the Mae Moh power station which have been solved by the use of flue gas desulphurisation. The report examines the role of international organisations such as the ADB, APEC, WB, ASEAN, IEA and USAID in clean coal technologies and how this could be improved. 70% of Thailand's power is generated from natural gas. The government recognises the need to diversify its energy sources since only 12 years of proven domestic gas reserves remain. Northern Thailand has around 2 Gt of coal reserves, mostly lignite of high sulphur content. It is estimated that 1 Gt of these could be used economically. Coal production in 2008 was between 18-19 Mt which was supplemented with 17-18 Mt of imports. In the future it is likely that all new coal-fired power stations will burn imported low sulphur coal with imports projected to rise to 48 Mt by 2021. Thailand is facing up to a challenge to develop and deploy clean coal technologies. This has begun with the first supercritical coal-fired power station being built, due to be operational by 2011. A key conclusion of this report is that a central organisation should be established in the public or private sector to undertake and promote clean coal technology research, education and deployment with domestic and international organisations as well as strengthen the sustainable use of coal in Thailand. 186 refs., 12 figs., 12 tabs.

  16. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  17. Gaseous Oxidized Mercury Dry Deposition Measurements in the Southwestern USA: A Comparison between Texas, Eastern Oklahoma, and the Four Corners Area

    Directory of Open Access Journals (Sweden)

    Mark E. Sather

    2014-01-01

    Full Text Available Gaseous oxidized mercury (GOM dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012. The purpose of this study was to provide an initial characterization of the magnitude and spatial extent of ambient GOM dry deposition in central and eastern Texas for a 12-month period which contained statistically average annual results for precipitation totals, temperature, and wind speed. The research objective was to investigate GOM dry deposition in areas of Texas impacted by emissions from coal-fired utility boilers and compare it with GOM dry deposition measurements previously observed in eastern Oklahoma and the Four Corners area. Annual GOM dry deposition rate estimates were relatively low in Texas, ranging from 0.1 to 0.3 ng/m2h at the four Texas monitoring sites, similar to the 0.2 ng/m2h annual GOM dry deposition rate estimate recorded at the eastern Oklahoma monitoring site. The Texas and eastern Oklahoma annual GOM dry deposition rate estimates were at least four times lower than the highest annual GOM dry deposition rate estimate previously measured in the more arid bordering western states of New Mexico and Colorado in the Four Corners area.

  18. Western Coal/Great Lakes Alternative export-coal conference

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  19. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods

  20. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  1. New Hope Coal Australia: leaders in thin seam coal mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    New Hope Corporation Ltd.'s coal activities in Queensland are conducted under the business name of New Hope Coal Australia and comprise open-cut mines in the West Moreton coal fields, 40 km west of Brisbane. The company gained an award for its reject co-disposal system and another for its organic overburden conditioning programme. Walloon coal from the Jeebropilly and New Oakleigh open-cut mines has characteristics which are making it increasingly popular as power plant fuel. The article describes operations at these mines and also at Swanbank and Acland. Other projects with which New Hope is involved are mentioned. 4 photos.

  2. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  4. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    Science.gov (United States)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  5. 33 CFR 165.804 - Snake Island, Texas City, Texas; mooring and fleeting of vessels-safety zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Snake Island, Texas City, Texas... Guard District § 165.804 Snake Island, Texas City, Texas; mooring and fleeting of vessels—safety zone. (a) The following is a safety zone: (1) The west and northwest shores of Snake Island; (2) The...

  6. 75 FR 36710 - The Texas Engineering Experiment Station/Texas A&M University System; Notice of Acceptance for...

    Science.gov (United States)

    2010-06-28

    ... COMMISSION The Texas Engineering Experiment Station/Texas A&M University System; Notice of Acceptance for... Facility Operating License No. R-83 (``Application''), which currently authorizes the Texas Engineering Experiment Station/Texas A&M University System (TEES, the licensee) to operate the Nuclear Science Center...

  7. Images of industry: coal

    Energy Technology Data Exchange (ETDEWEB)

    Thornes, R.

    1994-12-31

    Numerous buildings and structures associated with coalmining have been made redundant by the recent and rapid contraction of the industry and many now face an uncertain future. The photographs in this book form part of a comprehensive record of coal-industry architecture made by the Royal Commission in response to that threat. From pit-head baths and colliery headgear to model housing and miners` memorials, these images capture the full variety of the coal industry`s impact on the environment. The supporting text explains the history and development of building types that have been taken for granted up to now, but which, looked at in detail, tell the fascinating story of a once-mighty industry. 82 refs., 120 photos.

  8. Fuelling car production with coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholze, U. [FAM Foerderanlagen, Magdeburg (Germany)

    2000-08-01

    FAM Foerderanlagen Magdeburg Group was commissioned by SKO-Energo Fin s.r.o. to supply, erect and commission a complete coaling plant with stockyard for the latter's thermal power station, to be built on the premises of the Skoda works at Mlada Boleslav in the Czech Republic. Coal from rail wagons is unloaded into an underground bunker and is moved from the stockpile with chain and inclined conveyors into a processing building for screening, crushing and blending, using an FAM PHM 1214 MRVD impact hammer. From the processing plant coal is conveyed to the coal bunker of the power plant which has two boilers with circulating atmospheric fluidized beds. The coaling plant is controlled from an independent coaling control room. It achieves low emissions of SO{sub 2}, NOx, Co and dust. 4 figs.

  9. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  10. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  11. Coal - testing methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-01

    This Standard specifies the method for the particle-size analysis, the method for determination of the float and sink characteristics, the method for determination of Hardgrove grindability indices, the method for determination of the crucible swelling number, the method for determination of the swelling properties, the method for determination of the fluidity properties, the method for determination of the coking properties, the method for determination of the fusibility of ash, and the method for determination of Roga indices of coal.

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  13. Coal liquefaction and hydrogenation

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  14. Preliminary Public Design Report for the Texas Clean Energy Project: Topical Report - Phase 1, June 2010-July 2011

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-02-01

    Summit Texas Clean Energy, LLC (Summit) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin sub-bituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. Front-end Engineering and Design (FEED) commenced in June 2010 and was completed in July 2011, setting the design basis for entering into the detailed engineering phase of the project. During Phase 1, TCEP conducted and completed the FEED, applied for and received its air construction permit, provided engineering and other technical information required for development of the draft Environmental Impact Statement, and

  15. Liquid chromatographic analysis of coal surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1991-01-01

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  16. Coal: a human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-12-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. It made China a twelfth-century superpower, inspired the writing of the Communist Manifesto, and helped the northern states win the American Civil War. Yet the mundane mineral that built our global economy - and even today powers our electrical plants - has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. In this book, Barbara Freese takes us on an historical journey that begins three hundred million years ago and spans the globe. From the 'Great Stinking Fogs' of London to the rat-infested coal mines of Pennsylvania, from the impoverished slums of Manchester to the toxic city streets of Beijing, this book describes an ordinary substance that has done extraordinary things.

  17. Zero emission coal

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  18. Stockyard machines for coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-07-01

    A little unexpectedly, coal has become something like the fuel of the future. This can also be seen from the large number of projects for coal handling facilities world wide. Most of the times, stacking and reclaiming equipment forms a major, and often quite impressive part of these facilities. The contribution under consideration provides examples of such equipment for handling of coal from Sandvik Mining and Construction.

  19. Coal in a sustainable society

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley [BHP Minerals Technology (Australia)

    2001-12-01

    This report builds on an earlier ACARP project C8049 Environmental Credentials of Coal and is aimed at assisting the coal industry to understand the role of coal in a sustainable society, for both iron and steel production, and for electricity generation. Iron and steel life cycle analysis (LCA) case studies show that, in terms of resource energy and greenhouse gas emissions (GGEs), the emerging coal based technologies compare favourably with gas based routes, if displacement credits can be claimed. There is clearly a change emerging in technologies for iron and steel production which favours the use of coal, and the coupling of hot metal production to electric arc furnaces. The 'dash to gas' is slowing. An important issue for the Australian coal industry is the relationship between coal properties and operating performance for these emerging technologies. 19 electricity LCA case studies have been carried out for a wide range of technologies. A number of opportunities have been identified from these for reducing the GGEs for coal based electricity generation technologies. LCAs were also carried out on cement production, coal production, and coal mine waste and fly ash utilisation. The GGE results for cement compared favourably with those published by the IEA when allowance was made for fly ash and blast furnace slag use in Australian cements, the results were in agreement with those published by the Cement Industry Federation. Extensive overseas discussions confirmed that coal's positive attributes will underpin the transition to more sustainable energy systems. It is therefore important to reverse the decline in coal R&D which has occurred in many developed countries, and to transfer technology (eg through CDM) to developing countries, and in particular China and India.

  20. Pyrolysis g.c.-m.s. of a series of degraded woods and coalified logs that increase in rank from peat to subbituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Lerch, H. E.; Kotra, R.K.; Verheyen, T.V.

    1988-01-01

    Xylem tissue from degraded wood and coalified logs or stems was examined by pyrolysis g.c.-m.s. to improve understanding of the coalification process. The pyrolysis data, when combined with solid-state 13C n.m.r. data for the same samples, show several stages of evolution during coalification. The first stage, microbial degradation in peat, involves the selective degradation of cellulosic components and preservation of lignin-like components. As coalification increases, the lignin structural units undergo a series of defunctionalization reactions. The first of these involve loss of methoxyl groups, with replacement by phenolic hydroxyls such that catechol-like structures are produced. As the xylem tissue is converted to subbituminous coal, the persistence of phenols and methylated phenols in pyrolysis g.c.-m.s. data of subbituminous coal suggests that the catechol-like structures are being converted to phenol-like structures. The ability to discern detailed changes in the chemical structural composition of a genetically and histologically related series of samples provides an ideal method for developing models of coal structure, especially that of low-rank coal. ?? 1988.

  1. Numerical study of flow, combustion and emissions characteristics in a 625 MWe tangentially fired boiler with composition of coal 70% LRC and 30% MRC

    Science.gov (United States)

    Sa'adiyah, Devy; Bangga, Galih; Widodo, Wawan; Ikhwan, Nur

    2017-08-01

    Tangential fired boiler is one of the methods that can produce more complete combustion. This method applied in Suralaya Power Plant, Indonesia. However, the boiler where supposed to use low rank coal (LRC), but at a given time must be mixed with medium rank coal (MRC) from another unit because of lack of LRC coal. Accordingly to the situation, the study about choosing the right position of LRC and MRC in the burner elevation must be investigated. The composition of coal is 70%LRC / 30%MRC where MRC will be placed at the lower (A & C - Case I)) or higher (E & G - Case II) elevation as the cases in this study. The study is carried out using Computational Fluid Dynamics (CFD) method. The simulation with original case (100%LRC) has a good agreement with the measurement data. As the results, MRC is more recommended at the burner elevation A & C rather than burner elevation E & G because it has closer temperature (880 K) compared with 100%LRC and has smaller local heating area between upper side wall and front wall with the range of temperature 1900 - 2000 K. For emissions, case I has smaller NOx and higher CO2 with 104 ppm and 15,6%. Moreover, it has samller O2 residue with 5,8% due to more complete combustion.

  2. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  3. Better planning in coal handling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    More coal terminals are purchasing planning applications to improve the planning process and optimize throughput. Port Kembla Coal Terminal in New South Wales has chosen Quintiq's integrated advanced planning and scheduling solution (APS) to maximise its capacity capabilities and provide seamless integration across its coal supply chain. Implementation will be completed in early 2010. QMASTOR claims to be the market leader in bulk materials software solutions. Its Horizon APS is used at one coal terminal to manage inbound transportation, stockyard allocations and ship loading. Fuelworx software developed by Energy Softworx can manage fuel procurement process, manage contracts and maintain audit controls. 1 fig., 1 photo.

  4. The Global Value of Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal plays an essential role in our global energy mix, particularly for power generation; and through that to the alleviation of energy poverty. The use of coal continues to grow rapidly and will continue, together with other fuels, to support world economic and social development particularly in rapidly developing world economies such as China and India. The purpose of this paper is to highlight for policy makers the value of coal to world economic and social development and so encourage development of a policy environment that will allow the coal and electricity industries to make the necessary investments in production capacity and CO2 emissions reduction technologies.

  5. Coal desulfurization prior to combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wrathall, J.; Vermeulen, T.; Ergun, S.

    1979-11-01

    Since current coal cleaning processes remove only a fraction of the total sulfur, the question arises as to what fraction of US coals can be cleaned within current EPA new source standards (1.2 lb. SO/sub 2/ per MMBTU). A number of studies has shown the fraction to be encouragingly large. A report on the applicability of the Meyers process estimates, on the basis of 35 coals sampled, that 40% of the samples could be burned cleanly after some combination of physical separation and chemical leaching. A report by Ergun on coal cleaning gives the higher estimate of cleanability of 56%, based on 455 samples properly weighted between Eastern and Western coals. Beyond this figure, Ergun estimates an additional 17% is cleanable if 30 to 40% of the organic sulfur is removed, bringing the total cleanable to 73%. Data from a study by Cavallaro, with coal reserves taken from a study by Beekers, give an estimate in agreement with that of Ergun on the amount of coal cleanable by pyrite removal. In summary, cleanable coal reserves increase by 33% if processes are used which can remove what are probably the more reactive organic sulfur species, such as aliphatic mercaptans, sulfides, and disulfides. A process which attacks the refractor thiophenic sulfur could conceivably increase the cleanable coal reserves by another 20 to 30%, assuming roughly equal distribution between reactive and refractory organic sulfur.

  6. Awakening a sleeping coal giant

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.

    2007-08-15

    Botswana, a southern African country that in the 1980s could not economically land a tonne of coal at the closest export terminal and even today mines no more than 1 million tpa, is to increase production to beyond 30 million tpa. A first ever coal conference in Gaborone called it the awakening of a coal giant. The alarm call for the coal giant is the realisation that without more generating capacity than its power utility Eskom can itself build in time, South Africa will in four to five years face a severe shortage of power. 1 ref., 5 figs., 2 tabs.

  7. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  8. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  9. The benefits of transportation investment in Texas.

    Science.gov (United States)

    2017-02-01

    This report highlights the benefits and return on investment of transportation funding in Texas. In total, over : the next decade, Texans will invest $131 billion in statewide infrastructure with a total economic benefit of : an estimated $373 billio...

  10. Texas RPO workshop implementation project summary.

    Science.gov (United States)

    2012-05-01

    This report documents rural planning organization (RPO) workshops conducted throughout Texas. An RPO is a voluntary organization created and governed by locally elected officials responsible for transportation decisions at the local level. RPOs addre...

  11. Achieving the Texas Higher Education Vision

    National Research Council Canada - National Science Library

    Benjamin, Roger

    2000-01-01

    The Texas higher education system faces severe challenges in responding to the twin demands placed on it by economic growth and by the increasing problems of access to higher education that many Texans experience...

  12. Regional tertiary cross sections: Texas Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Debout, D.G.; Luttrell, P.E.; Seo, J.H.

    1976-01-01

    Regional studies of the Frio Formation along the Texas Gulf Coast were conducted to evaluate potential geothermal energy from deep, geopressured sandstone reservoirs. Published regional cross sections, unpublished cross sections provided by several major oil companies, and extensive micropaleontological and electrical-log files at the Bureau of Economic Geology served as basic data. These sections are meant to show gross regional distribution of sand and shale facies both laterally and vertically throughout the entire Tertiary section along the Texas Gulf Coast.

  13. Making Texas Restaurants Healthier for Children

    Centers for Disease Control (CDC) Podcasts

    2014-12-30

    Sylvia Crixell, PhD, RD, Professor of Nutrition at Texas State University, discusses her study which details the success of a community-based program in Texas aimed at combatting childhood obesity by improving children’s menus in restaurants.  Created: 12/30/2014 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 12/30/2014.

  14. Coal and Coal/Biomass-Based Power Generation

    Science.gov (United States)

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  15. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.; Ramesh, R.

    1989-01-01

    This project is designed to develop an understanding of the fundamentals involved in flotation and flocculation of coal, and of coal in various states of oxidation. The main objective of this study is to accurately characterize the coal surface and elucidate mechanisms by which surface interactions between coal and various reagents enhance beneficiation of coals. Effects of oxidation on the modification of surface characteristics of coal by various reagents will also be studied. This quarter, the following studies were conducted in order to further develop our understanding of the role of heterogeneity in interfacial phenomena. (1) Since surface characterization is an important aspect in this project, ESCA (Electron Spectroscopy for Chemical Analysis) study of the coal surface was conducted. Surface derivatization, a technique often used in the preparation of organic compounds for gas-liquid chromatography, uses site specific molecular tags'' that bond to key chemical groups on the surface. Application of derivatization in conjunction with ESCA is a relatively new technique for quantifying functional groups on the surface which has not been possible till now. (2) A distribution of contact angles on the surface of coal (pseudo theta map) is presented based on our earlier results and other published information. The role of heterogeneity in contact angle studies is also examined. 14 refs., 2 tabs.

  16. Continuation application for the Amarillo National Resource Center for Plutonium, a higher education consortium consisting of Texas A and M University, Texas Tech University, and the University of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-29

    This report describes the 5 tasks to be covered under this project and compiles budget information. Task 1 is to establish a Plutonium Information Resource, which has been established in Amarillo, Texas. Task 2, Advisory Functions, coordinates studies and activities relating to the disposition of excess weapons-grade plutonium. Task 3, Environmental, Public Health, and Safety, supports soil remediation activities. Task 4, Education and Outreach, is supporting four programs: K--12 education improvement in science and math courses; Academic intervention to identify and encourage high ability high school and middle school students with potential to become scientists and engineers; Graduate education evaluation; and Public outreach programs. Task 5, Plutonium and other Materials Studies, is currently funding two projects for the disposition of high explosives: a feasibility study of burning a mixture of high explosives and other materials in a commercial coal-fired power plant and synthesis of diamond by shock compression of bucky ball with explosives.

  17. Prospects for coal and clean coal technologies in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Paul Baruya [IEA Clean Coal Centre, London (United Kingdom)

    2010-07-15

    Malaysia is a regular participant in world coal trade. Coal production is a modest 1 Mt/y but, as an importer, the country trades some 30 Mt/y. As one of ASEAN's most prosperous economies, the expected growth in electricity demand is inevitable. For many years the country has been dependent on gas-fired power, much of which is in the form of expensive single cycle gas turbines. However, coal-fired power has emerged as an important provider of power in a country desperate to improve its energy security. This report looks at how coal-fired power has developed, and examines the current technologies deployed in the country. It is the fourth in a series of reports by the lEA Clean Coal Centre on ASEAN countries, following Indonesia, Thailand and Vietnam. 35 refs., 14 figs., 4 tabs.

  18. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  19. Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams

    OpenAIRE

    Falshtynskyi, Volodymyr S.; Dychkovskyi, Roman O.; Vasyl G. Lozynskyi; Pavlo B. Saik

    2013-01-01

    In this article the characteristics of the criteria of borehole underground coal gasification for thin coal seams are defined. The thermal and material balance calculations for coal seam gasification processes are also explained. The construction, method of in situ gasifier preparation, and the sequence of coal seam gasification for area No 1 (located in the field of Solenovsk coal deposits) are also described. The parameters of borehole underground coal gasification for the Solenovsk coal mi...

  20. Rising Above the Storm: DIG TEXAS

    Science.gov (United States)

    Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.

    2011-12-01

    For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with

  1. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion

  2. Why Schools Should Consider Coal.

    Science.gov (United States)

    Pusey, Robert H.

    1981-01-01

    Coal has great potential for use in many school systems. Domestic supplies are abundant with relatively stable prices. Equipment is available for clean and efficient combustion of coal with little or no impact on environmental quality. Cost estimates are provided. (Author/MLF)

  3. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  4. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  5. Coal desulfurization. [using iron pentacarbonyl

    Science.gov (United States)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  6. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  7. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  8. Coal terminal guide 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    IBJ`s third edition of its annual guide to the world`s multi-user coal terminals includes comprehensive details of terminals in 44 countries. The guide sets out information for rapid and easy reference comprising contact, full address and communication details as well as berth dimensions and constraints, loading equipment and daily loading rate, annual loading capacity, daily discharge rate, annual discharge capacity, annual throughput capacity, storage facilities, stockyard capacity and equipment, processing facilities and so on. All information has been compiled from specific questionnaires and is presented alphabetically in country order.

  9. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available Final Project Report Coal pillar design procedures G. York, I. Canbulat, B.W. Jack Research agency: CSIR Mining Technology Project number: COL 337 Date: March 2000 2 Executive Summary Examination of collapsed pillar cases outside of the empirical... in strength occurs with increasing specimen size. 45 40 35 30 25 20 15 10 5 0 20 40 60 80 100 120 140 160 UNIAX IA L COMPR EHEN SIV E S TR ENG TH (M Pa ) CUBE SIZE (cm) Figure 1...

  10. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  11. Temperature profiles of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Sensogut, C.; Ozdeniz, A.H.; Gundogdu, I.B. [Dumlupinar University, Kutahya (Turkey). Mining Engineering Department

    2008-07-01

    Excess of produced coals should be kept in the stockyards of the collieries. The longer the duration time for these coals, the greater possibility for spontaneous combustion to take place. Spontaneously burnt coals result in economical and environmental problems. Therefore, taking the necessary precautions before an outburst of the spontaneous combustion phenomenon is too important in terms of its severe results. In this study, a stockpile having industrial dimensions was formed in coal stockyard. The effective parameters on the stockpiles of coal such as temperature and humidity of the weather, time, and atmospheric pressure values were measured. The interior temperature variations of these stockpiles caused by the atmospheric conditions were also measured. The interior temperature distribution maps of the stockpile together with maximum and minimum temperature values were expressed visually and numerically by the assistance of obtained data.

  12. Development coal tippler facility. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, F.

    1985-01-01

    Development coal at Mitsui Coal Mining's Ashibetsu mine was previously hauled in tubs through horizontal and inclined roadways to a tippler installed at the -410 m level, where it was transferred to a trunk belt conveyor which took it to the surface. However, when working faces began operating at depths in excess of -600 m, the main inclined shaft winding machine was found to be of insufficient capacity. Accordingly, a tippler for development coal has recently been installed in an unused coal storage pocket at the -600 m level, in conjunction with an extension to the trunk conveyor. The effect of this addition has been to reduce by 75% the amount of development coal handled by tubs in the main inclined shaft, and to reduce the number of operators required, by six.

  13. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  14. Coal Reserves Data Base report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.W.; Glass, G.B.

    1991-12-05

    The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA's effort to update the Nation's coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

  15. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. Fifth quarterly report, April 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-12-01

    Preparation of ion-exchanged (including barium, calcium and potassium) demineralized Zap and Wyodak has been completed. Both vacuum dried and moist samples were prepared, using procedures described previously. The modified samples were subjected to functional group analysis as KBr pellets with FT-IR, and programmed pyrolysis analysis with TG-FTIR. Liquefaction experiments of these samples were also performed and products were analyzed. The data show that both the pyrolytic tar and liquefaction yields decrease with the extent of ion-exchange, i.e., in the order of (demineralized) > (ion-exchanged at pH 8) > (ion-exchanged at pH 12.5). For the pyrolysis of vacuum dried samples, the tar yield was higher for the potassium-exchanged coals than the calcium and barium-exchanged samples, suggesting that bivalent cations tighten the coal structure by cross-linking coal fragments and make it more difficult for tar molecules to escape. The liquefaction results show that the potassium-exchanged samples have higher liquefaction yields (especially asphaltenes) than for the barium- and calcium-exchanged samples. This can probably be attributed to the same reason for the high pyrolytic tar yield, i.e., that bivalent cations can serve as a cross-linking agents to tighten the coal structure. Remoisturization of vacuum dried Zap and Wyodak was done in the attempt to understand if moisture uptake for low rank coals is a reversible process and to see if moisture influences the role of the cations. Preliminary results show that the moisture content can reach that of the raw samples by remoisturization for Zap, but not for Wyodak. Furthermore, the chemical structure of the coal samples seems to have been changed by remoisturization, since different C0{sub 2} evolution behaviors were observed.

  16. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  17. Music classification by low-rank semantic mappings

    National Research Council Canada - National Science Library

    Panagakis, Yannis; Kotropoulos, Constantine

    2013-01-01

    ...) and which machine learning algorithm is appropriate for a specific music classification task. To address this challenge, given a number of audio feature vectors for each training music recording that capture the different aspects of music (i.e...

  18. Analysis of linear dynamic systems of low rank

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Aaljoki, K.; Høskuldsson, Agnar

    2005-01-01

    The objective of this paper is to show how the procedures of traditional chemometrics like stepwise evaluation of the model, graphic analysis of the latent structure, etc., can be applied to common modeling methods in chemical engineering like for instance Kalman filtering. Procedures of how...... to carry out graphic analysis of the dynamic systems. It is shown how score vectors can display the low dimensional variation in data, the loading vectors display the correlation structure, and the transformation vectors how the variables generate the resulting variation in data; these graphic analysis...... have proven their importance in traditional chemometric methods. These graphics methods are important in supervising and controlling the process in light of the variation in data. The algorithms can provide with solutions of models having hundreds or thousands of variables. It is shown here how...

  19. Summarization of human activity videos via low-rank approximation

    OpenAIRE

    Mademlis, Ioannis; Tefas, Anastasios; Nikolaidis, Nikos; Pitas, Ioannis

    2017-01-01

    Summarization of videos depicting human activities is a timely problem with important applications, e.g., in the domains of surveillance or film/TV production, that steadily becomes more relevant. Research on video summarization has mainly relied on global clustering or local (frame-by-frame) saliency methods to provide automated algorithmic solutions for key-frame extraction. This work presents a method based on selecting as key-frames video frames able to optimally reconstruct the entire vi...

  20. Bayesian inference for low-rank Ising networks

    NARCIS (Netherlands)

    Marsman, M.; Maris, Gunter; Bechger, Timo; Glas, Cornelis A.W.

    2015-01-01

    Estimating the structure of Ising networks is a notoriously difficult problem. We demonstrate that using a latent variable representation of the Ising network, we can employ a full-data-information approach to uncover the network structure. Thereby, only ignoring information encoded in the prior

  1. s-Goodness for Low-Rank Matrix Recovery

    Directory of Open Access Journals (Sweden)

    Lingchen Kong

    2013-01-01

    to linear transformations in LMR. Using the two characteristic s-goodness constants, γs and γ^s, of a linear transformation, we derive necessary and sufficient conditions for a linear transformation to be s-good. Moreover, we establish the equivalence of s-goodness and the null space properties. Therefore, s-goodness is a necessary and sufficient condition for exact s-rank matrix recovery via the nuclear norm minimization.

  2. Unconventional methods for coal extraction from coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Skalicka, J.; Vydra, J.

    1984-06-01

    Unconventional methods for coal seam extraction are discussed which could be suitable for mining and geologic conditions of Czechoslovakia. The following methods are comparatively evaluated: in-situ gasification (tests carried out in Czechoslovakia in Borislav, Brezno I, Brezno II), cutting coal by jets of water at a pressure of 10 MPa or pulses of water jets at a pressure of 1400 MPa, in-situ dissolution of coal seams (using hydrocarbons as a solvent at a temperature of 300 to 400 C), in-situ hydrogenation, in-situ distillation, fluid injection of chemical compounds which cause coal fracturing and comminution under water pressure (injection of sodium hydroxides or a mixture of nitrogen, oxygen followed by water solution of ammonia, temperature from 10 to 100 C, pressure from 0.1 to 10.0 MPa). From among the evaluated unconventional coal extraction methods, in-situ gasification, coal cutting by water jets and use of fluid injection of chemical compounds which cause coal fracturing are most suitable for geologic conditions in Czechoslovakia. 9 references.

  3. Chemicals from coal. Utilization of coal-derived phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Schobert, H.H.

    1999-07-01

    This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

  4. Problems of hard coal desulphurisation in Poland in processes of coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W.; Gawlik, L. [Mineral and Energy Economy Research Centre, Krakow and State Agency for Restructuring of Harc Coal Industry, Katowice (Poland); Nycz, R.; Starzak, Z.; Tazbirek, L. [State Agency for Restructuring of Hard Coal Industry, Katowice (Poland)

    1998-07-01

    The paper gives details on production and use of hard coal in Poland. On this background the problem of high sulphur coal is shown. The structure of coal production according to sulphur content in coal and demands of users for coal of different quality is given. The programme of building new coal fines preparation and desulphurisation plants is shown and comparison the projected plants with the existing ones is done. The viability evaluation of processes of coal preparation and desulphurisation in Poland is Shown. In the context of the restructuring programme of hard coal mining industry in Poland the problem of high sulphur coal utilisation is described. 7 refs.

  5. Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Yan Cao; Chin-Min Cheng; Chien-Wei Chen; Mingchong Liu; Chiawei Wang; Wei-Ping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-11-15

    The purpose of this study was to investigate the dependence of mercury emissions on coal ranks and electric utility boilers equipped with Fabric Filter Baghouses (FF). A comparison of mercury emission rates and fly ash properties was made between a circulating Fluidized Bed Combustor (CFBC) with FF and a Pulverized Coal (PC) combustor with FF during the burning of all three ranks of American coals. The data were collected from the Environmental Protection Agency Information Collection Request (EPA ICR) and WKU ICSET's mercury testing program. A statistical stepwise regression procedure was used to determine significant factors such as coal rank and types of boilers equipped with FF on mercury emissions during coal combustion. The higher mercury emission rates were generally found in both CFB and PC units when lignite was burned. The lower mercury emission rates were generally found in both CFB equipped with FF and PC units equipped with FF when bituminous coal was burned. There was a statistically significant lower mercury emission in the CFBC equipped with FF than that in the PC units when sub-bituminous coal was burned. Lower mercury emission rates in electric utility boilers equipped with FF are due to the active fly ash generated with a larger specific surface area and pore volume. Higher mercury emission rates observed during lignite-fired boilers may be due to their lower specific area of fly ash, which results from lower LOI, as well as the pore blockage by selenium (Se) for Texas lignite; and sodium (Na) and potassium (K) for North Dakota lignite. There is no significant mutual benefit for the mercury captured by the addition of Spray Dry Absorber (SDA) or selective non-catalytic reduction (SNCR) in the CFBC system. 25 refs., 8 figs., 2 tabs.

  6. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  7. Memorandum on coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Struss

    1942-10-27

    The first test facility was built in Ludwigshafen in Building 35 in 1924. During the Technical Committee meeting of February 4, 1926, Carl Bosch reported briefly for the first time on the status of coal hydrogenation and promised a comprehensive report to follow. Next, in connection with the Technical Committee meeting of July 13, 1926, Bosch arranged for the Committee to tour the test facility. Subsequently, the first industrial facility, for a yearly output of 100,000 tons, was built in Leuna with great speed and began production in April 1927. For this facility RM 26.6 million in credit was appropriated during 1926 and 1927 (the costs, including associated units, were estimated at RM 46 million; the RM 26.6 million covered only erection of the plant). A further RM 264 million was written off to hydrogenation in the years 1926 to 1931 on tests in new areas. At the end of 1929 the large scale tests at Merseburg were interrupted. On April 7, 1932, in the Nitrogen Branch discussion at Ludwigshafen, Dr. Schneider reported on the improvement in coal decomposition percentage which had meanwhile been achieved: from 60% to 95%. He proposed a last large-scale test, which was to require RM 375,000 up to the starting point and RM 170,000 per month during the six-month test period. This last test then led to definitive success in 1933.

  8. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  9. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  10. Stackers/reclaimers monitor coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, K.; Friedrich, J.; Zdercik, J.; Zeman, V.; Fridrichova, I. [Vitkovice-Prodeco a.s. (Czech Republic)

    2002-01-01

    The recent development and construction of two stacker/reclaimers to operate a coal homogenisation storage facility is discussed. Vitkovice-Prodeco engineers have designed the multifunctional stacker/reclaimers which form a coal storage facility and control system to shift coal from the homogenisation stockyard to the coal preparation plants. 2 figs., 1 tab.

  11. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  12. Mineral matter and ash in coal

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S. (ed.)

    1986-01-01

    The ACS Division of Fuel Chemistry was responsible for the symposium, held in Philadelphia in 1984, that gave rise to the 38 typescript papers in this volume. They are concerned with the chemistry of coal mineral matter, coal ash properties and their prediction, coal ash deposition in boilers, and catalysis by ash and mineral matter in coal utilization.

  13. Efficient use of coal water fuels

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley; Doug Palfreyman; Peter Scaife [CSIRO Energy Technology (Australia)

    2008-04-15

    This report assesses the use of coal water fuels for high efficiency power generation, and focuses on internal combustion engines. The coal water fuels are based on UCC's ultra clean coal, and the study considered the entire fuel cycle - from coal in the ground, through to delivered electricity. 67 refs., 39 figs., 79 tabs.

  14. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  15. Texas Clean Energy Project: Topical Report, Phase 1 - February 2010-December 2012

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-11-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work

  16. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  17. Texas site selection and licensing status

    Energy Technology Data Exchange (ETDEWEB)

    Avant, R.V. Jr.

    1989-11-01

    Texas has identified a potential site in Hudspeth County in far West Texas near the town of Fort Hancock. Over the past year the Texas Low-Level Radioactive Waste Disposal Authority has been conducting detailed geology, hydrology, meteorology, soils, and flora and fauna evaluations. An authorization by the Board of Directors of the Authority to proceed with a license application, assuming that the detailed evaluation indicates that the site is suitable, is expected by September. A prototype license has been prepared in anticipation of the order to proceed with licensing, and the formal license application is expected to be submitted to the Texas Department of Health-Bureau of Radiation Control in December, meeting the license application milestone. Although site selection processes in all siting areas across the country have experienced organized opposition, El Paso County has funded a particularly well-organized, well-financed program to legally and technically stop consideration of the Fort Hancock site prior to the licensing process. Many procedural, regulatory, and technical issues have been raised which have required responses from the Authority in order to proceed with licensing. This has provided a unique perspective of what to expect from well-organized opposition at the licensing stage. This paper presents an update on the Texas siting activity with detailed information on the site evaluation and license application. Experience of dealing with issues raised by opposition relating to NRC guidelines and rules is also discussed.

  18. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  19. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  20. Economy of bituminous coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    von Hochstetter, H.

    1944-05-11

    The influence of various factors on the production cost of (Janina) bituminous coal hydrogenation is analyzed briefly. The initial reckoning yielded a production cost of 188 marks per metric ton of gasoline and middle oils. The savings concomitant to changes of one percent in gasification, one percent in utilization of purified coal, one percent raising of space/time yield, one percent increase in throughput, one percent in coal concentration in the paste, and one percent in low temperature carbonization yield are listed. Factors affecting hydrogen consumption are listed in a table. Investigations showed the carbon-richest coal to produce a deviation in the effect of gasification upon the working costs by only 10 percent when compared with the Janina coal. Thus, the values listed were considered as guidelines for all kinds of bituminous coal. The calculations admitted the following conclusions: a maximum concentration of coal in the paste is desirable; one can assume a 2 percent reduction in the utilization with a 10 percent increase in throughput, as long as no changes in low temperature carbonization yield take place by changing the distribution in oil production; this configuration would change if the major concern were gas production instead of working costs, or if hydrogen production were the bottleneck. 1 table.