WorldWideScience

Sample records for tevatron

  1. Tevatron

    International Nuclear Information System (INIS)

    Yamada, R.

    1978-01-01

    The main ongoing project at Fermilab is called the Tevatron, meaning 1,000 GeV in beam energy. The following is a list of major constituents for this project: Super Ring; upgrading external beam lines for experimental areas; electron cooling and antiproton acceleration; and colliding beam facility and its detectors. At present the Super Ring is being build and installed in the Main Ring tunnel. Its injection line is completed and under test. Modification of the tunnel for the Switchyard beam lines is finished. All magnets for the Electron Cooling Ring are installed. Protons are being injected into the cooling ring for study. The designs for the colliding beam facility and its detectors will be finalized shortly. These facilities and their development are described

  2. Fermilab | Tevatron | Tevatron Symposium | Agenda

    Science.gov (United States)

    Industry Students and teachers Media Tevatron Navbar Toggle About Leadership and Organization Leadership and video archive Resources for Employees Researchers Job seekers Neighbors Industry Students and Haun Music: John Zorn Costumes: Ariane Dolan Dancers: Simone Baechle, Zada Cheeks, Katie Graves, and

  3. Coupling in the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-β quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note

  4. Celebrating the Tevatron legacy

    CERN Multimedia

    2012-01-01

    Fermilab hosted an exceptional event on 11 June: the Tevatron Impact symposium. More than 800 people attended to hear how the Tevatron advanced our understanding of fundamental physics.   A version of this "Director's Corner" by Pier Oddone first appeared in Fermilab Today on 12 June.   The development of accelerator technology for the Tevatron has influenced every subsequent major hadron accelerator. We heard reviews on the detector technologies and trigger systems developed with the Tevatron that are essential today for high-luminosity machines like the LHC. There were also talks on the superconducting-wire industry that made MRI magnets ubiquitous, and we discussed the major computational systems that use large farms of Linux-based commodity processors. Researchers who worked on the Tevatron also established multivariate analysis techniques that now allow us to squeeze the maximum information from complex data sets. One focus of the symposium was the ...

  5. Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R ampersand D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved

  6. Physics at the Tevatron

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Physics Results from the Tevatron : The Tevatron proton-antiproton collider at Fermilab in the US is currently the world's highest energy collider. At the experiments CDF and D0 a broad physics programme is being pursued, ranging from flavour physics via electroweak precision measurements to searches for the Higgs boson and new particles beyond the Standard Model. In my lecture I will describe some of the highlight measurements in the flavour, electroweak and searches sectors, and the experimental techniques that are used.

  7. Physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Field, Rick; /Florida U.

    2006-04-01

    The theme of the XXXIV International Meeting on Fundamental Physics held in El Escorial, Spain on April 2-7, 2006 was ''From HERA and the TEVATRON to the LHC''. This is a summary of the four lectures I presented on ''Physics at the Tevatron''. Heavy quark production and the production of photons, bosons, and jets at the Tevatron are discussed. Also, a detailed study at the ''underlying event'' at CDF is presented together with a discussion of PYTHIA 6.2 tunes. A look back at the ''old days'' of Feynman-Field collider phenomenology is included.

  8. Tevatron physics results

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    I will summarize the physics results from the Tevatron experiments with particular emphasis on the experimental methods used in different kinds of analysis. In particular, the Tevatron is a proton-antiproton collider that has now accumulated more than 2 fb^-1 of luminosity in the two experiments, called CDF and D0. In this lecture I will review the results on inclusive productions of jets, W- and Z-bosons, the results in the flavor sector, the measurements of top production, searches for Higgs boson production and searches for physics beyond the Standard Model. In each case I will explain the basic experimental concepts and methods needed for making the measurement.

  9. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  10. Supersymmetry at the Tevatron?

    International Nuclear Information System (INIS)

    Lammel, S.

    1998-02-01

    These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and D0, completed a long data taking period in summer of 1995, yielding over 100 pb -1 of proton-antiproton interactions. The data recorded by the experiments are still being analyzed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available

  11. Tevatron operational experiences

    International Nuclear Information System (INIS)

    Norris, B.L.; Theilacker, J.C.

    1989-02-01

    Fermilabs superconducting accelerator, the Tevatron has been operational for nearly six years. The history of its operation is presented. Several long shutdowns for superconducting dipole repairs are discussed. The dominant factor influencing the repair was conductor motion which fatigued the cable in the magnet ends. Borescoping and x-raying techniques were used to determine which magnet ends required repair. Detailed downtime logs were kept for each of the running periods. A discussion of the sources of downtime and a comparison for different operating modes is presented

  12. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.; Batavia, IL)

    1985-01-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper (1) summarizes performance

  13. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.

    1985-06-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper summarizes performance

  14. Recent results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Vellidis, Costas; Bravina, L.; Foka, Y.; Kabana, S.

    2015-01-01

    The Tevatron p$\\bar{p}$ collider was shut down in 2011, after 10 years of high performance operation at a center-of-mass energy √s = 1.96 TeV in Run II. The two experiments, CDF and DZero, continue to analyze the collected data, aiming to extract all possible information regarding studies of the standard model and searches for new physics. A short review of some of the recent measurements at the Tevatron, and of the impact of the Tevatron program to high energy physics, is presented.

  15. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  16. B physics at the tevatron

    International Nuclear Information System (INIS)

    1998-07-01

    Precision B-physics results from the CDF and D0 Collaborations based on data collected during the Tevatron 1992-96 run are presented. In particular we discuss the measurement of the B s meson lifetime, B c meson observation, and B 0 - anti B 0 mixing results obtained using time-evolution analyses. Prospects for the next Tevatron run, starting in 1999, are also reported

  17. Squark production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Hoepker, R.; Spira, M.; Zerwas, P.M.

    1994-11-01

    We have determined the QCD corrections to the production of squark-antisquark pairs in p anti p collisions at the Tevatron. If the next-to-leading order corrections are taken into account, the renormalization/factorization scale dependence of the theoretical prediction for the cross section is reduced considerably. The higher order corrections increase the production cross section at the Tevatron by about a factor two if we compare the next-to-leading order prediction at a scale near the sqaurk mass with the lowest order prediction for which, in the experimental analyses, the scale was identified with the invariant energy of the parton subprocess. This results in a rise of the experimental lower bound on the squark mass from the Tevatron by about 20 GeV. (orig.)

  18. Recent Results from the Tevatron

    International Nuclear Information System (INIS)

    Demorden, L.

    1998-06-01

    We review recent results from fixed-target and collider experiments at the Fermilab Tevatron. Among the topics discussed are jet production rates, α S measurements, the anti d/anti u ratio in the proton sea, diffraction, heavy quark physics and leptoquark searches

  19. Tau identification at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Stephen; /Chicago U., EFI

    2005-07-01

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  20. Achievements and Lessons from Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.

    2011-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - beginning operation in December of 1985 until it was overtaken by LHC in 2011. The aim of the this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 10 30 cm -2 s -1 , however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. Tevatron will be shut off September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. Below we briefly present the history of the Tevatron, major advances in accelerator physics, and technology implemented during the long quest for better and better performance. We also discuss some lessons learned from our experience.

  1. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  2. Tevatron serial data repeater system

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1981-01-01

    A ten megabit per second serial data repeater system has been developed for the 6.28km Tevatron accelerator. The repeaters are positioned at each of the thirty service buildings and accommodate control and abort system communications as well as distribution of the Tevatron time and energy clocks. The repeaters are transparent to the particular protocol of the transmissions. Serial data are encoded locally as unipolar two volt signals employing the self-clocking Manchester Bi-Phase code. The repeaters modulate the local signals to low-power bursts of 50 MHz rf carrier for the 260m transmission between service buildings. The repeaters also demodulate the transmission and restructure the data for local utilization. The employment of frequency discrimination techniques yields high immunity to the characteristic noise spectrum

  3. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  4. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  5. Electroweak results from the tevatron

    International Nuclear Information System (INIS)

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings

  6. Electroweak results from the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  7. B physics at the Tevatron

    International Nuclear Information System (INIS)

    Morello, M.J.

    2011-01-01

    The CDF and DO experiments at the Tevatron pp collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e + e - colliders. This provides a rich, and highly rewarding program that is currently reaching full maturity. I report a few recent world-leading results on rare decays, CP-violation in B 0 s s mixing, b→s penguin decays, and charm physics.

  8. Tevatron in the 1990s

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1989-01-01

    This paper reports that in 1978, Fermilab set out a goal of building a superconducting accelerator (Energy Saver) which would raise the proton energy to close to 1000 GeV for operation in two modes. Tevatron I would provide proton-antiproton collisions at a total CM energy of near 2.0 TeV to study the particle mass domain beyond 100 GeV. Tevatron II would provide extensive facilities for the programmatic study of Standard Model physics in an upgraded fixed-target program. There was of course the realization that with the right mixture of precision and imagination, the collider could add significantly to Standard Model physics (e.g. W and Z physics, W, Z pairs, B-physics) and that the fixed-target program could explore beyond the Standard Model (e.g., rare K-decays, CP violation). In 1988, we are engaged in setting out the future program of the Laboratory based upon the success of the Energy Saver, TeV I and TeV II construction programs. This future program assures the operation of the TEVATRON facility for physics is the overriding priority between now and perhaps 1993 and it also assumes that the Superconducting Super Collider (SSC) will be funded for construction in 1990 and will begin producing physics by 1999. A brief history of upgrades is presented in section XI

  9. A realtime feedback microprocessor for the TEVATRON

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1993-01-01

    A feedback microprocessor has been built for the TEVATRON. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor includes a finite state machine. Each state corresponds to a specific TEVATRON operation. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime correction. The authors also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. This talk will describe use of this device to control the TEVATRON tunes and discuss other uses

  10. BFKL Tests at the Tevatron

    International Nuclear Information System (INIS)

    Goussiou, A.

    1997-06-01

    The azimuthal decorrelation of jets as a function of their rapidity separation and the dependence of the fraction of jet events with central rapidity gaps on the center of mass energy are studied in p anti p collisions at the Tevatron. The preliminary results on jet decorrelation are in disagreement with calculations based on the Leading Logarithmic Approximation for BFKL resummation. The preliminary results on the √s--dependence of the central rapidity gap events are in disagreement with the two-gluon model for color-singlet exchange

  11. Parton distribution and Tevatron jet data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.

    2011-05-01

    We study the impact of Tevatron jet data on a global fit of parton distribution functions and on the determination of the value of the strong coupling constant α s (M Z ). The consequences are illustrated for cross sections of Higgs boson production at Tevatron and the LHC. (orig.)

  12. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  13. Measurements of Top Properties at the Tevatron

    International Nuclear Information System (INIS)

    Husemann, Ulrich; Yale U.

    2007-01-01

    The large data samples of thousands of top events collected at the Tevatron experiments CDF and D(O) allow for a variety of measurements to analyze the properties of the top quark. Guided by the question ''Is the top quark observed at the Tevatron really the top quark of the standard model,'' we present Tevatron analyses studying the top production mechanism including resonant t(bar t) production, the V -A structure of the t → Wb decay vertex, the charge of the top quark, and single-top production via flavor-changing neutral currents

  14. Fermilab Tevatron and Pbar source status report

    International Nuclear Information System (INIS)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10 31 cm -2 sec -1 , production rates up to 4 x 10 11 antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade

  15. Precision electroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    James, Eric B.

    2006-01-01

    An overview of Tevatron electroweak measurements performed by the CDF and Dφ experiments is presented. The current status and future prospects for high precision measurements of electroweak parameters and detailed studies of boson production are highlighted. (author)

  16. Tevatron alignment issues 2003-2004

    International Nuclear Information System (INIS)

    Volk, J.T.; Annala, J.; Elementi, L.; Gelfand, N.; Gollwitzer, K.E.; Greenwood, J.; Martens, M.; Moore, C.; Nobrega, A.; Russell, A.D.; Shiltsev, V.; Stefanski, R.; Sager, T.; Syphers, M.J.; Wojcik, G.

    2005-01-01

    It was observed during the early part of Run II that dipole corrector currents in the Tevatron were changing over time. Measurement of the roll for dipoles and quadrupoles confirmed that there was a slow and systematic movement of the magnets from their ideal position. A simple system using a digital protractor and laptop computer was developed to allow roll measurements of all dipoles and quadrupoles. These measurements showed that many magnets in the Tevatron had rolled more than 1 milliradian. To aid in magnet alignment a new survey network was built in the Tevatron tunnel. This network is based on the use of free centering laser tracker. During the measurement of the network coordinates for all dipole, quadrupole and corrector magnets were obtained. This paper discusses roll measurement techniques and data, the old and new Tevatron alignment network

  17. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  18. Tevatron HTS power lead test

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2004-01-01

    Two pairs of ASC 6 kA power leads developed for the Tevatron were successfully tested at Fermilab at over-current conditions. Stable operation was achieved while operating at a current of 9.56 kA for five hours and while continuously ramping between 0-9.56 kA at a ramp rate of 200 A/s for one hour. The minimum required liquid nitrogen flow rate was measured to be 1.5 g/s at 10 kA. After ramping up to 10 kA at 200A/s, it took only 15 minutes to stabilize the upper copper section of the lead with a flow of 1.8 g/s of liquid nitrogen vapor. Testing under extreme operating conditions--270-370 kPa liquid nitrogen vapor pressure and over 0.1 T external magnetic field--demonstrated that the HTS part of the lead can safely operate in the current sharing mode and that this design has large operating margin

  19. Multiplicities and minijets at Tevatron Collider energies

    International Nuclear Information System (INIS)

    Sarcevic, I.

    1989-01-01

    We show that in the parton branching model, the probability distribution does not obey KNO scaling. As energy increases, gluon contribution to multiplicities increases, resulting in the widening of the probability distribution, in agreement with experimental data. We predict that the widening of the distribution will stop at Tevatron Collider energies due to the dominant role of gluons at these energies. We also find that the gluon contribution to the 'minijet' cross section increases with energy and becomes dominant at the Tevatron Collider. We calculate QCD minijet cross sections for a variety of structure functions, QCD scales and p T min . We compare our theoretical results with the experimental data and find that some of the structure functions and choices of scale are preferred by the experimental data. We give theoretical predictions for the minijet cross section at the Tevatron Collider, indicating the possibility of distinguishing between different sets of structure functions and choices of scale. (orig.)

  20. Multibunch operation in the Tevatron Collider

    International Nuclear Information System (INIS)

    Holt, J.A.; Finley, D.A.; Bharadwaj, V.

    1993-05-01

    The Tevatron Collider at Fermilab is the world's highest energy hadron collider, colliding protons with antiprotons at a center of mass energy of 1800 GeV. At present six proton bunches collide with six antiproton bunches to generate luminosities of up to 9 x 10 30 cm -2 s -1 . It is estimated that to reach luminosities significantly greater than 10 31 cm -2 s -1 while minimizing the number of interactions per crossing, the number of bunches will have to be increased. Thirty-six bunch operation looks like the most promising plan. This paper looks at the strategies for increasing the number of particle bunches, the new hardware that needs to be designed and changes to the operating mode in filling the Tevatron. An interactive program which simulates the filling of the Tevatron collider is also presented. The time scale for multibunch operation and progress towards running greater than six bunches is given in this paper

  1. From the Tevatron to Project X

    CERN Multimedia

    Pier Oddone, Fermilab director (from CERN Courier)

    2011-01-01

    In the October issue of the CERN Courier, Fermilab Director Pier Oddone will present the past, present and future of the US laboratory after the Tevatron. The Bulletin presents some early extracts from his article…   Fermilab Director, Pier Oddone. The end of September marks the end of an era at Fermilab, with the shutdown of the Tevatron after 28 years of operation at the frontiers of particle physics. The Tevatron’s far-reaching legacy spans particle physics, accelerator science and industry. The collider established Fermilab as a world leader in particle physics research, a role that will be strengthened with a new set of facilities, programmes and projects in neutrino and rare-process physics, astroparticle physics, and accelerator and detector technologies. The Tevatron exceeded every expectation ever set for it. This remarkable machine achieved luminosities with antiprotons once considered impossible, reaching more than 4x1032 cm-2s-1 instantaneous luminosity and...

  2. Beta measurements and modeling the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1993-06-01

    The Tevatron collider is now able with two low-β (β*=0.25--0.5m) interaction regions denoted as B0 and D0. This lattice allows independent operation of the interaction regions which required that the previous collider lattice, used in 1988--89, had to be modified. In order to see how well the lattice conforms to the design, measurements of the β function have been carried out at 15 locations in the new Tevatron collider lattice. Agreement can be obtained between the measurements and a computer model for the Tevatron, based on the design, only if the strengths of the gradients in the quadrupoles in the low-β triplet are allowed to differ from their design values. It is also observed that the lattice is very sensitive to the precise values of the gradients in these magnets

  3. Top quark mass measurement at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  4. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  5. Top and Electroweak Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, P. [Comenius U.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  6. Are PDFs still consistent with Tevatron data?

    Directory of Open Access Journals (Sweden)

    Sullivan Zack

    2018-01-01

    Full Text Available As active data taking has moved to the LHC at CERN, more and more LHC data have been included into fits of parton distribution functions. An anomaly has arisen where formerly excellent agreement between theoretical predictions and experiment in single-top-quark production at the Tevatron is no longer quite as good. Is this indicative of a deeper issue?

  7. Photon final states at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mario; /University Coll. London

    2008-04-01

    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  8. Tevatron targets three-year extension

    CERN Multimedia

    Harris, Margaret

    2010-01-01

    "Fermilab's Tevatron collider could get a new lease on life following a campaign to keep the facility running beyond the end of 2011, when the rival Large Hadron Collider (LHC) at Cern is scheduled to shut down for 15 months of repairs" (0.75 page)

  9. Fundamentally new physics at the Tevatron Collider?

    International Nuclear Information System (INIS)

    Chan Hongmo; Nellen, L.; Tsou Sheungtsun

    1989-02-01

    A new dispersion relation analysis of present pp-bar scattering data suggests the existence by Tevatron Collider energies of a threshold, of such nature, as is unlikely to be explainable in terms of known physics or any of its standard projections. (author)

  10. Initial operation of the Tevatron collider

    International Nuclear Information System (INIS)

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented

  11. The Tevatron Hadron Collider: A short history

    International Nuclear Information System (INIS)

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade

  12. Tevatron B0 low beta tuning report

    International Nuclear Information System (INIS)

    Johnson, D.E.

    1982-01-01

    A detailed study of the low beta insertion for the B0 experimental area has been carried out and is described below. This insertion is similar to the Type C low beta previously report, anti p Note 169, although some changes have been made to the quadrupole lengths and positions. This insertion is designated Type E. The purpose of the study was to see if it is possible to turn the insertion on in a smooth and continuous manner and tune the insertion to a value of β* of less than one meter while maintaining the overall tune of the j Tevatron to a constant value. This was found to be possible. An examination of chromaticity corrections for the Tevatron with the low beta insertion on in various configurations was also undertaken

  13. Longitudinal damping in the Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  14. Recent QCD Studies at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  15. Top quark production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Varnes, Erich W.; /Arizona U.

    2010-09-01

    The Fermilab Tevatron has, until recently, been the only accelerator with sufficient energy to produce top quarks. The CDF and D0 experiments have collected large samples of top quarks. We report on recent top quark production measurements of the single top and t{bar t} production cross sections, as well as studies of the t{bar t} invariant mass distribution and a search for highly boosted top quarks.

  16. Photons and diphotons from the Tevatron

    International Nuclear Information System (INIS)

    Blair, R.

    1997-08-01

    Photon measurements from the CDF and D0 collaboration are described. The subjects touched on are loosely organized around the fact that they all have some bearing on the structure functions and pQCD. The methodology of collider measurements is briefly reviewed, and the results for single photons, photons plus jets, photons plus charm and diphotons are discussed. Finally there is a very brief indication of what is expected from the Tevatron based experiments in the future

  17. Searches for new physics at the Tevatron

    International Nuclear Information System (INIS)

    Merritt, K. Wyatt

    1997-01-01

    This paper summarizes searches at the Fermilab Tevatron for a wide variety of signatures for physics beyond the Standard Model. These include searches for supersymmetric particles, in the two collider detectors and in one fixed target experiment. Also covered are searches for leptoquarks, dijet resonances, heavy gauge bosons, and particles from a fourth generation, as well as searches for deviations from the Standard Model predictions in dijet angular distributions, dilepton mass distributions, and trilinear gauge boson couplings

  18. Longitudinal damping in the Tevatron collider

    International Nuclear Information System (INIS)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs

  19. Higgs boson studies at the Tevatron

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L.; Abbott, B.; Abazov, V. M.; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman

    2013-01-01

    Roč. 88, č. 5 (2013), "052014-1"-"052014-29" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Higgs particle * mass * vector boson * gluon * fusion * Batavia TEVATRON Coll * CDF * DZERO * anti-p p * interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.864, year: 2013

  20. Twenty years of diffraction at the Tevatron

    International Nuclear Information System (INIS)

    Goulianos, K.; Rockefeller U.

    2005-01-01

    Results on diffractive particle interactions from the Fermilab Tevatron (bar p)p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held

  1. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  2. Increasing the energy of the Fermilab Tevatron accelerator

    International Nuclear Information System (INIS)

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R ampersand D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented

  3. Beyond the standard model at Tevatron

    International Nuclear Information System (INIS)

    Pagliarone, C.

    2000-01-01

    Tevatron experiments performed extensive searches for physics beyond the Standard Model. No positive results have been found so far showing that the data are consistent with the SM expectations. CDF and D0 continue the analysis of Run I data placing limits on new physics, including Supersymmetry, large space time dimensions and leptoquark models. With the Run II upgrades, providing an higher acceptance and higher luminosity, it will be possible to make important progresses in the search for new phenomena as well as in setting limits on a larger variety of theoretical models

  4. Present state of Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab continues to work on raising the particle energy of the Tevatron by lowering magnet temperatures using cold vapor compressors. In 1995, another two rounds of power tests were completed. These power tests, although showing significant improvement over the initial tests of 1993-94, have led to the conclusion that 1000 GeV operation cannot be attained without replacing/rearranging magnets with lower quench currents before the next Collider Run in 1999. Development of more cold compressor control strategies also continues

  5. Electroweak physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Aihara, H.

    1993-08-01

    Preliminary results on electroweak physics from the 1992--1993 run with the CDF and D0 detectors at the Tevatron collider are presented. New measurements of the ratio of the W and Z production cross sections times the branching fractions for subsequent decay into leptons are shown. The W width, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted. The status of a measurement of the charge asymmetry of electrons from W decay is given. Also shown are a study of diboson (Wγ, Zγ and WZ) production and a search for a new neutral gauge boson (Z')

  6. Standard Model Higgs Searches at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  7. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  8. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  9. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  10. New diffractive results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  11. Gluino-pair production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Spira, M.; Zerwas, P.M.

    1995-05-01

    The next-to-leading order QCD corrections to the production of gluino pairs at the Tevatron are presented in this paper. Similar to the production of squark-antisquark pairs, the dependence of the cross section on the renormalization/factorization scale is reduced considerably by including the higher-order corrections. The cross section increases with respect to the lowest-order calculation which, in previous experimental analyses, had been evaluated at the scale of the invariant energy of the partonic subprocesses. (orig.)

  12. Electroweak, top and bottom physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ukegawa, Fumihiko; /Tsukuba U.

    2004-10-01

    The Tevatron Run-II program has been in progress since 2001, and the CDF and D0 experiments have been operational with upgraded detectors. Coupled with recent improvements in the Tevatron accelerator performance, the experiments have started producing important physics results and measurements. They report these measurements as well as prospects in the near future.

  13. An Ionization Profile Monitor for the Tevatron

    CERN Document Server

    Jansson, Andreas; Bowie, Kwame; Bross, Alan; Dysert, Robert; Fitzpatrick, Thomas; Kwarciany, Richard; Lundberg, Carl; Nguyen, Hogan; Rivetta, Claudio H; Slimmer, David; Valerio, Linda; Zagel, James

    2005-01-01

    Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be in...

  14. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  15. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  16. Non-SUSY Searches at the Tevatron

    International Nuclear Information System (INIS)

    Strologas, John

    2011-01-01

    We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb -1 . We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous γ + E T + X production, and searches for vector-like quarks.

  17. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  18. Nonlinear dynamics experiment in the Tevatron

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1989-01-01

    Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs

  19. Neutrino results from the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Shaevitz, M.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Bolton, T.A.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; De Barbaro, P.; Salcumoto, W.K.; Kinnel, T.S.; Sandler, P.H.; Smith, W.H.

    1995-01-01

    Results from the high-energy, high-statistics studies of neutrino nucleon interactions by the CCFR collaboration at the Fermilab Tevatron are described. Using a data sample of over 3.7million events with energies up to 600GeV, precision measurements are presented for the weak mixing angle, sin 2 θ w , the structure functions, F 2 (x,Q 2 ) and xF 3 (x,Q 2 ), aud the strange quark distribution, xs(x,Q 2 ). Comparisons of these measurements to those obtained in other processes are made in the context of global electroweak and QCD tests. Prospects for the next generation measurements by the NuTeV collaboration at Fermilab are also presented. ((orig.))

  20. Recent heavy flavor results from the Tevatron

    International Nuclear Information System (INIS)

    Dorigo, Mirco

    2012-01-01

    The CDF and D0 experiments at the Tevatron p(bar p) collider have pioneered and established the role of flavor physics in hadron collisions. A broad program is now at its full maturity. We report on three new results sensitive to physics beyond the standard model, obtained using the whole CDF dataset: a measurement of the difference of CP asymmetries in K + K - and π + π - decays of D 0 mesons, new bounds on the B s 0 mixing phase and on the decay width difference of B s 0 mass-eigenstates, and an update of the summer 2011 search for B (s) 0 mesons decaying into pairs of muons. Finally, the D0 confirmation of the observation of a new hadron, the χ b (3P) state, is briefly mentioned.

  1. Scientific Opportunity: the Tevatron and the LHC

    CERN Multimedia

    2010-01-01

    The press makes much of the competition between CERN’s LHC and Fermilab’s Tevatron in the search for the Higgs boson. This competitive aspect is real, and probably adds spice to the scientific exploration, but for us such reporting often feels like spilling the entire pepper shaker over a fine meal. The media’s emphasis on competition obscures the more important substance of our long-standing collaboration in scientific discovery.   Our laboratories and our communities have worked together for decades. Europeans have contributed greatly to the Tevatron’s many successes, including the discovery of the top quark, the discovery of fast oscillations in the decay of strange B mesons and the many searches for new phenomena. Americans have contributed to many programs at CERN, notably the extraordinary precision measurements of LEP, and more recently construction of the LHC accelerator and detectors. Fermilab scientists played a vital role throughout 2009 in...

  2. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  3. Tevatron The Cinderella story or the art of collider

    CERN Document Server

    CERN. Geneva

    2007-01-01

    The Tevatron Collider at Fermilab (Batavia, IL, USA) is the world's highest energy particle collider at 1.8TeV c.m.e. The machine was a centerpiece of the US and world's High Energy Physics for many years. Currently, the Tevatron is in the last years of its operation in so-called Run II which started 2001 and is tentatively scheduled to end in 2010. In this lecture series, we'll try to learn from the exciting story of the Tevatron Collider Run II: the story of long preparations, great expectations, initial difficulties, years of "blood and sweat", continuous upgrades, exceeding its goals, high emotions, tune-up of accelerator organization for "combat fighting". The lectures will cover Introduction to the Tevatron, its history and Run II; "Plumbing" Issues; Beam Physics Issues; Luminosity Progress; Organization of Troops and Lessons for LHC.

  4. Updated overview of the Tevatron control system

    International Nuclear Information System (INIS)

    Lucas, P.

    1987-10-01

    A single unified control system is used for all of the Fermilab accelerators and storage rings, from the LINAC to the Tevatron and antiproton source. A review of the general features is given - these include a 'host' system consisting of a number of minicomputers integrated with many distributed microprocessors in a variety of subsystems, usage of an in-house developed protocol, GAS, for communication between the two classes of machines, and a Parameter Page program, designed in conjunction with the system database, which allows a wide variety of quantities to be read and set in a coherent fashion. Recent developments include the implementation of a block transfer and 'fast time plot' facility through CAMAC, inclusion of several new computers in the host, a better understanding of system throughput, greatly improved reliability, advent of programs which sequence a large number of independent operations, and the construction of new hardware subsystems. Possible future system upgrades will be briefly presented. A summary of the utilization of a quite large software staff, at a time when the system is no longer under construction, will be discussed

  5. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  6. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  7. Tevatron energy and luminosity upgrades beyond the Main Injector

    International Nuclear Information System (INIS)

    Amidei, D.; Kamon, T.; Lopez, J.; McIntyre, P.; White, J.

    1994-08-01

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 10 33 cm -2 sec -1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  8. Constraints on unparticles from top properties measured at Tevatron

    International Nuclear Information System (INIS)

    Islam, Rashidul; Dahiya, Mamta; Dutta, Sukanta

    2013-01-01

    We discuss the recent observations of the top pair production at Tevatron through flavor conserving and flavor violating channels via vector and tensor unparticles. The unparticle sector is considered to be a color singlet or octet. We have used the unparticle propagators modified for full conformal invariance to investigate the contribution of these unparticles to the observed forward backward asymmetry and the spin correlation in top pair production at Tevatron. We also discuss the impact of the flavor violating couplings of unparticles to the third generation quarks on (a) pair production of same sign tops/antitops at TeVatron and (b) the partial top decay width for Γ u (t → uU V )

  9. Tevatron-for-LHC Report of the QCD Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  10. Simulation of beam-beam effects in tevatron

    International Nuclear Information System (INIS)

    Mishra, C.S.; Assadi, S.; Talman, R.

    1995-08-01

    The Fermilab accelerator complex is in the middle of an upgrade plan Fermilab III. In the last phase of this upgrade the luminosity of the Tevatron will increase by at least one order of magnitude. In order to keep the number of interactions per crossing manageable for experiments, the number of bunches will be increased from 6 x 6 to 36 x 36 and finally to ∼100 x 100 bunches. The beam dynamics of the Tevatron has been studied from Beam-Beam effect point of view in a ''Strong-Weak'' representation with a single particle being tracked in presence of other beam. This paper describes the beam-beam effect in 6 x 6 operation of Tevatron

  11. Detector implications for eletroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    Madaras, R.J.

    1996-12-01

    D0 and CDF are two large, powerful, multipurpose detectors with outstanding tracking, calorimeter and muon systems that have done an excellent job in exploiting the Top Quark, b Quark, QCD, New Phenomena/Exotics and Electroweak Physics at the Fermilab Tevatron Collider. The upgrades of the D0 and CDF detectors will further enhance their capabilities for physics at the Tevatron. The addition of a magnetic field and silicon vertex chamber will open up new physical opportunities for D0, and the replacement of the plug and forward gas calorimeters with new scintillator based calorimeters will give CDF uniform calorimetry over all η

  12. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  13. Signal processing for longitudinal parameters of the Tevatron beam

    International Nuclear Information System (INIS)

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.

    2005-01-01

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz

  14. TEVATRON Searches for Large Extra Dimensions and Leptoquarks

    International Nuclear Information System (INIS)

    Mattingly, S.

    2002-01-01

    This paper presents searches for large extra dimensions and leptoquarks in p(anti)p collisions from Run 1 at the Tevatron. Large extra dimensions are searched for in real graviton production with a monojet or monophoton and in virtual graviton exchange processes with electron or photon pairs. Results from leptoquark searches are presented for three generations of leptoquarks. No evidence of signal is found in any searches for large extra dimensions or leptoquarks and limits are placed. Perceptivities for these searches in the Tevatron's Run 2 are discussed and initial Run 2 data is presented. (author)

  15. Tevatron-for-LHC Report: Preparations for Discoveries

    CERN Document Server

    Abdullin, Salavat; Asai, Shoji; Atramentov, Oleksiy Vladimirovich; Baer, Howard; Balazs, Csaba; Bartalini, Paolo; Belyaev, Alexander; Bernhard, Ralf Patrick; Birkedal, Andreas; Buescher, Volker; Cavanaugh, Richard; Chen, Mu-Chun; Clement, Christophe; Datta, AseshKrishna; de Boer, Ytsen R.; De Roeck, Albert; Dobrescu, Bogdan A.; Drozdetskiy, Alexey; Gershtein, Yuri S.; Glenzinski, Douglas A.; Group, Robert Craig; Heinemeyer, Sven; Heldmann, Michael; Hubisz, Jay; Karlsson, Martin; Kong, Kyoungchul; Korytov, Andrey; Kraml, Sabine; Krupovnickas, Tadas; Lafaye, Remi; Lane, Kenneth; Ledroit, Fabienne; Lehner, Frank; Lin, Cheng-Ju; Macesanu, Cosmin; Matchev, Konstantin T.; Menon, Arjun; Milstead, David; Mitselmakher, Guenakh; Morel, Julien; Morrissey, David; Mrenna, Steve; O'Farrill, Jorge; Pakhotin, Yu.; Perelstein, Maxim; Plehn, Tilman; Rainwater, David; Raklev, Are; Schmitt, Michael; Scurlock, Bobby; Sherstnev, Alexander; Skands, Peter Z.; Sullivan, Zack; Tait, Timothy M.P.; Tata, Xerxes; Torchiani, Ingo; Trocme, Benjamin; Wagner, Carlos; Weiglein, Georg; Zerwas, Dirk

    2006-01-01

    This is the "TeV4LHC" report of the "Physics Landscapes" Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  16. Tests of QCD in W and Z production at Tevatron

    International Nuclear Information System (INIS)

    Abachi, S.

    1995-01-01

    We present measurements of the production cross sections times leptonic branching fractions and the transverse momentum distributions of W and Z bosons in p bar p collisions at √s = 1.8 TeV using data collected with the DO detector at the Fermilab Tevatron p bar p collider. A preliminary measurement of the W charge asymmetry is also presented

  17. Experience with the new reverse injection scheme in the Tevatron

    International Nuclear Information System (INIS)

    Saritepe, S.; Goderre, G.; Annala, G.; Hanna, B.; Braun, A.

    1993-01-01

    In the new injection scenario the antiproton beam is injected onto a helical Tevatron orbit to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedures. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Ring. Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. The orbit closure was performed in the Main Ring. In the new scheme the lambertson magnets have to be moved, separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS (Tevatron Beam Synchronized Clock) event $D8 as MRBS (Main Ring Beam Synchronized Clock) $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the Main Ring

  18. On Self-Similarity of Top Production at Tevatron

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2012-01-01

    Roč. 3, č. 8 (2012), s. 815-820 ISSN 2153-120X R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10480505 Keywords : top quark * Tevatron Subject RIV: BE - Theoretical Physics http://www.scirp.org/journal/PaperInformation.aspx?paperID=21690

  19. Race for the Higgs hots up as Tevatron seeks extension

    CERN Multimedia

    Banks, Michael

    2009-01-01

    "With researchers at Cern's Large Hadron Collider (LHC) having circulated protons for the first time since last year's accident, the US Department of Energy (DOE) is requesting $25m so that the Tevatron collider at the Fermi National Accelerator Laboratory in Illinois can run for an extra year until 2011" (0.25 page)

  20. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    International Nuclear Information System (INIS)

    Martin, P.; Dinkel, J.; Ducar, R.

    1987-01-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for acceleration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented

  1. Searches for New Phenomena at the Tevatron and at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Arnd

    2006-10-01

    Recent results on searches for new physics at Run II of the Tevatron and highlights from HERA are reported. The searches cover many different final states and a wide range of models. All analyses have at this point led to negative results, but some interesting anomalies have been found.

  2. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  3. Tevatron: recent results and prospects at the upgrade

    International Nuclear Information System (INIS)

    Mondal, Naba K.

    1998-01-01

    In this article, we review some of the recent results from CDF and DΦ experiments at the Tevatron and their prospects at the upgrade. Among the topics discussed are top quark physics, electroweak physics, QCD physics and new physics beyond standard model. (author)

  4. Explaining Tevatron leptons photons missing- T events with ...

    Indian Academy of Sciences (India)

    Abstract. The CDF experiment reported a lepton photon missing transverse energy. (/ET) signal 3σ in excess of the standard model prediction in Tevatron Run I data. The excess can be explained by the resonant production of a smuon, which subsequently decays to a muon, a photon and a gravitino. Here, we perform ...

  5. The search for the Higgs at the Tevatron; La recherche du Higgs au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, A

    2004-07-01

    The Tevatron has undergone an impressive technical renovation program whose final aim is to reach an integrated luminosity of 15 fb{sup -1} per experiment. Both CDF and DO detectors have been upgraded in the fields of detection, triggering, track reconstruction and particle identification. In the framework of the standard model, theoretical studies show that for a luminosity of only 2 fb{sup -1} (that is the first step of the renovation program) CDF and DO could barely extend the domain already excluded by LEP for the existence of the Higgs boson. On the other hand for a luminosity of 15 fb{sup -1}, a standard Higgs boson could be excluded up to 180 GeV/c{sup 2} and discovered up to 125 GeV/c{sup 2}. Moreover, a 3*{sigma} result could be obtained in the decay channels H {yields} bb-bar and H {yields} W{sup +}W{sup -} up to 180 GeV/c{sup 2}. In the framework of the minimal supersymmetric standard model (MSSM), at least 20 fb{sup -1} are required for the discovery of the Higgs boson in the energy range: 80 {<=} m{sub A} {<=} 380 GeV/c{sup 2}. (A.C.)

  6. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10{sup 30} per sq cm per s and a record weekly integrated luminosity of 10{sup 60} inverse nanobarns. The peak goal for the present run of 5.0 x 10{sup 30} has already been exceeded.

  7. The A0 abort system for the Tevatron upgrade

    International Nuclear Information System (INIS)

    Crawford, C.

    1989-01-01

    The installation of electrostatic separator modules at B48 and C17 in the Tevatron necessitates changes to the Tevatron abort system. There will no longer be room for either the proton or antiproton kicker magnets used in the present system. The kickers at C17 will be permanently removed. The kickers at B48 will be temporarily removed for collider operation and will be replaced for fixed target operation. The existing proton abort system will remain unchanged during fixed target operation. This note describes a proposed abort system for operation in the collider mode for 22 on 22 bunches and provides details of specifications for the required components. In certain cases, for example in the case of the pulsers for the magnets and the absorber assembly, system components are designed with the option of upgrading to 44 on 44 bunch operation in mind. 8 refs., 14 figs

  8. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10 30 per sq cm per s and a record weekly integrated luminosity of 10 60 inverse nanobarns. The peak goal for the present run of 5.0 x 10 30 has already been exceeded

  9. Higgs decay to bottom quarks at the Tevatron

    International Nuclear Information System (INIS)

    Stange, A.; Marciano, W.; Willenbrock, S.

    1993-10-01

    We study the production and detection of the standard-model Higgs boson at the Fermilab Tevatron. The most promising mode is WH and ZH associated production followed by leptonic decay of the weak vector bosons and H → b bar b. It may be possible to detect a Higgs boson of mass m H = 60--80 GeV with 1000 pb -1 of integrated luminosity

  10. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb -1 at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production

  11. Review of Physics Results from the Tevatron: Top Quark Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Cecilia E.; Vellidis, Costas

    2014-09-17

    We present results on top quark physics from the CDF and D0 collaborations at the Fermilab Tevatron proton anti-proton collider. These include legacy results from Run II that were published or submitted for publication before mid-2014, as well as a summary of Run I results. The historical perspective of the discovery of the top quark in Run I is also described.

  12. Tests of QCD in W and Z production at Tevatron

    International Nuclear Information System (INIS)

    Alitti, J.; Chevalier, L.; Ducros, Y.; Lebrat, J.F.; Mangeot, P.

    1995-01-01

    We present measurements of the production cross sections times leptonic branching fractions and the transverse momentum distributions of W and Z bosons in pp-bar collisions at √ s = 1.8 TeV using data collected with the DΦ detector at the Fermilab Tevatron pp-bar collider. A preliminary measurement of the W charge asymmetry is also presented. (authors). 27 refs., 9 figs., 3 tabs

  13. Programmable high power beam damper for the Tevatron

    International Nuclear Information System (INIS)

    Crisp, J.; Goodwin, R.; Gerig, R.

    1985-06-01

    A bunch-by-bunch beam damper has been developed for the Fermilab Tevatron. The system reduces betatron oscillation amplitudes and incorporates some useful machine diagnostics. The device is programmable via look-up tables so the output is an arbitrary function, on a bunch-by-bunch basis, of the beam displacement. We are presently using this feature to measure the betatron tune throughout the acceleration cycle. 4 refs

  14. Tevatron-for-LHC Report: Preparations for Discoveries

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, V.; Carena, Marcela S.; Dobrescu, Bogdan A.; Mrenna, S.; Rainwater, D.; Schmitt, M.

    2006-08-01

    This is the ''TeV4LHC'' report of the ''Physics Landscapes'' Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  15. Status of the Tevatron CDF and D0 experiments

    International Nuclear Information System (INIS)

    Rolli, Simona

    2010-01-01

    The status of the Tevatron Collider is reviewed and highlights of the rich physics program carried out by the CDF and D0 experiments are presented. The Tevatron Collider has been performing remarkably well in the past few years and it is continuing to deliver record luminosity. The machine collides proton and anti-proton beams at an energy in the center of mass of 1.96 TeV, with average peak luminosity of 300E30 cm -2 s -1 . The total delivered luminosity is slightly above 9 fb -1 . The CDF and D0 experiments have been collecting data with an average efficiency of 90%, while the experiments have enjoyed an annual doubling of the integrated luminosity delivered and recorded. This has led to an avalanche of new results from areas as diverse as QCD, top, searches for new physics and the area of electroweak symmetry breaking with particular focus on direct searches for the Higgs boson. The physics reach of the Tevatron is built on a mountain of measurements that confirm the ability of the Tevatron collaborations to use their detectors to discover new particles. Each measurement is of itself a significant result. Measurements begin with the largest cross section processes, those of B physics, but move on to processes with small branching ratios and backgrounds that are hard to distinguish from the signal. The measurement of Bs oscillations demonstrates the performance of the silicon tracking and vertexing. Discovery of single top production, WZ production, and evidence for the ZZ production in both leptonic and now hadronic modes provide the final base camp from which the Higgs summit is in sight. Processes such as single top and ZZ act as important messengers heralding the impending arrival of the Higgs. This journey through lower and lower cross section processes represents our approach to provide convincing evidence of these processes, first as discovery then as measurements that constrain the Standard Model.

  16. Searching for directly decaying gluinos at the Tevatron

    International Nuclear Information System (INIS)

    Alwall, Johan; Le, My-Phuong; Lisanti, Mariangela; Wacker, Jay G.

    2008-01-01

    This Letter describes how to perform searches over the complete kinematically-allowed parameter space for new pair-produced color octet particles that each subsequently decay into two jets plus missing energy at the Tevatron. This Letter shows that current searches can miss otherwise discoverable spectra of particles due to CMSSM-motivated cuts. Optimizing the H T and E/ T cuts expands the sensitivity of these searches

  17. Present searches for Higgs signatures at the Tevatron

    International Nuclear Information System (INIS)

    Groer, L.

    1997-08-01

    We present results for various searches for signatures of standard and non-standard model Higgs boson decays conducted at the collider detectors CDF and D0 using ∼100 pb -1 of integrated luminosity each from the Tevatron collider Run 1 (1992-96) at √s=1.8 TeV. No evidence for a Higgs boson decay is found and various limits are set

  18. Search for new fermions ('Quirks') at the Fermilab Tevatron Collider

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš

    2010-01-01

    Roč. 105, č. 21 (2010), "211803-1"-"211803-6" ISSN 0031-9007 R&D Projects: GA MŠk LA08047; GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : missing-energy * transverse energy * D0 * Batavia TEVATRON Coll * interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.621, year: 2010 http://arxiv.org/abs/arXiv:1008.3547

  19. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-01-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation of the Fermilab superconducting Tevatron accelerator is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics run at the previous energy of 900 GeV. This has allowed the author to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which have taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, the new satellite refrigerator controls system is capable of the expansion necessary to reach this goal. New features are being added to the controls systems which will allow for more intelligent control and better diagnostics for component monitoring and trending

  20. Academic Training - Tevatron: studying pp collisions at the highest energy

    CERN Multimedia

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 15, 16, 17, 18 May Main Auditorium, bldg. 500 on 15, 16, 17 May - Council Chamber on 18 May Physics at the Tevatron B. HEINEMANN, Univ. of Liverpool, FERMILAB Physics Results from the Tevatron The Tevatron proton-antiproton collider at Fermilab in the US is currently the world's highest energy collider. At the experiments CDF and D0 a broad physics programme is being pursued, ranging from flavour physics via electroweak precision measurements to searches for the Higgs boson and new particles beyond the Standard Model. In my lecture I will describe some of the highlight measurements in the flavour, electroweak and searches sectors, and the experimental techniques that are used. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/...

  1. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  2. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  3. Managing discovery risks--A Tevatron case study

    International Nuclear Information System (INIS)

    Bakul Banerjee

    2004-01-01

    To meet the increasing need for higher performance, Management of Fermi National Accelerator Laboratory has undertaken various projects to improve systems associated with the Tevatron high-energy particle collider located at Batavia, Illinois. One of the larger projects is the Tevatron Beam Position Monitor (BPM) system. The objective of this project is to replace the existing BPM electronics and software system that was originally installed during early 1980s, along with the original construction of the Tevatron.The original system consists of 236 beam position monitors located around the underground tunnel of the accelerator. Above ground control systems are attached to these monitors using pickup cables. When the Tevatron collider is operational, signals received from the BPMs are used to perform a number of control and diagnostic tasks. The original system can only capture the proton signals from the collider. The new system, when fully operational, will be able to capture combined proton and antiproton signals and will be able to separate the antiproton signal from the combined signal at high resolution. This significant enhancement was beyond the range of technical capabilities when the Tevatron was constructed about two decades ago. To take advantage of exceptional progress made in the hardware and software area in past two decades, Department of Energy approved funding of the BPM electronics and software replacement project. The approximate length of the project is sixteen months with a budget of four million dollars not including overhead, escalation, and contingencies. Apart from cost and schedule risks, there are two major risks associated with this research and development project. The primary risk is the risk of discovery. Since the Tevatron beam path is highly complex, BPMs have to acquire and process a large amount of data. In this environment, analysis of data to separate antiproton signals is even more complex. Finding an optimum algorithm that can

  4. Applying EVM principles to Tevatron Beam Position Monitor Project

    International Nuclear Information System (INIS)

    Banerjee, Bakul

    2005-01-01

    At Fermi National Accelerator Laboratory (Fermilab), the Tevatron high energy particle collider must meet the increasing scientific demand of higher beam luminosity. To achieve this higher luminosity goal, U. S. Department of Energy (DOE) sponsored a major upgrade of capabilities of Fermilab's accelerator complex that spans five years and costs over fifty million dollars. Tevatron Beam Position Monitor (BPM) system upgrade is a part of this project, generally called RunII upgrade project. Since the purpose of the Tevatron collider is to detect the smashing of proton and anti-protons orbiting the circular accelerator in opposite directions, capability to detect positions of both protons and antiprotons at a high resolution level is a desirable functionality of the monitoring system. The original system was installed during early 1980s, along with the original construction of the Tevatron. However, electronic technology available in 1980s did not allow for the detection of significantly smaller resolution of antiprotons. The objective of the upgrade project is to replace the existing BPM system with a new system utilizing capabilities of modern electronics enhanced by a front-end software driven by a real-time operating software. The new BPM system is designed to detect both protons and antiprotons with increased resolution of up to an order of magnitude. The new system is capable of maintaining a very high-level of data integrity and system reliability. The system consists of 27 VME crates installed at 27 service buildings around the Tevatron ring servicing 236 beam position monitors placed underground, inside the accelerator tunnel. Each crate consists of a single Timing Generator Fanout module, custom made by Fermilab staff, one MVME processor card running VxWorks 5.5, multiple Echotek Digital Receiver boards complimented by custom made Filter Board. The VxWorks based front-end software communicates with the Main Accelerator Control software via a special

  5. Resonant second generation slepton production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Autermann, Christian Tobias [RWTH Aachen Univ. (Germany)

    2006-12-01

    A search for R-parity violating supersymmetry with the D0 detector at the Fermilab Tevatron p$\\bar{p}$-collider is presented. Assuming a non-zero LQ$\\bar{d}$ coupling λ$'\\atop{2jk}$ leads to final state with two muons and jets. A total integrated luminosity of 375 pb-1 collected between April 2002 and August 2004 is utilized. The observed number of events is in agreement with the Standard Model expectation, and limits on Rp supersymmetry are derived.

  6. Spectroscopy and Decay of $B$ Hadrons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Paulini, Manfred

    2007-02-01

    The authors review recent results on heavy quark physics focusing on Run II measurements of B hadron spectroscopy and decay at the Tevatron. A wealth of new B physics measurements from CDF and D0 has been available. These include the spectroscopy of excited B states (B**, B**{sub s}) and the observation of the {Sigma}{sub b} baryon. The discussion of the decays of B hadrons and measurements of branching fractions focuses on charmless two-body decays of B {yields} h{sup +}h{sup -}. They report several new B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} decay channels.

  7. The dijet invariant mass at the Tevatron Collider

    International Nuclear Information System (INIS)

    Giannetti, P.

    1990-01-01

    The differential cross section of the process p + pbar → jet + jet + X as a function of the dijet invariant mass has been measured with the CDF detector at a center of mass energy of 1.8 TeV at the Tevatron Collider in Fermilab. The present analysis is based on the sample of events collected in the 1988/89 run, amounting to a total integrated luminosity of 4.2 pb -1 . A comparison to leading order QCD and quark compositeness predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. 10 refs., 6 figs

  8. $B$ physics at the Tevatron: Run II and beyond

    CERN Document Server

    Anikeev, K; Azfar, F.; Bailey, S.; Bauer, C.W.; Bell, W.; Bodwin, G.; Braaten, E.; Burdman, G.; Butler, J.N.; Byrum, K.; Cason, N.; Cerri, A.; Cheung, H.W.K.; Dighe, A.; Donati, S.; Ellis, R.K.; Falk, A.; Feild, G.; Fleming, S.; Furic, I.; Gardner, S.; Grossman, Y.; Gutierrez, G.; Hao, W; Harris, B.W.; Hewett, J.; Hiller, G.; Jesik, R.; Jones, M.; Kasper, P.A.; El-Khadra, A.; Kirk, M.; Kiselev, V.V.; Kroll, J.; Kronfeld, A.S.; Kutschke, R.; Kuznetsov, V.E.; Laenen, E.; Lee, J.; Leibovich, A.K.; Lewis, J.D.; Ligeti, Z.; Likhoded, A.K.; Logan, H.E.; Luke, M.; Maciel, A.; Majumder, G.; Maksimovic, P.; Martin, M.; Menary, S.; Nason, P.; Nierste, U.; Nir, Y.; Nogach, L.; Norrbin, E.; Oleari, C.; Papadimitriou, V.; Paulini, M.; Paus, C.; Petteni, M.; Poling, R.; Procario, M.; Punzi, G.; Quinn, H.; Rakitine, A.; Ridolfi, G.; Shestermanov, K.; Signorelli, G.; Silva, J.P.; Skwarnicki, T.; Smith, A.; Speakman, B.; Stenson, K.; Stichelbaut, F.; Stone, S.; Sumorok, K.; Tanaka, M.; Taylor, W.; Trischuk, W.; Tseng, J.; Van Kooten, R.; Vasiliev, A.; Voloshin, M.; Wang, J.C.; Wicklund, A.B.; Wurthwein, F.; Xuan, N.; Yarba, J.; Yip, K.; Zieminski, A.

    2002-01-01

    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.

  9. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  10. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  11. Minimax: Multiparticle physics at the TeVatron collider

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-01-01

    The author and two dozen others are engaged in a small test/experiment in the Fermilab Tevatron collider. It is called Minimax, and its purpose is to explore large-cross-section physics in the forward direction. The primary goal of Minimax is search for events containing the residue of disoriented chiral condensate (dcc) produced in the primary collision. The theoretical ideas are very speculative. But if they are right, they could provide an interpretation of the Centauro/anti-Centauro anomalies claimed to have been seen in cosmic-ray events. In this paper, the history and status of Minimax is described

  12. Top Production at the Tevatron: The Antiproton Awakens

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Kenneth [Nebraska U.

    2017-07-01

    A long time ago, at a laboratory far, far away, the Fermilab Tevatron collided protons and antiprotons at $\\sqrt{s} = 1.96$ TeV. The CDF and D0 experiments each recorded datasets of about 10 fb$^{-1}$. As such experiments may never be repeated, these are unique datasets that allow for unique measurements. This presentation describes recent results from the two experiments on top-quark production rates, spin orientations, and production asymmetries, which are all probes of the $p\\bar{p}$ initial state.

  13. Tevatron as an SSC prototype; experience versus predictions

    International Nuclear Information System (INIS)

    Johnson, R.P.

    1984-01-01

    Early machine experiments on the Tevatron which are relevant to the SSC are discussed. Despite the preliminary nature of the data, there have been some interesting observations which may influence the design of the SSC. In particular, comparisons of measured betatron tunes, chromaticities, and resonance line widths with those predicted from computer simulations using magnetic field measurements have been made; the predictability for low order phenomena seems acceptable. Coasting beam studies indicate long lifetime and lack of strong resonance driving terms. Low energy studies of beam behavior indicate that a dynamic range of a factor of 15 from injection to operation energy should be possible

  14. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  15. First results from bent crystal extraction at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    1996-07-01

    First results from Fermilab Experiment 953 are presented. E853 is an experiment to test the feasibility and efficiency of extracting a low intensity beam from the halo of the Tevatron using channeling in a bent silicon crystal. The motivation for the experiment is to apply crystal extraction to trans-TeV accelerators like the LHC. Extensive simulation work has been carried out. Two accelerator operating modes have been developed for crystal studies, ''kick'' mode and diffusion mode. Results from the first successful extraction in kick mode are presented

  16. J/ψ production: Tevatron and fixed-target collisions

    International Nuclear Information System (INIS)

    Petrelli, A.

    1999-01-01

    In this talk the author shows the results of a fit of the NRQCD matrix elements to the CDF data for direct J/ψ production, by including the radiative corrections to the g g > 3 S 1 [1] channel and the effect of the k T -smearing. Furthermore he performs the NLO NRQCD analysis of J/ψ production in fixed-target proton-nucleon collisions and he fits the colour-octet matrix elements to the available experimental data. The results are compared to the Tevatron ones

  17. High Mass Standard Model Higgs searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Petridis Konstantinos A.

    2012-06-01

    Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.

  18. Electroweak and b-physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb -1 and 16 pb -1 , respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios Τ(W → ell ν), the total W width, gauge boson couplings, W decay asymmetry and W'/Z' search. Preliminary new results on b physics are presented: B o - bar B o mixing from D0, and masses and lifetimes of B-mesons from CDF

  19. The CDF SVX II upgrade for the Tevatron Run II

    International Nuclear Information System (INIS)

    Bortoletto, Daniela

    1997-01-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R and D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage

  20. Top and Higgs at the Tevatron: Measurements, searches, prospects

    International Nuclear Information System (INIS)

    Konigsberg, J.

    2000-01-01

    In this paper we summarize the status of Top Quark Physics and of searches for the Standard Model Higgs at the Tevatron. Results from both the CDF and D0 experiments are discussed and the prospects for the upcoming Run 2, in the year 2001, are outlined. Much work has been performed on these topics and due to the nature of these proceedings only a brief explanation can be offered here. For more details the reader should turn to the excellent sources listed in the reference section

  1. Review of physics results from the Tevatron: QCD physics

    Energy Technology Data Exchange (ETDEWEB)

    Mesropian, Christina [Rockefeller U.; Bandurin, Dmitry [Virginia U.

    2015-02-17

    We present a summary of results from studies of quantum chromodynamics at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include Run II results for the time period up to the end of Summer 2014. A brief description of Run I results is also given. This review covers a wide spectrum of topics, and includes measurements with jet and vector boson final states in the hard (perturbative) energy regime, as well as studies of soft physics such as diffractive and elastic scatterings, underlying and minimum bias events, hadron fragmentation, and multiple parton interactions.

  2. In celebration of the fixed target program with the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Appel et al.

    2001-12-28

    The Tevatron is the world's first large superconducting accelerator. With its construction, we gained the dual opportunities to advance the state of the art in accelerator technology with the machine itself and in particle physics with the experiments that became possible in a higher energy regime. There have been 43 experiments in the Tevatron fixed target program. Many of these are better described as experimental programs, each with a broad range of physics goals and results, and more than 100 collaborating physicists and engineers. The results of this program are three-fold: (1) new technologies in accelerators, beams and detectors which advanced the state of the art; (2) new experimental results published in the refereed physics journals; and (3) newly trained scientists who are both the next generation of particle physicists and an important part of the scientific, technical and educational backbone of the country as a whole. In this book they compile these results. There are sections from each experiment including what their physics goals and results were, what papers were published, and which students have received degrees. Summaries of these results from the program as a whole are quite interesting, but the physics results from this program are too broad to summarize globally. The most important of the results appear in later sections of this booklet.

  3. A disoriented chiral condensate search at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Convery, M.E.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of open-quotes disoriented vacuumclose quotes might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC's) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ∼ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events

  4. Review of Physics Results from the Tevatron: Higgs Boson Physics

    International Nuclear Information System (INIS)

    Junk, Thomas R.; Juste, Aurelio

    2015-01-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DO. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeVTevatron: gluon-gluon fusion, WH and ZH associated production, vector boson fusion, and tt ¯ H production, and in five main decay modes: H→bb ¯ , H→τ + τ − , H→WW (∗) , H→ZZ (∗) , and H→γγ . An excess of events was seen in the H→bb ¯ searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV

  5. Successful observation of Schottky signals at the Tevatron collider

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1989-08-01

    We have constructed a Schottky detector for the Tevatron collider in the form of a high-Q (∼5000) cavity which operates at roughly 2 GHz, well above the frequency at which the Tevatron's single-bunch frequency spectrum begins to roll off. Initial spectra obtained from the detector show clearly observable Schottky betatron lines, free of coherent contaminants; also seen are the ''common-mode'' longitudinal signals due to the offset of the beam from the detector center. The latter signals indicate that at 2 GHz, the coherent single-bunch spectrum from the detector is reduced by >80 dB; therefore, in normal collider operation, the Schottky betatron lines are >40 dB greater than their coherent counterparts. We describe how the data we have obtained give information on transverse and longitudinal emittances, synchrotron frequency, and betatron tunes, as well as reveal what may be previously unobserved phenomena. Space limitations restrict us to presenting only as much data as should be necessary to convince even the skeptical reader of the validity of the claim made in the paper's title. 3 refs., 2 figs

  6. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-09-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics at the previous energy of 900 GeV. This has allowed us to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which has taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, our new satellite refrigerator controls system is capable of the expansion necessary to reach our goal. New features are being added to the control system which will allow for more intelligent control and better diagnostics for component monitoring and trending

  7. Top-quark mass measurements: Alternative techniques (LHC + Tevatron)

    CERN Document Server

    Adomeit, Stefanie; The ATLAS collaboration

    2014-01-01

    Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

  8. Searches for Long-lived Particles at the Tevatron Collider

    International Nuclear Information System (INIS)

    Adams, T.; Florida State U.

    2008-01-01

    Several searches for long-lived particles have been performed using data from p(bar p) collisions from Run II at the Tevatron. In most cases, new analysis techniques have been developed to carry out each search and/or estimate the backgrounds. These searches expand the discovery potential of the CDF and D0 experiments to new physics that may have been missed by traditional search techniques. This review discusses searches for (1) neutral, long-lived particles decaying to muons, (2) massive, neutral, long-lived particles decaying to a photon and missing energy, (3) stopped gluinos, and (4) charged massive stable particles. It summarizes some of the theoretical and experimental motivations for such searches

  9. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  10. New Measurements of Upsilon Spin Alignment at the Tevatron

    Directory of Open Access Journals (Sweden)

    Jones Matthew

    2012-06-01

    Full Text Available We describe a new analysis of γ(nS → μ+μ− decays collected in pp¯ $par p$ collisions with the CDF II detector at the Fermilab Tevatron. This analysis measures the angular distributions of the final state muons in the γ rest frame, providing new information about γ production polarization. We find the angular distributions to be nearly isotropic up to γ pT of 40 GeV/c, consistent with previous measurements by CDF, but inconsistent with results obtained by the D0 experiment. The results are compared with recent NLO calculations based on color-singlet matrix elements and non-relativistic QCD with color-octet matrix elements.

  11. A New Flying Wire System for the Tevatron

    Science.gov (United States)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  12. Generation and diagnostics of uncaptured beam in the Fermilab Tevatron and its control by electron lenses

    Directory of Open Access Journals (Sweden)

    Xiao-Long Zhang

    2008-05-01

    Full Text Available In the collider run II, the Tevatron operates with 36 high intensity bunches of 980 GeV protons and antiprotons. Particles not captured by the Tevatron rf system pose a threat since they can quench the superconducting magnets during acceleration or at beam abort. We describe the main mechanisms for the origination of this uncaptured beam, and present measurements of its main parameters by means of a newly developed diagnostics system. The Tevatron electron lens is effectively used in the collider run II operation to remove uncaptured beam and keep its intensity in the abort gaps at a safe level.

  13. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  14. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented

  15. Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets

    CERN Document Server

    Velev, Gueorgui; Annala, Gerald; Bauer, Pierre; Carcagno, Ruben H; Di Marco, Joseph; Glass, Henry; Hanft, Ray; Kephart, Robert; Lamm, Michael J; Martens, Michael A; Schlabach, Philip; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  16. Measurement of the top quark properties at the Tevatron and the LHC

    CERN Document Server

    INSPIRE-00040958

    2014-01-01

    Almost two decades after its discovery at Fermilab's Tevatron collider experiments, the top quark is still under the spotlight due to its connections to some of the most interesting puzzles in the Standard Model. The Tevatron has been shut down two years ago, yet some interesting results are coming out of the CDF and D0 collaborations. The LHC collider at CERN produced two orders of magnitude more top quarks than Tevatron's, thus giving birth to a new era for top quark physics. While the LHC is also down at the time of this writing, many top quark physics results are being extracted out of the 7\\,TeV and 8\\,TeV proton proton collisions by the ATLAS and CMS collaborations, and many more are expected to appear before the LHC will be turned on again sometime in 2015. These proceedings cover a selection of recent results produced by the Tevatron and LHC experiments.

  17. Electroweak Physics at the Tevatron and LHC: Theoretical Status and Perspectives

    OpenAIRE

    Baur, U.

    2005-01-01

    I review the status of theoretical calculations relevant for electroweak physics at the Tevatron and LHC and discuss future directions. I also give a brief overview of current electroweak data and discuss future expectations.

  18. Upgrading the Tevatron to a 1 TeV on 1 TeV pp collider

    International Nuclear Information System (INIS)

    Teng, L.C.

    1987-01-01

    This report describes the tasks necessary to change the Tevatron into a proton-proton collider. Also included in the discussion is an estimate of the cost to carry out the modification. 4 figs., 3 tabs

  19. Landau Damping of the Weak Head-Tail Instability at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri; Shiltsev, Vladimir

    2005-01-01

    Landau damping of the head-tail modes in Tevatron beam with the help of octupole-generated betatron tune spreads permits to reduce chromaticity from 15-20 units to zero thus significantly improving the beam lifetime. The octupole strengths have been experimentally optimized at different stages of the Tevatron operation, from proton injection to collision. Predictions of the analytical Landau damping model are compared with the experimental results.

  20. Present status and future prospects for a Higgs boson discovery at the Tevatron and LHC

    International Nuclear Information System (INIS)

    Haber, Howard E

    2010-01-01

    Discovering the Higgs boson is one of the primary goals of both the Tevatron and the Large Hadron Collider (LHC). The present status of the Higgs search is reviewed and future prospects for discovery at the Tevatron and LHC are considered. This talk focuses primarily on the Higgs boson of the Standard Model and its minimal supersymmetric extension. Theoretical expectations for the Higgs boson and its phenomenological consequences are reviewed.

  1. B Physics at tevatron and the B Factories

    International Nuclear Information System (INIS)

    Paus, C.

    2004-01-01

    The following contribution is in no way a complete summary of the physics of b hadrons but merely a selection of some key topics which the author considered exemplary to explain the essence of B physics to beginners in the field. The main emphasis has been put on electroweak decays of b hadrons which in one form or another contain information about the Cabibbo-Kobayashi-Maskawa matrix. The elements of this matrix define the coupling strength of the various quark pairs to the W boson. The coupling strengths cannot be predicted but have to be measured and are thus input parameters to the Standard Model of Particle Physics. Furthermore the CKM matrix is the mechanism which implements CP violation in the Standard Model. The phenomenon of CP violation and the CKM matrix are enjoying quite some attention since there are indications that something is not right in the Standard Model. This contribution discusses the most prominent measurements in the field of B physics which are presently performed or prepared at the Tevatron and the B factories. The experimental setup in terms of the accelerators and the experiments is described in the beginning. The differences between e+e- and pp machines and the corresponding detector designs are discussed in detail. In the next step the analysis tools are developed step by step by describing the measurements which make use of them. (Author) 39 refs

  2. Measurements of top-quark properties at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas Werner [Fermilab

    2013-07-30

    Recent measurements of top-quark properties at the Tevatron are presented. CDF uses data corresponding up to 9.0 fb-1 to measure the ratio R of the branching fractions , the branching fraction for top-quarks decaying into τ leptons and the cross section for the production of an additional γ in t production. The results from all these measurements agree well with their respective Standard Model expectation. DØ uses 5.3 fb-1 of data to measure the t cross section as a function of the time. A time dependency would imply Lorentz invariance violation as implemented by the Standard Model extension. No time dependency is observed and DØ sets first limits in the top-quark sector for Lorentz invariance violation. DØ also determines indirectly the top quark width using the results of earlier measurements at DØ. The measured top quark width is in agreement with the SM expectation and does not show any hints for new physics contributions.

  3. A new Tevatron Collider working point near the integer

    International Nuclear Information System (INIS)

    Johnson, R.P.; Zhang, P.

    1989-12-01

    It is well established that in hadron colliders the beam-beam interaction is more harmful in the presence of machine resonances of the form mν x + nν y = p, where |m| + |n| is the order of the resonance. Since the closest a resonance line can be to the integer stopband is 1/order, the closer the working point is to the integer, the fewer lower order resonances there are to enhance the beam-beam effects. A shift of the working point of the Tevatron from 19.4 to values near 19 and 20 has been studied. Problems with closed orbit control, dispersion matching, and matched low β insertions were considered. An excellent solution for the B0 insertion was found which has an improved β*. A new injection optics allows a transition to the low β optics which is much easier than the one now used. Results from the first machine studies demonstrate the ability to control the orbit with tunes of 19.03 horizontal and 20.03 vertical. Further studies require the activation of additional quadrupole compensation circuits. 4 refs. , 2 figs

  4. Proposed Fermilab fixed target experiment: Kaons at the Tevatron

    International Nuclear Information System (INIS)

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required

  5. Soft color interactions and diffractive hard scattering at the Tevatron

    International Nuclear Information System (INIS)

    Enberg, R.; Timneanu, N.; Ingelman, G.; Uppsala Univ.

    2001-06-01

    An improved understanding of nonperturbative QCD can be obtained by the recently developed soft color interaction models. Their essence is the variation of color string-field topologies, giving a unified description of final states in high energy interactions, e.g., diffractive and nondiffractive events in ep and pp. Here we present a detailed study of such models (the soft color interaction model and the generalized area law model) applied to pp, considering also the general problem of the underlying event including beam particle remnants. With models turned to HERA ep data, we find a good description also of Tevatron data on production of W, bottom and jets in diffractive events defined either by leading antiprotons or by one or two rapidity gaps in the forward or backward regions. We also give predictions for diffractive J/ψ production where the soft exchange mechanism produces both a gap and a color singlet cc state in the same event. This soft color interaction approach is also compared with Pomeron-based models for diffraction, and some possibilities to experimentally discriminate between these different approaches are discussed. (orig.)

  6. W mass and Triple Gauge Couplings at Tevatron

    Directory of Open Access Journals (Sweden)

    Pétroff Pierre

    2013-05-01

    Full Text Available The W mass is a crucial parameter in the Standard Model (SM of particle physics, providing constraints on the mass of the Higgs boson as well as on new physics models via quantum loop corrections. On the other hand, any deviation of the triple gauge boson couplings (TGC from their values predicted by the SM would be also an indication for new physics. We present recent measurements on W boson mass and searches for anomalous TGC (aTGC in Wγ, Zγ, WW, WZ and ZZ at Fermilab Tevatron both by CDF and DØ Collaborations. The CDF Collaboration has measured the W boson mass using data corresponding to 2.2 fb−1 of integrated luminosity. The measurement, performed using electron and muon decays of W boson, yields a mass of MW = 80387 ± 19 MeV. The DØ Collaboration has measured MW = 80367 ± 26 MeV with data corresponding to 4.3 fb−1 of integrated luminosity in the channel W → ev. The combination with an earlier DØ result, using independant data sample at 1 fb−1 of integrated luminosity, yields MW = 80375 ± 23 MeV. The limits on anomalous TGCs parameters are consistent with the SM expectations.

  7. Search prospects of light stabilized radions at Tevatron and LHC

    CERN Document Server

    Mahanta, U

    2000-01-01

    In this paper we use the conformal anomaly in QCD to derive the radion coupling to gluons in the Randall-Sundrum model and use it to compute the radion production cross section at hadron colliders by gluon fusion. We find that for the vacuum expectation value of the radion field, =1 TeV the radion production cross section by gluon fusion at LHC would exceed that of the standard model (SM) Higgs boson by a factor that lies between 7 and 8 over most of the mass range. The radion production cross-section decreases as 1/(/sup 2/) and for greater than 3 TeV, the Higgs production cross-section exceeds that of the radion production. The decay modes of the radion are similar to that of the SM Higgs boson. But the striking feature is the enhancement of radion to 2-photon and radion to 2-gluon branching ratio over the SM case. Utilizing this, we then discuss the possible search strategies of such scalars at the Tevatron and LHC. Using the gamma gamma decay mode one can explore /exclude a radion mass up to 1 TeV at the...

  8. The search for the Higgs at the Tevatron

    International Nuclear Information System (INIS)

    Lucotte, A.

    2004-01-01

    The Tevatron has undergone an impressive technical renovation program whose final aim is to reach an integrated luminosity of 15 fb -1 per experiment. Both CDF and DO detectors have been upgraded in the fields of detection, triggering, track reconstruction and particle identification. In the framework of the standard model, theoretical studies show that for a luminosity of only 2 fb -1 (that is the first step of the renovation program) CDF and DO could barely extend the domain already excluded by LEP for the existence of the Higgs boson. On the other hand for a luminosity of 15 fb -1 , a standard Higgs boson could be excluded up to 180 GeV/c 2 and discovered up to 125 GeV/c 2 . Moreover, a 3*σ result could be obtained in the decay channels H → bb-bar and H → W + W - up to 180 GeV/c 2 . In the framework of the minimal supersymmetric standard model (MSSM), at least 20 fb -1 are required for the discovery of the Higgs boson in the energy range: 80 ≤ m A ≤ 380 GeV/c 2 . (A.C.)

  9. Radiation hard silicon microstrip detectors for Tevatron experiments

    International Nuclear Information System (INIS)

    Korjenevski, Sergey

    2004-01-01

    The Silicon Microstrip Tracking detectors at the CDF and D0 experiments have now been operating for almost three years at Fermilab. These detectors were designed originally for an integrated luminosity of 2fb -1 . As the expected luminosity for Run IIb at the Tevatron collider was initially envisioned to reach 15fb -1 , radiation tolerances of both devices were revisited, culminating in proposals for new systems. With reduced expectations for total luminosity at ∼6fb -1 , the full detector-replacement projects were terminated. The CDF detector is expected nevertheless to cope efficiently with the lower anticipated dose, however, the D0 experiment is planning a smaller-scale project: a Layer-0 (L0) upgrade of the silicon tracker (D0SMT). The new device will fit between the beam line and the inner layer of the current Tracker. Built of single-sided sensors, this upgrade is expected to perform well in the harsh radiation environment, and be able to withstand an integrated luminosity of 15fb -1 . Prototypes of Run IIb sensors were irradiated using 10MeV protons at the tandem Van de Graaff at the James R. McDonald Laboratory at Kansas State University. A fit to the 10MeV proton data yields a damage parameter αp=11x10-17Acm. This is consistent with results from RD48 (αp=9.9x10-17Acm). The scaling of damage to 1MeV neutron fluence uses a hardness factor (κ) derived from the non-ionizing components of the energy loss (NEIL). NEIL predicts a hardness factor of 3.87 for 10MeV protons. We obtained an experimental value of this factor of 2.54, or 34% smaller than scaling predictions from NEIL

  10. Observation of Central Exclusive Diphoton Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Brucken, Jens Erik [Univ. of Helsinki (Finland); Helsinki Inst. of Physics (Finland)

    2013-01-01

    We have observed exclusive γγ production in proton-antiproton collisions at the Tevatron at √ s = 1.96 TeV. We use data corresponding to 1.11 ± 0.07 fb-1 integrated luminosity taken by the Run II Collider Detector at Fermilab, with a trigger requiring two electromagnetic showers, each with transverse energy ET > 2 GeV, and vetoing on hits in the forward beam shower counters. We select events with two electromagnetic showers, each with transverse energy ET > 2.5 GeV and pseudorapidity |η| < 1.0, with no other particles detected in -7.4 < η < +7.4. The two showers have similar ET and an azimuthal angle separation Δφ ~ π; we find 34 events with exactly two matching charged particle tracks, agreeing with expectations for the QED process p¯p → p+e+e- + ¯p by two photon exchange; and we find 43 events with no tracks. The latter are candidates for the exclusive process p¯p → p + γγ + ¯p by double pomeron exchange. We use the strip and wire chambers at the longitudinal shower maximum position within the calorimeter to measure a possible exclusive background from IP + IP → π0π0, and conclude that it is consistent with zero and is < 15 events at 95% C.L. The measured cross section is σγγ,excl(|η| < 1, ET (γ) > 2.5 GeV) = 2.48 +0.40 -0.35(stat) +0.40 -0.51(syst) pb and in agreement with the theoretical predictions. This process is closely related to exclusive Higgs boson production pp → p + H + p at the Large Hadron Collider. The observation of the exclusive production of diphotons shows that exclusive Higgs production can happen and could be observed with a proper experimental setup.

  11. 2007 2008 ACADEMIC TRAINING PROGRAMME: Tevatron: The Cinderella Story or The Art Of Collider Commissioning

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 01, 03, 04, 05 October 2007 Main Auditorium, bldg. 500 Tevatron: The Cinderella Story or The Art Of Collider Commissioning V. SHILTSEV / Fermi National Accelerator Laboraty, Batavia IL, USA The Tevatron Collider at Fermilab (Batavia, IL, USA) is the world’s highest energy particle collider at 1.8TeV c.m.e. The machine was a centerpiece of the US and world’s High Energy Physics for many years. Currently, the Tevatron is in the last years of its operation in so-called Run II which started 2001 and is tentatively scheduled to end in 2010. In this lecture series, we’ll try to learn from the exciting story of the Tevatron Collider Run II: the story of long preparations, great expectations, initial difficulties, years of "blood and sweat", continuous upgrades, exceeding its goals, high emotions, tune-up of accelerator organization for "combat fighting". The lectures will cover Introduction to the Tevatron, its history and Run II; "Plumbing"...

  12. Prospects for 6- to 10-Tesla magnets for a Tevatron upgrade

    International Nuclear Information System (INIS)

    Mantsch, P.M.

    1989-01-01

    This paper reports on prospects for 6- to 10-tesla magnets for a Teratron upgrade. The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: (1) bar pp at 3 x 10 31 --Increase luminosity by improvements to the bar p source. (2) p bar p at 1 TeV and 2 x 10 32 --Move the main ring to a new tunnel, build a second Tevatron ring. (3) bar pp > 1.5 TeV and 7 x 10 30 --Replace the Tevatron with a higher energy ring. The last two options require new higher-field magnets. The second option requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron-strength (4.4-T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8- to 9-tesla magnets

  13. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  14. Prospects for 6 to 10 tesla magnets for a TEVATRON upgrade

    International Nuclear Information System (INIS)

    Mantsch, Paul M.

    1988-01-01

    The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: /bar p/p at 3 /times/ 10 31 --Increase luminosity by improvements to the p source. pp at 1 TeV and 2 /times/ 10 32 --Move the main ring to a new tunnel, build a second Tevatron ring, and /bar p/p > 1.5 TeV and 7 /times/ 10 30 --Replace the tevatron with a higher energy ring. The last two options requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron strength (4.4 T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8--9 tesla magnets. The viability of the high-energy option then depends on the practicality of sizable numbers of reliable 8--9 tesla dipoles as well as 800 6.6-tesla dipoles. The following develops a specification for an 8.8 T dipole, examines the design considerations and reviews the current state of high-field magnet development. 22 figs., 3 tabs

  15. CERN scientists take part in the Tevatron Run II performance review committee

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Tevatron Run II is under way at Fermilab, exploring the high-energy frontier with upgraded detectors that will address some of the biggest questions in particle physics.Until CERN's LHC switches on, the Tevatron proton-antiproton collider is the world's only source of top quarks. It is the only place where we can search for supersymmetry, for the Higgs boson, and for signatures of additional dimensions of space-time. The US Department of Energy (DOE) recently convened a high-level international review committee to examine Fermilab experts' first-phase plans for the accelerator complex. Pictured here with a dipole magnet in CERN's LHC magnet test facility are the four CERN scientists who took part in the DOE's Tevatron review. Left to right: Francesco Ruggiero, Massimo Placidi, Flemming Pedersen, and Karlheinz Schindl. Further information: CERN Courier 43 (1)

  16. Double-diffractive processes in high-resolution missing-mass experiments at the Tevatron

    International Nuclear Information System (INIS)

    Khoze, V.A.; Martin, A.D.

    2001-01-01

    We evaluate, in a model-independent way, the signal-to-background ratio for Higgs→b anti b detection in exclusive double-diffractive events at the Tevatron and the LHC. For the missing-mass approach to be able to identify the Higgs boson, it will be necessary to use a central jet detector and to tag b quark jets. The signal is predicted to be very small at the Tevatron, but observable at the LHC. However we note that the background, that is double-diffractive dijet production, may serve as a unique gluon factory. We also give estimates for the double-diffractive production of χ c and χ b mesons at the Tevatron. We emphasize that a high-resolution missing-mass measurement, on its own, is insufficient to identify rare processes. (orig.)

  17. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  18. Heavy quark production at the TEVATRON and HERA using kt-factorization with CCFM evolution

    International Nuclear Information System (INIS)

    Jung, H.

    2001-10-01

    The application of k t -factorization supplemented with the CCFM small-x evolution equation to heavy quark production at the TEVATRON and at HERA is discussed. The bb production cross sections at the TEVATRON can be consistently described using the k t -factorization formalism together with the unintegrated gluon density obtained within the CCFM evolution approach from a fit to HERA F 2 data. Special attention is drawn to the comparison with measured visible cross sections, which are compared to the hadron level Monte Carlo generator Cascade. (orig.)

  19. Common mode noise on the main Tevatron bus and associated beam emittance growth

    International Nuclear Information System (INIS)

    Zhang, P.; Johnson, R.P.; Kuchnir, M.; Siergiej, D.; Wolff, D.

    1991-05-01

    Overlap of betatron tune frequencies with the power supply noise spectrum can cause transverse beam emittance growth in a storage ring. We have studied this effect for tunes near the integer, where the betatron frequency is low. By injecting noise onto the main power supply bus, it was determined that common mode noise was the dominant source of emittance growth. A noise suppression feed-back loop was then used to reduce the noise and the emittance growth. These experiments are described as are investigations of the common mode propagation along the Tevatron bus and measurements of the fields generated by common mode excitation of isolated Tevatron magnets. 3 refs., 4 figs

  20. The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    CERN Document Server

    Baer, Howard W; Tata, Xerxes; Baer, Howard; Tata, Xerxes

    1999-01-01

    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to $m_{H_{SM}}\\sim 120$ GeV via $WH_{SM} \\to \\ell\

  1. Recent results on QCD at the Tevatron (CDF and D0)

    International Nuclear Information System (INIS)

    Meschi, E.

    1993-11-01

    In the last run the Tevatron collider delivered an integrated luminosity of 29.9 pb -1 to CDF and D0. We describe here some preliminary result from analyses of relevant QCD processes in the 1992--1993 data from the two experiments

  2. B_s oscillation and prospects for delta m_s at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Menzemer, Stephanie; /MIT

    2005-07-01

    Till the start of the LHC, the Tevatron is the only running accelerator which produces enough B{sub s} mesons to perform {Delta}m{sub s} measurements. The status--as it was at the time of the conference--of two different {Delta}m{sub s} analysis performed both by the CDF and D0 collaboration will be presented.

  3. BTEV: a dedicated B physics detector at the Fermilab Tevatron Collider

    International Nuclear Information System (INIS)

    Butler, J.N.

    1996-11-01

    The capabilities of future Dedicated Hadron Collider B Physics experiments are discussed and compared to experiments that will run in the next few years. The design for such an experiment at the Tevatron Collider is presented and an evolutionary path for developing it is outlined. 9 refs., 3 figs., 4 tabs

  4. Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman

    2014-01-01

    Roč. 89, č. 7 (2014), "072001-1"-"072001-16" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * quantum chromodynamics * perturbation theory * statistical analysis * CDF * DZERO Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  5. W/Z + Jets and W/Z + Heavy Flavor Jets at the Tevatron

    International Nuclear Information System (INIS)

    Salto, Oriol

    2009-01-01

    The precision measurements of Boson + jets production performed with the Tevatron data have provided an excellent opportunity to test perturbative QCD calculations and the predictions from the new matrix elements techniques. In this contribution, the latest results by CDF and DO experiments are discussed

  6. W/Z + Jets and W/Z + Heavy Flavor Jets at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Salto, Oriol [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2009-01-15

    The precision measurements of Boson + jets production performed with the Tevatron data have provided an excellent opportunity to test perturbative QCD calculations and the predictions from the new matrix elements techniques. In this contribution, the latest results by CDF and DO experiments are discussed.

  7. Angular Distributions of Three Jet Events in Proton - Anti-Proton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Robert Matthew [Harvard U.

    1989-07-01

    A measurement of three jet angular distributions is made at $\\sqrt{s}$ = 1.8 TeV in protonantiproton collisions at the F'ermilab Tevatron using the Collider Detector _at Ferm.ilab (CDF). Results are presented for three different center of mass variables, cos $\\theta$, $\\psi$, and $\\xi$ and are compared to QCD predictions.

  8. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    International Nuclear Information System (INIS)

    Edstrom, Dean R.

    2009-01-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron

  9. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5x10 3l cm -2 with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10x10 3l cm -2 sec -1 , resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to ∼100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described

  10. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  11. LHC charge asymmetry as constraint on models for the Tevatron top anomaly

    International Nuclear Information System (INIS)

    Craig, Nathaniel; Kilic, Can; Strassler, Matthew J.

    2011-01-01

    The forward-backward asymmetry A FB tt in top quark production at the Tevatron has been observed to be anomalously large by both CDF and D0. It has been suggested that a model with a W ' coupling to td and ub might explain this anomaly, and other anomalies in B mesons. Single-top-quark production in this model is large, and arguably in conflict with Tevatron measurements. However the model might still be viable if A FB tt is somewhat smaller than its current measured central value. We show that even with smaller couplings, the model can be discovered (or strongly excluded) at the LHC using the 2010 data sets. We find that a suitable charge-asymmetry measurement is a powerful tool that can be used to constrain this and other sources of anomalous single-top production, and perhaps other new high-energy charge-asymmetric processes.

  12. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  13. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Fermilab

    2006-01-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations

  14. Cornering gauge-mediated supersymmetry breaking with quasistable sleptons at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    There are many theoretical reasons why heavy quasistable charged particles might exist. Pair production of such particles at the Fermilab Tevatron can produce highly ionizing tracks or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasistable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic leptons. We study the relative importance of the resulting signals for the Tevatron run II. The relative fraction of same-sign tracks to other background-free signals is an important diagnostic tool in gauge-mediated supersymmetry breaking that may provide information about mass splittings, tanβ, and the number of messengers communicating supersymmetry breaking. copyright 1999 The American Physical Society

  15. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    International Nuclear Information System (INIS)

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-01-01

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs

  16. Deterioration of the Skew Quadrupole Moment in Tevatron Dipoles Over Time

    CERN Document Server

    Syphers, Michael J

    2005-01-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by t...

  17. SVX II a silicon vertex detector for run II of the tevatron

    International Nuclear Information System (INIS)

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R ampersand D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu

  18. Top quark production cross-section at the Tevatron Run 2

    OpenAIRE

    Cabrera, S.

    2003-01-01

    The top quark pair production cross-section ${\\sigma}_{t\\bar{t}}$ has been measured in $p\\bar{p}$ collisions at center of mass energies of 1.96 TeV using Tevatron Run 2 data. In the begining of Run 2 both CDF and D\\O\\ $\\sigma_{t\\bar{t}}$ measurements in the {\\it dilepton} channel $t\\bar{t}{\\to}WbW\\bar{b}{\\to}\\bar{\\ell}{\

  19. Design and operation of the quench protection system for the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1986-05-01

    A method is required to protect the magnets of a superconducting accelerator from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature such that they are no longer superconducting. A brief discussion of the basic properties of superconductors and the phenomenon of quench propagation is given, followed by the configuration of a quench protection system for the Fermilab Tevatron

  20. Theoretical interest in B-Meson physics at the B factories, Tevatron and the LHC

    International Nuclear Information System (INIS)

    Ali, A.

    2007-12-01

    We review the salient features of B-meson physics, with particular emphasis on the measurements carried out at the B-factories and Tevatron, theoretical progress in understanding these measurements in the context of the standard model, and anticipation at the LHC. Topics discussed specifically are the current status of the Cabibbo-Kobayashi-Maskawa matrix, the CP-violating phases, rare radiative and semileptonic decays, and some selected non-leptonic two-body decays of the B mesons. (orig.)

  1. Cornering gauge-mediated supersymmetry breaking with quasi-stable sleptons at the Tevatron

    OpenAIRE

    Martin, Stephen P.; Wells, James D.

    1998-01-01

    There are many theoretical reasons why heavy quasi-stable charged particles might exist. Pair production of such particles at the Tevatron can produce highly ionizing tracks (HITs) or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasi-stable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic l...

  2. Advanced forward calorimetry for the SSC and TeVatron collider

    International Nuclear Information System (INIS)

    DiBitonto, D.; Van Peteghem, P.M.; Geiger, R.L.; McIntyre, P.M.; Pang, Y.; Thane, J.M.; White, J.T.; Atac, M.

    1989-01-01

    We describe a project to develop fast, radiation hardened forward calorimetry for the SSC and TeVatron collider. Detector technologies discussed are based on gas and warm liquid media. In particular, we present the design of an ultrasensitive hybrid charge preamplifier for liquid technology capable of operating at 0.1-1 GHz. The actual detector bandwidth will depend on the choice of detector media used and the maximum allowable operating high voltage. (orig.)

  3. Coherent betatron instability driven by electrostatic separators: Stability analysis of the Tevatron

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Bogacz, S.A.

    1989-03-01

    This paper outlines possible intensity limits due to the coherent betatron motion for the upgraded Tevatron with the electrostatic separators. Numerical simulation shows that this new vacuum chamber structure dominates the high frequency part of the coupling impedance spectrum and more likely will excite a slow head-tail instability. A simple stability analysis yields the characteristic growth-time of the unstable modes. 4 refs., 4 figs., 1 tab

  4. Theoretical interest in B-Meson physics at the B factories, Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.

    2007-12-15

    We review the salient features of B-meson physics, with particular emphasis on the measurements carried out at the B-factories and Tevatron, theoretical progress in understanding these measurements in the context of the standard model, and anticipation at the LHC. Topics discussed specifically are the current status of the Cabibbo-Kobayashi-Maskawa matrix, the CP-violating phases, rare radiative and semileptonic decays, and some selected non-leptonic two-body decays of the B mesons. (orig.)

  5. Diffraction and Total Cross-Section at the Tevatron and the LHC

    CERN Document Server

    Deile, M; Aurola, A; Avati, V; Berardi, V; Bottigli, U; Bozzo, M; Brucken, E; Buzzo, A; Calicchio, M; Capurro, F; Catanesi, M G; Ciocci, M A; Cuneo, S; Da Vià, C; Dimovasili, E; Eggert, K; Eraluoto, M; Ferro, F; Giachero, A; Guillaud, J P; Hasi, J; Haug, F; Heino, J; Hilden, T; Jarron, P; Kalliopuska, J; Kaspar, J; Kempa, J; Kenney, C; Kok, A; Kundrát, V; Kurvinen, K; Lami, S; Lamsa, J; Latino, G; Lauhakangas, R; Lippmaa, J; Lokajícek, M; Lo Vetere, M; Macina, D; Macri, M; Meucci, M; Minutoli, S; Morelli, A; Musico, P; Negri, M; Niewiadomski, H; Noschis, E; Ojala, J; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Paoletti, R; Parker, S; Perrot, Anne Laure; Radermacher, E; Radicioni, E; Robutti, E; Ropelewski, Leszek; Ruggiero, G; Saarikko, H; Sanguinetti, G; Santroni, A; Saramad, S; Sauli, Fabio; Scribano, A; Sette, G; Smotlacha, J; Snoeys, W; Taylor, C; Toppinen, A; Turini, N; Van Remortel, N; Verardo, L; Verdier, A; Watts, S; Whitmore, J

    2006-01-01

    At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure func...

  6. Study and optimal correction of a systematic skew quadrupole field in the Tevatron

    International Nuclear Information System (INIS)

    Snopok, Pavel; Johnstone, Carol; Berz, Martin; Ovsyannikov, Dmitry A.; Ovsyannikov, Alexander D.

    2006-01-01

    Increasing demands for luminosity in existing and future colliders have made lattice design and error tolerance and correction critical to achieving performance goals. The current state of the Tevatron collider is an example, with a strong skew quadrupole error present in the operational lattice. This work studies the high-order performance of the Tevatron and the strong nonlinear behavior introduced when a significant skew quadrupole error is combined with conventional sextupole correction, a behavior still clearly evident after optimal tuning of available skew quadrupole circuits. An optimization study is performed using different skew quadrupole families, and, importantly, local and global correction of the linear skew terms in maps generated by the code COSY INFINITY [M. Berz, COSY INFINITY version 8.1 user's guide and reference manual, Department of Physics and Astronomy MSUHEP-20704, Michigan State University (2002). URL http://cosy.pa.msu.edu/cosymanu/index.html]. Two correction schemes with one family locally correcting each arc and eight independent correctors in the straight sections for global correction are proposed and shown to dramatically improve linearity and performance of the baseline Tevatron lattice

  7. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    International Nuclear Information System (INIS)

    Carena, Marcela; Liu, Tao

    2010-12-01

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  8. Motivation and detectability of an invisibly decaying Higgs boson at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    A Higgs boson with a mass below 150 GeV has a total decay width of less than 20 MeV into accessible standard model states. This narrow width means that the usual branching fractions for such a light Higgs boson are highly susceptible to any new particles to which it has unsuppressed couplings. In particular, there are many reasonable and interesting theoretical ideas that naturally imply an invisibly decaying Higgs boson. The motivations include models with light supersymmetric neutralinos, spontaneously broken lepton number, radiatively generated neutrino masses, additional singlet scalar(s), or right-handed neutrinos in the extra dimensions of TeV gravity. We discuss these approaches to model building and their implications for Higgs boson phenomenology in future Fermilab Tevatron runs. We find, for example, that the Tevatron with 30 fb -1 integrated luminosity can make a 3σ observation in the l + l - +E/ T channel for a 125 GeV Higgs boson that is produced with the same strength as the standard model Higgs boson but always decays invisibly. We also analyze the b bar b+E/ T final state signal and conclude that it is not as sensitive, but it may assist in excluding the possibility of an invisibly decaying Higgs boson or enable confirmation of an observed signal in the dilepton channel. We argue that a comprehensive Higgs boson search at the Tevatron should include the possibility that the Higgs boson decays invisibly. copyright 1999 The American Physical Society

  9. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  10. The behavior of the Tevatron at energies greater than 1000 GeV

    International Nuclear Information System (INIS)

    Pogorelko, O.

    1991-04-01

    If, as appears likely, the top quark lies at the upper range of the mass reach of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program together with projected luminosity enhancements. While a significant amount of data exists on individual magnets up to an energy of 1000 GeV, there are no detailed measurements above this value. We focus on the operating range beyond 1000 GeV in an attempt to see whether there is any realistic opportunity to extend the energy range of the Tevatron into this regime. The proposed modifications to the Tevatron Cryogenic System will provide sufficient cooling to lower the operating temperature of the 1000 superconducting magnets from the present 4.6--4.8K (1-φ inlet temperature) down to a range of 3.6--3.8K. At this temperature the short sample quench current for the dipole magnets should increase from the present value of ∼4000A (900 GeV) up to a level approaching 4800A (1100 GeV.) Increasing the peak current in the dipoles produces some important questions related to possible mechanical effects including catastrophic failure, the change of magnetic field quality, and quench protection problems resulting from the increased stored energy. In this note we shall examine these effects and comment on the existing data on low temperature operation. We have only considered the dipole magnets since the quadrupoles should not limit performance. We have not looked at the interaction region magnets which involve different considerations

  11. Review of searches for Higgs bosons and beyond the standard model physics at the Tevatron

    International Nuclear Information System (INIS)

    Duperrin, Arnaud

    2009-01-01

    The energy frontier is currently at the Fermilab Tevatron accelerator, which collides protons and antiprotons at a center-of-mass energy of 1.96 TeV. The luminosity delivered to the CDF and DOe experiments has now surpassed the 4 fb -1 . This paper reviews the most recent direct searches for Higgs bosons and beyond-the-standard-model (BSM) physics at the tevatron. The results reported correspond to an integrated luminosity of up to 2.5 fb -1 of Run II data collected by the two Collaborations. Searches covered include the standard model (SM) Higgs boson (including sensitivity projections), the neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM), charged Higgs bosons and extended Higgs models, supersymmetric decays that conserve or violate R-parity, gauge-mediated supersymmetric breaking models, long-lived particles, leptoquarks, compositeness, extra gauge bosons, extra dimensions, and finally signature-based searches. Given the excellent performance of the collider and the continued productivity of the experiments, the Tevatron physics potential looks promising for discovery with the coming larger data sets. In particular, evidence for the SM Higgs boson could be obtained if its mass is light or near 160 GeV. The observed (expected) upper limits are currently a factor of 3.7 (3.3) higher than the expected SM Higgs boson cross section at m H =115 GeV and 1.1(1.6) at m H =160 GeV at 95% C.L. (orig.)

  12. Recent results on top, bottom and exotic physics at the Tevatron

    International Nuclear Information System (INIS)

    Shaw, N.M.

    1993-08-01

    A summary of results from the recently concluded 1991--1993 Tevatron run is presented. Selected topics from b physics and exotic particle searches from the CDF and D0 collaborations are reviewed. Preliminary results from the CDF top search, using 12pb -1 from the 1992--1993 run, are given. In particular, the lepton + b-tag and dilepton analyses are discussed. Preliminary results from the CDF dilepton analysis places a lower limit on the top quark mass of 108GeV/c 2 at the 95% C.L

  13. Search for chargino and neutralino at Run II of the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Canepa, Anadi [Purdue Univ., West Lafayette, IN (United States)

    2006-08-01

    In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb-1 of integrated luminosity collected by the CDF experiment at the p$\\bar{p}$ Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

  14. Production measurements on the quadrupole correctors for the new Low- Beta System for the Tevatron Collider

    International Nuclear Information System (INIS)

    Mokhtarani, A.; Brown, B.C.; Hanft, R.; Oleck, A.R.; Peterson, T.; Turkot, F.

    1991-05-01

    Each of the Low Beta Systems for the Tevatron Collider requires 12 spool pieces; eight of the spool pieces contain superconducting quadrupoles as part of the low beta insertion as well as standard correction magnets. The remaining four provide correction magnets, beam position monitors, and current feeds for the neighboring low beta main quadrupoles. Thirty-two of these new spools have been fabricated. We describe here the mechanical, cryogenic and magnetic properties of these new spools as determined in the production test and measurement activities. 8 refs., 7 figs., 1 tab

  15. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Ralph J. Pasquinelli

    2011-07-01

    Full Text Available A means for noninvasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  16. Open charm production in the Parton Reggeization approach. From Tevatron to LHC

    International Nuclear Information System (INIS)

    Nefedov, M.A.; Karpishkov, A.V.; Saleev, V.A.; Shipilova, A.V.; Hamburg Univ.

    2014-10-01

    We study the inclusive hadroproduction of D 0 , D + , D *+ , and D s + mesons at leading order in the parton Reggeization approach endowed with universal fragmentation functions fitted to e + e - annihilation data from CERN LEP1. We have described D-meson transverse momentum distributions measured in the central region of rapidity by the CDF Collaboration at Tevatron (vertical stroke y vertical stroke 2.0) measured by the LHCb Collaboration also has been studied and expected disagreement between our theoretical predictions and data has been obtained.

  17. First measurement of the W-boson mass in run II of the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-12

    We present a measurement of the W-boson mass using 200 pb{-1} of data collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at run II of the Fermilab Tevatron. With a sample of 63 964 W-->enu candidates and 51 128 W-->munu candidates, we measure M_{W}=80 413+/-34{stat}+/-34{syst}=80,413+/-48 MeV/c;{2}. This is the most precise single measurement of the W-boson mass to date.

  18. Reshimming of Tevatron dipoles: A Process-quality and lessons-learned perspective

    International Nuclear Information System (INIS)

    Blowers, J.N.; Carson, J.A.; Hanft, R.W.; Harding, D.J.; Robotham, R.W.

    2005-01-01

    Over the last two years corrections have been made for the skew quadrupole moment in 530 of the 774 installed dipoles in the Tevatron. This process of modifying the magnets in situ has inherent risk of degrading the performance of the superconducting accelerator. In order to manage the risk, as well as to ensure the corrections were done consistently, formal quality tools were used to plan and verify the work. The quality tools used to define the process and for quality control are discussed, along with highlights of lessons learned

  19. Reshimming of Tevatron Dipoles; A Process-Quality and Lessons-Learned Perspective

    CERN Document Server

    Blowers, James N; Harding, David J; John, Carson; Robotham, William

    2005-01-01

    Over the last two years corrections have been made for the skew quadrupole moment in 530 of the 774 installed dipoles in the Tevatron. This process of modifying the magnets in situ has inherent risk of degrading the performance of the superconducting accelerator. In order to manage the risk, as well as to ensure the corrections were done consistently, formal quality tools were used to plan and verify the work. The quality tools used to define the process and for quality control are discussed, along with highlights of lessons learned.

  20. Considerations of bunch-spacing options for multi-bunch operation of the Tevatron Collider

    International Nuclear Information System (INIS)

    Dugan, G.

    1989-01-01

    This discussion will consider a number of points relevant to limitations, advantages and disadvantages of various arrangements of bunches in the Tevatron proton-antiproton collider. The considerations discussed here will be limited to: (a) bunch spacing symmetry and relation to the relative luminosity at B0 and D0 and the beam-beam interaction with separated beams; (b) bunch spacing constraints imposed by Main Ring RF coalescing and the optics of beam separation at B0 and D0; and (c) bunch spacing constraints imposed by injection and abort kicker timing requirements, and by the Antiproton Source RF unstacking process. 20 figs., 17 tabs

  1. Theory-motivated benchmark models and superpartners at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Kane, G.L.; Nelson, Brent D.; Wang Liantao; Wang, Ting T.; Lykken, J.; Mrenna, Stephen

    2003-01-01

    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly- and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Fermilab Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the CERN LHC. In addition, these models are capable of accounting for electroweak symmetry breaking with less severe cancellations among soft supersymmetry breaking parameters than previous benchmark models

  2. A programmable finite state module for use with the Fermilab Tevatron Clock

    International Nuclear Information System (INIS)

    Beechy, D.

    1987-10-01

    A VME module has been designed which implements several programmable finite state machines that use the Tevatron Clock signal as inputs. In addition to normal finite state machine type outputs, the module, called the VME Finite State Machine, or VFSM, records a history of changes of state so that the exact path through the state diagram can be determined. There is also provision for triggering and recording from an external digitizer so that samples can be taken and recorded under very precisely defined circumstances

  3. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Toback, David [Texas A-M; ŽIvković, Lidija [Belgrade U.

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  4. Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    CERN Document Server

    Altheimer, A; Asquith, L; Brooijmans, G; Butterworth, J; Campanelli, M; Chapleau, B; Cholakian, A E; Chou, J P; Dasgupta, M; Davison, A; Dolen, J; Ellis, S D; Essig, R; Fan, J J; Field, R; Fregoso, A; Gallicchio, J; Gershtein, Y; Gomes, A; Haas, A; Halkiadakis, E; Halyo, V; Hoeche, S; Hook, A; Hornig, A; Huang, P; Izaguirre, E; Jankowiak, M; Kribs, G; Krohn, D; Larkoski, A J; Lath, A; Lee, C; Lee, S J; Loch, P; Maksimovic, P; Martinez, M; Miller, D W; Plehn, T; Prokofiev, K; Rahmat, R; Rappoccio, S; Safonov, A; Salam, G P; Schumann, S; Schwartz, M D; Schwartzman, A; Seymour, M; Shao, J; Sinervo, P; Son, M; Soper, D E; Spannowsky, M; Stewart, I W; Strassler, M; Strauss, E; Takeuchi, M; Thaler, J; Thomas, S; Tweedie, B; Vasquez Sierra, R; Vermilion, C K; Villaplana, M; Vos, M; Wacker, J; Walker, D; Walsh, J R; Wang, L-T; Wilbur, S; Yavin, I; Zhu, W

    2012-01-01

    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.

  5. Multiple Parton Interactions in p$bar{p}$ Collisions in D0 Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Golovanov, Georgy [Joint Inst. for Nuclear Research (JINR), Dubna (Russia)

    2016-01-01

    The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy

  6. Calculation of integrated luminosity for beams stored in the Tevatron collider

    International Nuclear Information System (INIS)

    Finley, D.A.

    1989-01-01

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing β function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs

  7. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  8. Non-perturbative QCD Effects and the Top Mass at the Tevatron

    CERN Document Server

    Wicke, Daniel

    2008-01-01

    The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...

  9. A light stop and its consequences at the Tevatron and LEP II

    CERN Document Server

    López, J L; Zichichi, Antonino

    1995-01-01

    An interesting prediction of a string-inspired {\\em one-parameter} SU(5)\\times U(1) supergravity model, is the fact that the lightest member (\\tilde t_1) of the top-squark doublet (\\tilde t_1,\\tilde t_2), may be substantially lighter than the top quark. This sparticle (\\tilde t_1) may be readily pair-produced at the Tevatron and, if m_{\\tilde t_1}\\lsim130\\GeV, even be observed at the end of Run IB. Top-squark production may also be an important source of sought-for top-quark signatures in the dilepton and \\ell+jets channels. Therefore, a re-analysis of the top data sample in the presence of a possibly light top-squark appears necessary before definitive statements concerning the discovery of the top quark can be made. Such a light top-squark is linked with a light supersymmetric spectrum which can certainly be searched for at the Tevatron through trilepton and squark-gluino searches, and at LEPII through direct \\tilde t_1 pair-production (for m_{\\tilde t_1}\\lsim100\\GeV) and via chargino and Higgs-boson search...

  10. LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Hewett, JoAnne L.; Kaplan, Jared; Rizzo, Thomas G.; /SLAC

    2011-08-12

    We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3){sub 1} x SU(3){sub 2}/SU(3){sub c} coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.

  11. Beam beam tune shifts for 36 bunch operation in the Tevatron

    International Nuclear Information System (INIS)

    Bagley, P.

    1996-10-01

    We are preparing to upgrade the Tevatron Collider from 6 to 36 bunch operation. The 36 bunches are in 3 ''trains'' of 12 bunches. The spacing between bunches within a train is 21 RF buckets (53.106 MHz) and 139 empty buckets separate the trains. Because the 36 bunches are not evenly spaced around the machine, the different bunches within a train pass the opposing bunches at different points in the ring and so feel different beam beam effects. Through most of the machine the beams have helical separation, so these are mainly long range beam beam effects. As a first, very simple step, we've looked at the differences in the tunes of the different anti-proton (anti p) bunches. During the 36 bunch studies in Fall 1995, we used a new tune measurement system to measure these in several different machine conditions. We compare these measurements to calculations of the tunes for a anti p with zero transverse and longitudinal oscillation amplitudes. We discuss experimental problems, and the assumptions, approximations, and effects included in the calculations. Our main intent is to gain confidence that we can accurately model beam beam effects in the Tevatron

  12. Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos

  13. Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data

    International Nuclear Information System (INIS)

    Saritepe, S.; Michelotti, L.; Peggs, S.

    1990-07-01

    Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs

  14. Production of single top quark - results from the Tevatron and the LHC

    CERN Document Server

    Moon, Chang-Seong

    2014-01-01

    We present the most recent measurements of single top quark production cross section by the CDF and D0 experiments at the Fermilab Tevatron Collider and the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The data were collected at the Tevatron corresponding to an integrated luminosity of up to 9.7 fb$^{-1}$ of proton-antiproton ($p\\bar p$) collisions at a centre-of-mass energy of 1.96 TeV and at the LHC corresponding to an integrated luminosity of up to 4.9 fb$^{-1}$ of proton-proton ($pp$) collisions at a centre-of-mass energy of 7 TeV in 2011 and up to 20.3 fb$^{-1}$ at a centre-of-mass energy of 8 TeV in 2012. The measurements of single top quark production in $s$-channel, $t$-channel and associated production of a top quark and a $W$-boson ($tW$ production) are presented separately and lower limits on the CKM matrix element $|V_{tb}|$ from the single top quark cross section are set.

  15. Sources of b quarks at the Fermilab Tevatron and their correlations

    International Nuclear Information System (INIS)

    Field, R.D.

    2002-01-01

    The leading-logarithm order QCD hard scattering Monte Carlo models of HERWIG, ISAJET, and PYTHIA are used to study the sources of b quarks at the Fermilab Tevatron. The reactions responsible for producing b and b(bar sign) quarks are separated into three categories: flavor creation, flavor excitation, and parton-shower or fragmentation. Flavor creation corresponds to the production of a bb(bar sign) pair by gluon fusion or by annihilation of light quarks, while flavor excitation corresponds to a b or b(bar sign) quark being knocked out of the initial state by a gluon or a light quark or antiquark. The third source occurs when a bb(bar sign) pair is produced within a parton shower or during the fragmentation process of a gluon or a light quark or antiquark (includes gluon splitting). The QCD Monte Carlo models indicate that all three sources of b quarks are important at the Tevatron and when combined they qualitatively describe the inclusive cross-section data. Correlations between the b and b(bar sign) quark are very different for the three sources and can be used to isolate the individual contributions

  16. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  17. Search for supersymmetric Higgs bosons in the D0 experiment at the Tevatron; Recherche de bosons de Higgs supersymetriques au Tevatron dans l'experience D0

    Energy Technology Data Exchange (ETDEWEB)

    Michaut, M

    2006-09-15

    A search for the neutral Higgs bosons of the minimal supersymmetric extension of the standard model is performed in the 3 or 4 jets channels, pp-bar {yields} {phi}({yields} bb-bar)b(b-bar) with {phi} = h, H or A. For this purpose, the data collected with the D0 detector from 2002 to 2006 at the Tevatron hadronic collider with a center of mass energy of 1.96 TeV are analyzed. A complete study of the triggering is first done. The triggering conditions are optimized in order to keep the more signal fraction possible. Furthermore, a method is developed to predict the triggering efficiencies on our signal and backgrounds using only the data. Then an analysis method that allows the prediction of our background without the help of simulations is studied. No excess in events is observed in the data sample analyzed, corresponding to an integrated luminosity of 0.9 fb{sup -1}, so limits are set in the minimal supersymmetric extension of the standard model. At 95% confidence level, the following limits are found: tan({beta}) < 46 - 121 for m{sub {phi}} equals 100 - 170 GeV. (author)

  18. Search for supersymmetric Higgs bosons in the D0 experiment at the Tevatron; Recherche de bosons de Higgs supersymetriques au Tevatron dans l'experience D0

    Energy Technology Data Exchange (ETDEWEB)

    Michaut, M

    2006-09-15

    A search for the neutral Higgs bosons of the minimal supersymmetric extension of the standard model is performed in the 3 or 4 jets channels, pp-bar {yields} {phi}({yields} bb-bar)b(b-bar) with {phi} = h, H or A. For this purpose, the data collected with the D0 detector from 2002 to 2006 at the Tevatron hadronic collider with a center of mass energy of 1.96 TeV are analyzed. A complete study of the triggering is first done. The triggering conditions are optimized in order to keep the more signal fraction possible. Furthermore, a method is developed to predict the triggering efficiencies on our signal and backgrounds using only the data. Then an analysis method that allows the prediction of our background without the help of simulations is studied. No excess in events is observed in the data sample analyzed, corresponding to an integrated luminosity of 0.9 fb{sup -1}, so limits are set in the minimal supersymmetric extension of the standard model. At 95% confidence level, the following limits are found: tan({beta}) < 46 - 121 for m{sub {phi}} equals 100 - 170 GeV. (author)

  19. Experimental results on $t\\bar{t}+W/Z/\\gamma$ and SM top couplings from the Tevatron and the LHC

    CERN Document Server

    Vazquez Schroeder, Tamara

    2014-01-01

    Experimental results from the CDF and D0 Collaborations at the Tevatron and the ATLAS and CMS Collaborations at the LHC on the processes related to probing top quark couplings are presented. Evidence of both $t\\bar{t}Z$ and $t\\bar{t}W$ processes is reported. All measurements are in agreement with the SM expectations.

  20. Review of parton distributions and implications for the Tevatron and the LHC Partons in Collision at Physics in Collision

    CERN Document Server

    Huston, J

    2001-01-01

    This talk is intended to serve as a pedagogical guide on the determination of, the proper use of, and the uncertainties of parton distribution functions and their impact on physics cross sections at the Tevatron and LHC. A longer writeup of this talk is available at http://www.pa.msu.edu./~huston/lhc/lhc_pdfnote.ps. (12 refs).

  1. Digital Low Level RF Systems for Fermilab Main Ring and Tevatron

    Science.gov (United States)

    Chase, B.; Barnes, B.; Meisner, K.

    1997-05-01

    At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.

  2. J/{psi} polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Butenschoen, Mathias; Kniel, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-12-15

    We study the polarization observables of J/{psi} hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate {sup 3}P{sup [8]}{sub J} color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/{psi} production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/{psi} polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  3. J/ψ polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    International Nuclear Information System (INIS)

    Butenschoen, Mathias; Kniel, Bernd A.

    2011-12-01

    We study the polarization observables of J/ψ hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate 3 P [8] J color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/ψ production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/ψ polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  4. Beam-induced damage to the Tevatron components and what has been done about it

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Czarapata, P.C.; Drozhdin, A.I.; Still, D.A.; Samulyak, R.V.

    2007-01-01

    A beam-induced damage to the Tevatron collimators happened in December 2003 was induced by a failure in the CDF Roman Pot detector positioning during the collider run. Possible scenarios of this failure resulted in an excessive halo generation and superconducting magnet quench have been studied via realistic simulations using the STRUCT and MARS14 codes. It is shown that the interaction of a misbehaved proton beam with the collimators result in a rapid local heating and a possible damage. A detailed consideration is given to the ablation process for the collimator material taking place in high vacuum. It is shown that ablation of tungsten (primary collimator) and stainless steel (secondary collimator) jaws results in creation of a groove in the jaw surface as was observed after the December's accident. The actions undertaken to avoid such an accident in future are described in detail. (author)

  5. Beam-induced damage to the Tevatron components and what has been done about it

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Czarapata, P.C.; Drozhdin, A.I.; Still, D.A.; Samulyak, R.V.

    2006-01-01

    A beam-induced damage to the Tevatron collimators happened in December 2003 was induced by a failure in the CDF Roman Pot detector positioning during the collider run. Possible scenarios of this failure resulted in an excessive halo generation and superconducting magnet quench have been studied via realistic simulations using the STRUCT and MARS14 codes. It is shown that the interaction of a misbehaved proton beam with the collimators result in a rapid local heating and a possible damage. A detailed consideration is given to the ablation process for the collimator material taking place in high vacuum. It is shown that ablation of tungsten (primary collimator) and stainless steel (secondary collimator) jaws results in creation of a groove in the jaw surface as was observed after the December's accident. The actions undertaken to avoid such an accident in future are described in detail

  6. Colored resonances at the Tevatron: phenomenology and discovery potential in multijets

    International Nuclear Information System (INIS)

    Kilic, Can; Okui, Takemichi; Sundrum, Raman

    2008-01-01

    There exist several classes of theories beyond the Standard Model which contain massive spin-1 color octets, generically called ''colorons''. Indeed we argue that colorons inevitably appear in the spectrum whenever new colored particles feel an additional confining force. Colorons are distinctive at hadron colliders as this is the only environment in which they can be resonantly produced. In the simplest models we show that the coloron naturally decays to multijets via secondary resonances, which can be consistent with all existing bounds, even for colorons as light as a few hundred GeV. We perform representative case studies and show that a search in the four-jet channel at the Tevatron has strong signal significance, while the LHC faces formidable challenges for such a search.

  7. Search for the Higgs-Boson with the CDF experiment at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, Martin [Univ. of Karlsruhe (Germany)

    2005-06-10

    A search for a low-mass SM Higgs-Boson in the channel WH → lvb$\\bar{b}$ has been performed using neural networks. The data were taken by the CDF experiment at the p-$\\bar{p}$ collider Tevatron from 2000-2003, corresponding to in integrated luminosity of Lint = 162 pb-1 at a CMS-energy of √s = 1.96 TeV. 95% confidence level upper limits are set on σ × BR, the product of the production cross section times the Branching ratio, as a function of the Higgs boson mass. Cross sections above 8 pb are excluded for six different Higgs masses between 110 GeV/c2 and 150 GeV/c2. The required integrated luminosities for a 95% C.L. exclusion, 3σ evidence and 5σ discovery are calculated.

  8. Top anti-top Asymmetries at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Yvonne Reinhild [DESY

    2012-11-01

    The heaviest known elementary particle today, the top quark, has been discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab. Recently, the CDF and D0 collaborations have studied the forward-backward asymmetry in ttbar events, resulting in measured values larger than the standard model prediction. With the start of the LHC at CERN in 2010, a new top quark factory has opened and asymmetry measurements in ttbar have also been performed in a proton proton environment with higher collision energy. No deviations from the standard model have been noticed so far in the measurements of ATLAS and CMS. This article discusses recent results of asymmetry measurements in ttbar events of the ATLAS, CDF, CMS and D0 collaborations.

  9. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Aushev, V; Aushev, Y; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brochmann, M; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapelain, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cuth, J; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Drutskoy, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, A; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franc, J; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schott, M; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shkola, O; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stefaniuk, N; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfmeister, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2018-01-26

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of sqrt[s]=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A_{FB}^{tt[over ¯]}=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

  10. Q → qZ decays at Tevatron and SSC energies

    International Nuclear Information System (INIS)

    Agrawal, P.; Ellis, S.D.

    1990-09-01

    The possible existence of a new heavy quark Q that decays predominantly via the flavor changing neutral current transition Q → qZ is discussed. Candidates include a fourth generation charge -- 1/3 quark, or a more exotic vector-like quark. Such particles are interesting both as extensions of the Standard Model and due to their unique decay modes. The primary experimental indication of the pair production and subsequent decay of quarks is ZZ pair production at an essentially strong interaction rate. This mode can then constitute an unexpected background to the searches for other particles. In particular the channel Q bar Q → ZZ + X can generate a serious background to the search for the Higgs boson via the H 0 → ZZ mode at the SSC. Thus it is essential to search for such new heavy quarks at the Tevatron. Possible detection signatures for this purpose are discussed. 24 refs. , 1 fig., 3 tabs

  11. Status of the observed and predicted b anti-b production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Happacher, F.; Giromini, P.; /Frascati; Ptohos, F.; /Cyprus U.

    2005-09-01

    The authors review the experimental status of the b-quark production at the Fermilab Tevatron. They compare all available measurements to perturbative QCD predictions (NLO and FONLL) and also to the parton-level cross section evaluated with parton-shower Monte Carlo generators. They examine both the single b cross section and the so called b{bar b} correlations. The review shows that the experimental situation is quite complicated because the measurements appear to be inconsistent among themselves. In this situation, there is no solid basis to either claim that perturbative QCD is challenged by these measurements or, in contrast, that long-standing discrepancies between data and theory have been resolved by incrementally improving the measurements and the theoretical prediction.

  12. Quantum coherence, top transverse polarisation and the Tevatron asymmetry $A_{FB}^\\ell$

    CERN Document Server

    Aguilar-Saavedra, J A

    2014-01-01

    We revisit the relation between the asymmetries $A_{FB}$ and $A_{FB}^\\ell$ in $t \\bar t$ production at the Tevatron, using as new physics benchmark a colour octet. We find that $A_{FB}^\\ell$ receives large contributions from the interference between $\\lambda = \\pm 1/2$ top helicity states, which has been ignored in some of the previous literature on the subject. The omission of these contributions results in a severe underestimation of the asymmetry, around $1/2$ and $1/50$ of the true value for right-handed and left-handed top couplings to the octet, respectively. Interference effects are closely related to a $\\mathcal{O}(1)$ transverse top polarisation, as yet not considered in this context.

  13. First observation of vector boson pairs in a hadronic final state at the tevatron collider.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-08-28

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 + or - 239(stat) + or - 144(syst) diboson candidate events and measure a cross section sigma(pp[over ]-->VV + X) of 18.0 + or - 2.8(stat) + or - 2.4(syst) + or -1.1(lumi) pb, in agreement with the expectations of the standard model.

  14. Searches for diboson production at the Tevatron in final states containing heavy-flavor jets

    Directory of Open Access Journals (Sweden)

    Grivaz Jean-François

    2012-06-01

    Full Text Available Recent searches performed by the CDF and D0 collaborations at the Tevatron for diboson production in final states containing heavy-flavor jets are reported. The searches for WZ and ZZ can be regarded as the ultimate benchmark for the corresponding searches for a low-mass Higgs boson in the WH and ZH final states. Using the exact same techniques as for those Higgs boson searches, the D0 collaboration measured a cross section for WZ/ZZ production of 1.13 ± 0.36 times its expectation in the standard model, with a diboson signal significance of 3.3 standard deviations (2.9 expected.

  15. B-meson production in the Parton Reggeization approach at Tevatron and the LHC

    International Nuclear Information System (INIS)

    Karpishkov, A.V.; Saleev, V.A.; Nefedov, M.A.; Shipilova, A.V.; Samara State Aerospace Univ.; Hamburg Univ.

    2014-11-01

    We study the inclusive hadroproduction of B 0 , B + , and B 0 s mesons at leading order in the parton Reggeization approach using the universal fragmentation functions extracted from the combined e + e - annihilation data from CERN LEP1 and SLAC SLC colliders. We have described B-meson transverse momentum distributions measured in the central region of rapidity by the CDF Collaboration at Fermilab Tevatron and CMS Collaboration at LHC within uncertainties and without free parameters, applying Kimber-Martin-Ryskin unintegrated gluon distribution function in a proton. The forward B-meson production (2.0< y<4.5) measured by the LHCb Collaboration also has been studied and expected disagreement between our theoretical predictions and data has been obtained.

  16. Single top quarks at the Tevatron and observation of the s-channel production mode

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation gives an overview of single-top-quark production at the Tevatron proton-antiproton collider. The talk covers measurements of the total s+t channel production cross section and the extraction of the CKM matrix element |V_tb|. Furthermore, separate analyses of the s-channel and t-channel production modes are discussed. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment and represent in most cases the full Run-II dataset. Through a combination of the CDF and D0 measurements the first observation of single-top-quark production in the s-channel is claimed. This is particularly highlighted in the seminar.

  17. Diphoton production at Tevatron in the quasi-multiple-Regge-kinematics approach

    Energy Technology Data Exchange (ETDEWEB)

    Saleev, V.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Samarskij Gosudarstvennyj Univ., Samara (Russian Federation)

    2009-12-15

    We study the production of prompt diphotons in the central region of rapidity within the frame- work of the quasi-multi-Regge-kinematics approach applying the hypothesis of quark and gluon Reggeization. We describe accurately and without free parameters the experimental data which were obtained by the CDF Collaboration at the Tevatron Collider. It is shown that the main contribution to studied process is given by the direct fusion of two Reggeized gluons into a photon pair, which is described by the effective Reggeon-Reggeon to particle-particle vertex. The contribution from the annihilation of Reggeized quark-antiquark pair into a diphoton is also considered. At the stage of numerical calculations we use the Kimber-Martin-Ryskin prescription for unintegrated quark and gluon distribution functions, with the Martin-Roberts-Stirling-Thorne collinear parton densities for a proton as input. (orig.)

  18. Report of the SUGRA Working Group for Run II of the Tevatron

    CERN Document Server

    Barger, V.; Flattum, E.; Falk, T.; Abel, S.; Accomando, E.; Anderson, G.; Arnowitt, R.; Azzi, P.; Baer, H.; Bagger, J.; Beenakker, W.; Belyaev, A.; Berger, E.; Berger, M.; Brhlik, M.; Blazek, T.; Blessing, S.; Bokhari, W.; Bruner, N.; Carena, M.; Chakraborty, D.; Chang, D.; Chankowski, P.; Chen, C.H.; Cheng, H.C.; Chertok, M.; Cho, G.C.; Claes, D.; Demina, R.; Done, J.; Duflot, L.; Dutta, Bhaskar; Eboli, O.J.P.; Eno, S.; Feng, J.; Ganis, G.; Gold, M.; Gregores, E.M.; Hagiwara, K.; Han, T.; Harris, B.; Hikasa, K.; Holck, C.; Kao, C.; Kato, Y.; Klasen, M.; Keung, W.Y.; Kramer, M.; Lammel, S.; Li, T.J.; Lykken, J.D.; Magro, M.; Mani, S.; Matchev, K.T.; Mangano, M.; Mercadante, P.; Mrenna, S.; Nachtman, J.; Nath, P.; Nojiri, M.M.; Nomerotski, A.; Norman, D.; Oishi, R.; Ono, K.; Paige, F.; Paterno, M.; Parke, S.; Pierce, D.; Pilaftsis, A.; Plehn, T.; Pompos, A.; Polonksy, N.; Pokorski, S.; Quintana, P.; Roco, M.; Saltzberg, D.; Savoy-Navarro, A.; Seiya, Y.; Smith, C.; Spira, M.; Spiropulu, M.; Sullivan, Z.; Szalapski, R.; Tannenbaum, B.; Tait, T.; Wackeroth, D.; Wang, Y.; White, J.; Williams, H.H.; Worcester, M.; Worm, S.; Zhang, R.J.; Zielinski, M.

    2000-01-01

    We present an analysis of the discovery reach for supersymmetric particles at the upgraded Tevatron collider, assuming that SUSY breaking results in universal soft breaking parameters at the grand unification scale, and that the lightest supersymmetric particle is stable and neutral. We first present a review of the literature, including the issues of unification, renormalization group evolution of the supersymmetry breaking parameters and the effect of radiative corrections on the effective low energy couplings and masses of the theory. We consider the experimental bounds coming from direct searches and those arising indirectly from precision data, cosmology and the requirement of vacuum stability. The issues of flavor and CP-violation are also addressed. The main subject of this study is to update sparticle production cross sections, make improved estimates of backgrounds, delineate the discovery reach in the supergravity framework, and examine how this might vary when assumptions about universality of soft...

  19. Enhancing the top-quark signal at Fermilab Tevatron using neural nets

    International Nuclear Information System (INIS)

    Ametller, L.; Garrido, L.; Talavera, P.

    1994-01-01

    We show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the Fermilab Tevatron. The main features of t bar t and background events in a mixed sample are projected on a single output, which controls the efficiency, purity, and statistical significance of the t bar t signal. We consider a feed-forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs. Our main results are based on the exhaustive comparison of the neural net performances with those obtainable from the standard experimental analysis, by imposing different sets of linear cuts over the same variables, showing how the neural net approach improves the standard analysis results

  20. Measurements of a Newly Designed BPM for the Tevatron Electron Lens 2

    Science.gov (United States)

    Scarpine, V. E.; Kamerdzhiev, V.; Fellenz, B.; Olson, M.; Kuznetsov, G.; Kamerdzhiev, V.; Shiltsev, V. D.; Zhang, X. L.

    2006-11-01

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses (˜1 us) of up to ˜1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new, compact four-plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsed with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency-dependent transverse position offset may be reduced to ˜0.1 mm for the beam structures of interest.

  1. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Science.gov (United States)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  2. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Directory of Open Access Journals (Sweden)

    A. V. Petrenko

    2011-09-01

    Full Text Available Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  3. Upgraded D OE calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement

    International Nuclear Information System (INIS)

    Lokos, S.

    1992-11-01

    The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects

  4. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of tran...

  5. Searches for the Standard Model Higgs boson at the Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Wade C. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Junk, Thomas R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    During Run II of the Tevatron collider, which took place from 2001 until 2011, the CDF and D0 detectors each collected approximately 10 fb -1 of collision data at a center-of-mass energy of . This dataset allowed for tests for the presence of the SM Higgs boson in the mass range 90-200 GeV in the production modes gg → H, W/ZH, vector-boson fusion, and H, with H decay modes H → , H → W+W-, H →

  6. Search for anomalous couplings in WW and WZ measurements at the Tevatron (D0 and CDF results)

    International Nuclear Information System (INIS)

    Diehl, H.T.

    1995-06-01

    The search for WW and WZ production in p anti p collisions at √s = 1.8 TeV using the CDF and D0 detectors is presented. Three analyses, one concentrating on the leptons + jets decay channels and two concentrating on the dilepton decay channels are described in detail. Limits on anomalous WWγ and WWZ trilinear gauge boson couplings are presented. Prospects for further study of diboson production and anomalous couplings with the Upgraded Tevatron are also presented

  7. Top-squark mixing effects in the supersymmetric electroweak corrections to top-quark production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Yang, J.M.; Li, C.S.

    1996-01-01

    Taking into account the mixing effects between left- and right-handed top squarks, we calculate the genuine supersymmetric electroweak correction to top-quark production at the Fermilab Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections. copyright 1996 The American Physical Society

  8. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode

    NARCIS (Netherlands)

    Aaltonen, T.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.

    2010-01-01

    We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background

  9. Inclusive b and b anti b production with quasi-multi-Regge kinematics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A. [Hamburg Univ. (Germany). II. Institut fuer Theoretische Physik; Saleev, V.A.; Shipilova, A.V. [Samara State University (Russian Federation)

    2010-03-15

    We consider b-jet hadroproduction in the quasi-multi-Regge-kinematics approach based on the hypothesis of gluon and quark Reggeization in t-channel exchanges at high energies. The preliminary data on inclusive b-jet and b anti b-dijet production taken by the CDF Collaboration at the Fermilab Tevatron are well described without adjusting parameters. We find the main contribution to inclusive b-jet production to be the scattering of a Reggeized gluon and a Reggeized b-quark to a b quark, which is described by the effective Reggeon-Reggeon-quark vertex. The main contribution to b anti b-pair production arises from the scattering of two Reggeized gluons to a b anti b pair, which is described by the effective Reggeon-Reggeon-quark-quark vertex. Our analysis is based on the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions using as input the Martin-Roberts-Stirling-Thorne collinear parton distribution functions of the proton. (orig.)

  10. Search for supersymmetric Higgs bosons in the D0 experiment at the Tevatron

    International Nuclear Information System (INIS)

    Michaut, M.

    2006-09-01

    A search for the neutral Higgs bosons of the minimal supersymmetric extension of the standard model is performed in the 3 or 4 jets channels, pp-bar → φ(→ bb-bar)b(b-bar) with φ = h, H or A. For this purpose, the data collected with the D0 detector from 2002 to 2006 at the Tevatron hadronic collider with a center of mass energy of 1.96 TeV are analyzed. A complete study of the triggering is first done. The triggering conditions are optimized in order to keep the more signal fraction possible. Furthermore, a method is developed to predict the triggering efficiencies on our signal and backgrounds using only the data. Then an analysis method that allows the prediction of our background without the help of simulations is studied. No excess in events is observed in the data sample analyzed, corresponding to an integrated luminosity of 0.9 fb -1 , so limits are set in the minimal supersymmetric extension of the standard model. At 95% confidence level, the following limits are found: tan(β) φ equals 100 - 170 GeV. (author)

  11. CP-violating supersymmetric Higgs boson at the Tevatron and LHC

    International Nuclear Information System (INIS)

    Das, Siba Prasad; Drees, Manuel

    2011-01-01

    We analyze the prospect for observing the intermediate neutral Higgs boson (h 2 ) in its decay to two lighter Higgs bosons (h 1 ) at the presently operating hadron colliders in the framework of the CP-violating minimal supersymmetric standard model using the PYTHIA event generator. We consider the lepton+4-jets+E T channel from associate Wh 2 production, with Wh 2 >Wh 1 h 1 >lvlbb*-bb*-. We require two, three or four tagged b jets. We explicitly consider all relevant standard model backgrounds, treating c jets separately from light flavor and gluon jets and allowing for mistagging. We find that it is very hard to observe this signature at the Tevatron, even with 20 fb*-*1 of data, in the LEP-allowed region of parameter space due to the small signal efficiency, even though the background is manageable. At the LHC, a priori huge standard model backgrounds can be suppressed by applying judiciously chosen kinematical selections. After all cuts, we are left with a signal cross section of around 0.5 fb, and a signal to background ratio between 1.2 and 2.9. According to our analysis this Higgs signal should be viable at the LHC in the vicinity of present LEP exclusion once 20 to 50fb*-*1 of data have been accumulated at √(s)=14 TeV.

  12. Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models

    CERN Document Server

    Wang, Y

    2002-01-01

    We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.

  13. The underlying event and the total cross section from Tevatron to the LHC

    International Nuclear Information System (INIS)

    Baehr, Manuel; Butterworth, Jonathan M.; Seymour, Michael H.

    2009-01-01

    Multiple partonic interactions are widely used to simulate the hadronic final state in high energy hadronic collisions, and successfully describe many features of the data. It is important to make maximum use of the available physical constraints on such models, particularly given the large extrapolation from current high energy data to LHC energies. In eikonal models, the rate of multiparton interactions is coupled to the energy dependence of the total cross section. Using a Monte Carlo implementation of such a model, we study the connection between the total cross section, the jet cross section, and the underlying event. By imposing internal consistency on the model and comparing to current data we constrain the allowed range of its parameters. We show that measurements of the total proton-proton cross-section at the LHC are likely to break this internal consistency, and thus to require an extension of the model. Likely such extensions are that hard scatters probe a denser matter distribution inside the proton in impact parameter space than soft scatters, a conclusion also supported by Tevatron data on double-parton scattering, and/or that the basic parameters of the model are energy dependent.

  14. Investigation of hadronic matter at the Fermilab Tevatron Collider: Technical progress report, 1986 October-1987 October

    International Nuclear Information System (INIS)

    Anderson, E.W.

    1987-01-01

    An investigation of hadronic matter at very high energy densities is reported. The present experiment, E-735, is a search for a deconfined quark-gluon plasma phase of matter expected to occur when temperatures of 240 MeV are achieved. Preliminary data have been obtained during the first operation of the Fermilab Tevatron Collider during the period January to May 1987. The collaboration is about to publish first results on the charged particle multiplicity and transverse momentum distributions. In addition, we have data on the particle identification of the produced secondaries. Both measurements are regarded on theoretical grounds to be sensitive indicators of the formation of a high temperature plasma. The capital project funded under this contract was a 240-element trigger hodoscope array, with associated electronics and monitor. The hodoscope was completed and performed to design expectations in the high-rate and high-radiation environment of the Collider. Scientific personnel supported under this contract were also responsible for the implementation of the data acquisition system used for E-735. Although the system underwent several unanticipated modifications in response to changing schedules, the required service was provided. Preparations are currently under way for the principal data acquisition during the spring of 1988. At that time we will have in place the central tracking chamber, and the remainder of the spectrometer chambers. Tests will also be made on backgrounds and detector materials appropriate to our proposal, P-787, to measure leptons and photons in the third Collider running period

  15. A search for ZH → μμb(bar b) production at the Tevatron

    International Nuclear Information System (INIS)

    Ancu, Lucian-Stefan

    2010-01-01

    The Standard Model describes with a very good accuracy all interactions of the, so far, known elementary particles. However the Higgs mechanism, which gives rise to the observed mass of these particles, has not yet been confirmed. The Higgs particle has not yet been observed, and the observation or exclusion is an important test of the Standard Model. The Standard Model does not predict the mass of the Higgs particle, however it does impose some limits on the range in which this mass can lie. In direct searches a Higgs with a mass smaller than 114.4 GeV and within 162 GeV and 166 GeV has been excluded at 95% CL at the LEP and the Tevatron colliders. The analysis presented in this thesis is aimed to search for the ZH → μμb(bar b) events in 3.1 fb -1 of data collected with the D0 detector in p(bar p) collisions at √s = 1.96 TeV.

  16. Search for super symmetry at the Tevatron using the trilepton signature

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Sourabh Shishir [Rutgers Univ., New Brunswick, NJ (United States)

    2008-10-01

    This dissertation describes a search for the associated production of the supersymmetric particles, the chargino and the neutralino, through their R-parity conserving decays to three leptons and missing energy. This search is carried out using the data collected at the CDF experiment at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider at Fermilab. The results are obtained by combining five independent channels with varying signal to background ratio. Overall, a total of 6.4 ± 1.1 background events from standard model processes and 11.4 ± 1.1 signal events for a particular choice of mSUGRA model parameters are expected. The observation of 7 events in data is consistent with the standard model background expectation, and the mSUGRA model is constrained. Limits are set on the cross section of Chargino-Neutralino pair production, and a limit on the mass of the chargino is extracted. A method of obtaining model-independent results is also discussed.

  17. Searching for R-parity violation at run-II of the tevatron

    International Nuclear Information System (INIS)

    Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; Campos, F. de

    1999-01-01

    The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R P decay, (a) via LQD c and (b) via LLE c ; (2) how to distinguish resonant slepton production from Zprime or Wprime production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD c ; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L 1 Q 2 D 1 c ; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L 1 Q 2 D 1 c ; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE c , (b) via LQD c , and (c) via U c D c D c , respectively; and (8) top quark and top squark decays in spontaneous R P

  18. Exploratory orbit analysis of Tevatron helical upgrade: One: A first look

    International Nuclear Information System (INIS)

    Michelotti, L.; Saritepe, S.

    1989-04-01

    A key feature of the Tevatron upgrade is the placement of proton and anti-proton bunches on the branches of a double helix which winds around the current closed orbit. Electrostatic separators will transfer the bunches on and off the double helix so that they experience head-on collisions only at the experimental areas, B0 and D0, all other encounters occurring at large transverse separation. In this way the number of bunches, and the luminosity, can be increased without a proportional growth in the beam-beam tune shift. The scenario raises a number of beam dynamics issues, especially (a) the consequences of sampling magnetic fields far from the magnets' center lines, and (b) the effects of the long-range beam-beam interaction. This report presents the results of calculations and simulations done to date to explore (b); a Fermilab team have been studying (a), both experimentally and theoretically, but we shall not review those efforts here. 9 refs., 17 figs

  19. Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron

    International Nuclear Information System (INIS)

    Carena, M.; Quiros, M.; Wagner, C.E.M.

    1998-01-01

    It has been recently shown that the observed baryon number may originate at the electroweak phase transition, provided that the Higgs boson and the lightest stop are sufficiently light. In this work, we perform a detailed analysis, including all dominant two-loop finite-temperature corrections to the Higgs effective potential, as well as the non-trivial effects proceeding from the mixing in the stop sector, to define the region of parameter space for which electroweak baryogenesis can happen. The limits on the stop and Higgs masses are obtained by taking into account the experimental bounds on these quantities, as well as those coming from the requirement of avoiding dangerous color breaking minima. We find for the Higgs mass m h < or∼105 GeV, while the stop mass may be close to the present experimental bound and must be smaller than, or of the order of, the top quark mass. These results provide a very strong motivation for further non-perturbative analysis of the electroweak phase transition, as well as for the search for Higgs and stop particles at the LEP and Tevatron colliders. (orig.)

  20. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Xu [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  1. arXiv Addendum to: Predictions for Higgs production at the Tevatron and the associated uncertainties

    CERN Document Server

    Baglio, Julien

    2010-01-01

    We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism $gg \\to H$ and the Higgs-strahlung processes $q \\bar q \\to VH$ with $V=W/Z$, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use of an effective theory approach in the determination of the radiative corrections in the $gg \\to H$ process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs--strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fus...

  2. Impact of the A48 collimator on the Tevatron B0 dipoles

    CERN Document Server

    Nicolas, L Y

    2003-01-01

    To protect the CDF detector components in an event of an abort kicker prefire (AKP) in the Tevatron, a new collimator is to be installed at the A48 location during the summer 2003 shutdown. Detailed calculations have shown that this 0.5-m long ''single L-shape'' steel collimator will intercept a bunch of protons when such an incident occurs, providing reliable protection of the CDF main detector at an AKP. It will also mitigate the backgrounds induced by elastic beam-gas interactions upstream of B0. Although the Roman Pot detectors downstream of the A48 collimator will see an increased background, the amount of radiation they will receive either resulting from beam halo interactions in the collimator or during an AKP will not damage their sensitive parts. Secondaries resulting from beam halo interactions with the A48 collimator do not noticeably affect the downstream dipoles. The case of an AKP is quite different. As opposed to halo hits in the ''single-L shape'' unit (around 10 sup 5 p/s), a bunch lost on A4...

  3. A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Nevis Labs, Columbia U.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\\Lambda^{NLO,(4)}_{\\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \\pm 0.68}$

  4. Dimuon production by neutrinos in the Fermilab 15-ft bubble chamber at the Tevatron

    Science.gov (United States)

    Jain, V.; Harris, F. A.; Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G. G.; Jabiol, M. A.; Jacques, P.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1990-04-01

    The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ-μ+ and μ+μ-, and 11 μ-μ-) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ-μ- and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ-μ-/μ- for muon momenta above 4 GeV/c is 1.2×10-3, and for momenta above 9 GeV/c this limit is 1.1×10-3. The opposite-sign-dimuon-to-single-muon ratio is (0.62+/-0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65+/-0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

  5. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    International Nuclear Information System (INIS)

    Huske, Nils Kristian

    2010-01-01

    We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 H Pl ). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 H -1 of Tevatron data, we set limits on the production cross section times branching ratio. At the Tevatron, however, we are able to combine the sensitivity of our analyses not only across channels or analyses at a single experiment but also across both experiments, namely CDF and D0. This yields to the so-called Tevatron Higgs combination which, in total, combines 129 analyses from both experiments with luminosities of up to 6.7 fb -1 . The results of a previous Tevatron combination led to the first exclusion of possible Higgs boson masses since the LEP exclusion in 2001. The latest Tevatron combination from July 2010 can be seen in Fig. 111 and limits compared to the Standard Model expectation are listed in Table 23. It excludes a SM Higgs boson in the regions of 100 H H -1 projection is a rather conservative outlook for the coming year of data taking as the Tevatron runs smoothly and the run till the end of 2011 is assured. By now, already 9 fb -1 have been recorded by the two experiments. As the extrapolation plot shows, this amount of luminosity will allow to exclude the Higgs boson over a wide mass range at a 95% C.L. With the LHC at CERN now

  6. HiggsBounds 2.0.0. Confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, P.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, O. [Freiburg Univ. (Germany). Physikalisches Inst.; Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Williams, K.E. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2011-03-15

    HiggsBounds 2.0.0 is a computer code which tests both neutral and charged Higgs sectors of arbitrary models against the current exclusion bounds from the Higgs searches at LEP and the Tevatron. As input, it requires a selection of model predictions, such as Higgs masses, branching ratios, effective couplings and total decay widths. HiggsBounds 2.0.0 then uses the expected and observed topological cross section limits from the Higgs searches to determine whether a given parameter scenario of a model is excluded at the 95% C.L. by those searches. Version 2.0.0 represents a significant extension of the code since its first release (1.0.0). It includes now 28/53 LEP/Tevatron Higgs search analyses, compared to the 11/22 in the first release, of which many of the ones from the Tevatron are replaced by updates. As a major extension, the code allows now the predictions for (singly) charged Higgs bosons to be confronted with LEP and Tevatron searches. Furthermore, the newly included analyses contain LEP searches for neutral Higgs bosons (H) decaying invisibly or into (non flavour tagged) hadrons as well as decay-mode independent searches for neutral Higgs bosons, LEP searches via the production modes {tau}{sup +}{tau}{sup -}H and b anti bH, and Tevatron searches via t anti tH. Also, all Tevatron results presented at the ICHEP'10 are included in version 2.0.0. As physics applications of HiggsBounds 2.0.0 we study the allowed Higgs mass range for model scenarios with invisible Higgs decays and we obtain exclusion results for the scalar sector of the Randall-Sundrum model using up-to-date LEP and Tevatron direct search results. (orig.)

  7. Investigation of hadronic matter at the Fermilab Tevatron Collider. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, E.W.

    1985-01-01

    Hadronic matter at very high energy densities is investigated. The present experimental effort is focused on a search for a new quark-gluon plasma phase expected to occur when temperatures of 240 MeV are achieved. Instrumentation for several unique signatures is being developed to exploit the first operation of the Fermilab Tevatron Collider in 1986. The capital projects funded under this contract are a 240-element trigger hodoscope array, and in phase II a segmented photon detector. For these projects $172K are requested for the period 1986 February 1 through 1987 January 31 to complete the trigger hodoscope, and $160K for the period 1987 February 1 through 1988 January 31 to construct a portion of the photon detector. These figures are as presented in the original proposal. Due to budget constraints on the Fermilab experimental support program, we will not be able to receive the full complement of necessary electronics from the Fermilab PREP pool in the required period. Consequently, an additional $35K is requested for the period 1986 February 1 through 1987 January 31 for a portion of the electronics for the 240-channel trigger hodoscope. For the same reasons, Fermilab cannot provide the required magnet on schedule; a one year delay is proposed. As this would seriously impact our physics goals, the collaboration is attempting to fund the magnet without delay through the universities. Efforts to date have concentrated on the design and testing of the hodoscope. Extensive measurements on the radiation levels and effects during the various accelerator cycles have been made. These data are essential to the proper selection of scintillator and design of electronics. These tests are now complete, and final construction is beginning. 11 refs

  8. HiggsSignals. Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). The Oskar Klein Centre; Stefaniak, Tim [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a {chi}{sup 2} measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at m{sub H} {approx} 125.5 GeV.

  9. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Huske, Nils Kristian [Pierre and Marie Curie Univ., Paris (France); Bielefeld Univ. (Germany)

    2010-09-10

    We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 < mH < 160 GeV the SM would remain a self consistent theory up to highest energy scales O(mPl). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 < mH < 150 GeV. A light Higgs boson is favored regarding constraints from electroweak precision measurements. As a single analysis is not yet sensitive for an observation of the Higgs boson using 5.3 fb-1 of Tevatron data, we set limits on the production cross section times branching ratio. At the Tevatron, however, we are able to combine the sensitivity of our analyses not only across channels or analyses at a single experiment but also across both experiments, namely CDF and D0. This yields to the so-called Tevatron Higgs combination which, in total, combines 129 analyses from both experiments with luminosities of up to 6.7 fb-1. The results of a previous Tevatron combination led to the first exclusion of possible Higgs boson masses since the LEP exclusion in 2001. The latest Tevatron combination from July 2010 can be seen in Fig. 111 and limits compared to the Standard Model expectation are listed in Table 23. It excludes a SM Higgs boson in the regions of 100 < mH < 109 GeV as well as 158 < m

  10. Top quarks at the Tevatron: Measurements of the top quark production and decay with the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, Jonas [Stockholm Univ. (Sweden)

    2006-01-01

    This thesis presents two measurements of the to pquark using 230 pb-1 of data recorded with the D0 detector at the Tevatron accelerator. The first measurement determines the top pair production cross section at √s = 1.96 TeV in proton-antiproton collisions. In the standard model of particle physics the top quark decays almost exclusively into a W boson and a b quark. Candidate events are selected by requiring that at least one jet in the event is tagged with the secondary vertex algorithm.

  11. Evading the top-quark mass bound at the Fermilab Tevatron: New signals for the top quark

    International Nuclear Information System (INIS)

    Mukhopadhyaya, B.; Nandi, S.

    1991-01-01

    If an SU(2)-singlet charge-2/3 quark exists, current data allow a wide range for the parameters of the 4x4 mixing matrix in which the usual ''hard-lepton'' signal of the top quark is suppressed. For a light Higgs boson, the top quark decays predominantly via the flavor-changing Yukawa interaction, thus evading the Fermilab Tevatron bounds on its mass. For a heavier Higgs boson, flavor-changing neutral-current decays become important, giving rise to anomalous Z-pair production, testable at the upgraded Tevetron, at the CERN Large Hardon Collider, and at the Superconducting Super Collider

  12. Measurement of the Top Mass in the All - Jets Channel with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Brian M. [Florida State U.

    2002-01-01

    We describe a measurement of the top quark mass in $t\\overline{t}$ production where the final state is 6 or more jets, which is otherwise known as the all-jets channel. The mass is extracted from 110.2 $pb^{-1}$ of data taken with the D0 detector at the Fermilab Tevatron (center-of-mass energy ps = 1.8 TeV) from 1993-96. The top quark mass is measured to be $176.6^{+17.1}_{-13.4}$ $GeV/c^2$. The corresponding cross section is estimated to be $11.5^{+4.9}_{-4.7}$ pb.

  13. Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Palencia, Jose Enrique; /Fermilab

    2009-01-01

    We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.

  14. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ziqing [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  15. A possible explanation for the observed tune shift on the 150GeV front porch at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Norman M.; /Fermilab

    2007-06-01

    It has been known that the tunes of the Tevatron drift on the 150 GeV front porch . The drift is observed to have the same time dependence as the drift in the chromaticity. The variation in the chromaticity is due to the change in the b{sub 2} of the superconducting dipoles, which represents the integrated sextupole moment of the magnet. It is reasonable to assume that the tune drift is due to the feed down from the changing b{sub 2}. Calculations based on this assumption, both here and in earlier attempts to explain the tune drift, show, absent unreasonable assumptions about the closed orbit, that the simple models of the variation of the sextupole moment will not explain the tune drift. An explanation, for both the tune drift and the tune split observed when the Tevatron was first operated, is proposed which is based on the longitudinal variation of the sextupole component in the dipoles and the fact that the dipoles are not perfect sector magnets.

  16. Search for squarks and gluinos in the D0 experiment of the Run-II-a at the Tevatron

    International Nuclear Information System (INIS)

    Verdier, P.

    2007-11-01

    The D0 experiment is recording pp-bar collisions at a center-of-mass energy of 1.96 TeV since the beginning of the Run II-a of the Tevatron in 2001. The design of processor boards for the D0 level 2 trigger system is first presented. Those boards were installed in 2003, and they have been working perfectly since that date. Performances of missing transverse energy (/ ET ) reconstruction are then described. This quantity is important at hadron colliders especially for new particles searches. Finally, squarks and gluinos, supersymmetric partners of quarks and gluons, could be the most copiously produced supersymmetric particles at the Tevatron, if they are sufficiently light. Those particles were searched for in 0.96 fb -1 of data recorded by D0 during the Run II-a. The final state consists of jets and missing transverse energy. The numbers of observed events are in good agreement with the Standard Model predictions. Lower mass limits at 95 % confidence level are obtained on the squark and gluino masses in the framework of the mSUGRA model. Contributions to other D0 data analyses are also shortly described. Those analyses are the search for first generation leptoquarks and the search for squarks in jets+τ(s)+E T events. The possibility to constrain a 'Little Higgs' model using the results of the jets+E T searches is then discussed. (author)

  17. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab

    2015-03-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of transverse damper excitations. New proposals for nondestructive halo population density measurements are also briefly discussed.

  18. Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from tt¯ production at the Tevatron

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2015-01-01

    Roč. 92, č. 5 (2015), "052007-1"-"052007-16" ISSN 1550-7998 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * DZERO * analyzing power * transverse momentum dependence * rapidity dependence * calibration * correlation * background Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  19. Tevatron combination of single-top-quark cross sections and determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V.sub.tb./sub

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Kupčo, Alexander; Lokajíček, Miloš; Lysak, R.

    2015-01-01

    Roč. 115, č. 15 (2015), "152003"-"152003-11" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * channel cross section * measured * CKM matrix * CDF * DZERO * 1960 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.645, year: 2015

  20. Search for New Physics at the Fermilab Tevatron p(bar p) Collider

    International Nuclear Information System (INIS)

    Rolli, Simona

    2011-01-01

    We report on selected recent results from the CDF and D0 experiments on searches for physics beyond the Standard Model using data from the Tevatron collider running p(bar p) collisions at √s = 1960 GeV. Over the past decades the Standard Model (SM) of particle physics has been surprisingly successful. Although the precision of experimental tests improved by orders of magnitude no significant deviation from the SM predictions has been observed so far. Still, there are many questions that the Standard Model does not answer and problems it can not solve. Among the most important ones are the origin of the electro-weak symmetry breaking, hierarchy of scales, unification of fundamental forces and the nature of gravity. Recent cosmological observations indicates that the SM particles only account for 4% of the matter of the Universe. Many extensions of the SM (Beyond the Standard Model, BSM) have been proposed to make the theory more complete and solve some of the above puzzles. Some of these extension includes SuperSymmetry (SUSY), Grand Unification Theory (GUT) and Extra Dimensions. At CDF and D0 we search for evidence of such processes in proton-antiproton collisions at √(s) = 1960 GeV. The phenomenology of these models is very rich, although the cross sections for most of these exotic processes is often very small compared to those of SM processes at hadron colliders. It is then necessary to devise analysis strategies that would allow to disentangle the small interesting signals, often buried under heavy instrumental and/or physics background. Two main approaches to search for physics beyond the Standard Model are used in a complementary fashion: model-based analyses and signature based studies. In the more traditional model-driven approach, one picks a favorite theoretical model and/or a process, and the best signature is chosen. The selection cuts are optimized based on acceptance studies performed using simulated signal events. The expected background is

  1. Rare decays of B mesons and baryons at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Volpi, Guido [Univ. of Siena (Italy)

    2008-07-01

    The experimental study of rare decays of hadrons containing the b quark has been a fertile ground for some time, and keeps being one of the most interesting subjects in high energy physics. It has improved our understanding of hadronic processes, and allows investigating various aspects of the Standard Model and searching for hints of physics beyond the Standard Model. Examples are the comparison of branching fractions of charmless modes with predictions of models, the constraints on CKM angles (B0 → π+π-, B → DK, with D in suppressed modes), the observation of purely leptonic modes (B± → τ±v), the recently established difference in ACP between B0 → K+π- and B± → K±π0, suspected to be a hint new physics. All of them came from a long and successful experimental activity with e+e- collisions at the Y(4S) resonance. With hadronic colliders now coming into play, the study of rare decays is reaching new heights. Given the high cross section for production of all kinds of B hadrons, the record luminosities now provided by the Tevatron collider, and the LHC program in view for the next years, there is the potential for a rich program of interesting new measurements, including even rarer modes as the Bs0 → μ+μ-, strongly suppressed in the standard model but very sensitive to many NP scenarios. The complexity of the hadronic collision environment, however, requires detectors with high precision and high quality tracking, and a trigger system capable of complex event selections at high rates. The CDF experiment, thanks to a fast trigger on impact parameter, has been able to reconstruct many rare B decays, including previously unobserved modes Bs0 → K+K- and Bs0 → K

  2. Search for Leptoquarks Decaying to $\\mu$ + $X$ Meson with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Karmgard, Daniel John [Florida State U., SCRI

    1999-01-01

    We describe a search for the pair production of second generation leptoquarks that decay to muons plus other particles in 94 $pb^{-1}$ of data taken with the D0 detector at the Fermilab Tevatron (center-of-mass energy $\\sqrt{s}$ = 1.8 TeV) from 1993{96. The search places limits on the cross sections and mass of second generation leptoquarks for various branching ratios and couplings. For both scalar leptoquarks decaying into a muon and a quark the mass limit is 200 GeV/$c^2$ while for one scalar leptoquark decaying into a muon and a quark with the other scalar leptoquark decaying into a neutrino and a quark the mass limit is 160 GeV/$c^2$ at the 95% confidence level.

  3. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Heinmiller, James Matthew [Univ. of Illinois, Chicago, IL (United States)

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e+e-b$\\bar{b}$ in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb-1 of integrated luminosity accumulated with the D0 detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p$\\bar{p}$ → ZH) x BR(H → b$\\bar{b}$) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV.

  4. Matter-Antimatter Differences using Muons: D0 Result on anomalous Dimuon Charge Asymmetry using Full Tevatron Data Set

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    We measure the inclusive single muon charge asymmetry and the like-sign dimuon charge asymmetry in p-pbar collisions using the full data set of 10.4 fb-1 collected with the D0 detector at the Fermilab Tevatron. The standard model predictions of the charge asymmetries induced by CP violation are small in magnitude compared to the current experimental precision, so non-zero measurements could indicate new sources of CP violation. The measurements differ from the standard model predictions of CP violation in these asymmetries with a significance of 3.6 standard deviations. These results are interpreted in a framework of B meson mixing within the CKM formalism to measure the relative width difference Delta Gamma_d / Gamma_d between the mass eigenstates of the B0 meson system, and the semileptonic charge asymmetries a_sl^d and a_sl^s of the B0 and B0_s mesons respectively.

  5. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    International Nuclear Information System (INIS)

    Deluca Silberberg, Carolina

    2009-01-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1 . Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T . From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by

  6. Recent QCD results from the Tevatron bar pp collider at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Yu, Jaehoon

    1994-06-01

    Abstract: Recent results of QCD studies from the CDF and D0 experiments at the Tevatron bar pp collider at Fermilab are presented. The inclusive jet cross section, the internal structure of jets, di-jet angular distributions, di-jet triple differential cross sections, and properties of multi-jet final states are studied and compared with NLO QCD predictions. The comparisons show good agreement between theoretical predictions and the experimental data in general. Some systematic disagreement between LO predictions and the data are observed in di-jet triple differential cross sections. Results of a rapidity gap study are also presented together with an upper limit on the gap fraction. In addition, the inclusive photon cross section and the di-photon cross sections are presented and compared with NLO QCD predictions

  7. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    International Nuclear Information System (INIS)

    Heinmiller, James Matthew; Illinois U., Chicago

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e + e - b(bar b) in p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb -1 of integrated luminosity accumulated with the D(null) detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p(bar p) → ZH) x BR(H → b(bar b)) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV

  8. A realistic study on a forward geometry collider spectrometer: Performance of a typical fixed target spectrometer at the tevatron collider

    International Nuclear Information System (INIS)

    Lebrun, P.

    1993-01-01

    The performance of a forward heavy quark experiment at the collider can be estimated in a very realistic way, by simply carrying an existing fixed target spectrometer (E687) to the Tevatron Collider, changing only the beam/target configuration while keeping all reconstruction cuts identical to those used in reconstructing real charmed particles collected during the last fixed target run. Based on the golden - and typical - decay mode D → Kππ, it is found that the overall charm acceptance x efficiency is ∼ 3%, the 5-body B decay B → Dππ being about .6%. Such an experiment compares very favorably to E-831 and has real potential to study in great detail doubly suppressed Cabbibo decays and to observe D 0 - D 0 mixing. In addition, this exercise allows one to perform a rough but effective reality check on similar design (e.g. COBEX)

  9. Measurement of the t (bar t) cross section at the Run II Tevatron using Support Vector Machines

    International Nuclear Information System (INIS)

    Whitehouse, Benjamin Eric

    2010-01-01

    This dissertation measures the t(bar t) production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p(bar p) collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb -1 . A system of learning machines is developed to recognize t(bar t) events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t(bar t) production cross section is then measured in this framework, and found to be σ t# bar t# = 7.14 ± 0.25 (stat) -0.86 +0.61 (sys) pb.

  10. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  11. Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, Gianluca [Autonomous Univ. of Barcelona (Spain)

    2010-05-19

    This thesis reports on two searches for the production of squarks and gluinos, supersymmetric partners of the Standard Model (SM) quarks and gluons, using the CDF detector at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider. An inclusive search for squarks and gluinos pair production is performed in events with large ET and multiple jets in the final state, based on 2 fb-1 of CDF Run II data. The analysis is performed within the framework of minimal supergravity (mSUGRA) and assumes R-parity conservation where sparticles are produced in pairs. The expected signal is characterized by the production of multiple jets of hadrons from the cascade decays of squarks and gluinos and large missing transverse energy ET from the lightest supersymmetric particles (LSP). The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% confidence level (CL) upper limits on production cross sections and squark and gluino masses in a given mSUGRA scenario. An upper limit on the production cross section is placed in the range between 1 pb and 0.1 pb, depending on the gluino and squark masses considered. The result of the search is negative for gluino and squark masses up to 392 GeV/c2 in the region where gluino and squark masses are close to each other, gluino masses up to 280 GeV/c2 regardless of the squark mass, and gluino masses up to 423 GeV=c2 for squark masses below 378 GeV/c2. These results are compatible with the latest limits on squark/gluino production obtained by the D0 Collaboration and considerably improve the previous exclusion limits from direct and indirect searches at LEP and the Tevatron. The inclusive search is then extended to a scenario where the pair production of sbottom squarks is dominant. The new search is performed in a generic MSSM scenario with R-parity conservation. A specific SUSY particle mass hierarchy is assumed such that the

  12. Recent results from E-735 at the Fermilab tevatron proton-antiproton collider with √s=1.8 TeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; DeBonte, R.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Carter, T.; Goshaw, A.T.; Oh, S.A.; Walker, W.D.; Wesson, D.K.

    1989-01-01

    E-735 is searching for signs of the quark-gluon-plasma phase transition in minimum bias proton-antiproton events. Results from the 1987 run at the Tevatron Collider at √s=1.8 TeV are presented. Included are distributions of the average p t versus multiplicity dependence for charged particles, and preliminary particle identification analysis using time of flight. (orig.)

  13. Search for electroweak top quark production in the electron + jets channel in the D0 experiment at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Busato, Emmanuel [Paris Univ. (France)

    2005-04-01

    The top quark, whose mass approaches the electroweak symmetry breaking scale, is by far the heaviest known elementary particle. New physics is therefore expected to have its most important effect in the top sector. The Tevatron is, currently, the only collider able to produce the top quark. Among all possible production processes in the standard model, the top-antitop pair production via strong interaction, first observed in 1995, is the one with the largest cross section. The production via electroweak interaction (known as single top production), more difficult to extract from the background because of a lower cross section and of a lower signal to background ratio, has never been observed. In this thesis, we have searched for these processes by studying proton-antiproton collisions at $\\sqrt{s}$ =1.96 TeV produced by the Tevatron and detected with the DØ detector. The experimental study of the top quark is very sensitive to the quality of the data taken by the calorimeter. This detector showed, at the beginning of the Run II, rather important noise problems. Having identified the origin of the noise, new treatments at the offline level were implemented and their effects studied. It has been shown that these treatments reduce very significantly the effect of the noise in the reconstruction of physical quantities without notable degradation of the signal. Within the standard model, the top quark decays into W b with a branching ratio close to 100%. Leptonic decays of the into electron + neutrino have been used to identify the from the top decay. The main backgrounds to the single top signal ( +jets and QCD) are made essentially of light quark jets in the final state. Two ..-tagging algorithms have therefore been applied in order to improve the signal to background ratio. No evidence for electroweak top quark production has been found. Upper limits at the 95 % confidence level on the observed (expected) cross sections have be computed. They are found to be 14

  14. Dominant spin-flip effects for the hadronic-produced J/ψ polarization at the Tevatron

    International Nuclear Information System (INIS)

    Wu Xinggang; Fang Zhenyun

    2009-01-01

    Dominant spin-flip effects for the direct and prompt J/ψ polarizations at Tevatron run II with collision energy 1.96 TeV and rapidity cut |y J/ψ | 8 [ 3 S 1 ] into J/ψ is especially discussed with care. It is found that the spin-flip effect shall always dilute the J/ψ polarization, and with a suitable choice of the parameters a 0,1 and c 0,1,2 , the J/ψ polarization puzzle can be solved to a certain degree. At large transverse momentum p t , α for the prompt J/ψ is reduced by ∼50% for f 0 =v 2 and by ∼80% for f 0 =1. We also study the indirect J/ψ polarization from the b decays, which however is slightly affected by the same spin-flip effect and then shall provide a better platform to determine the color-octet matrix elements.

  15. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    International Nuclear Information System (INIS)

    Seligman, W.G.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F 2 and xF 3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to α S (M Z 2 ) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q 0 2 = 5GeV 2 ) = (2.22 ± 0.34) x (1 - x) 4.65±0.68

  16. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Benjamin Eric [Tufts Univ., Medford, MA (United States)

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  17. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC

    International Nuclear Information System (INIS)

    Bechtle, P.; Staal, O.

    2014-03-01

    We explore the room for possible deviations from the Standard Model (SM) Higgs boson coupling structure in a systematic study of Higgs coupling scale factor (κ) benchmark scenarios using the latest signal rate measurements from the Tevatron and LHC experiments. We employ a profile likelihood method based on a χ 2 test performed with HiggsSignals, which takes into account detailed information on signal efficiencies and major correlations of theoretical and experimental uncertainties. All considered scenarios allow for additional non-standard Higgs boson decay modes, and various assumptions for constraining the total decay width are discussed. No significant deviations from the SM Higgs boson coupling structure are found in any of the investigated benchmark scenarios. We derive upper limits on an additional (undetectable) Higgs decay mode under the assumption that the Higgs couplings to weak gauge bosons do not exceed the SM prediction. We furthermore discuss the capabilities of future facilities for probing deviations from the SM Higgs couplings, comparing the high luminosity upgrade of the LHC with a future International Linear Collider (ILC), where for the latter various energy and luminosity scenarios are considered. At the ILC model-independent measurements of the coupling structure can be performed, and we provide estimates of the precision that can be achieved.

  18. Search for the supersymmetric partner of bottom quark at DO at Tevatron. Studies on missing transverse energy

    International Nuclear Information System (INIS)

    Calvet, S.

    2007-09-01

    Supersymmetry, the extension of the Standard Model of particle physics, is searched for, by trying to observe the supersymmetric partner of the bottom quark (b-bar). This search is performed by using events with a final state comprising 2 coplanar b-quark jets and missing transverse energy and coming from a sample of 992 pb -1 of data collected by the D0 detector at the Tevatron, the Fermilab pp-bar collider. The absence of an excess of events in comparison to Standard Model expectations leads to exclude sb masses up to 201 GeV and neutralino masses up to 94 GeV. The missing transverse energy has been studied carefully under 2 points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then during the process Z → νν + jets that is an important background noise and in which the transverse momentum of Z turns into missing energy because of the no-detection of the neutrinos. (author)

  19. Search for supersymmetric partner of bottom quark at d0 at Tevatron. Studies on missing transverse energy

    International Nuclear Information System (INIS)

    Calvet, Samuel Pierre; Marseille, CPPM

    2007-01-01

    Supersymmetry, extension of the Standard Model of Particle Physics (SM), is searched for by trying to observe the supersymmetric partner of bottom quark ((tilde b)). This search is performed using events with a final state comprising two acoplanar b-quark jets and missing transverse energy (MET) and coming from a sample of 992 pb -1 of data collected by the D0 detector at the Tevatron, the Fermilab p(bar p) collider. The absence of an excess of events in comparison to MS expectations leads to exclude sb masses up to 201 GeV, neutralino masses up to 94 GeV. The MET has been studied under two points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then, within the framework of the ALPGEN generator, the simulation of the Z boson transverse momentum which appears as MET when the Z boson decays into neutrino

  20. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC

    International Nuclear Information System (INIS)

    Kniehl, B. A.; Saleev, V. A.; Shipilova, A. V.; Yatsenko, E. V.

    2011-01-01

    We study single jet and prompt-photon inclusive hadroproduction with multi-Regge kinematics invoking the hypothesis of parton Reggeization in t-channel exchanges at high energy. In this approach, the leading contributions are due to the fusion of two Reggeized gluons into a Yang-Mills gluon and the annihilation of a Reggeized quark-antiquark pair into a photon, respectively. Adopting the Kimber-Martin-Ryskin and Bluemlein prescriptions to derive unintegrated gluon and quark distribution functions of the proton from their collinear counterparts, for which we use the Martin-Roberts-Stirling-Thorne set, we evaluate cross section distributions in transverse momentum (p T ) and rapidity. Without adjusting any free parameters, we find good agreement with measurements by the CDF and D0 Collaborations at the Tevatron and by the ATLAS Collaboration at the LHC in the region 2p T /√(S) < or approx. 0.1, where √(S) is the hadronic c.m. energy.

  1. Search for supersymmetric partner of bottom quark at d0 at Tevatron. Studies on missing transverse energy

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Samuel Pierre [Univ. of the Mediterranean, Marseille (France)

    2007-09-21

    Supersymmetry, extension of the Standard Model of Particle Physics (SM), is searched for by trying to observe the supersymmetric partner of bottom quark ($\\tilde{b}$). This search is performed using events with a final state comprising two acoplanar b-quark jets and missing transverse energy (MET) and coming from a sample of 992 pb-1 of data collected by the D0 detector at the Tevatron, the Fermilab p$\\bar{p}$ collider. The absence of an excess of events in comparison to MS expectations leads to exclude sb masses up to 201 GeV, neutralino masses up to 94 GeV. The MET has been studied under two points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then, within the framework of the ALPGEN generator, the simulation of the Z boson transverse momentum which appears as MET when the Z boson decays into neutrino.

  2. Search for new physics in the jets and missing transverse energy topology with the D0 detector at the Tevatron

    International Nuclear Information System (INIS)

    Makovec, N.

    2006-05-01

    Although the standard model of particle physics agrees perfectly with experimental data, it is unlikely the final theory describing particles and their interactions. New phenomena has been searched in the jets and missing transverse energy topology. Such phenomena may be due to the pair production of leptoquarks decaying into a quark and a neutrino or the pair production of stops decaying into a charm and a neutralino which is assumed to be the lightest supersymmetric particle. These searches have been performed with the Ddiamter detector at hadronic collider TeVatron with a center of mass energy of 1.96 TeV. This kind of searches needs a good understanding of the jet energy calibration. The determination of the relative jet energy scale has allowed us to reduce the systematic uncertainties on the jet energy measurement when comparing the data and the simulation. Moreover a new method has been developed in order to correct simulated jets for the differences observed in the jet energy scale, the jet energy resolution and the jet reconstruction efficiency between the data and the simulation. The data analysis, performed with an integrated luminosity of 310 pb -1 , has not observed any excess. This result are interpreted in terms of limit on the mass of the particles: leptoquarks with a mass smaller than 136 GeV and stops with a mass smaller than 131 GeV, for a neutralino mass equal to 46 GeV, are excluded with 95% confidence level. (author)

  3. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Columbia Univ., New York, NY (United States)

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F2 and xF3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to αS(MZ2) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q02 = 5GeV2) = (2.22 ± 0.34) x (1 - x)4.65±0.68.

  4. Single jet and prompt-photon inclusive production with multi-Regge kinematics. From Tevatron to LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A. [Santa Barbara Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Saleev, V.A. [Samara State Univ. (Russian Federation); S.P. Korolyov Samara State Aerospace Univ. (Russian Federation); Shipilova, A.V. [Samara State Univ. (Russian Federation); Yatsenko, E.V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2011-07-15

    We study single jet and prompt-photon inclusive hadroproduction with multi-Regge kinematics invoking the hypothesis of parton Reggeization in t-channel exchanges at high energy. In this approach, the leading contributions are due to the fusion of two Reggeized gluons into a Yang-Mills gluon and the annihilation of a Reggeized quark-antiquark pair into a photon, respectively. Adopting the Kimber-Martin-Ryskin prescription to derive unintegrated gluon and quark distribution functions of the proton from their collinear counterparts, for which we use the Martin-Roberts- Stirling-Thorne set, we evaluate cross section distributions in transverse momentum (p{sub T}) and rapidity. Without adjusting any free parameters, we find good agreement with measurements by the CDF and D0 Collaborations at the Tevatron and by the ATLAS Collaboration at the LHC in the region 2p{sub T}/{radical}(S)

  5. Experimental Study of W Z Intermediate Bosons Associated Production with the CDF Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Pozzobon, Nicola; /Pisa U.

    2007-09-01

    Studying WZ associated production at the Fermilab Tevatron Collider is of great importance for two main reasons. On the one hand, this process would be sensitive to anomalies in the triple gauge couplings such that any deviation from the value predicted by the Standard Model would be indicative of new physics. In addition, by choosing to focus on the final state where the Z boson decays to b{bar b} pairs, the event topology would be the same as expected for associated production of a W and a Standard Model light Higgs boson (m{sub H} {approx}< 135 GeV) which decays into b{bar b} pairs most of times. The process WH {yields} W b{bar b} has an expected {sigma} {center_dot} B about five times lower than WZ {yields} Wb{bar b} for m{sub H} {approx_equal} 120 GeV. Therefore, observing this process would be a benchmark for an even more difficult search aiming at discovering the light Higgs in the WH {yields} Wb{bar b} process. After so many years of Tevatron operation only a weak WZ signal was recently observed in the full leptonic decay channel, which suffers from much less competition from background. Searching for the Z in the b{bar b} decay channel in this process is clearly a very challenging endeavour. In the work described in this thesis, WZ production is searched for in a final state where the W decays leptonically to an electron-neutrino pair or a muon-neutrino pair, with associated production of a jet pair consistent with Z decays. A set of candidate events is obtained by applying appropriate cuts to the parameters of events collected by wide acceptance leptonic triggers. To improve the signal fraction of the selected events, an algorithm was used to tag b-flavored jets by means of their content of long lived b-hadrons and corrections were developed to the jet algorithm to improve the b-jet energy resolution for a better reconstruction of the Z mass. In order to sense the presence of a signal one needs to estimate the amount of background. The relative content of

  6. Search for gluinos decaying into b-jets and transverse missing energy with the detector D0 at the Tevatron

    International Nuclear Information System (INIS)

    Millet, Th.

    2007-05-01

    The standard model of particle physics is the model of reference to explain the subatomic phenomena. This theoretical model has been successful for about 35 years. Although it has never been directly refuted, it has some theoretical and experimental limitations at high energy. That is why several new theories are trying to propose some extensions for this model. The supersymmetry is a possible extension, which is appreciated for its theoretical neatness. The work, which is presented in this manuscript, is dedicated to the search for a supersymmetric signal. The main feature of this signal are the presence of 4 b-jets and the high transverse missing energy. This search have been performed with the Run II data collected with the D0 detector from April 2003 to March 2006 (1 fb -1 ). The signature of such a topology needs a good energy resolution for the jets and a precise measure of the transverse missing energy. Consequently, it is essential to understand the information given by the calorimeter which is one of the crucial parts of the detector for such a search. The presence of the b-jets in the final state implies a efficient b-tagging. The b-tagging is a discriminant variable for the signal with respect to the standard model background. The hadronic colliders like the Tevatron are characterized by a QCD cross section which is many orders of magnitude larger than the supersymmetric signal cross section. Therefore, it is important to find fast and efficient selection cuts based on the calorimeter at the trigger level. The most important part of my work before the signal search has been dedicated on the study and the design of the trigger conditions for the jets and transverse missing energy signals. (author)

  7. HiggsBounds-4. Improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). Dept. of Physics; Stefaniak, Tim; Williams, Karina E. [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, Oliver

    2013-12-15

    We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the {chi}{sup 2} likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.

  8. HiggsBounds-4. Improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC

    International Nuclear Information System (INIS)

    Bechtle, Philip; Staal, Oscar; Brein, Oliver

    2013-12-01

    We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the χ 2 likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.

  9. Search for the single top quarks produced in s-channel via electroweak interactions at s = 1.96 at the Tevatron

    International Nuclear Information System (INIS)

    Jabeen, Shabnam

    2006-01-01

    The authors present a search for single top quarks produced in the s-channel electroweak production mode. The search is performed in the electron+jets decay channels, with one or more secondary-vertex tagged jets to indicate the presence of a b-jet and hence improving the signal:background ratio. Separation between signal and background is further enhanced by the use of Feed Forward Neural networks. 360 pb -1 of Run II data used for this analysis was delivered by the Tevatron, and collected by D0 between August 2002 and August 2004. The resulting 95% confidence level upper limit is 4 pb

  10. Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb$^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group

    2014-07-10

    We summarize the current top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) results with the most precise published and preliminary Run II (2001--2011) measurements based on data corresponding to up to 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is $M_{top} = 174.34 \\pm 0.64 ~GeV/c^2$, corresponding to a relative precision of 0.37%.

  11. Search for WH Associated Production in the l upsilon b-bbar Final State Using the DØ Detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jonathan [Paris Diderot Univ. (France)

    2011-09-15

    The Standard Model is the framework which allows to describe interactions between particles and their dynamics. The Higgs mechanism is a solution to naturally introduce a mass term in the theoretical description of this model. After electroweak spontaneous symmetry breaking, a new massive scalar particle is introduced, the Higgs boson. Since it hasn’t been discovered yet, the search for the Higgs boson is carried at the Tevatron, which is a p$\\bar{p}$ collider at a center-of-mass of 1.96 TeV. For MH <115 GeV, the dominant decay mode is H → b$\\bar{b}$ . The analysis presented in this document is focused on the 100< MH <150 GeV mass range, in the channel where the Higgs boson is produced in assocation with a W boson which decays either to an electron or muon and a neutrino. The study of this final state relies on informations collected from all parts of the DØ detector. A result based on 5.3 fb-1 of RunII Tevatron collisions is presented here. In order to increase the sensitivity to the signal, the analysis is separated in different sub-channels according to the lepton flavour, number of jets in the final state, number of jets identified as originated from b quarks and data taking periods. After selecting events, a multivariate analysis technique is used to separate signal-like events from the expected physics and instrumental backgrounds. A good agreement between data and simulation is observed. As no signal excess is observed in data, an observed (expected) upper limit of 4.5 (4.8) for MH = 115 GeV is set on the ratio of the WH cross section multiplied by the H → b$\\bar{b}$ branching fraction to its standard model prediction, at 95% confidence level. Since the final Tevatron dataset is soon to be analyzed, an effort is brought to achieve the maximum sensitivity. A preliminary analysis updated in Summer 2011 is presented as well as future improvements to be considered in the final publication for the search in

  12. Search for the single top quarks produced in s-channel via electroweak interactions at √s = 1.96 at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jabeen, Shabnam [Univ. of Kansas, Lawrence, KS (United States)

    2006-01-01

    The authors present a search for single top quarks produced in the s-channel electroweak production mode. The search is performed in the electron+jets decay channels, with one or more secondary-vertex tagged jets to indicate the presence of a b-jet and hence improving the signal:background ratio. Separation between signal and background is further enhanced by the use of Feed Forward Neural networks. 360 pb-1 of Run II data used for this analysis was delivered by the Tevatron, and collected by D0 between August 2002 and August 2004. The resulting 95% confidence level upper limit is 4 pb.

  13. Coherent production of π+ and π- mesons by charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, R. C.; Cence, R.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G.; Harris, F.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Jones, R. W.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Mann, W. A.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Wittek, W.; Yost (E632 Collaboration), G. P.

    1989-11-01

    Coherent single-pion production on neon nuclei is studied using the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mixture and exposed to the Tevatron neutrino beam. In the neutrino energy range 40-300 GeV, the net signal is 20+/-6 events, giving a corrected rate per charged-current event of (0.26+/-0.10)%. The cross section and kinematic distributions agree with the predictions of a model based on partial conservation of axial-vector current and meson dominance.

  14. Mesure de la section efficace de production de paires de quarks top dans le canal μ + jets + τ + b-jet(s) + Energie transverse manquante auprès de l'expérience DØ du Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Jerome [Blaise Pascal Univ., Aubiere (France)

    2011-09-09

    The purpose of high energy physics is to improve our knowledge about the fundamental structure of matter, in particular about particles that constitute the world. One of these is the top quark, that was discovered in 1995 by the CDF and D0 collaborations at the Tevatron protons-antiprotons collider. One of the primary aim of the Tevatron has been then the fine study of the top quark properties, in particular the top-antitop production cross section. Different analysis have been performed in the leptons (μ,e,τ) + jets, dileptons, and all hadronic channels to determine accurately the values of these parameters, and thus to test the validity of the Standard Model. The main goal of this thesis is to verify one of the theoretical predictions of the Standard Model of particle physics, the top-antitop production cross section, at the Tevatron collider.

  15. Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier-Thery, Solene [Univ. Pierre et Marie Curie, Paris (France)

    2010-06-01

    The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb -1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.

  16. Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure

    International Nuclear Information System (INIS)

    Chevalier-Thery, Solene

    2010-01-01

    The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb -1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.

  17. Research for the boson of Higgs and for couplings of capacity quartic abnormal in the channel WW in electrons in the experiment D0 in Tevatron

    International Nuclear Information System (INIS)

    Chapon, Emilien

    2013-01-01

    Two physics analyzes are presented in this thesis, both probing the electroweak sector of the Standard Model using events with two oppositely charged electrons and missing transverse energy. The events are selected from the full Run II data sample of 9.7 fb -1 of proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96 TeV. The first analysis is a search for the Higgs boson in H → WW → evev decays. To validate the search methodology, the non-resonant WW production cross section is measured. In the Higgs boson search, no significant excess above the background expectation is observed. Upper limits on the Higgs boson production cross section are therefore derived, within the Standard Model, but also within a theoretical framework with a fourth generation of fermions, and in the context of fermiophobic Higgs boson couplings. A search for anomalous quartic gauge couplings between the photon and the W boson is then presented, using exclusive W boson pair production, allowing to probe new physics effects. The selection of the events and the analysis techniques used are mostly identical to those used in the first analysis, the search for the Higgs boson. The limits set on this type of anomalous couplings are the first ones from the Tevatron and the most stringent ones at the time of the publication. (author) [fr

  18. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  19. Fermilab | Tevatron | Guest Book

    Science.gov (United States)

    challenge of the best kind. From the long days setting up the very basics of life (a work space and coffee . I sincerely hope I have the opportunity to work with many of you again. I look forward to the next . It had those cool rounded shapes that probably helped to inspire the Art Deco era. Let's hope that

  20. Identification of $\\tau$ leptons and Higgs boson search in the $\\mu+\\tau$ final state at the D0 experiment at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Madar, Romain [Univ. of Paris, Orsay (France)

    2011-01-01

    The gauge symmetry is the heart of our understanding of the electroweak interaction and describes all the current experimental results. However, the intrinsic incompatibility between the gauge invariance and the mass of particles leads to the introduction of a new particle, the Higgs boson, for which we have no experimental evidence as of today. This thesis describes the Higgs boson search in the μ + τ final state in 7.3 fb-1 of pp collisions at √s = 1.96 TeV collected by the DØ detector at the Tevatron. This analysis completes the golden channels (dimuons, electron-muon, dielectrons) exploiting the decay chain H → WW → ℓvℓv , which is the main Higgs boson decay mode in the mass window accessible to the Tevatron. Since the final state includes a lepton, work was done to improve their identification among jets. An increase of 15% was achieved thanks to the the following : changing tuning parameters for the identification neural network, use of the kinematical dependence of the algorithm performances, incorporation of the τ lepton life time information and full study of the additionnal information coming from the central preshower measurements. Then, since the dominant background of the μ + τ Higgs boson search is W+jets (where one jet fakes a τ ), a method was developed to obtain good modeling of this background, not provided by the default simulation. This method is based, among other things, on the charge correlation between the muon and the τ candidate which allows for calibration of this background in the data excluding the signal region. Finally, all the kinematic and/or topological differences between the signal and the background were exploited to optimize this search, reaching an (observed) expected sensitivity of 7.8 (6.6) times the Standard Model for mH = 165 GeV=c2. In addition, this result was also interpreted in a fourth fermion generation scenario. For the first time, this analysis is included in the D

  1. Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC

    CERN Document Server

    Cacciari, Matteo; Mangano, Michelangelo L; Nason, Paolo; Ridolfi, Giovanni

    2008-01-01

    We present updated predictions for the total production cross section of top-quark pairs at the Tevatron and at the LHC, and, at the LHC, of heavy-quark pairs with mass in the range 0.5-2 TeV. For t\\bar{t} production at the LHC we also present results at \\sqrt{S}= 10 TeV, in view of the expected accelerator conditions during the forthcoming 2008 run. Our results are accurate at the level of next-to-leading order in alpha_s, and of next-to-leading threshold logarithms (NLO+NLL). We adopt the most recent parametrizations of parton distribution functions, and compute the corresponding uncertainties. We study the dependence of the results on the top mass, and we assess the impact of missing higher-order corrections by independent variations of factorisation and renormalisation scales.

  2. Determination of the Muonic Branching Ratio of the W Boson and its Total Width via Cross-Section Measurements at the Tevatron and LHC

    CERN Document Server

    Camarda, Stefano; Schott, Matthias

    2016-01-01

    The total $W$-boson decay width $\\Gamma_W$ is an important observable which allows testing of the standard model. The current world average value is based on direct measurements of final state kinematic properties of $W$-boson decays, and has a relative uncertainty of 2\\%. The indirect determination of $\\Gamma_W$ via the cross-section measurements of vector-boson production can lead to a similar accuracy. The same methodology leads also to a determination of the leptonic branching ratio. This approach has been successfully pursued by the CDF and D0 experiments at the Tevatron collider, as well as by the CMS collaboration at the LHC. In this paper we present for the first time a combination of the available measurements at hadron colliders, accounting for the correlations of the associated systematic uncertainties. Our combination leads to values of $\\textrm{BR}(W\\rightarrow\\mu\

  3. Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X.

    Science.gov (United States)

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-28

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  4. Combination of CDF and D0 results on the mass of the top quark using up $9.7\\:{\\rm fb}^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group [Fermilab; Aaltonen, T. [Fermilab

    2016-08-05

    We summarize the current top quark mass (mt) measurements from the CDF and D0 experiments at Fermilab. We combine published results from Run I (1992–1996) with the most precise published and preliminary Run II (2001–2011) measurements based on $p\\bar{p}$ data corresponding to up to 9.7 fb$-$1 of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic contributions in quadrature, the preliminary Tevatron average mass value for the top quark is mt = 174.30 ± 0.65 GeV/c2, corresponding to a relative precision of 0.37%.

  5. A Measurement of the Lifetime of the Λb Baryon with the CDF Detector at the Tevatron Run II

    Energy Technology Data Exchange (ETDEWEB)

    Unverhau, Tatjana Alberta Hanna [Univ. of Glasgow, Scotland (United Kingdom)

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce Λb baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the Λb baryon in the semileptonic channel Λ$0\\atop{b}$ → Λ$+\\atop{c}$ μ- $\\bar{v}$μ. In total 186 pb-1 of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 Λb candidates. To extract the mean lifetime of Λb baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the Λb is measured to be τ = 1.29 ± 0.11(stat.) ± 0.07(syst.) ps equivalent to a mean decay length of cτ = 387 ± 33(stat.) ± 21 (syst.) μm.

  6. Study of the production of the Σ b with the CDF detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Calancha Paredes, Constantino [Complutense Univ. of Madrid (Spain)

    2011-02-01

    understanding of the Standard Model and its limitations. In particular, it is very important the measurement of those observables which they are not able to be calculated from theory by perturbation theory. Particle accelerators have played and play nowadays a major role for past and new physics discoverements and has been for many years the source of many precision measurements. Unprecedent discoveries have been made and are yet to come. These measurements allow to select the models that best fit the results and also they can be used as input for those models to get further predictions. Tevatron has been for many years the highest energy particle collider operational in the world. It is located in the high energy physics laboratory Fermilab in Batavia, in the State of Illinois (USA). Tevatron produce proton-antiproton collisions with an energy of 1.96 TeV at the center of the mass. This thesis is based on the data taken by the CDF II detector, one of the two multipurpose detectors located in the two interaction points at Tevatron. In this thesis a precise measurement of the mass and width of four heavy baryon states are performed. These states are described together by the symbol Σ b. They are built by two light quarks and one heavy b quark as it is shown in Fig. 1.2. Baryons containing one bottom quark and two light quarks are described by Heavy Quark Effective Theories (HQET).

  7. Search for the Standard Model Higgs Boson associated with a W Boson using Matrix Element Technique in the CDF detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Barbara Alvarez [Univ. of Oviedo (Spain)

    2010-05-01

    In this thesis a direct search for the Standard Model Higgs boson production in association with a W boson at the CDF detector in the Tevatron is presented. This search contributes predominantly in the region of low mass Higgs region, when the mass of Higgs boson is less than about 135 GeV. The search is performed in a final state where the Higgs boson decays into two b quarks, and the W boson decays leptonically, to a charged lepton (it can be an electron or a muon) and a neutrino. This work is organized as follows. Chapter 2 gives an overview of the Standard Model theory of particle physics and presents the SM Higgs boson search results at LEP, and the Tevatron colliders, as well as the prospects for the SM Higgs boson searches at the LHC. The dataset used in this analysis corresponds to 4.8 fb-1 of integrated luminosity of p$\\bar{p}$ collisions at a center of mass energy of 1.96 TeV. That is the luminosity acquired between the beginning of the CDF Run II experiment, February 2002, and May 2009. The relevant aspects, for this analysis, of the Tevatron accelerator and the CDF detector are shown in Chapter 3. In Chapter 4 the particles and observables that make up the WH final state, electrons, muons, ET, and jets are presented. The CDF standard b-tagging algorithms to identify b jets, and the neural network flavor separator to distinguish them from other flavor jets are also described in Chapter 4. The main background contributions are those coming from heavy flavor production processes, such as those coming from Wbb, Wcc or Wc and tt. The signal and background signatures are discussed in Chapter 5 together with the Monte CArlo generators that have been used to simulate almost all the events used in this thesis. WH candidate events have a high-pT lepton (electron or muon), high missing transverse energy, and two or more than two jets in the final state. Chapter 6 describes the event selection applied in this analysis and the

  8. Search for gluino and squark production in multi-jets plus missing transverse energy final states at the Tevatron using the CDF detector

    Energy Technology Data Exchange (ETDEWEB)

    Portell i Bueso, Xavier [Autonomous Univ. of Barcelona, Bellaterra (Spain). Inst. for High Energy Physics

    2007-01-01

    In this thesis, the results of the search for squarks and gluinos in multiple jets plus missing transverse energy final states have been presented. No evidence of these new particles have been found in 371 pb-1 of CDF Run II data. New limits have been set which exclude gluino masses below 220 GeV and, in the region where M$\\tilde{g}$ ~ M$\\tilde{q}$, masses below 380 GeV/c2 are excluded. These limits are valid in a mSUGRA scenario with tan β = 5, A = 0 and μ < 0 assuming the lightest four squark flavours degenerate in mass. To obtain these results a careful study of the beam conditions and their contribution to events with ET final states has been performed. Special attention has been taken in studying the different SM backgrounds and their normalizations at NLO. Dedicated cuts have been introduced to remove the background processes and main discriminating variables have been optimized for different signal regions. The different systematic uncertainties have also been considered. This is the first time that this search is performed at CDF Run II and the results presented here show significant improvements with respect to the constraints from previous experiments. Thus, this analysis has established the procedure to continue searching for squarks and gluinos with the new data samples that CDF is collecting from Tevatron. Some improvements may also be implemented by considering other hadron final states with different jet multiplicities. This could help extending the sensitivity of the analysis to regions where gluino and squark masses are not similar. At the forthcoming LHC, the search for squarks and gluinos in this inclusive channel constitutes one of the first analyses to be performed. The ET and multiple jets final states are present in multiple decay modes of many models beyond the SM. The experience from Tevatron in working on an hadron collider environment will be useful for these kind of

  9. Search for the Higgs Boson and for Anomalous Quartic Gauge Boson Couplings in the WW Channel with Dielectron Events with the D0 Experiment at the Tevatron; Recherche du boson de Higgs et de couplages de jauge quartiques anormaux dans le canal WW en électrons dans l'expérience D0 au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Chapon, Emilien [Pierre and Marie Curie Univ., Paris (France)

    2013-01-01

    Le paysage de la physique des particules a subi des changements majeurs entre le début de cette thèse, en septembre 2010, et sa n en juin 2013. On peut notamment qualier l'année 2012 de date-clé dans l'histoire de la physique des particules. En 2012, une nouvelle particule a été découverte au LHC [1, 2], dont la majeure partie de la communauté s'accorde aujourd'hui à dire qu'il s'agit très probablement du boson de Higgs. Cet événement est intervenu peu après une sorte de passage de relais entre le Tevatron, arrêté le 30 septembre 2011, et le LHC, dont les toutes premières collisions sont intervenues le 23 novembre 2009.

  10. Measurement of the top quark mass using dilepton events and a neutrino weighting algorithm with the DOe experiment at the Tevatron (Run II)

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.

    2007-07-01

    Several measurements of the top quark mass in the dilepton final states with the DOe experiment are presented. The theoretical and experimental properties of the top quark are described together with a brief introduction of the Standard Model of particle physics and the physics of hadron collisions. An overview over the experimental setup is given. The Tevatron at Fermilab is presently the highest-energy hadron collider in the world with a center-of-mass energy of 1.96 TeV. There are two main experiments called CDF and DOe, A description of the components of the multipurpose DOe detector is given. The reconstruction of simulated events and data events is explained and the criteria for the identification of electrons, muons, jets, and missing transverse energy is given. The kinematics in the dilepton final state is underconstraint. Therefore, the top quark mass is extracted by the so-called Neutrino Weighting method. This method is introduced and several different approaches are described, compared, and enhanced. Results for the international summer conferences 2006 and winter 2007 are presented. The top quark mass measurement for the combination of all three dilepton channels with a dataset of 1.05 1/fb yields: mtop=172.5{+-}5.5 (stat.) {+-} 5.8 (syst.) GeV. This result is presently the most precise top quark mass measurement of the DOe experiment in the dilepton chann el. It entered the top quark mass wold average from March 2007. (orig.)

  11. Search for the Higgs boson in the ZH → νν-bar bb-bar channel with the D0 experiment at the TeVatron

    International Nuclear Information System (INIS)

    Ochando, Ch.

    2008-09-01

    The origin of the electroweak symmetry breaking is one the pending questions at the beginning of the 21. century. Imagined in the 1960's, the Higgs mechanism offers a theoretical solution to this problem, while predicting a new particle, the Higgs boson, undiscovered up to now. This particle has been searched with the DO detector at the Tevatron hadronic collider, with a center of mass energy of 1,96 TeV. The analysis channel is ZH → νν-bar bb-bar. For this search, an optimization of the trigger conditions specific to signals with jets plus missing transverse energy final states has been performed. Moreover, a tool was designed to measure the corresponding efficiencies. A precise determination of the jet energies is also an essential ingredient for this analysis. A method was developed in order to correct the simulated jets for the differences observed in jet energy scale, energy resolution and reconstruction efficiency between data and simulation. The data analysis, performed with an integrated luminosity of 2.1 fb -1 , did not reveal any excess. For a Higgs boson mass of 115 GeV, a limit has been set at 95% C.L. on the cross section times branching fraction of (pp-barb → H(Z/W)) x (H → bar bb-bar), which is 7.5 times larger than the standard model value. (author)

  12. Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2015-04-17

    Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10  fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.

  13. Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in higgs boson searches at the tevatron.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alvarez González, B; Alverson, G; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Bose, T; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brown, J; Brucken, E; Budagov, J; Bu, X B; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Buzatu, A; Calamba, A; Calancha, C; Camacho-Pérez, E; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chevalier-Théry, S; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, D K; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Chung, W H; Chung, Y S; Cihangir, S; Ciocci, M A; Claes, D; Clark, A; Clarke, C; Clutter, J; Compostella, G; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Crescioli, F; Croc, A; Cuevas, J; Culbertson, R; Cutts, D; Dagenhart, D; d'Ascenzo, N; Das, A; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Dell'orso, M; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; d'Errico, M; Desai, S; Deterre, C; Devaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; Dong, P; D'Onofrio, M; Dorigo, M; Dorigo, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Ebina, K; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Farrington, S; Feindt, M; Feng, L; Ferbel, T; Fernandez, J P; Ferrazza, C; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Frank, M J; Franklin, M; Freeman, J C; Fuess, S; Funakoshi, Y; Gallinaro, M; Garcia-Bellido, A; Garcia, J E; García-González, J A; García-Guerra, G A; Garfinkel, A F; Garosi, P; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Golovanov, G; Gomez-Ceballos, G; Gomez, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hagopian, S; Hahn, S R; Haley, J; Halkiadakis, E; Hamaguchi, A; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, D; Hare, M; Harel, A; Harr, R F; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Heck, M; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hewamanage, S; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Hopkins, W; Horn, D; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeans, D T; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kaadze, K; Kajfasz, E; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kasper, P A; Kato, Y; Katsanos, I; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Klimenko, S; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kulikov, S; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lammers, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lebrun, P; Lecompte, T; Lee, E; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Lin, C-J; Lindgren, M; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lysak, R; Lys, J; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Maravin, Y; Margaroli, F; Marino, C; Martínez, M; Martínez-Ortega, J; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McFarland, K S; McGivern, C L; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Naimuddin, M; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neubauer, M S; Neu, C; Neustroev, P; Nguyen, H T; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Padilla, M; Pagan Griso, S; Pagliarone, C; Pal, A; Palencia, E; Papadimitriou, V; Paramonov, A A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patrick, J; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penning, B; Penzo, A; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Rahaman, A; Ramakrishnan, V; Rangel, M S; Ranjan, K; Ranjan, N; Ratoff, P N; Razumov, I; Redondo, I; Renkel, P; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rogers, E; Rolli, S; Rominsky, M; Roser, R; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sajot, G; Sakumoto, W K; Sakurai, Y; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schlobohm, S; Schmidt, A; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shivpuri, R K; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Sinervo, P; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Smith, K J; Snider, F D; Snow, G R; Snow, J; Snyder, S; Soha, A; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; Squillacioti, P; St Denis, R; Stancari, M; Stark, J; Stelzer-Chilton, O; Stelzer, B; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takahashi, M; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varganov, A; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verdier, P; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vila, I; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wagner, R L; Wahl, H D; Wakisaka, T; Wallny, R; Wang, S M; Wang, M H L S; Wang, R-J; Warburton, A; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; White, A; Whiteson, D; Wick, F; Wicke, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, W-C; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zennamo, J; Zhao, T; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2012-08-17

    We combine searches by the CDF and D0 Collaborations for the associated production of a Higgs boson with a W or Z boson and subsequent decay of the Higgs boson to a bottom-antibottom quark pair. The data, originating from Fermilab Tevatron pp collisions at √s = 1.96 TeV, correspond to integrated luminosities of up to 9.7 fb(-1). The searches are conducted for a Higgs boson with mass in the range 100-150 GeV/c(2). We observe an excess of events in the data compared with the background predictions, which is most significant in the mass range between 120 and 135 GeV/c(2). The largest local significance is 3.3 standard deviations, corresponding to a global significance of 3.1 standard deviations. We interpret this as evidence for the presence of a new particle consistent with the standard model Higgs boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom quark pair.

  14. Search for a standard Higgs boson in the WH associated production channel with the final statistics of the Tevatron DO experiment

    International Nuclear Information System (INIS)

    Miconi, F.

    2012-01-01

    Higgs mechanism, introduced in 1964, gives a satisfactory solution to a major problem of the standard model of elementary particles: the origin of the mass. It predicts the existence of the Higgs scalar boson, which mass is not defined by the theory and which has not been discovered experimentally yet (June 2012). The Tevatron, a hadron accelerator based at Fermi National Accelerator Laboratory near Chicago, took data with its two multi-purpose detectors CDF and DO since 1983 up to september 2011. Leaving about 10 fb -1 of statistics to analyze. Associated production of Higgs (H) and vector gauge boson (W) is the main search channel for a light standard Higgs boson. A light Higgs boson is expected to decay in a pair of beauty quarks. Using data collected by DO, we are looking for this production mode taking advantage of sophisticated techniques to improve the signal sensitivity like b-jet identification and multivariate discriminating factors. In the end, a statistical approach allows us to set an upper limit on the ratio between the observed (resp. expected) Higgs production and its theoretical cross section. The results obtained in the WH channel using 9.7 fb -1 at DO is 3.15 (resp. 3.96) for a 115 GeV/c 2 Higgs boson. (author)

  15. Determination of the muonic branching ratio of the W boson and its total width via cross-section measurements at the Tevatron and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Camarda, Stefano [CERN, Geneva (Switzerland); Cuth, Jakub; Schott, Matthias [Johannes Gutenberg University, Mainz (Germany)

    2016-11-15

    The total W-boson decay width Γ{sub W} is an important observable which allows testing of the standard model. The current world average value is based on direct measurements of final state kinematic properties of W-boson decays, and has a relative uncertainty of 2%. The indirect determination of Γ{sub W} via the cross-section measurements of vector-boson production can lead to a similar accuracy. The same methodology leads also to a determination of the leptonic branching ratio. This approach has been successfully pursued by the CDF and D0 experiments at the Tevatron collider, as well as by the CMS collaboration at the LHC. In this paper we present for the first time a combination of the available measurements at hadron colliders, accounting for the correlations of the associated systematic uncertainties. Our combination leads to values of BR(W → μν) = (10.72 ± 0.16)% and Γ{sub W} = 2113 ± 31 MeV, respectively, both compatible with the current world averages. (orig.)

  16. Finding the Higgs boson of the standard model in the channel ZH → e+e-b(bar b) with the D0 detector at the Tevatron

    International Nuclear Information System (INIS)

    Calpas, Betty Constante

    2010-01-01

    The organization of this thesis consists of three main ideas: the first presents the theoretical framework and experimental, as well as objects used in the analysis and the second relates to the various work tasks of service that I performed on the calorimeter, and the third is the search for the Higgs boson in the channel ZH → e + e - b(bar b). Thus, this thesis has the following structure: Chapter 1 is an introduction to the standard model of particle physics and the Higgs mechanism; Chapter 2 is an overview of the complex and the acceleration of the Tevatron at Fermilab D0 detector; Chapter 3 is an introduction to physical objects used in this thesis; Chapter 4 presents the study made on correcting the energy measured in the calorimeter; Chapter 5 describes the study of certification of electrons in the calorimeter; Chapter 6 describes the study of certification of electrons in the intercryostat region of calorimeter; Chapter 7 Detailed analysis on the search for Higgs production in the channel ZH → e + e - b(bar b); and Chapter 8 presents the final results of the calculations of upper limits to the production cross section of the Higgs boson on a range of low masses.

  17. Combined Tevatron upper limit on gg -> H -> W^+W^- and constraints on the Higgs boson mass in fourth-generation fermion models

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; /Helsinki Inst. of Phys. /Dubna, JINR /Oklahoma U. /Michigan State U. /Tata Inst. /Illinois U., Chicago /Florida State U. /Chicago U., EFI /Simon Fraser U. /York U., Canada /St. Petersburg, INP /Illinois U., Urbana /Sao Paulo, IFT /Munich U. /University Coll. London /Oxford U. /St. Petersburg, INP /Duke U. /Kyungpook Natl. U. /Chonnam Natl. U. /Florida U. /Osaka City U.

    2010-05-01

    We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg {yields} H {yields} W{sup +}W{sup -} in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.o6 TeV. With 4.8 fb{sup -1} of itnegrated luminosity analyzed at CDF and 5.4 fb{sup -1} at D0, the 95% Confidence Level upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.75 pb at m{sub H} = 120 GeV, 0.38 pb at m{sub H} = 165 GeV, and 0.83 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, they exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 Gev.

  18. Research of the Higgs boson in dimuon final state and study of the tt-bar production asymmetry with the D0 experiment at the Tevatron

    International Nuclear Information System (INIS)

    Faure, Alexandre

    2014-01-01

    Two high energy particle physics analyses are presented in this PhD report using events with two leptons oppositely charged and with missing transverse energy. These events are selected using 9.7 fb -1 of total pp collisions data collected with the D0 detector at the Tevatron at √s=1.96 TeV. The first analysis is the research of the Higgs boson decaying in the H→W→μvμv channel. No significant excess above the background prediction is observed. Upper limits on Higgs boson production cross-section are computed in the standard model framework but also in the 4. generation of fermions and in the fermiophobic coupling to Higgs boson hypotheses. In order to validate the research methodology, the W boson pair production cross-section is measured. The second analysis is the measurement of the forward-backward asymmetry of the tt pair production. This is the first measurement in the di-leptonic channel at D0 experiment. In this context, a new tt pair kinematic reconstruction is used (matrix element method) to give a raw measurement of the forward-backward asymmetry. Thanks to a dedicated calibration method, we give a final measurement of AFB=18.0 ± 6.0 (stat) ± 3.3 (syst). (author) [fr

  19. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, Ludovic Y. [Univ. of Glasgow, Scotland (United Kingdom)

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the Bc → J/Ψπ decay signal with the CDF Run II detector in 360 pb-1 of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  20. Production of the exotic 1{sup --} hadrons {phi}(2170), X(4260) and Y{sub b}(10890) at the LHC and Tevatron via the Drell-Yan mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Wang, Wei

    2011-03-15

    We calculate the Drell-Yan production cross sections and differential distributions in the transverse momentum and rapidity of the J{sup PC}=1{sup --} exotic hadrons {phi}(2170), X(4260) and Y{sub b}(10890) at the hadron colliders LHC and the Tevatron. These hadrons are tetraquark (four-quark) candidates, with a hidden s anti s, c anti c and b anti b quark pair, respectively. In deriving the distributions and cross sections, we include the order {alpha}{sub s} QCD corrections, resum the large logarithms in the small transverse momentum region in the impact-parameter formalism, and use the state of the art parton distribution functions. Taking into account the data on the production and decays of these vector hadrons from the e{sup +}e{sup -} experiments, we present the production rates for the processes pp(anti p){yields} {phi}(2170)({yields} {phi}(1020){pi}{sup +}{pi}{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}{sup -})+.., pp(anti p){yields} X(4260)({yields} J/{psi}{pi}{sup +}{pi}{sup -} {yields} {mu}{sup +}{mu}{sup -}{pi}{sup +}{pi}{sup -})+.., and pp(anti p){yields} Y{sub b}(10890)({yields} ({upsilon}(1S), {upsilon}(2S), {upsilon}(3S)){pi}{sup +}{pi}{sup -} {yields} {mu}{sup +}{mu}{sup -}{pi}{sup +}{pi}{sup -})+.. Their measurements at the hadron colliders will provide new experimental avenues to explore the underlying dynamics of these hadrons. (orig.)

  1. Search for the scalar partner of the top quark and contribution to the improvement of the calorimetry of the experiment D zero for the phase 2 of Tevatron; Recherche du partenaire supersymetrique du quark top et contribution a l'amelioration de la calorimetrie de l'experience D zero pour la phase 2 du tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, B

    2001-04-01

    Supersymmetry could be the most natural extension of the Standard Model. In this thesis we present a new search for the sTop, the hypothetical scalar partner of the Top quark, that we performed in the framework of the Minimal Supersymmetric Standard Model (MSSM), using the Run I data of the DO experiment, which corresponds to an integrated luminosity of 108 pb{sup -1}. We selected events with one electron, one muon and missing transverse energy in the final state, which can be the decay product of pair of sTop quarks in 3 (t-tilde {yields} bl{nu}-tilde), or 4-body (t-tilde {yields} b{chi}-tilde{sub 1}{sup 0}l{nu}{sub l}). No signal is seen and the results are interpreted in terms of limits on the sTop production cross-section and exclusion regions in the parameter space (m{sub t}-tilde,m{sub {chi}}-tilde{sub 1{sup 0}}) or (m{sub t}-tilde,m{sub {nu}}-tilde). This new type of selection at the Tevatron for the search of the sTop allowed us to put stronger constraints than those previously published at LEP or at the Tevatron in the t-tilde {yields} bl{nu}-tilde channel, and the first limits ever set in the 4-body decay channel. For the 3-body channel, assuming that the sneutrino is the lightest supersymmetric particle (LSP), the excluded region at 95% confidence level extends up to a sTop mass of 142 (130) GeV if the sneutrino mass (m{sub {nu}}-tilde) is 43 (86) GeV. If the 4-body decay channel dominates, assuming that the neutralino is the LSP, the limit depends on the sneutrino mass. If it is light enough (m{sub {nu}}-tilde {approx}< 100 GeV) this limit reaches a sTop mass of 132 GeV for a neutralino mass of 60 GeV. In all searches for new particles, the calorimetry plays a crucial role from the experimental point of view. The expected increase in integrated luminosity in the Run II which started on the 1. of March 2001, and the detector upgrade which has been achieved over the last three years will allow to extend these exclusion domains or to discover the sTop. We

  2. Finding the Higgs boson of the standard model in the channel ZH → e+e-b$\\bar{b}$ with the D0 detector at the Tevatron; Recherche du boson de Higgs du nideke standard dans le canal ZH → e+e-b$\\bar{b}$ avec le detecteur DØ aupres du Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Calpas, Betty Constante [Univ. of the Mediterranean, Marseille (France)

    2010-06-11

    The organization of this thesis consists of three main ideas: the first presents the theoretical framework and experimental, as well as objects used in the analysis and the second relates to the various work tasks of service that I performed on the calorimeter, and the third is the search for the Higgs boson in the channel ZH → e+e-b$\\bar{b}$. Thus, this thesis has the following structure: Chapter 1 is an introduction to the standard model of particle physics and the Higgs mechanism; Chapter 2 is an overview of the complex and the acceleration of the Tevatron at Fermilab DØ detector; Chapter 3 is an introduction to physical objects used in this thesis; Chapter 4 presents the study made on correcting the energy measured in the calorimeter; Chapter 5 describes the study of certification of electrons in the calorimeter; Chapter 6 describes the study of certification of electrons in the intercryostat region of calorimeter; Chapter 7 Detailed analysis on the search for Higgs production in the channel ZH → e+e-b$\\bar{b}$; and Chapter 8 presents the final results of the calculations of upper limits to the production cross section of the Higgs boson on a range of low masses.

  3. Search for Kaluza-Klein gravitons of the Randall-Sundrum model in the dimuon channel with the D0 detector at Tevatron; Etude de la production de graviton de Kaluza-Klein dans ses desintegrations en paires de muons dans le modele de Randall-Sundrum aupres de l'experience D0 au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lahrichi, N

    2004-07-01

    In this thesis we have put the first constraints on the fundamental parameters of the Randall-Sundrum model of extra dimensions, k/M{sub Pl} which is proportional to the coupling of the graviton to the standard model fields and M{sub G} which is the mass of the first excited state of the Kaluza-Klein graviton. The analysis performed on Monte Carlo sample of the signal allowed to find an error in the PYTHIA generator. The elaboration of an independent generator dedicated for this special analysis helped to find out and correct the error. The data sample used for the analysis covers the period running from november 2002 up to july 2003 taken by the D0 collaboration at Tevatron, which corresponds to an accumulated luminosity of 107,8 pb{sup -1}. The search for the graviton in the dimuon channel allowed to measure the Z production cross-section multiplied by the branching ratio in dimuons. (author)

  4. Identification of tau leptons in the D0 experiment at the Tevatron and search for supersymmetric particles violating R-parity through decay; Identification des leptons taus dans l'experience D0 aupres du tevatron et recherche de particules supersymetriques se desintegrant avec R-parite violee (couplage {lambda}{sub 133})

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, A.C

    2005-04-15

    This thesis concerns the search for supersymmetric particles in data collected by the D0 experiment in Run II at Fermilab Tevatron proton-antiproton collider. Data corresponding to an integrated luminosity of 352 pb{sup -1} (2001-2004) at a center-of-mass energy of {radical}s=1.96 TeV have been used to search for two electrons plus hadronic tau final states accompanied by missing transverse energy. These topologies are expected to arise if R-parity is violated and the lightest neutralino is allowed to decay through a {lambda}{sub 133} coupling. The data seen is consistent with the Standard Model and with instrumental background expectations which suggests no evidence for supersymmetry with {lambda}{sub 133} coupling. Thus lower limits on the masses of the lightest chargino and neutralino have been set. A significant part of the work has been dedicated to identify decaying tau in an hadronic way. The developed method uses neural networks and exploits the narrowness and low particle multiplicity of tau jets by means of the calorimeter and tracker information. The efficiency and capability of this method have been measured and demonstrated in data using the Z {yields} {tau}{tau} {yields} {mu}{tau}(hadr) process. This algorithm allows us to reduce the important QCD background by a factor 100 for 50% tau identification efficiency. (author)

  5. Top quark mass measurement in the dilepton channel during the D0 experiment at the Tevatron. Mesure de la masse du quark top dans les canaux di-leptoniques auprès de l’expérience D0 au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Croc, Aurelien [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA) Saclay, Gif-sur-Yvette (France). IRFU

    2011-01-01

    The top quark is the heaviest standard model quark. Discovered in 1995 by the two Tevatron experiments it has atypical properties. In particular its time life is so short that it decays before hadronizing, so the top quark mass could be measured with a high precision. Data collected by the DØ experiment between 2002 and 2009, which represent an integrated luminosity of 5.4 fb⁻¹, are used to measure the top quark mass by using the matrix element method in the three dilepton channels: dielectron, electron--muon and dimuon. The measured mass, 174.0 ± 1.8 (stat.) ± 2.4 (syst.) GeV, is in a good agreement with other measurements and limited by the systematic uncertainties for the first time in these channels. In this thesis different approaches have been studied to improve the accuracy of this measurement: the use of b-quark jet identification in order to optimize the selection of top--anti-top events and a better determination of the main systematic uncertainties. A special attention has been paid to the Monte-Carlo simulation of muons in D0: the improved smearing procedure for the simulated muons, discussed in this thesis, will be used to increase the accuracy of the top properties measurements as well as the precision of many other D0 measurements.

  6. Search for the supersymmetric partner of bottom quark at DO at Tevatron. Studies on missing transverse energy; Recherche du partenaire supersymetrique du quark bottom au sein de l'experience DO aupres du TeVatron. Etudes sur l'energie transverse manquante

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, S

    2007-09-15

    Supersymmetry, the extension of the Standard Model of particle physics, is searched for, by trying to observe the supersymmetric partner of the bottom quark (b-bar). This search is performed by using events with a final state comprising 2 coplanar b-quark jets and missing transverse energy and coming from a sample of 992 pb{sup -1} of data collected by the D0 detector at the Tevatron, the Fermilab pp-bar collider. The absence of an excess of events in comparison to Standard Model expectations leads to exclude sb masses up to 201 GeV and neutralino masses up to 94 GeV. The missing transverse energy has been studied carefully under 2 points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then during the process Z {yields} {nu}{nu} + jets that is an important background noise and in which the transverse momentum of Z turns into missing energy because of the no-detection of the neutrinos. (author)

  7. Search for the supersymmetric partner of bottom quark at DO at Tevatron. Studies on missing transverse energy; Recherche du partenaire supersymetrique du quark bottom au sein de l'experience DO aupres du TeVatron. Etudes sur l'energie transverse manquante

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, S

    2007-09-15

    Supersymmetry, the extension of the Standard Model of particle physics, is searched for, by trying to observe the supersymmetric partner of the bottom quark (b-bar). This search is performed by using events with a final state comprising 2 coplanar b-quark jets and missing transverse energy and coming from a sample of 992 pb{sup -1} of data collected by the D0 detector at the Tevatron, the Fermilab pp-bar collider. The absence of an excess of events in comparison to Standard Model expectations leads to exclude sb masses up to 201 GeV and neutralino masses up to 94 GeV. The missing transverse energy has been studied carefully under 2 points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then during the process Z {yields} {nu}{nu} + jets that is an important background noise and in which the transverse momentum of Z turns into missing energy because of the no-detection of the neutrinos. (author)

  8. Search for new physics in the jets and missing transverse energy topology with the D0 detector at the Tevatron; Recherche de nouvelle physique dans la topologie a jets et energie transverse manquante avec le detecteur D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, N

    2006-05-15

    Although the standard model of particle physics agrees perfectly with experimental data, it is unlikely the final theory describing particles and their interactions. New phenomena has been searched in the jets and missing transverse energy topology. Such phenomena may be due to the pair production of leptoquarks decaying into a quark and a neutrino or the pair production of stops decaying into a charm and a neutralino which is assumed to be the lightest supersymmetric particle. These searches have been performed with the Ddiamter detector at hadronic collider TeVatron with a center of mass energy of 1.96 TeV. This kind of searches needs a good understanding of the jet energy calibration. The determination of the relative jet energy scale has allowed us to reduce the systematic uncertainties on the jet energy measurement when comparing the data and the simulation. Moreover a new method has been developed in order to correct simulated jets for the differences observed in the jet energy scale, the jet energy resolution and the jet reconstruction efficiency between the data and the simulation. The data analysis, performed with an integrated luminosity of 310 pb{sup -1}, has not observed any excess. This result are interpreted in terms of limit on the mass of the particles: leptoquarks with a mass smaller than 136 GeV and stops with a mass smaller than 131 GeV, for a neutralino mass equal to 46 GeV, are excluded with 95% confidence level. (author)

  9. Supersymmetry results at the Tevatron

    International Nuclear Information System (INIS)

    Badaud, Frederique

    2007-01-01

    The results for searches for Supersymmetry by the CDF and D0 collaborations in pp-bar collisions at √s=1.96 TeV are presented here. Searches for chargino/neutralino and the lightest stop, as well as scenarios with R-parity violation are focused here. The integrated luminosity analyzed ranges from 300 to 800 pb -1 depending on the search. Further informations can be found on the public web pages of the two experiments. (author)

  10. The upgraded Tevatron front end

    International Nuclear Information System (INIS)

    Glass, M.; Zagel, J.; Smith, P.; Marsh, W.; Smolucha, J.

    1990-01-01

    We are replacing the computers which support the CAMAC crates in the Fermilab accelerator control system. We want a significant performance increase, but we still want to be able to service scores of different varieties of CAMAC cards in a manner essentially transparent to console applications software. Our new architecture is based on symmetric multiprocessing. Several processors on the same bus, each running identical software, work simultaneously at satisfying different pieces of a console's request for data. We dynamically adjust the load between the processors. We can obtain more processing power by simply plugging in more processor cards and rebooting. We describe in this paper what we believe to be the interesting architectural features of the new front-end computers. We also note how we use some of the advanced features of the Multibus TM II bus and the Intel 80386 processor design to achieve reliability and expandability of both hardware and software. (orig.)

  11. SUSY searches at the Tevatron

    International Nuclear Information System (INIS)

    Chertok, Maxwell

    1998-01-01

    CDF and D0 have performed searches for Supersymmetry with data collected at √s = 1.8 TeV during the years 1992-95. These searches are based on detector signatures: events with appreciable missing transverse energy plus jets with or without dileptons can signal squark and gluino production; the spectacular signature of trilepton events can result from the production of charginos and neutralinos; and the inclusion of R parity violation can produce events with like-sign dileptons and no missing transverse energy. Results from these analyses are presented

  12. Jet Production at the Tevatron

    International Nuclear Information System (INIS)

    Nang, F.

    1997-06-01

    Inclusive jet cross section and dijet angular distribution results from the CDF and D0 collaborations are presented. The possibility that compositeness might be evident at high transverse energies is explored by both experiments. Using the angular distributions, the CDF analysis excludes at the 95% CL regions with Λ + - + < 2.0 TeV for the same model

  13. Fermilab enters the Tevatron era

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The advent of the world's first superconducting accelerator/storage ring has transformed the physics programme at the Fermi National Accelerator Laboratory. The primary and secondary beam energies (and the coming colliding beam energies) are double those previously available at Fermilab and at the CERN SPS. There is heavy investment in the fixed target programme to use these beam energies and, at present, even more pressure is driving the preparations for proton-antiproton colliding beam operation at energies up to 1 TeV per beam. Since it is the revitalized machine which is making all this possible, we begin with news on machine performance and development. (orig.).

  14. Top Quark Properties at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lysák, Roman [Prague, Inst. Phys.

    2017-11-27

    The latest CDF and D0 experiment measurements of the top quark properties except the top quark mass are presented. The final combination of the CDF and D0 forward-backward asymmetry measurements is shown together with the D0 measurements of the inclusive top quark pair cross-section as well as the top quark polarization.

  15. Search for gluinos decaying into b-jets and transverse missing energy with the detector D0 at the Tevatron; Recherche de gluinos dans la topologie a jets de quarks b et energie transverse manquante avec le detecteur D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Millet, Th

    2007-05-15

    The standard model of particle physics is the model of reference to explain the subatomic phenomena. This theoretical model has been successful for about 35 years. Although it has never been directly refuted, it has some theoretical and experimental limitations at high energy. That is why several new theories are trying to propose some extensions for this model. The supersymmetry is a possible extension, which is appreciated for its theoretical neatness. The work, which is presented in this manuscript, is dedicated to the search for a supersymmetric signal. The main feature of this signal are the presence of 4 b-jets and the high transverse missing energy. This search have been performed with the Run II data collected with the D0 detector from April 2003 to March 2006 (1 fb{sup -1}). The signature of such a topology needs a good energy resolution for the jets and a precise measure of the transverse missing energy. Consequently, it is essential to understand the information given by the calorimeter which is one of the crucial parts of the detector for such a search. The presence of the b-jets in the final state implies a efficient b-tagging. The b-tagging is a discriminant variable for the signal with respect to the standard model background. The hadronic colliders like the Tevatron are characterized by a QCD cross section which is many orders of magnitude larger than the supersymmetric signal cross section. Therefore, it is important to find fast and efficient selection cuts based on the calorimeter at the trigger level. The most important part of my work before the signal search has been dedicated on the study and the design of the trigger conditions for the jets and transverse missing energy signals. (author)

  16. Measurement of direct CP violation parameters in B± → J/ψK± and B± → J/ψπ± decays with 10.4 fb-1 of Tevatron data.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Beattie, M; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hart, B; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Holzbauer, J; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lamont, I; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; Mason, N; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2013-06-14

    We present a measurement of the direct CP-violating charge asymmetry in B(±) mesons decaying to J/ψK(±) and J/ψπ(±) where J/ψ decays to μ(+) μ(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B(-) and B(+) mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/ψK) = [0.59 ± 0.37]%, which is the most precise measurement to date, and A(J/ψπ) = [-4.2 ± 4.5]%. Both measurements are consistent with standard model predictions.

  17. Search for a light Higgs boson in the channel WH→ eνe b anti b in p anti p collisions at √(s)=1.96 TeV at the DO detector of the Tevatron

    International Nuclear Information System (INIS)

    Meder-Marouelli, D.P.

    2005-01-01

    Although the standard model of particle physics has been very successfull in describing nature it needs to be extended by the Higgs mechanism to explain the particle masses observed in experiments. This mechanism introduces a new elementary particle called the Higgs boson. Current research at particle accelerators focuses on the search for the Higgs boson as a major goal. This analysis uses the data recorded with the D0-detector of the Tevatron at the Fermi National Accelerator Laboratory (FNAL). The Tevatron collides protons and antiprotons at a center of mass energy of √(s)=1.96 TeV. The primary goal of the analysis was the search for a light Higgs boson in the WH channel. For this the process p anti p→WH→eνb anti b was used. Furthermore a measurement of the Wb anti b production cross section has been performed. For the measurements a total integrated luminosity of L=255 pb -1 was available. For the selection of the desired processes events with electrons, missing transverse momentum and at least two jets have been used. At least two of the jets were required to be identified as b-jets. To obtain an efficient event selection many event properties had to be calculated and methods to cut on them needed to be optimized. Based on the selected events the Wb anti b production cross section has been calculated. After including the branching ratio BR(W→eν)=0.108 the result is σ(Wb anti b)=21.8 pb +15.5 -20.0 pb(sys+stat) for events where the b-quarks satisfy p T >8 GeV und η 95 (Wb anti b)=60.9 pb has been obtained. The same basic event selection has been used to obtain an upper limit for the WH production cross section. For the statistical analysis of these events the method of Cousins and Feldman was used. This method was extended to include background uncertainties as proposed by Conrad et al. Finally for a standard model Higgs boson of 115 GeV mass an upper limit for the production cross section of σ 95 (WH)=12.2 pb has been obtained at a confidence

  18. A measurement of the t anti t production cross section in proton-antiproton collisions at √s=1.96 TeV with the DOe detector at the Tevatron using final states with a muon and jets

    International Nuclear Information System (INIS)

    Klute, M.

    2004-02-01

    A preliminary measurement of the t anti t production cross section at √s=1.96 TeV is presented. The μ-plus-jets final state is analyzed in a data sample of 94 pb -1 and a total of 14 events are selected with a background expectation of 11.7±1.9 events. The measurement yields: σ p anti p→t anti t+X =2.4 -3.5 +4.2 (stat.) -2.6 +2.5 (syst.)±0.3(lumi.) pb. The analysis, being part of a larger effort to re-observe the top quark in Tevatron Run II data and to measure the production cross section, is combined with results from the available analysis channels. The combined result yields: σ p anti p→t anti t+X =8.1 -2.0 +2.2 (stat.) -1.4 +1.6 (syst.)±0.8(lumi.) pb

  19. A measurement of the t anti t production cross section in proton-antiproton collisions at {radical}s=1.96 TeV with the DOe detector at the Tevatron using final states with a muon and jets

    Energy Technology Data Exchange (ETDEWEB)

    Klute, M.

    2004-02-01

    A preliminary measurement of the t anti t production cross section at {radical}s=1.96 TeV is presented. The {mu}-plus-jets final state is analyzed in a data sample of 94 pb{sup -1} and a total of 14 events are selected with a background expectation of 11.7{+-}1.9 events. The measurement yields: {sigma}{sub p} {sub anti} {sub p{yields}}{sub t} {sub anti} {sub t+X}=2.4{sub -3.5}{sup +4.2}(stat.){sub -2.6}{sup +2.5}(syst.){+-}0.3(lumi.) pb. The analysis, being part of a larger effort to re-observe the top quark in Tevatron Run II data and to measure the production cross section, is combined with results from the available analysis channels. The combined result yields: {sigma}{sub p} {sub anti} {sub p{yields}}{sub t} {sub anti} {sub t+X}=8.1{sub -2.0}{sup +2.2}(stat.){sub -1.4}{sup +1.6}(syst.){+-}0.8(lumi.) pb.

  20. Search for the Standard Model Higgs Boson in ZH → μ+μ-b$\\bar{b}$ Production at DØ and Evidence for the H→ b$\\bar{b}$ Decay at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaming [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    search for ZH → μ+μ-b$\\bar{b}$ is presented, using a Run 2 dataset with an integrated luminosity of 9.7 fb-1 collected by the DØ detector. Selected events contain at least two reconstructed jets and a Z candidate reconstructed with two opposite-sign charged muons. Random forests of decision trees are trained to distinguish between signal and background events in two orthogonal b-tag samples. The ZH → μ+μ-b$\\bar{b}$b analysis is then combined with ZH → e+e-b$\\bar{b}$ analysis. For the combined results of ZH → ℓ+ℓ-b$\\bar{b}$b, no Higgs signal is observed, limits are set on the ZH cross-section BR(H→ b$\\bar{b}$) for different Higgs masses, from 90 to 150 GeV. For a Standard Model (SM) Higgs boson of mass 125 GeV, the observed cross-section limit is 7.1 times the SM cross-section with an expected sensitivity of 5.1 times the SM cross section. The result of ZH → ℓ+ℓ-b$\\bar{b}$b channel has been combined with searches in other Higgs decay channels at the Tevatron, which led to the first evidence of H → b$\\bar{b}$.

  1. Search for the associated production of charginos and neutralinos in proton-antiproton collisions at {radical}(s)=1.96 TeV with the D0 detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kaare Mundal, Olva Michael

    2009-03-15

    A search for Supersymmetry is performed via the associated production of charginos and neutralinos in final states consisting of three charged leptons and missing transverse energy using data collected with the D0 detector at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The data sample corresponds to an integrated luminosity of {proportional_to} 2.3 fb{sup -1}. This final state is considered one of the most promising channels in the search for supersymmetric particles because of its low Standard Model background. A dedicated event selection is developed and events with two muons plus an additional isolated track or events with two electrons plus an additional isolated track are analyzed. The requirement of an isolated track replaces the third charged lepton in the event. After all selection cuts are applied, in total 7 events are selected in the data with an expected number of background events of 5.24{+-}0.40 (stat){+-}0.30 (syst). Due to the good agreement of events observed in data with the expectation of the Standard Model backgrounds, no evidence for Supersymmetry is found. The present analyses are considered in combination with three other decay channels and limits on the production cross section times leptonic branching fraction are set. The results are interpreted in a constrained scenario and exclusion regions are derived as a function of m{sub 0} and m{sub 1/2}. (orig.)

  2. Search for the associated production of charginos and neutralinos in proton-antiproton collisions at √(s)=1.96 TeV with the D0 detector at the Tevatron

    International Nuclear Information System (INIS)

    Kaare Mundal, Olva Michael

    2009-03-01

    A search for Supersymmetry is performed via the associated production of charginos and neutralinos in final states consisting of three charged leptons and missing transverse energy using data collected with the D0 detector at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The data sample corresponds to an integrated luminosity of ∝ 2.3 fb -1 . This final state is considered one of the most promising channels in the search for supersymmetric particles because of its low Standard Model background. A dedicated event selection is developed and events with two muons plus an additional isolated track or events with two electrons plus an additional isolated track are analyzed. The requirement of an isolated track replaces the third charged lepton in the event. After all selection cuts are applied, in total 7 events are selected in the data with an expected number of background events of 5.24±0.40 (stat)±0.30 (syst). Due to the good agreement of events observed in data with the expectation of the Standard Model backgrounds, no evidence for Supersymmetry is found. The present analyses are considered in combination with three other decay channels and limits on the production cross section times leptonic branching fraction are set. The results are interpreted in a constrained scenario and exclusion regions are derived as a function of m 0 and m 1/2 . (orig.)

  3. Study of the heavy flavour fractions in z+jets events from $p\\bar{p}$ collisions at energy √s = 1.96 TeV with the CDF II detector at the Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Mastrandrea, Paolo [Univ. of Siena (Italy)

    2008-06-01

    The Standard Model of field and particles is the theory that provides the best description of the known phenomenology of the particle physics up to now. Data collected in the last years, mainly by the experiments at the big particle accelerators (SPS, LEP, TEVATRON, HERA, SLAC), allowed to test the agreement between measurements and theoretical calculations with a precision of 10-3 / 10-4. The Standard Model is a Quantum Field Theory based on the gauge symmetry group SU(3)C x SU(2)L x U(1)Y , with spontaneous symmetry breaking. This gauge group includes the color symmetry group of the strong interaction, SU(3)C, and the symmetry group of the electroweak interactions, SU(2)L x U(1)Y. The formulation of the Standard Model as a gauge theory guarantees its renormalizability, but forbids explicit mass terms for fermions and gauge bosons. The masses of the particles are generated in a gauge-invariant way by the Higgs Mechanism via a spontaneous breaking of the electroweak symmetry. This mechanism also implies the presence of a massive scalar particle in the mass spectrum of the theory, the Higgs boson. This particle is the only one, among the basic elements for the minimal formulation of the Standard Model, to have not been confirmed by the experiments yet. For this reason in the last years the scientific community has been focusing an increasing fraction of its efforts on the search of the Higgs boson. The mass of the Higgs boson is a free parameter of the Standard Model, but the unitarity of the theory requires values not higher than 1 TeV and the LEP experiments excluded values smaller than 115 GeV. To explore this range of masses is under construction at CERN the Large Hadron Collider (LHC), a proton-proton collider with a center of mass energy of 14 TeV and a 1034 cm-2 s-1 peak luminosity. According to the present schedule, this machine will start

  4. Production of c and b quarks in $p\\bar{p}$ collisions at the Tevatron collider at $\\sqrt{s}$ = 1.96 ТеV; Народження $c$ та $b$ кварків в $p\\bar{p}$ зіткненнях на колайдері Tevatron при $Е_{цм}$ = 1.96 ТеВ

    Energy Technology Data Exchange (ETDEWEB)

    Gogota, Olga [Taras Shevchenko National Univ. of Kyiv, Kiev (Ukraine)

    2016-01-01

    The results of the measurements of c and b quarks productions in proton-antiproton collisions at the D0 experiment at the Tevatron are presented in this thesis. Measurements have been done in 2 aspects: measurement of the W +b-jet and W +c-jet differential production cross sections and a measurement of the fiducial cross sections of quarkonium productions of c quark, simultaneously production of two J/ψ mesons, simultaneously production of J/ψ and Υ mesons in the muon channel decay.

  5. Recherche du boson de Higgs dans l'état final dimuonique et étude de l'asymétrie de production de la paire top antitop avec l'expérience DO auprès du Tevatron; Higgs boson search in the dimuonique final state and study of the top pair antitop production asymmetry with the DO experiment at the Tevatron.

    Energy Technology Data Exchange (ETDEWEB)

    Fauré, Alexandre [University of Paris-Sud, Orsay (France)

    2014-06-03

    Two high energy particle physics analyses are presented in this PhD report using events with two leptons oppositely charged and with missing transverse energy. These events are selected using 9.7 fb-1 of total pp collisions data collected with the DØ detector at the TeVatron at √s=1.96 TeV.The first analysis is the research of the Higgs boson decaying in the H→WW→μνμν channel. No significant excess above the background prediction is observed.Upper limits on Higgs boson production cross-section are computed in the standard model framework but also in the 4th generation of fermions and in the fermiophobic coupling to Higgs boson hypotheses. In order to validate the research methodology, the W boson pair production cross-section is measured.The second analysis is the measurement of the forward-backward asymmetry of the tt pair production. This is the first measurement in the dileptonic channel at DØ experiment. In this context, a new tt pair kinematic reconstruction is used (matrix element method) to give a raw measurement of the forward-backward asymmetry. Thanks to a dedicated calibration method, we give a final measurement of AFB=18.0 ± 6.0 (stat) ± 3.3 (syst).

  6. Search for a Standard Model Higgs boson in the $\\tau\\tau$ decay channel produced in $p\\bar{p}$ collisions at $\\sqrt{s}$ = 1.96 TeV at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Totaro, Pierluigi [INFN, Univ. degli Studi di Trieste (Italy)

    2011-01-01

    This thesis describes the search for the Standard Model Higgs boson decaying to tau lepton pairs, in the Tevatron proton-antiproton collisions at a center of mass energy $\\sqrt{s}$ = 1.96 TeV. The search is based on approximately 2.3 fb$^{-1}$ of CDF Run II data and is performed by considering the following signal processes: WH($\\rightarrow\\tau\\tau$), ZH($\\rightarrow\\tau\\tau$), qHq'$\\rightarrow$q$\\tau\\tau$q' and gg$\\rightarrow$H$\\rightarrow\\tau\\tau$. Events are selected by requiring an hadronic tau and one isolated electron or muon, coming from the leptonic decay of one of the two taus. In addition, at least one calorimeter jet must be present in the final state. We expect 921.8$\\pm$48.9 background events in the 1 jet channel and 159.4$\\pm$11.6 in the $\\ge$ 2 jets channel, while in data we observe 965 and 166 events, respectively. In order to improve the search sensitivity we employ a multivariate technique, based on a set of Boosted Decision Trees trained to get the best sep aration between signal and the dominant sources of background. We observe no evidence for a Higgs boson signal and therefore we set a 95\\% confidence level (C.L.) upper limit on the cross section relative to the SM predictions ($\\sigma/\\sigma_{\\mathrm{SM}}$). Results are presented for the Higgs boson mass varying from M$_\\mathrm{H}$ = 100 GeV/$c^2$ to M$_\\mathrm{H}$ = 150 GeV/$c^2$. For the mass hypothesis of 120 GeV/c$^2$ the observed limit is 27.2, while the corresponding expected value is 23.4$^{+9.8}_{-6.4}$.

  7. Placing Limits on the Higgs Production Cross Section at the Tevatron using the H → W +W- → ℓ+- Decay Channel

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Toby [Univ. of Glasgow, Scotland (United Kingdom)

    2009-01-01

    Limits on the Higgs production cross section at the Tevatron were placed using data with an integrated luminosity of 2.4 fb-1 from CDF. Limits over a Higgs mass range between 110 GeV and 200 GeV were determined, by calculating a limit at ten mass points distributed over this region. The analysis exclusively searches for Higgs produced by top-quark mediated gluon fusion and then decaying into two W bosons. Only leptonic decay channels of the W are considered, such that the final event signature consists of ee, eµ, or µµ with missing energy from undetected neutrinos. After an evaluation of alternative techniques, a neural net was selected as the best method for increasing the sensitivity of the measurement. The BFGS neural net training technique was selected as the most efficient method. A Bayesian Likelihood technique was used to place limits on the observed Higgs production cross section, and an expected limit was calculated by running 10,000 pseudo experiments. The 160 GeV mass point was the most most sensitive, achieving an expected limit 4.1 times the Standard Model prediction cross section at a 95% Confidence Level. Observed limits are within 1 σ of the expected limit below a mass point of ii 160 GeV. Above this, observed limits are higher than the expected limits, within 2 σ. The lowest observed limit was also at MH =160 GeV with a limit of 6.85 times the Standard Model prediction at a 95% Confidence Level. A new method for increasing the sensitivity of the measurement was proposed and investigated, but unused in the analysis.

  8. Search for the Higgs boson in the WH channel and production of Wbb-bar in 1.96 TeV pp-bar collisions in the D0 experiment at the Fermilab Tevatron; Recherche du boson de Higgs dans le canal WH et etude de la production Wbb-bar dans les collisions pp-bar a 1.96 TeV dans l'experience D0 aupres du Tevatron de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Beauceron, St

    2004-05-15

    The introduction of the Higgs boson in the standard model provides a mechanism to explain the origin of the masses of the elementary particles. The Higgs boson has not yet been discovered but a lower limit on its mass has been set at 114.4 GeV at 95% confidence level by LEP experiments. The search for the Higgs boson has been pursued at the Tevatron, proton-antiproton collider, in the associated production channel WH with a Higgs mass lower than 135 GeV where the Higgs decay in bb-bar. The detector D0 is used to record the signals. For this analysis, the calorimeter and the tracker are the main sub-detector. The signals from the calorimeter have been studied through a calibration and a study on the noise level in order to improve the reconstruction of the objects. The missing transverse energy, the electrons and the jets are well identified objects so they can be used in our analysis W({yields} e{nu}) + jets. As D0 has a new tracker and solenoid system, information from this system allow us to tag jets when they are originating from a b-quark. The analysis of events W({yields} e{nu}) + 2*b-tag jets has been made on 174 pb{sup -1}. An upper limit of the cross section production of the process W({yields} e{nu})bb-bar has been derived at 20.3 pb at 95% confidence level. This process is the main irreducible background of the WH {yields} e{nu}bb-bar. In the second part of the analysis, the search for the Higgs boson has been done for different mass values between 105 GeV and 135 GeV. Upper Limits on cross section production times branching ratio have been set. For a Higgs mass of 115 GeV, the upper limit is set of 12.4 pb at 95% confidence limit. (author)

  9. Search for the Higgs boson in the WH channel and production of Wbb-bar in 1.96 TeV pp-bar collisions in the D0 experiment at the Fermilab Tevatron; Recherche du boson de Higgs dans le canal WH et etude de la production Wbb-bar dans les collisions pp-bar a 1.96 TeV dans l'experience D0 aupres du Tevatron de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Beauceron, St

    2004-05-15

    The introduction of the Higgs boson in the standard model provides a mechanism to explain the origin of the masses of the elementary particles. The Higgs boson has not yet been discovered but a lower limit on its mass has been set at 114.4 GeV at 95% confidence level by LEP experiments. The search for the Higgs boson has been pursued at the Tevatron, proton-antiproton collider, in the associated production channel WH with a Higgs mass lower than 135 GeV where the Higgs decay in bb-bar. The detector D0 is used to record the signals. For this analysis, the calorimeter and the tracker are the main sub-detector. The signals from the calorimeter have been studied through a calibration and a study on the noise level in order to improve the reconstruction of the objects. The missing transverse energy, the electrons and the jets are well identified objects so they can be used in our analysis W({yields} e{nu}) + jets. As D0 has a new tracker and solenoid system, information from this system allow us to tag jets when they are originating from a b-quark. The analysis of events W({yields} e{nu}) + 2*b-tag jets has been made on 174 pb{sup -1}. An upper limit of the cross section production of the process W({yields} e{nu})bb-bar has been derived at 20.3 pb at 95% confidence level. This process is the main irreducible background of the WH {yields} e{nu}bb-bar. In the second part of the analysis, the search for the Higgs boson has been done for different mass values between 105 GeV and 135 GeV. Upper Limits on cross section production times branching ratio have been set. For a Higgs mass of 115 GeV, the upper limit is set of 12.4 pb at 95% confidence limit. (author)

  10. Tevatron global radius and 0s system

    International Nuclear Information System (INIS)

    Bristol, S.; Kerns, C.; Kerns, Q.; Miller, H.W.

    1985-06-01

    It has been found to be practical to extract a turn-average measurement of bunch beam phase relative to cavity gap voltage. This 0s signal shows the bunch position on the rf wave throughout injection, acceleration and extraction, including coherent synchrotron oscillations when present. In turn, the time derivative of 0s is a direct measure of global radial position error. We use the 0s signal, driving a phase shifter in the rf low-level system, to damp coherent synchrotron oscillations. Design and operation will be discussed including single beam bunch operation if available. 8 refs., 5 figs

  11. Gauge boson production at the Tevatron

    International Nuclear Information System (INIS)

    Cecilia E Gerber

    2003-01-01

    We present measurements on gauge boson production from data taken during 1994-1996 by the D0 and CDF detectors: the differential production cross section of the W boson as a function of the transverse momentum [1,2], the ratio of W and Z differential cross sections [3,4], direct photon cross-sections at √s = 630 and 1800 GeV [5,6], and studies of Drell-Yan production [7,8]. All measurements are in good agreement with currently available theoretical predictions in most of the measured kinematic range

  12. Min-Bias at the Tevatron

    International Nuclear Information System (INIS)

    Field, Rick

    2007-01-01

    As illustrated in Fig. 1, the total proton-antiproton cross section is the sum of the elastic and inelastic components, σ tot = σ EL + σ IN . The inelastic cross section consists of three terms; single diffraction, double-diffraction, and everything else (referred to as the 'hard core'), σ IN = σ SD + σ DD + σ HC . For elastic scattering neither of the beam particles breaks apart (i.e. color singlet exchange). For single and double diffraction one or both of the beam particles are excited into a high mass color singlet state (i.e. N* states) which then decays. Single and double diffraction also corresponds to color singlet exchange between the beam hadrons. When color is exchanged the outgoing remnants are no longer color singlets and one has a separation of color resulting in a multitude of quark-antiquark pairs being pulled out of the vacuum. The 'hard core' component, σ HC , involves color exchange and the separation of color. However, the 'hard core' contribution has both a 'soft' and 'hard' component. Most of the time the color exchange between partons in the beam hadrons occurs through a soft interaction (i.e. no high transverse momentum) and the two beam hadrons 'ooze' through each other producing lots of soft particles with a uniform distribution in rapidity and many particles flying down the beam pipe. Occasionally there is a hard scattering among the constituent partons producing outgoing particles and 'jets' with high transverse momentum

  13. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  14. Central Exclusive Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G. [Fermilab

    2014-11-10

    The Collider Detector at Fermilab, CDF, observed for the first time in hadron-hadron collisions photon-photon (gamma + gamma -> e+e-, mu+mu-) and photon-pomeron (gamma + \\BbbP -> J/psi, psi(2S)) interactions, as well as $p+\\bar{p}\\rightarrow p+\\chi_c+\\bar{p}$ by double pomeron exchange, \\BbbP + \\BbbP or DPE. Exclusive pi+pi- production was also measured at $\\sqrt{s} = 900~{\\rm GeV}$ and 1960 GeV; resonance structures are discussed.

  15. Search for the supersymmetric partner of the top quark in the channel stop anti-stop {yields} e{sup {+-}} {mu}{sup {+-}} sneutrino anti-sneutrino b anti-b in D0 experiment at the Tevatron. Calibration of the D0 electromagnetic calorimeter; Recherche du partenaire supersymetrique du quark top dans le canal stop anti-stop {yields} e{sup {+-}} {mu}{sup {+-}} sneutrino anti-sneutrino b anti-b au sein de l'experience D0 aupres du TeVatron. Calibration du calorimetre electromagnetique de D0

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, A

    2006-10-15

    Symmetry is one of the most natural extensions of the standard model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb{sup -1} of data collected by D0 during the run-IIa period of the Tevatron. We selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3 particles (stop {yields} bl sneutrino). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that we extend the existing exclusion region in the parameter space (m(stop), m(sneutrino)) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally, because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z {yields} e{sup +}e{sup -} events, which improved significantly the energy resolution. (author)

  16. Search for the supersymmetric partner of the top quark in the channel stop anti-stop {yields} e{sup {+-}} {mu}{sup {+-}} sneutrino anti-sneutrino b anti-b in D0 experiment at the Tevatron. Calibration of the D0 electromagnetic calorimeter; Recherche du partenaire supersymetrique du quark top dans le canal stop anti-stop {yields} e{sup {+-}} {mu}{sup {+-}} sneutrino anti-sneutrino b anti-b au sein de l'experience D0 aupres du TeVatron. Calibration du calorimetre electromagnetique de D0

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, A

    2006-10-15

    Symmetry is one of the most natural extensions of the standard model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb{sup -1} of data collected by D0 during the run-IIa period of the Tevatron. We selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3 particles (stop {yields} bl sneutrino). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that we extend the existing exclusion region in the parameter space (m(stop), m(sneutrino)) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally, because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z {yields} e{sup +}e{sup -} events, which improved significantly the energy resolution. (author)

  17. Search for the supersymmetric partner of the top quark in the channel stop anti-stop → e± μ± sneutrino anti-sneutrino b anti-b in D0 experiment at the Tevatron. Calibration of the D0 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Mendes, A.

    2006-10-01

    Symmetry is one of the most natural extensions of the standard model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb -1 of data collected by D0 during the run-IIa period of the Tevatron. We selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3 particles (stop → bl sneutrino). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that we extend the existing exclusion region in the parameter space (m(stop), m(sneutrino)) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally, because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z → e + e - events, which improved significantly the energy resolution. (author)

  18. Study of collisons of supersymmetric top Quark in the channel $\\tilde{t}$1$\\tilde{t}$1 -> e±μ$\\tilde{v}$$\\tilde{v}$b$\\bar{b}$ with the experience of D0 at the Tevatron. Callibration of the electromagnetic calorimeter at D0.

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Aurelien [Univ. of the Mediterranean, Marseille (France)

    2006-10-02

    Supersymmetry is one of the most natural extensions of the Standard Model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb-1 of data collected by D0 during the RunIIa period of the TeVatron. They selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3-body ($\\bar{t}$ → bl$\\bar{v}$). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that they extend the existing exclusion region in the parameter space (m$\\bar{t}$,m$\\bar{v}$) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z → e+e- events, which improved significantly the energy resolution.

  19. A measurement of the t anti-t production cross-section in proton anti-proton collisions at √s = 1.96-TeV with the D0 detector at the Tevatron using final states with a muon and jets

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Markus [Univ. of Bonn (Germany)

    2004-02-01

    A preliminary measurement of the t$\\bar{t}$ production cross section at √s = 1.96 TeV is presented. The μ-plus-jets final state is analyzed in a data sample of 94 pb-1 and a total of 14 events are selected with a background expectation of 11.7 ± 1.9 events. The measurement yields: σp$\\bar{p}$ → t$\\bar{t}$ + X} = 2.4$+4.2\\atop{-3.5}$(stat.)$+2.5\\atop{-2.6}$(syst.) ± 0.3(lumi.) pb. The analysis, being part of a larger effort to re-observe the top quark in Tevatron Run II data and to measure the production cross section, is combined with results from all available analyses channels. The combined result yields: σ p$\\bar{p}$ → t$\\bar{t}$ + X = 8.1$+2.2\\atop{-2.0}$(stat.)$+1.6\\atop{-1.4}$(syst.) ± 0.8(lumi.) pb.

  20. Étude de la Production de Gravitation de Kaluza-Klein dans ses Désintégrations en Paires de Muons dans le Modèl de Randall-Sundrum auprès de l'Expérience D0 au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lahrichi, Nadia [UPMC, Paris (main)

    2004-06-01

    In this thesis we have put the first constraints on t he fundamental parameters of the Randall-Sundnun model of extra dimensions, $k / M_{pl}$ which is proportional to the coupling of the graviton to the standard model fields and $M_G$ which is the mass of the first excited state of t he Kaluza-Klein graviton. The analysis perfomed on Monte carlo sample of the sign al allowed to find an error in the PYTHIA generator. The elaboration of an independent generator dedicated for this special analysis helped to find out and correct the error. The data sample used for the an alysis covers the period running fron1 november 2002 up to July 2002 taken by the Dzero collaboration at Tevatron, which corresponds to an accumulated lumninosity of 107,8 pb-1 . The search for the graviton in the dinmon channel allowed to rnea.sure the Z production cross-section t irnes the branching ratio in dimuons.

  1. Task A. Study of large P/sub T/ direct photon production at the ISR. Task B. Direct photon production at the tevatron (E-706). Task C. Search for fractional charge particles in semiconductors. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1984-01-01

    Task A is the Pitt contingent of the Axial Field Spectrometer Collaboration, performing experiment R807/808 at CERN. The experiment has studied several topics related to study of high P/sub T/ phenomena such as production of jets at high E/sub T/ and a comparison of their properties with jets seen in e + e - . We are working primarily on those aspects of the experiment involving reactions with photons in the final state. We are completing an analysis of prompt photons and pions produced at 11 0 in the center of mass, from data taken in 1982. Presently, new data are being taken with two large NaI arrays in place. With these data, we are studying low P/sub T/ (20 to 200 MeV/c) photon production as well as prompt photons in the range 1.5 < P/sub T/ < 4 GeV/c. For the 1.5 - 4 GeV/c data we plan to compare single photon production in pp and anti pp collisions. Task B is the Pitt contingent of the E706 collaboration, which is studying prompt photon production in πp and pp collisions at the Tevatron. The major contribution of the Pitt effort to the experiment is the provision of the array of semiconductor detectors required for the charged particle spectrometer to be used in the study of correlated hadronic jets. Task C is the search for fractional charge in semiconductors. Although the physics goals of this experiment are removed from those of the other tasks, the technical overlap with task B is extremely important. The construction and testing of semiconductor detectors requires specialized semiconductor physics knowledge and instrumentation, both of which are being developed concurrently by these two tasks. 109 references

  2. Task A: direct photon production (R807/808) and lepton production (NA34). Task B: direct photon production at the Tevatron (E-706). Task C: search for fractional charge particles in semiconductors. Progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1984-12-01

    Task A started as the support of Pitt contingent of the Axial Field Spectrometer Collaboration, performing experiment R807/808 at CERN. Last year we joined a collaboration which was formed around the same basic group to perform an experiment at the SPS, using many of the R807/808 components to set up an experiment to study lepton production (NA34). We are therefore involved both in the setting up of the new experiment, for which we have taken a major responsibility for the trigger system, and in the analysis of data from the AFS experiment. The R807/808 experiment has probed several topics related to study of high P/sub T/ phenomena such as production of jets at high E/sub T/ [1, 2, 3, 4] and a comparison of their properties with jets seen in e + e - . Task B supports the Pitt contingent of the E706 collaboration, which is studying prompt photon production in πp and pp collisions at the Tevatron. The major contribution of the Pitt effort to the experiment is the provision of the array of semiconductor detectors required for the charged particle spectrometer to be used in the study of correlated hadronic jets. Because of the physics overlap between tasks A and B, our active participation in R807/808 strengthens our contribution to E706. In particular, the πp/pp comparison in E706 complements the anti pp/pp comparison in R807/808. Task C is the search for fractional-charge in semiconductors. The major effort is the development of a new experimental technique which combines field ionization and low background infrared spectroscopy using a liquid helium cooled monochromator and a computer controlled data acquisition. 87 references

  3. Search for supersymmetric particles decaying into tri-leptons through R-parity violation, with D0 Run-II experiment at Fermilab; Recherche de particules supersymetriques se desintegrant en R-parite violee (couplage {lambda}(121)) dans un etat final a trois leptons, avec les donnees du Run-II de l'experience D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Magnan, A.M

    2005-07-15

    This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,{chi}{sub 1}), each one decaying into ee{nu}{sub {mu}} or e{mu}{nu}{sub e} with a {lambda}(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb{sup -1} of analyzed data, for 0.4 + 0.35 - 0.05 (sta) {+-} 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan({beta}) = 5, A{sub 0} = 0, m{sub 0} = 100 and 1000 GeV.c{sup -2} and both signs of {mu}. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c{sup -2}), we can exclude, at 95% Confidence Level, the region m({chi}{sub 1}{sup {+-}}) < 200 GeV.c{sup -2} for all masses of {chi}{sub 1}{sup 0} LSP. (author)

  4. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gernot August [Univ. of Mainz (Germany). Inst. for Physics

    2009-03-01

    The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Δmd(Δms) between neutral Bd and $\\bar{B}$d (Bs and $\\bar{B}$s) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing p$\\bar{p}$ collisions at {radical}s = 1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the 'golden', fully hadronic decay mode Bs → πDs(Φπ)X at D0 is presented in this thesis. All data, taken between April 2002 and August 2007 with the D0 detector, corresponding to an integrated luminosity of integral Ldt = 2.8 fb-1 is used. The oscillation frequency Δms and the ratio |Vtd|/|Vts| are determined as Δms = (16.6-0.4+0.5(stat)-0.3+0.4(sys)) ps-1, |Vtd|/|Vts| = 0.213-0.003+0.004(exp) ± 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is

  5. First paper from Tevatron Run II submitted by CDF collaboration

    CERN Multimedia

    2003-01-01

    "Scientists of the Collider Detector at Fermilab submitted today (March 19) the first scientific publication of Collider Run II to the science journal Physical Review D. The paper titled "Measurement of the Mass Difference m(Ds+)-m(D+) at CDF II" summarizes the results of an analysis carried out by CDF scientists Christoph Paus and Ivan Furic, MIT, describing the mass measurement of particles containing charm quarks" (1 page).

  6. Four-jet production at LHC and Tevatron in QCD

    International Nuclear Information System (INIS)

    Blok, B.; Dokshitzer, Yu.; Frankfurt, L.; Strikman, M.

    2011-01-01

    We demonstrate that in the back-to-back kinematics the production of four jets in the collision of two partons is suppressed in the leading log approximation of pQCD, compared to the E-circumflex hard processes involving the collision of four partons. We derive the basic equation for four-jet production in QCD in terms of the convolution of generalized two-parton distributions of colliding hadrons in the momentum space representation. Our derivation leads to geometrical approach in the impact parameter space close to that suggested within the parton model and used before to describe the four-jet production. We develop the independent parton approximation to the light-cone wave function of the proton. Comparison with the CDF and D0 data shows that the independent parton approximation to the light-cone wave function of the proton is insufficient to explain the data. We argue that the data indicate the presence of significant multiparton correlations in the light-cone wave functions of colliding protons.

  7. Searches for physics beyond the Standard Model at the Tevatron

    Indian Academy of Sciences (India)

    Publications ... Beyond Standard Model Physics Volume 79 Issue 4 October 2012 pp 703-717 ... a centre-of-mass energy of 1.96 TeV that the CDF and DO Collaborations have scrutinized looking for new physics in a wide range of final states.

  8. The dijet invariant mass at the Tevatron Collider

    International Nuclear Information System (INIS)

    1990-01-01

    The differential cross section as a function of the dijet invariant mass has been measured in 1.8 TeV ppbar collisions. A comparison to leading order QCD predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. The need to take radiation into account requires the study of its spatial distribution and the comparison of the data to the predictions of shower Monte Carlo programs like Isajet and Herwig. 12 refs., 10 figs

  9. Resonant second generation slepton production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Autermann, C.T.

    2006-12-21

    In this thesis a search for R-parity violating supersymmetry is presented. Two different approaches, determined by the event topologies, are chosen to search for resonant slepton production and for the pair and associated production of gauginos. To the resonant slepton production three different signal channels contribute; {mu}{yields}{chi}{sub 1}{sup 0}{mu}, {mu}{yields}{chi}{sup 0}{sub 2,(3,4)}{mu} and {nu}{sub m}u{yields}{chi}{sup {+-}}{sub 1,(2)}{mu}. These three channels are analyzed separately. The slepton-mass -- gaugino-mass plane ist scanned systematically for an excess in the data. Effective 2-dimensional cuts have been developed, to separate signal-like events from background. The analysis profits from the ability to reconstruct the neutralino as well as the slepton mass. The 2D cuts must be very flexible, to account for the different event topologies in the three channels, while scanning the slepton- and gaugino-masses from a few GeV to several hundred GeV. The pair and associated production of gauginos and their decay via any LQ anti d coupling {lambda}{sup '}{sub 2ij} with j=1,2 and k=1,,3 does not comprise a resonance. Therefore the search is not able to benefit from a mass reconstruction. The two muon charges are not correlated, so that the selection of only like-sign di-muon final states is the chosen method to suppress Standard Model background processes. No indication of RPV supersymmetry production or any disagreement between data and Standard Model expectation have been found. Therefore exclusion limits with 95% confidence level (CL) have been calculated. Model independent limits on cross section times branching ratio are given. These limits only depend on the masses of the contributing particles of the process. The predicted cross section of any given model can be compared to these cross section limits to determine the exclusion contour in that model. The three resonant slepton production channels {mu}{yields}{chi}{sub 1}{sup 0}{mu}, {mu}{yields}{chi}{sup 0}{sub 2,(3,4)}{mu} and {nu}{sub m}u{yields} {chi}{sup {+-}}{sub 1,(2)}{mu} are combined within the minimal supergravity (mSUGRA) model to the world's best limit on the relevant coupling {lambda}{sup '}{sub 211} in dependence of the neutralino and the slepton masses. A lower bound on the slepton mass depending only on {lambda}{sup '}{sub 211} is derived. If any LQ anti d coupling {lambda}{sup '}{sub 2ij} with j=1,2 and k=1,2,3 is larger than 0.01, then neutralino masses below 41.5 GeV and gluino masses below 285 GeV can be excluded within mSUGRA. This result is a significant extension of the D0 Run I bounds. (orig.)

  10. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  11. Flavor Tagging at Tevatron incl. calibration and control

    Energy Technology Data Exchange (ETDEWEB)

    Moulik, T.; /Kansas U.

    2007-01-01

    This report summarizes the flavor tagging techniques developed at the CDF and D0 experiments. Flavor tagging involves identification of the B meson flavor at production, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B{sup 0} and B{sub S} system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from b decays from other tracks. This report discusses these techniques and the measurement of B{sup 0} mixing, as a means to calibrate the taggers.

  12. Physics with W's, Z's and leptons at the Tevatron collider

    International Nuclear Information System (INIS)

    Bodek, A.

    1996-10-01

    Recent data from proton-antiproton collisions at high energy provide information on the masses of the Top quark and W boson. The W asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan dilepton production at high invariant mass yield limits on extra Z' bosons, and place strong limits on quark substructure. Compositeness limits from CDF Run 1, and expected sensitivity in Run II and TEV33 are presented

  13. Measurements of the W boson mass at the Tevatron

    International Nuclear Information System (INIS)

    Hays, C.P.

    2014-01-01

    Precise measurements of the W boson mass W test the contributions of loop corrections to the W boson propagator from e.g. the top and bottom quarks and the Higgs boson. New measurements from CDF [m W =80.387±0.012(stat)±0.015(syst) GeV] and D0 [m W =80.375±0.011(stat)±0.020(syst) GeV] are the most precise to date, significantly tightening the constraints on loops in the W boson propagator. The new world-average value of the W boson mass is m W =80.385±0.015 GeV. (author)

  14. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  15. Tevatron optics with magnet moves for Roman pots at CDF

    International Nuclear Information System (INIS)

    Johnstone, John A.

    2001-01-01

    CDF would like to install high precision track detectors. There is ample room on A-sector side, but space needs to be created at B11. The favored plan is to shove the first 3 B11 dipoles inwards toward the IP by 2.274 m. This would require removal of the inert Q1 quadrupole and its spool plus an extensive number of other mechanical and cryogenic modifications. The orbit distortion these modifications introduce would then be compensated by shifting the six B16 and B17 dipoles outwards by about half that amount. Space for this dipole move could be generated by replacing the 72 inch spool at B18 with a short 43 inch spool, and removing the 16.5 inch spacer after B17-5. The above scheme certainly recloses the orbit, and doesn't require the detector to move. However, by moving the B16 and B17 dipoles, the B17 and B18 arc quadrupoles also get shifted downstream--B17 by 1.115 m, and B18 by 0.696 m. Longitudinal movements of arc quads by such large fractions of their magnetic lengths will clearly impact the overall machine optics

  16. W boson production and mass at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer-Chilton, Oliver; /Toronto U.

    2005-06-01

    The CDF and D0 collaborations have analyzed up to {approx} 200 pb{sup -1} of Run 2 physics data to measure W production properties such as the W cross section, the W width, lepton universality and the W charge asymmetry. From the cross section measurements, CDF obtains a lepton universality of g{sub {mu}}/g{sub e} = 0.998 {+-} 0.012 and g{sub {tau}}/g{sub e} = 0.99 {+-} 0.04 and an indirect W width of {Lambda}{sub W} = 2079 {+-} 41 MeV. D0 measured the W width directly and finds {Lambda}{sub W} = 2011 {+-} 142 MeV. CDF has estimated the uncertainties on the W boson mass measurements in the electron and muon decay channels and obtains an overall uncertainty of 76 MeV.

  17. Searches for physics beyond the Standard Model at the Tevatron

    Indian Academy of Sciences (India)

    supersymmetry (SUSY), grand unified theories, and string theory have been promoted. Extensions to the ... the kinematical variables of interest are obtained from Monte Carlo-based calculations. .... The probability that this unexpected.

  18. Model Independent Search For New Physics At The Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Choudalakis, Georgios [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2008-04-01

    The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics have been proposed, each with unknown probability to be confirmed. Instead of arbitrarily choosing to examine one of those theories, this thesis is about searching for any sign of new physics in a model-independent way. This search is performed at the Collider Detector at Fermilab (CDF). The Standard Model prediction is implemented in all final states simultaneously, and an array of statistical probes is employed to search for significant discrepancies between data and prediction. The probes are sensitive to overall population discrepancies, shape disagreements in distributions of kinematic quantities of final particles, excesses of events of large total transverse momentum, and local excesses of data expected from resonances due to new massive particles. The result of this search, first in 1 fb-1 and then in 2 fb-1, is null, namely no considerable evidence of new physics was found.

  19. Neutral strange particle production in neutrino interactions at Tevatron energies

    International Nuclear Information System (INIS)

    De, K.

    1988-05-01

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2 > = 23 (GeV/c) 2 . Rates for K 0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K 0 meson and the Λ baryon. The production rates of K 0 's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K 0 's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K 0 's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  20. Resonant second generation slepton production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Autermann, C T

    2006-12-21

    In this thesis a search for R-parity violating supersymmetry is presented. Two different approaches, determined by the event topologies, are chosen to search for resonant slepton production and for the pair and associated production of gauginos. To the resonant slepton production three different signal channels contribute; {mu}{yields}{chi}{sub 1}{sup 0}{mu}, {mu}{yields}{chi}{sup 0}{sub 2,(3,4)}{mu} and {nu}{sub m}u{yields}{chi}{sup {+-}}{sub 1,(2)}{mu}. These three channels are analyzed separately. The slepton-mass -- gaugino-mass plane ist scanned systematically for an excess in the data. Effective 2-dimensional cuts have been developed, to separate signal-like events from background. The analysis profits from the ability to reconstruct the neutralino as well as the slepton mass. The 2D cuts must be very flexible, to account for the different event topologies in the three channels, while scanning the slepton- and gaugino-masses from a few GeV to several hundred GeV. The pair and associated production of gauginos and their decay via any LQ anti d coupling {lambda}{sup '}{sub 2ij} with j=1,2 and k=1,,3 does not comprise a resonance. Therefore the search is not able to benefit from a mass reconstruction. The two muon charges are not correlated, so that the selection of only like-sign di-muon final states is the chosen method to suppress Standard Model background processes. No indication of RPV supersymmetry production or any disagreement between data and Standard Model expectation have been found. Therefore exclusion limits with 95% confidence level (CL) have been calculated. Model independent limits on cross section times branching ratio are given. These limits only depend on the masses of the contributing particles of the process. The predicted cross section of any given model can be compared to these cross section limits to determine the exclusion contour in that model. The three resonant slepton production channels {mu}{yields}{chi}{sub 1}{sup 0}{mu}, {mu}{yields}{chi}{sup 0}{sub 2,(3,4)}{mu} and {nu}{sub m}u{yields} {chi}{sup {+-}}{sub 1,(2)}{mu} are combined within the minimal supergravity (mSUGRA) model to the world's best limit on the relevant coupling {lambda}{sup '}{sub 211} in dependence of the neutralino and the slepton masses. A lower bound on the slepton mass depending only on {lambda}{sup '}{sub 211} is derived. If any LQ anti d coupling {lambda}{sup '}{sub 2ij} with j=1,2 and k=1,2,3 is larger than 0.01, then neutralino masses below 41.5 GeV and gluino masses below 285 GeV can be excluded within mSUGRA. This result is a significant extension of the D0 Run I bounds. (orig.)

  1. A resonant beam detector for TEVATRON tune monitoring

    International Nuclear Information System (INIS)

    Martin, D.; Fellenz, B.; Hood, C.; Johnson, M.; Shafer, R.; Siemann, R.; Zurawski, J.

    1989-03-01

    An inductively resonated, balanced stripline pickup has been constructed for observing tune spectra. The device is a sensitive betatron oscillation and Schottky noise pickup, providing 25 dB gain over untuned detectors of like geometry. The electrodes are motorized so the device center and aperture may be remotely adjusted. To tune the resonator onto the 21.4 MHz operating frequency, a motorized capacitor is employed. Quadrature signals from a pair of detectors has enabled observation of individual p and p coherent motions to nanometer levels. 8 refs., 5 figs

  2. Probing top anomalous couplings at the Tevatron and the Large ...

    Indian Academy of Sciences (India)

    ... velocity and scattering angle of the top in the parton centre-of-mass frame, the .... ysis, though, we use the updated value of mt = 173.1 GeV, obtained from the ... Once this is done, the theoretical errors in the calculation owing to the choice of.

  3. Fixed target beauty physics from Tevatron to SSC (E771)

    International Nuclear Information System (INIS)

    Lau, K.

    1992-01-01

    The E771 beauty experiment at Fermilab is described. The Super Fixed Target Beauty Facility (SFT) proposal to perform fixed target beauty physics at the SSC is a natural evolution. The unique features of SFT include crystal channeling extraction from the SSC main ring, which allows the experiment to operate concurrently with the collider experiments. The slow extraction rate (≅2x10 8 protons/s) does not limit the lifetime of the stored beams. The proposed beauty spectrometer and its capability in CP violation studies are described. (author) 19 refs.; 2 figs.; 2 tabs

  4. Measurement of the elastic, total and diffraction cross sections at tevatron energies

    International Nuclear Information System (INIS)

    Belforte, S.

    1993-11-01

    The CDF collaboration has measured the differential elastic cross section dσ el /dt, the single diffraction dissociation double differential cross section d 2 σ sd /dM 2 dt and the total inelastic cross section for antiproton-proton collisions at center of mass energies √s = 546 and 1,800 GeV. Data for this measurement have been collected in short dedicated runs during the 1988--1989 data taking period of CDF. The elastic scattering slope is 15.28 ± 0.58 (16.98 ± 0.25) GeV -2 at √s = 546 (1,800) GeV. Using the luminosity independent method (1 + ρ 2 )σ T is measured to be 62.64 ± 0.95 (81.83 ± 2.29) mb at √s = 546 (1,800) GeV. Assuming ρ = 0.15 the elastic, total and single diffraction cross sections are σ el = 12.87 ± 0.30, σ T = 61.26 ± 0.93 and σ sd = 7.89 ± 0.33 mb (σ el = 19.70 ± 0.85, σ T = 80.03 ± 2.24 and σ sd = 9.46 ± 0.44 mb) at √s = 546 (1,800) GeV

  5. z-Scaling: Inclusive Jet Spectra at RHIC, Tevatron and LHC

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Dedovich, T. G.; Zborovský, Imrich

    2012-01-01

    Roč. 5, 065 (2012), s. 1-22 ISSN 1824-8039. [XXI International Baldin Seminar on High energy Physics Problems. Dubna, 10.09.2012-15.09.2012] R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : jet production * scaling * ultrarelativistic collisions Subject RIV: BE - Theoretical Physics http://pos.sissa.it/archive/conferences/173/065/Baldin%20ISHEPP%20XXI_065.pdf

  6. The rise of the proton-(anti)proton total cross section at tevatron energies and beyond

    International Nuclear Information System (INIS)

    Kluit, P.M.; Timmermans, J.

    1987-12-01

    A dispersion relation analysis of the UA4 result on the real part of the panti p elastic scattering amplitude is presented. The interpretation is twofold. Assuming that the pp and panti p cross sections are asymptotically identical, a steep rise is deduced of the total cross section in the 1-4 TeV domain. In case the pp and panti p cross sections are asymptotically different, it is deduced that there is a crossing of the total cross section of pp and panti p between ISR and Spanti pS energies followed by a steep rise of the difference of the pp and panti p total cross sections. It is shown that in both cases this rise can be accounted for if we add an additional term with an energy cut-off to the usual Amaldi parametrisation of the total cross section: ln 2 (s/s cut ) in the first case, or ln(s/s cuto ) in the second case, where √s cut lies around 500 GeV and √s cuto around 63 GeV. Both quantities can be interpreted as a threshold of a new process. For the first case, a continuous parametrisation without a threshold is also proposed with an extra term of the form ln 2 (1+ s/s 1 ), where √s 1 equals 700 GeV. 12 refs.; 5 figs.; 3 tabs

  7. Observation of s-Channel Single Top Quark Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Cremonesi, Matteo [Univ. of Oxford (United Kingdom)

    2014-01-01

    Testing the Standard Model (SM) and looking for new phenomena have been the focus of generations of particle physicists in the last decades. Following this spirit, this thesis presents two searches. The first is the search for single top quark production from the exchange of an s-channel virtual W boson using events with an imbalance in the total transverse energy, b-tagged jets, and no identified leptons. Assuming the electroweak production of top quarks of mass 172.5 GeV/c2 in the s-channel, a cross section of 1.12+0.61 -0.57 (stat+syst) pb, with a significance of 1.9 standard deviations, is measured. This measurement is combined with the result obtained from events with an imbalance in total transverse momentum, b-tagged jets, and exactly one identified lepton, yielding a cross section of 1.36+0.37 -0.322 (stat+syst) pb, with a significance of 4.2 standard deviations. The first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements is also reported. The measured cross section is σs = 1.29+0.26 -0.244 pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8 10-10, corresponding to a significance of 6.3 standard deviation. The second is the search for W'-like resonances decaying to tb. No significant excess above the SM prediction is found. Using a benchmark W' → tb left-right symmetric model, 95% C.L. mass-dependent upper limits are placed on the W0 boson production cross section times branching ratio to tb. Assuming a W' boson with SM-like couplings and allowed (forbidden) decay to leptons, W' → tb is excluded with 95% C.L. for W' boson masses below 860 (880) GeV/c2. Relaxing the hypothesis on SM-like couplings, we exclude W' boson coupling strength values as a function of the W' boson mass above 10% of the SM coupling strength for MW' = 300 GeV/c2. The constraints obtained with the present analysis are the most stringent for charged resonance masses below 570 GeV/c2 decaying to a top and a bottom quark.

  8. Double Diffractive Process Factorization from ηc and γ Associated Production at Tevatron and LHC

    Institute of Scientific and Technical Information of China (English)

    YANZhan-Yuan; LIZhi-Wen; DUANChun-Gui

    2004-01-01

    We present a study of associated ηc and γ double diffractive production in pp- collision based on Ingelman-Schlein model, and the framework of non-relativistic QOD factorization formalism for quarkonia production. The prediction of ηc and γ is more reliable than J/ψ production, because the associated ηc and γ production is a pure color-octet process, and the dominant contribution comes from color octet 1S0(8) subprocess, which is related to the color octet matrix element of 1S0(8) of J/ψ by the heavy quark spin symmetry and the large PT J/ψ production data. We find that the ratio of diffractive to inclusive cross sections is independent of the values of color octet matrix elements, but is sensitive to the gluon factor of the Pomeron and renormalized Pomeron flux factors. So experimental measurement of this ratio can give us more information of the nature of Pomeron and test the assumption of hard diffractive factorization in hadron-hadron collisions.

  9. Double Diffractive Process Factorization from ηc and γ Associated Production at Tevatron and LHC

    Institute of Scientific and Technical Information of China (English)

    YAN Zhan-Yuan; LI Zhi-Wen; DUAN Chun-Gui

    2004-01-01

    We present a study of associated ηc and γ double diffractive production in p-p collision based on Ingelman-Schlein model, and the framework of non-relativistic QCD factorization formalism for quarkonia production. The predic-tion of ηc and γ is more reliable than J/ψ production, because the associated ηc and γ production is a pure color-octetprocess, and the dominant contribution comes from color octet 1So(8) subprocess, which is related to the color octet matrixelement of 1So(8) of J/ψ by the heavy quark spin symmetry and the large PT J/ψ production data. We find that the ratioof diffractive to inclusive cross sections is independent of the values of color octet matrix elements, but is sensitive to thegluon factor of the Pomeron and renormalized Pomeron flux factors. So experimental measurement of this ratio can giveus more information of the nature of Pomeron and test the assumption of hard diffractive factorization in hadron-hadron collisions.

  10. The Underlying Event and the Total Cross Section from Tevatron to the LHC

    CERN Document Server

    Bähr, Manuel; Seymour, Michael H

    2009-01-01

    Multiple partonic interactions are widely used to simulate the hadronic final state in high energy hadronic collisions, and successfully describe many features of the data. It is important to make maximum use of the available physical constraints on such models, particularly given the large extrapolation from current high energy data to LHC energies. In eikonal models, the rate of multiparton interactions is coupled to the energy dependence of the total cross section. Using a Monte Carlo implementation of such a model, we study the connection between the total cross section, the jet cross section, and the underlying event. By imposing internal consistency on the model, we derive constraints on its parameters at the LHC.

  11. Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.

    1990-10-01

    Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab

  12. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    OpenAIRE

    CDF Collaboration; Aaltonen, T.

    2007-01-01

    We present the first observation and cross section measurement of exclusive dijet production in pbar-p interactions, pbar + p --> pbar + dijet + p. Using a data sample of 310 pb-1 collected by the Run II Collider Detector at Fermilab at sqrt{s}=1.96 TeV, exclusive cross sections for events with two jets of transverse energy ET >= 10 GeV have been measured as a function of minimum ET(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of exp...

  13. Observation of exclusive dijet production at the Fermilab Tevatron pp collider

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.

    2008-01-01

    We present the first observation and cross section measurement of exclusive dijet production in pp interactions, pp→p+dijet+p. Using a data sample of 310 pb -1 collected by the Run II Collider Detector at Fermilab at √(s)=1.96 TeV, exclusive cross sections for events with two jets of transverse energy E T jet ≥10 GeV have been measured as a function of minimum E T jet . The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb -1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J z =0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at √(s)=14 TeV are discussed.

  14. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    International Nuclear Information System (INIS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Gonzalez, B. Alvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.

    2007-01-01

    The authors present the first observation and cross section measurement of exclusive dijet production in (bar p)p interactions, (bar p)p → (bar p) + dijet + p. Using a data sample of 310 pb -1 collected by the Run II Collider Detector at Fermilab at √s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E T jet (ge) 10 GeV have been measured as a function of minimum E T jet . The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb -1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J z = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at √s = 14 TeV are discussed

  15. Observation of s-channel production of single top quarks at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ranjan, N; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2014-06-13

    We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb(-1) per experiment. The measured cross section is σ(s) = 1.29(-0.24)(+0.26) pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8 × 10(-10), corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.

  16. Mini Max (T-864): a progress report on a disoriented chiral condensate search at the Tevatron

    International Nuclear Information System (INIS)

    Taylor, Cyrus

    1996-01-01

    Relativistic quantum field theory treats the vacuum as a medium with bulk properties characterized by long-range order parameters. This has led to suggestions that regions disoriented vacuum might be formed in high energy collision processes. The putative phenomenology of such 'Disoriented Chiral condensates'will be reviewed and used to motivate the design of Fermilab experiment T-864 (Mini Max). The status f the experiment at the time of writing is reviewed, as are prospects for future developments. (author)

  17. A TRD Trigger for the tevatron collider experiment at D0

    Energy Technology Data Exchange (ETDEWEB)

    Utes, M.; Johnson, M.; Martin, M.

    1991-11-01

    A VME-based module for use as an input to the D0 Detector Level 1.5 Trigger is described. Its main function will be the confirmation of electron candidates flagged by the First Level Calorimeter Trigger using digitized data from the Transition Radiation Detector. Features of the board include the use of fast FIFOs to store incoming track coordinates, dual ported SRAM lookup tables for addressing integrated charge data and forming scalars, multiplier/accumulators for speed of calculation, and a single synchronous finite state machine to control all board operations. 4 refs., 3 figs.

  18. Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop

    CERN Document Server

    Ambrosanio, S.; Brignole, A.; Castro, A.; Chertok, M.B.; Cheung, King-man; Clavelli, L.; Cutts, D.; Cvetic, Mirjam; Dooling, D.; Dreiner, Herbert K.; Dutta, Bhaskar; Ellwanger, U.; Everett, L.L.; Feruglio, F.; Giudice, G.F.; Gunion, J.F.; Hewett, J.L.; Hugonie, C.; Kang, K.; Kang, S.K.; Landsberg, Greg L.; Langacker, P.; Mangano, Michelangelo L.; McKay, D.; Mohapatra, R.N.; Mrenna, S.; Muller, D.J.; Rattazzi, R.; Rizzo, T.; Wang, J.W.; Wells, J.D.; Zwirner, F.

    2000-01-01

    There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.

  19. Design and operation of the quench protection system for the Fermilab tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1989-01-01

    The operation of a superconducting accelerator, in addition to cryogenic requirements, introduces a new complexity not present in a conventional accelerator. A method is required for protecting the magnets from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature so that they are no longer superconducting. The development of that system is the topic of this chapter. Any quench protection system has two very important ingredients. First, it must be designed with sufficient integrity to remain functional even under abnormal circumstances. The magnets must be protected during power failures, for example. Quenches involving a large number of components can also be hazardous because of the redistribution of voltages during the quench. Some of the system integrity can be achieved through redundancy. Frequent testing of critical elements of the system also assures the overall integrity. Second, the quench protection system must protect against damage from quenches regardless of their location or the excitation current at the time. It is not sufficient to protect just the magnet coils; either the leads between magnets must be fully stabilized or the quench protection system must protect them. The next section presents a brief discussion of the basic properties of superconductors and the phenomenon of quench propagation. 10 references, 13 figures

  20. Single-top-squark production via baryon-number-violating couplings at the Fermilab Tevatron Collider

    International Nuclear Information System (INIS)

    Berger, E. L.; Harris, B. W.; Sullivan, Z.

    1999-01-01

    We consider the s-channel R-parity-violating production of a single light top squark tilde t 1 and its subsequent R-parity-conserving decay. For masses in the range 180-325 GeV, and R-parity-violating couplings λ 3ij double p rime > 0.02-0.05, we show that discovery of the top squark is possible with 2 fb -1 of integrated luminosity at run II. If no evidence for the top squark is found, the bound on λ 3ij '' can be reduced by up to an order of magnitude with existing data from run I, and by two orders of magnitude at run II

  1. Exclusive Central Meson Production in Proton Antiproton Collisions at the Tevatron

    Directory of Open Access Journals (Sweden)

    Swiech Artur

    2012-12-01

    Full Text Available It has been known since the days of the Intersecting Storage Rings, ISR, at CERN, that one can have pp interactions with more than one pomeron, ℙ, exchanged, known as double pomeron exchange. Exclusive hadronic systems, produced by double pomeron exchange, DℙE, have the potential of opening a rich new window on hadron spectroscopy and the diffraction mechanism. We have studied events of the type p + p¯ $ar p$ → p + X + p¯ $ar p$ where X is a hadron pair (mostly π+π− at √s = 900 GeV and 1960 GeV in the Collider Detector at Fermilab (CDF. The hadron pair is central, y ≈ 0, and between two rapidity gaps Δy ≈ 4. The dominant process is double pomeron exchange, DℙE, with restrictions on the quantum numbers of X: Q = S = 0, C = +1, J = 0 or 2. The mass spectra, with about 300K candidate events assumed to be π+π−, shows strong resonant structures attributed to f0 and f2 states. We give the ratio of cross sections at √s = 900 GeV and 1960 GeV, and compare with Regge expectations.

  2. Cross-section-constrained top-quark mass measurement from dilepton events at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; DeCecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-02-15

    We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton tt event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/-2.6(syst)+/-2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/-3.1(syst) GeV/c(2).

  3. A TRD Trigger for the tevatron collider experiment at D0

    International Nuclear Information System (INIS)

    Utes, M.; Johnson, M.; Martin, M.

    1991-11-01

    A VME-based module for use as an input to the D0 Detector Level 1.5 Trigger is described. Its main function will be the confirmation of electron candidates flagged by the First Level Calorimeter Trigger using digitized data from the Transition Radiation Detector. Features of the board include the use of fast FIFOs to store incoming track coordinates, dual ported SRAM lookup tables for addressing integrated charge data and forming scalars, multiplier/accumulators for speed of calculation, and a single synchronous finite state machine to control all board operations. 4 refs., 3 figs

  4. Prospects for top at the Tevatron collider in the 1990's

    International Nuclear Information System (INIS)

    Abachi, S.; Butler, J.; Baden, D.; Barnett, B.; Matthews, J.A.; Buchholz, D.; Gordon, H.; Protopopescu, S.; Hedin, D.; Kim, Shinhong; Sinervo, P.; Smith, D.; Wagner, R.; Wolf, Z.; Zieminska, D.

    1989-01-01

    We calculated the signal and background rates for top masses of 90, 120, 150, and 180 GeV for both the CDF and D null detectors. This allowed us to determine the prospects for both discovery as well as detailed study of heavy top depending on the luminosity. We have focused on the leptons + jets and dilepton signatures. We also consider the question of tagging b-jets and how that should reduce background and help in making a mass determination. 8 refs., 5 figs., 5 tabs

  5. Electroweak Baryogenesis and Higgs and Stop Searches at LEP and the Tevatron

    CERN Document Server

    Carena, M S; Wagner, C E M

    1998-01-01

    It has been recently shown that the observed baryon number may originate at the electroweak phase transition, provided that the Higgs boson and the lightest stop are sufficiently light. In this work, we perform a detailed analysis, including all dominant two-loop finite temperature corrections to the Higgs effective potential, as well as the non-trivial effects proceeding from the mixing in the stop sector, to define the region of parameter space for which electroweak baryogenesis can happen. The limits on the stop and Higgs masses are obtained by taking into account the experimental bounds on these quantities, as well as those coming from the requirement of avoiding dangerous color breaking minima. We find for the Higgs mass $m_h \\simlt 105$ GeV, while the stop mass may be close to the present experimental bound and must be smaller than, or of order of, the top quark mass. These results provide a very strong motivation for further non-perturbative analysis of the electroweak phase transition, as well as for ...

  6. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  7. Using the Tevatron Electron Lens (TEL) as a Wire and other TEL Studies at FNAL

    CERN Document Server

    Zimmermann, Frank; Sen, T; Shiltsev, V D; Zhang, X L; CERN. Geneva. AB Department

    2004-01-01

    During a visit to FNAL, on March 1, 2004, we performed a two-dimensional grid scan - with 1-mm step size - of the TEL transverse position in the vicinity of the proton and pbar beams, while three bunches of either beam were excited by the TEL on every turn. The measured tune shifts of protons and pbars are compatible with expectation. The proton Schottky 'emittance' is strongly dependent on the TEL position, possibly due to a coherent interaction between protons and electrons. The relative position of protons, pbars and TEL can be determined in three different ways: from the TEL BPM readings, from the tune variation with TEL position, and from the loss-rate variation with the TEL position. The results are consistent at least within 1 or 2 mm, possibly better. Tunes and losses do not necessarily yield identical values for the beam position. Significant proton losses occurred when the TEL approached the proton beam. These losses decreased with the third power of the distance. They were the result of a longitudi...

  8. Regge pole plus cut model for proton-antiproton elastic scattering at collider and tevatron energies

    International Nuclear Information System (INIS)

    Aleem, Fazal; Saleem, Mohammad

    1988-01-01

    The Regge pole plus cut model has been used to explain the data at the collider energies √=546 and 630 GeV and the most recent differential cross-section results at √=1.8 TeV. Predictions of the model at 1.8 and 40 TeV are compared with those of Bourrely et al. (1984). (author). 22 refs., 7 figs

  9. Search for anomalous production of events with a high energy lepton and photon at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Loginov, Andrey Borisovich [State Scientific Center of the Russian Federation. Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2006-01-01

    We present results of a search for the anomalous production of events containing a high-transverse momentum charged lepton (ℓ, either e or μ) and photon (γ), accompanied by missing transverse energy (ET), and/or additional leptons and photons, and jets (X). We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb-1, a p$\\bar{p}$ collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 ℓγET events versus a standard model expectation of 37.3 ± 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 ± 0.7 events (corresponding to a 2.7 σ effect), is not supported by the new data. In the signature of ℓℓγ + X we observe 31 events versus an expectation of 23.0 ± 2.7 events. In this sample we find no events with an extra photon or ET and so find no events like the one eeγγ ET event observed in Run I.

  10. Limits on quark-lepton compositeness and studies of W asymmetry at the Tevatron collider

    International Nuclear Information System (INIS)

    Bodek, A.

    1996-10-01

    Drell-Yan dilepton production at high invariant mass place strong limits on quark substructure. Compositeness limits from CDF Run 1, and expected sensitivity in Run II and TEV33 are presented. The W asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass

  11. The CDF Central Electromagnetic Calorimeter for Proton - Anti-proton Collision Experiment at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Teruki [Univ. of Tsukuba (Japan)

    1986-06-01

    The CDF central electromagnetic calorimeter modules were calibrated with test beam and cosmic ray muons. It is found that (a) the modules are identical to each other by 1 % on the response map and (b) the uncertaity on the measurement of the energy of showering particle is better than 1.1 % in the 85 % of whole area.

  12. The Measurement of the Quasi-Elastic Neutrino-Nucleon Scattering Cross Section at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Suwonjandee, Narumon [Cincinnati U.

    2004-01-01

    The quasi-elastic neutrino nucleon cross section measurement has been measured in the low energy region less than 100 Ge V. The data agree well with the model proposed by C. H. Llewellyn Smith. This model predicts that the quasi-elastic cross section should be constant in the high enery region. The NuTeV experiment at Fermilab provides data which allows us to measure the quasi-elastic cross section for both neutrinos and anti-neutrinos at high energy. We find that $\\sigma^{Neucleon}_{qe}(v) = 0.94 \\pm 0.03(stat.) \\pm 0.07(syst.)$, and $\\sigma^{Neucleon}_{qe}(\\bar\

  13. Search for Pair Production of Supersymmetric Top Quarks in Dilepton Events at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Casey [Univ. of California, Davis, CA (United States)

    2010-01-01

    We search for pair production of the supersymmetric partner of the top quark, the stop quark ~$\\bar{t}$1, decaying to a b-quark and a chargino X1 with a subsequent X1 decay into a neutralino X-1 , lepton ℓ, and neutrino . Using 2.7 fb-1 of √s = 1.96 TeV p$\\bar{p}$ collision data collected by the CDF II experiment, we reconstruct the mass of candidate stop events and t the observed mass spectrum to a combination of standard model processes and stop signal. No evidence of ~$\\bar{t}$1 $\\bar{t}$1 production is found, therefore we set 95% C.L. limits on the masses of the stop and the neutralino for several values of the chargino mass and the branching ratio B (X1 → X-01±v).

  14. From HERA to the Tevatron: A scaling law in hard diffraction

    International Nuclear Information System (INIS)

    Goulianos, K.

    1997-01-01

    Results on hard diffraction from CDF are reviewed and compared with predictions based on the diffractive structure function of the proton measured in deep inelastic scattering at HERA. The predictions are generally larger than the measured rates by a factor of ∼ 6, suggesting a breakdown of conventional factorization. Correct predictions are obtained by scaling the rapidity gap probability distribution of the diffractive structure function to the total integrated gap probability. The scaling of the gap probability is traced back to the pomeron flux renormalization hypothesis, which was introduced to unitarize the soft diffraction amplitude

  15. The b Quark Fragmentation Function, From LEP to TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Ben-haim, Eli [Univ. Pierre et Marie Curie, Paris (France)

    2004-12-01

    The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The errors of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be E> = 0.704 ± 0.001(stat.) ± 0.008(syst.). Using this measurement, and other available analyses of the b-quark fragmentation distribution in e+e- collisions, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modeling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the perturbative QCD component is the result of an analytic NLL computation, the non-perturbative QCD component has to be extended in a non-physical region and thus cannot be described by any hadronic modeling. In the two examples, used to characterize these two situations, which are studied at present, it happens that the extracted non-perturbative QCD distribution has the same shape, being simply translated to higher-x values in the second approach, illustrating the ability of the analytic perturbative QCD approach to account for softer gluon radiation than with a parton shower generator. Using all the available analyses of the b-quark fragmentation distribution in e+e- collisions, together with the result from DELPHI presented in this thesis, a combined world average b fragmentation distribution has been obtained. Its mean value has been found to be E> = 0.714 ± 0.002. An analysis of the B hadron production at CDF is ongoing. It makes use of ~ 6000 B± candidates, from 333 pb-1 of data registered by the CDF experiment, fully reconstructed in the decay channel B± → J/ΨK±. Characteristics of B mesons and for accompanying tracks have been examined, in the perspective of understanding the effect of fragmentation. These studies, done in the framework of the PYTHIA event generator, also involve the contributions from different b$\\bar{b}$ production mechanisms. Distributions from a fully reconstructed Monte Carlo sample have been compared to data, and the agreement has been found to be reasonable. The analysis is ongoing, and the goal is to fit the fragmentation function parameters and/or the relative contributions from different production mechanisms to improve the agreement between data and Monte Carlo. A measurement of the b quark production cross section has been obtained using the same data. The analysis is still under way, and therefore the result is preliminary.

  16. LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; Preston, Anthony

    2012-01-01

    We study the interactions of a new spin-1 mediator that connects the Standard Model to dark matter. We constrain its decay channels using monojet and monophoton searches, as well as searches for resonances in dijet, dilepton and diboson final states including those involving a possible Higgs. We...... then interpret the resulting limits as bounds on the cross-section for dark matter direct detection without the need to specify a particular model. For mediator masses between 300 and 1000 GeV these bounds are considerably stronger than the ones obtained under the assumption that the mediator can be integrated...

  17. Top Quark Pair in Association with an Extra Jet: Phenomenological Analysis at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mohammad Ahmad [Michigan State Univ., East Lansing, MI (United States)

    2011-01-01

    The first measurement of the cross section of the top quark pair in association with an extra hard jet ($t\\bar{t}$+jet) has been performed with 4.1 fb₋1 of data collected at CDF. The measurement is an important test of perturbative QCD, as NLO effects play an important role in the calculation of the theoretical cross section. In addition, it is also important as a preview of the LHC, for which almost half of the top quark events will be produced with extra jets. Therefore, this process will be a substan- tial background for many new physics signals. The measurement is performed using SecVtx tagged events in the lepton plus jet channel. A data-driven approach is used to predict the background content, and a 2D likelihood is formed to simultaneously measure the $t\\bar{t}$+jet and $t\\bar{t}$ without extra jet cross sections. The measured result is σ$t\\bar{t}$+jet= 1.6±0.2stat±0.5syst pb which is in agreement with the recent NLO SM predic- tion σ$t\\bar{t}$+jet = $+0.16\\atop{-3.31}$ pb . In order to elucidate the kinematic profile of the extra jet, an isolation algorithm has been developed. The algorithm has extracted correctly the extra jet out from the final state jets more than 60% of the time. This allowed for correcting the measured distributions of the extra jet for purity/efficiency in order to compare them with the MC distributions. The differences in the kinematic of the extra jet using different SecVtx requirements and different MC models (PYTHIA & MCFM) have been studied. The agreement between data and the simulations is reasonable. The fifth and the fourth highest ET jet in the final state of $t\\bar{t}$+jet sample are found to be equally likely the extra jet.

  18. Statistical issues in the parton distribution analysis of the Tevatron jet data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.O.; Hamburg Univ.

    2012-11-01

    We analyse a tension between the D0 and CDF inclusive jet data and the perturbative QCD calculations, which are based on the ABKM09 and ABM11 parton distribution functions (PDFs) within the nuisance parameter framework. Particular attention is paid on the uncertainties in the nuisance parameters due to the data fluctuations and the PDF errors. We show that with account of these uncertainties the nuisance parameters do not demonstrate a statistically significant excess. A statistical bias of the estimator based on the nuisance parameters is also discussed.

  19. The b Quark Fragmentation Function, From LEP to TeVatron

    CERN Document Server

    Ben-Haim, Eli; Savoy-Navarro, Aurore

    2004-01-01

    The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The uncertainties of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be = 0.704±0.001(stat.)±0.008(syst.) Using this measurement, and other available analyses of the b-quark fragmentation distribution in e +e − collisions, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modeling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the pert...

  20. Combination of the top-quark mass measurements from the Tevatron collider

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Kupčo, Alexander; Lokajíček, Miloš

    2012-01-01

    Roč. 86, č. 9 (2012), "092003-1"-"092003-30" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional research plan: CEZ:AV0Z10100502 Keywords : measured * CDF * DZERO * anti-p p * dilepton * (n)jet lepto Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.691, year: 2012

  1. Inclusive jet production studies at the Tevatron using the CDF detector

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Olga Norniella [Autonomous Univ. of Barcelona, Bellaterra (Spain)

    2007-03-01

    Quantum Chromodynamics (QCD) is the gauge theory that governs the strong interactions between quarks and gluons inside hadrons like, for example, protons and neutrons. It shows two well established characteristics, related to the non-Abelian nature of the theory, that dominate its phenomenology: asymptotic freedom and color confinement. The dependence of the strong coupling, αs(Q2), with the hard scale is such that it decreases with decreasing the distance between partons. This allows to perform precise theoretical calculations at large energy transfer (short distances) using perturbative QCD (pQCD). On the other hand, the strength of the interaction increases with the distance between partons and thus colored quarks and gluons are forced to be confined inside colorless hadrons.

  2. A search for W± H → μvb$\\bar{b}$ production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Anastasoaie, Carmen Miruna [Radboud Univ. Nijmegen (Netherlands)

    2008-02-06

    All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with mH < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W±H → μvμb$\\bar{b}$ in 1 fb-1 of data collected with the D0 detector in p$\\bar{p}$ collisions with √s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (ET) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W±b$\\bar{b}$, W± c$\\bar{c}$, W± + light jets (W±jj) (and the corresponding backgrounds with a Z boson), t$\\bar{t}$, single top production, and QCD multijet background.

  3. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bocci, Andrea [Rockefeller Univ., New York, NY (United States)

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  4. Self-Similarity of Jet Production in pp and p{/bar p} Collisions at RHIC, Tevatron and LHC

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Dedovich, T. G.; Zborovský, Imrich

    2012-01-01

    Roč. 27, č. 21 (2012), s. 815-820 ISSN 0217-751X R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : jets * self-similarity * high energy * scaling Subject RIV: BE - Theoretical Physics Impact factor: 1.127, year: 2012

  5. Results from E735 at the Tevatron proton-antiproton collider with radical s = 1. 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.

    1991-11-01

    Experiment E735{dagger} searched for evidence of the transition to quark-gluon plasma in p{bar p} collisions at {radical}{bar s} = 1.8 TeV. Using data from a high statistics run in 1988--1989, results are presented on multiplicity distributions, hyperon and phi production, and Bose-Einstein correlations. Some data was also taken at lower collision energies and results will be compared to previous experiments.

  6. Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    International Nuclear Information System (INIS)

    2010-01-01

    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum p T > 0.5 GeV/c, pseudorapidity |η| -1 ) or with Drell-Yan lepton-pairs (∼2.7 fb -1 ) in the Z-boson mass region (70 2 ) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-p T jet production) in each event to define three regions of η-φ space; toward, away, and transverse, where φ is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-p T jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

  7. Study of Single Top Quark Production Using Bayesian Neural Networks With D0 Detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jyoti [Panjab Univ., Chandigarh (India)

    2012-01-01

    Top quark, the heaviest and most intriguing among the six known quarks, can be created via two independent production mechanisms in {\\pp} collisions. The primary mode, strong {\\ttbar} pair production from a $gtt$ vertex, was used by the {\\d0} and CDF collaborations to establish the existence of the top quark in March 1995. The second mode is the electroweak production of a single top quark or antiquark, which has been observed recently in March 2009. Since single top quarks are produced at hadron colliders through a $Wtb$ vertex, thereby provide a direct probe of the nature of $Wtb$ coupling and of the Cabibbo-Kobayashi-Maskawa matrix element, $V_{tb}$. So this mechanism provides a sensitive probe for several, standard model and beyond standard model, parameters such as anomalous $Wtb$ couplings. In this thesis, we measure the cross section of the electroweak produced top quark in three different production modes, $s+t$, $s$ and $t$-channels using a technique based on the Bayesian neural networks. This technique is applied for analysis of the 5.4 $fb^{-1}$ of data collected by the {\\d0} detector. From a comparison of the Bayesian neural networks discriminants between data and the signal-background model using Bayesian statistics, the cross sections of the top quark produced through the electroweak mechanism have been measured as: \\[\\sigma(p\\bar{p}→tb+X,tqb+X) = 3.11^{+0.77}_{-0.71}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tb+X) = 0.72^{+0.44}_{-0.43}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tqb+X) = 2.92^{+0.87}_{-0.73}\\;\\rm pb\\] % The $s+t$-channel has a gaussian significance of $4.7\\sigma$, the $s$-channel $0.9\\sigma$ and the $t$-channel~$4.7\\sigma$. The results are consistent with the standard model predictions within one standard deviation. By combining these results with the results for two other analyses (using different MVA techniques) improved results \\[\\sigma(p\\bar{p}→tb+X,tqb+X) = 3.43^{+0.73}_{-0.74}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tb+X) = 0.68^{+0.38}_{-0.35}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tqb+X) = 2.86^{+0.69}_{-0.63}\\;\\rm pb\\] % were obtained with a significance of $5.4\\sigma$, $1.8\\sigma$ and $5.0\\sigma$ respectively for $s+t$, $s$ and $t$-channels. Using this measured cross section and constraining $0 \\leq |V_{tb}|^2 \\leq 1$, the lower limit has been calculated to be $|V_{tb}| > 0.79$ with 95\\% confidence level (C.L.). Another measurement of $tqb$ production cross section is done using the same dataset and discriminant but without any assumption on the $tb$ production rate. From this measurement, we obtain a cross section of $2.90^{+0.59}_{-0.59}$~pb for $t$-channel and corresponding significance of $5.5\\sigma$. In addition to the above mentioned work, a search is made for the anomalous $Wtb$ couplings in single top quark production. Within the Standard Model, the $Wtb$ vertex is purely left-handed, and its amplitude is given by the $V_{tb}$, related to weak interaction between a top and a $b$-quark. In a more general way, additional anomalous couplings such as right-handed vectorial couplings and left and right-handed tensorial couplings can also be considered. An analysis based on the Bayesian neural networks method is used to separate the signal from expected backgrounds. We find no evidence for anomalous couplings and set 95\\% C.L. limits on these couplings as $|V_{tb} \\cdot f_{L_T}|^2<0.06$, $|V_{tb} \\cdot f_{R_V}|^2<0.93$ and $|V_{tb} \\cdot f_{R_T}|^2<0.13$. This result represents the most stringent direct constraints on anomalous $Wtb$ interactions. This work has been done in collaboration with \\d0 experiment but the analyses and results presented in this thesis are my contribution.

  8. Using MAX/MIN Transverse Regions to Study the Underlying Event in Run 2 at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L. Alberto [Univ. of Florida, Gainesville, FL (United States)

    2005-01-01

    Elementary particle physics attempts to answer very fundamental questions of how the Universe was created and how it works. One approach to unlocking these mysteries is by «»Hiding very fast moving protons and antiprotons and studying the outcome. Most of the time these particles ooze through each other, but occasionally we get a collision that is characterized by a large amount of transverse momentum. This signals a special kind of collision that can be calculated by the theorist. The problem lies in the fact that only a portion of the collisions can he calculated, The majority of the collision is mes..~y and must be modeled. The data presented here helps to improve the current models and allows for a better understanding of the dynamics of nuclear forces.

  9. Average transverse momentum vs. dNc/dη for mass-identified particles at Tevatron energies

    International Nuclear Information System (INIS)

    Cole, P.; Allen, C.; Bujak, A.; Carmony, D.D.; Choi, Y.; Debonte, R.; Gutay, L.J.; Hirsch, A.S.; McMahon, T.; Morgan, N.K.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Stringfellow, B.C.; Alexopoulos, T.; Erwin, A.R.; Findeisen, C.; Jennings, J.R.; Nelson, K.; Thompson, M.A.; Anderson, E.W.; Lindsey, C.S.; Wang, C.H.; Areti, H.; Hojvat, C.; Reeves, D.; Turkot, F.; Banerjee, S.; Beery, P.D.; Bishop, J.; Biswas, N.N.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Zuong, H.; Bhat, P.; Carter, T.; Goshaw, A.T.; Loomis, C.; Oh, S.H.; Robertson, W.R.; Walker, W.D.; Wesson, D.K.; DeCarlo, V.

    1992-01-01

    The transverse momentum of charged mesons and anti p's produced within the pseudorapidity range of η=-0.36 to η=+1.0 and azimuthal range of φ=+2deg to φ=+18deg has been measured in anti pp collisions at √s=1.8 TeV. The charged multiplicity of each event was measured by either the 240 element cylindrical hodoscope covering the range -3.25<η<+3.25 or the central drift chamber, which spans a pseudorapidity range of 3.2 units. The average transverse momentum as a function of the pseudorapidity density for mass-identified particles is presented. We have observed pseudorapidity densities as high as 30 particles per unit pseudorapidity. (orig.)

  10. Measurement of the Top Quark Mass using Dilepton Events and a Neutrino Weighting Algorithm with the D0 Experiment at the Tevatron (Run II)

    International Nuclear Information System (INIS)

    Meyer, Joerg; Bonn U

    2007-01-01

    Elementary particle physics raises questions that are several thousand years old. What are the fundamental components of matter and how do they interact? These questions are linked to the question of what happened in the very first moments after the creation of the universe. Modern physics systematically tests nature to find answers to these and other fundamental questions. Precise theories are developed that describe various phenomena and at the same time are reduced to a few basic principals of nature. Simplification and reduction have always been guiding concepts of physics. The interplay between experimental data and theoretical descriptions led to the Standard Model of elementary particle physics. It summarizes the laws of nature and is one of most precise descriptions of nature achieved by mankind. Despite the great success of the Standard Model it is not the ultimate theory of everything. Models beyond the Standard Model try to unify all interactions in one grand unified theory. The number of free parameters is attempted to be reduced. Gravity is attempted to be incorporated. Extensions to the Standard Model like supersymmetry address the so-called hierarchy problem. Precision measurements are the key for searches of new particles and new physics. A powerful tool of experimental particle physics are particle accelerators. They provide tests of the Standard Model at smallest scales. New particles are produced and their properties are investigated. In 1995 the heaviest known elementary particle, called top quark, has been discovered at Fermilab. It differs from all other lighter quarks due to the high mass and very short lifetime. This makes the top quark special and an interesting object to be studied. A rich program of top physics at Fermilab investigates whether the top quark is really the particle as described by the Standard Model. The top quark mass is a free parameter of the theory that has been measured precisely. This thesis presents a precise measurement of the top quark mass by the D0 experiment at Fermilab in the dilepton final states. The comparison of the measured top quark masses in different final states allows an important consistency check of the Standard Model. Inconsistent results would be a clear hint of a misinterpretation of the analyzed data set. With the exception of the Higgs boson, all particles predicted by the Standard Model have been found. The search for the Higgs boson is one of the main focuses in high energy physics. The theory section will discuss the close relationship between the physics of the Higgs boson and the top quark

  11. Study of the $H^0/A^0 \\to \\tau \\mu$ signal at the hadronic colliders and intercalibration of the D0 calorimeter at Tevatron Run II

    Energy Technology Data Exchange (ETDEWEB)

    Delsart, Pierre Antoine [Claude Bernard Univ. Lyon (France)

    2003-10-13

    This thesis was realized in collaboration with the "theory'' group and the "D0" group of IPNL. Within D0 we have worked on a component of the calibration of the detector's calorimeter : the intercalibration. Using the fact the physics is $\\phi$-symmetric in D0, we created and applied statistical methods for a relative calibration of the $\\phi$-symmetric parts of the calorimeter. Work on particle physics concerned the two Higgs doublet model. In such models leptonic number violation is possible : we have simulated the $H^0/A^0 \\to \\tau \\mu$ signal in order to study the discovery potential and the constraints on the coupling responsible for this decay.

  12. Measurement of the $s$-channel Single Top Quark Cross Section at the CDF Experiment and Contributions to the Evidence of $H\\rightarrow bb$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Univ. of Virginia, Charlottesville, VA (United States)

    2014-08-01

    In this thesis, we present the measurement of the s-channel single top quark production cross section. In the cross section measurement we use data generated by protonantiproton collisions at the center-of-mass energy √s = 1.96 TeV and collected by the CDF Run II detector. The total data set corresponds to an integrated luminosity of 9.4 fb-1.

  13. Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from $t\\bar t$ production at the Tevatron

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Osta, Jyotsna; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Smirnov, Dmitri V; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2015-09-22

    We present a simultaneous measurement of the forward-backward asymmetry and the top-quark polarization in $t\\bar t$ production in dilepton final states using 9.7 fb$^{-1}$ of proton-antiproton collisions at $\\sqrt{s}=1.96$ TeV with the D0 detector. To reconstruct the distributions of kinematic observables we employ a matrix element technique that calculates the likelihood of the possible $t\\bar t$ kinematic configurations. After accounting for the presence of background events and for calibration effects, we obtain a forward-backward asymmetry of $A^{t\\bar t} = (15.0 \\pm 6.4 \\text{ (stat)} \\pm 4.9 \\text{ (syst)})\\%$ and a top-quark polarization times spin analyzing power in the beam basis of $\\kappa P = (7.2 \\pm 10.5 \\text{ (stat)} \\pm 4.2 \\text{ (syst)})\\%$, with a correlation of $-56\\%$ between the measurements. If we constrain the forward-backward asymmetry to its expected standard model value, we obtain a measurement of the top polarization of $\\kappa P = (11.3 \\pm 9.1 \\text{ (stat)} \\pm 1.9 \\text{ (syst)...

  14. A Measurement of the Production of Jets in Association with a W Boson in Proton-Antiproton Collisions at the Tevatron Using Data Collected with the CDF Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Ben D. [University Coll. London

    2006-10-01

    A measurement of the diff rential pp → W + ≥ n jets production cross-section with respect to a range of different jet kinematic variables is presented. The W is required to decay leptonically to an electron and neutrino, and the kinematics of the decay products are restricted such that the electron PT > 20 GeV, electron η < 1.1, neutrino PT > 30 GeV and the W transverse mass > 20 GeV/c2. Jets are defi using the CDF JetClu cone algorithm with a radius of R = 0.4, requiring ηjet < 2.0 and ET > 15 GeV. The jet energies are corrected individually such that they are on average equal to the energy of the hadrons within the jet, with additional correction factors being applied to account for the impact of detector resolution on the jet spectra. The diff tial cross-section is measured with respect to the fi second, third and fourth jet ET spectra, the separation in R and the invariant mass of the two leading jets. In addition, the jet ET measurements can be integrated to form W + ≥ n Jets cross-section measurements for 1,2,3 and 4 jets with a range of minimum jet ET requirements, the lowest being 15 GeV. These cross-section results are compared to Enhanced Leading Order (ELO) W + jets theoretical predictions and predictions made using the leading order CKKW and MLM matching prescriptions. The ELO predictions are not suited to describ- ing the absolute rate of W + jet production, but display success in reproducing certain relative rates, dependent on the choice of renormalisation scale. The com- parisons with matching prescriptions indicate that these new approaches could be used successfully to improve W + Jets LO predictions.

  15. Measurement of the Top Quark Mass using Dilepton Events and a Neutrino Weighting Algorithm with the D0 Experiment at the Tevatron (Run II)

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Joerg [Univ. of Bonn (Germany)

    2007-01-01

    Elementary particle physics raises questions that are several thousand years old. What are the fundamental components of matter and how do they interact? These questions are linked to the question of what happened in the very first moments after the creation of the universe. Modern physics systematically tests nature to find answers to these and other fundamental questions. Precise theories are developed that describe various phenomena and at the same time are reduced to a few basic principals of nature. Simplification and reduction have always been guiding concepts of physics. The interplay between experimental data and theoretical descriptions led to the Standard Model of elementary particle physics. It summarizes the laws of nature and is one of most precise descriptions of nature achieved by mankind. Despite the great success of the Standard Model it is not the ultimate theory of everything. Models beyond the Standard Model try to unify all interactions in one grand unified theory. The number of free parameters is attempted to be reduced. Gravity is attempted to be incorporated. Extensions to the Standard Model like supersymmetry address the so-called hierarchy problem. Precision measurements are the key for searches of new particles and new physics. A powerful tool of experimental particle physics are particle accelerators. They provide tests of the Standard Model at smallest scales. New particles are produced and their properties are investigated. In 1995 the heaviest known elementary particle, called top quark, has been discovered at Fermilab. It differs from all other lighter quarks due to the high mass and very short lifetime. This makes the top quark special and an interesting object to be studied. A rich program of top physics at Fermilab investigates whether the top quark is really the particle as described by the Standard Model. The top quark mass is a free parameter of the theory that has been measured precisely. This thesis presents a precise measurement of the top quark mass by the D0 experiment at Fermilab in the dilepton final states. The comparison of the measured top quark masses in different final states allows an important consistency check of the Standard Model. Inconsistent results would be a clear hint of a misinterpretation of the analyzed data set. With the exception of the Higgs boson, all particles predicted by the Standard Model have been found. The search for the Higgs boson is one of the main focuses in high energy physics. The theory section will discuss the close relationship between the physics of the Higgs boson and the top quark.

  16. Search for $WZ/ZZ$ Production in the Lepton(s) + MET + Jets Channel with the CDF Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, Marco [Superior Graduate School in Italy, Pisa (Italy)

    2014-01-01

    In this thesis we present a search for the WZ and ZZ production in a final state ("W+2 jets") with a leptonically-decaying W and two energetic jets. We use the full dataset ( ∫ Ldt = 8:9 fb-1) recorded with the CDF detector at Fermilab. The challenge consists in extracting the small Z-hadronic peak from the large amount of background processes. Those processes also include the WW, whose hadronic peak cannot be distinguished from the Z peak, due to the poor calorimeter resolution. In the past such a signature was used to measure the diboson cross section, which is highly dominated by the WW cross section.

  17. Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element V_{tb}.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, A; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2015-10-09

    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb^{-1} per experiment. The t-channel cross section is measured to be σ_{t}=2.25_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σ_{s+t}=3.30_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σ_{s}/σ_{t}. The resulting value of the magnitude of the top-to-bottom quark coupling is |V_{tb}|=1.02_{-0.05}^{+0.06}, corresponding to |V_{tb}|>0.92 at the 95% C.L.

  18. Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Kupčo, Alexander; Lokajíček, Miloš

    2015-01-01

    Roč. 114, č. 15 (2015), "151802-1"-"151802-12" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : kinematics * CDF * DZERO * experimental results * Higgs particle * bottom anti-bottom * 1960 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.645, year: 2015

  19. [A renewal proposal for support of hadroproduction of bottom using the 800 GeV/C primary proton beam at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The 1992 status report on Experiment E771 is given. Experiences with the 1991 run and off-line data analysis are described. Preliminary cross sections and resolutions were determined. A 1994 run is proposed. 23 figs

  20. Guide for 3D WARP simulations of hollow electron beam lenses. Practical explanation on basis of Tevatron electron lens test stand

    Energy Technology Data Exchange (ETDEWEB)

    Moens, Vince [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland)

    2014-06-08

    The purpose of this guide is to help successive students handle WARP. It outlines the installation of WARP on personal computers as well as super-computers and clusters. It furthermore teaches the reader how to handle the WARP environment and run basic scripts. Lastly it outlines how to execute the current Hollow Electron Beam Lens scripts.

  1. Search for The Standard Model Higgs Boson in the four lepton final state by the D0 experiment at Run II of the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Diego [Northern Illinois Univ., DeKalb, IL (United States)

    2013-01-01

    This dissertation presents a measurement of Z boson pair production in p¯p collisions at 1.96 TeV with 9.6 fb-1 to 9.8 fb-1 of D0 data. We examine the final states eeee, eeμμ, and μμμμ. Based on selected data, the measured cross section in the mass region M(Z/γ*) > 30 GeV is σ(p¯p → Z/γ* Z/γ*) = 1.26+0.44 -0.36 (stat)+0.17 -0.15 (syst) ± 0.08 (lumi) pb.

  2. Support of hadroproduction of bottom using the 800 GeV/c primary proton beam at the Fermilab tevatron. Final performance report, June 14, 1988--May 14, 1992

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The High Energy Physics (HEP) group at Prairie View A ampersand M University is a collaborator with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980's at Fermilab with the study of the charmonium states, J/ψ and χ, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC)

  3. Search for $W'\\to t b $ in Events with Large Missing Transverse Energy and Jets with the CDF detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Ludovico [Univ. of Rome Tor Vergata (Italy)

    2012-01-01

    In the scope of the strong ongoing data analysis efforts of the CDF col- laboration at Fermilab, we present a search for the production of mas sive W1 bosons decaying to a top and a bottom quark in p$\\bar{p}$ collisions at √s = 1.96 TeV. To perform this search, we select events with large Missing Transverse Energy plus two or three jets, in which the W generated from top decays leptonically, and either the e or µ is lost or the τ is reconstructed as a jet. A complete study of the selected sample is discussed, including the creation and subsequent optimization of a Neural Network-based multivariate tool to reject the QCD multijet background from the signal region. Finally, we perform a likelihood-based multichannel Bayesian fit procedure on the invariant transverse mass of the Missing Transverse Energy and jets to extract 95% CL limits on σ(p$\\bar{p}$ . → W') × B(W' → tb) for MW' = 200 GeV/c2

  4. Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Standard Model Higgs search at the Tevatron.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    At mH = 120 GeV, the p-value for a background fluctuation to produce this excess corresponds to a local (global) significance of 3.0 (2.5) standard deviations. We also combine separately searches for H--> bb and H --> WW. We find that the excess is concentrated in the H --> bb channel, appearing in the searches over a broad range of mH, as expected from the bb resolution in our detectors. The excess is most significant in the mass range between 120 and 135 GeV.  The largest local significance is ...

  5. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    Science.gov (United States)

    Willocq, S.; Aderholz, M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Yost, G. P.

    1993-04-01

    The coherent production of π and ρ mesons in νμ(ν¯μ)-neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (ν¯μ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53+/-9) μ+/-π-/+ coherent events and (19+/-7) μ+/-π-/+π0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2+/-0.7)×10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1+/-0.8)×10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at ||t||<0.1 GeV2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions.

  6. Observation of s -Channel Production of Single Top Quarks at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M. -C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d’Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D’Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, V. N.; Farrington, S.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M. -A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ranjan, N.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.

    2014-06-01

    We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The measured cross section is $\\sigma_s = 1.29^{+0.26}_{-0.24}$ pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is $1.8 \\times 10^{-10}$, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.

  7. Results from E735 at the Tevatron proton-antiproton collider with √s=1.8 teV

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Bhat, P.; Hojvat, C.; Reeves, D.; Turkot, F.; Wesson, D.K.; Alexopoulos, T.; Erwin, A.R.; Findeisen, C.; Jennings, J.R.; Nelson, K.; Thompson, M.; Allen, C.; Bujak, A.; Carmony, D.D.; Cole, P.; Choi, Y.; DeBonte, R.; Gutay, L.J.; Hirsch, A.S.; McMahon, T.; Morgan, N.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Stringfellow, B.C.; Anderson, E.W.; Wang, C.H.; Balamurali, V.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; Kenny, V.P.; LoSecco, J.M.; McManus, A.P.; Stampke, S.R.; Warchol, J.; Zhan, Y.; Carter, T.; Goshaw, A.T.; Loomis, G.; Oh, S.H.; Robertson, W.J.; Walker, W.D.; DeCarlo, V.

    1992-01-01

    Experiment E735* searched for evidence of the transition to quark-gluon plasma in panti p collisions at √s = 1.8 TeV. Using data from a high statistics run in 1988-1989, results are presented on multiplicity distributions, hyperon and phi production, and Bose-Einstein correlations. Some data were also taken at lower collision energies and results will be compared to previous experiments. (orig.)

  8. Recent results from E-735 at the Fermilab tevatron proton-antiproton collider at √s=1.8 TeV

    International Nuclear Information System (INIS)

    Morgan, N.K.; Allen, C.; Bujak, A.; Carmony, D.D.; Cole, P.; Choi, Y.; Gutay, L.J.; Hirsch, A.S.; Koltick, D.; Lindsey, C.S.; McMahon, T.; Porile, N.T.; Scharenberg, R.P.; Stringfellow, B.C.; Banerjee, S.; Bishop, J.; Biswas, N.N.; Debonte, R.; Kenney, V.P.; Losecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Zuong, H.; Bhat, P.; Carter, T.; Goshaw, A.T.; Loomis, C.; Oh, S.H.; Robertson, W.R.; Walker, W.D.; Wesson, D.K.; Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.

    1990-01-01

    E-735 is designed to study charged particle production in the central region of rapidity in proton-antiproton collisions at √s = 1.8 TeV. Variations in transverse momentum and particle production ratios versus particle density are measured as a possible signature for a quark-gluon-plasma (QGP) phase transition. Preliminary results from the 1987 run are presented. (orig.)

  9. Search for leptoquarks in the jet and missing transverse energy topology with the D0 detector at the Tevatron; Recherche de leptoquarks dans la topologie a jets et energie transverse manquante avec le detecteur DO au Te Vatron

    Energy Technology Data Exchange (ETDEWEB)

    Zabi, A

    2004-10-15

    The Ddiamter experiment, located at the Fermilab National Accelerator Laboratory in the United States, is used to study proton-anti-proton collisions at a center of mass energy of 1.96 TeV. The experiment's data acquisition system is based on a sophisticated trigger system used to select potentially interesting events. The Level 2 Silicon Track Trigger (L2STT) is part of the trigger system that provides precise reconstruction of charged particle tracks allowing the selection of events that contain the decays of long lived particles. For example, such particles appear in the decay of the Higgs boson into a pair of bottom quarks. The design of the L2STT preprocessor has greatly benefited from recent advances in electronics technology. The preprocessor has been recently installed and will be used to further optimize the triggering strategy of the experiment. Leptoquarks would mediate hypothetical new interactions between the quarks and leptons of the Standard Model. The existence of such particles would be evidence for physics beyond that model. In this thesis, a direct search for leptoquarks is performed in the jets and missing transverse energy final state. For this analysis, a trigger had to be developed along with a tool to precisely determine its efficiency. An analysis of events exhibiting the aco-planar jets topology was performed on a data sample corresponding to an integrated luminosity of 85 pb{sup -1}. This analysis has resulted in the determination of an exclusion region on the possible masses of leptoquarks ranging from 85 GeV/c{sup 2} to 109 GeV/c{sup 2} at the 95% confidence level. (author)

  10. Search for leptoquarks in the jet and missing transverse energy topology with the D0 detector at the Tevatron; Recherche de leptoquarks dans la topologie a jets et energie transverse manquante avec le detecteur DO au Te Vatron

    Energy Technology Data Exchange (ETDEWEB)

    Zabi, A

    2004-10-15

    The Ddiamter experiment, located at the Fermilab National Accelerator Laboratory in the United States, is used to study proton-anti-proton collisions at a center of mass energy of 1.96 TeV. The experiment's data acquisition system is based on a sophisticated trigger system used to select potentially interesting events. The Level 2 Silicon Track Trigger (L2STT) is part of the trigger system that provides precise reconstruction of charged particle tracks allowing the selection of events that contain the decays of long lived particles. For example, such particles appear in the decay of the Higgs boson into a pair of bottom quarks. The design of the L2STT preprocessor has greatly benefited from recent advances in electronics technology. The preprocessor has been recently installed and will be used to further optimize the triggering strategy of the experiment. Leptoquarks would mediate hypothetical new interactions between the quarks and leptons of the Standard Model. The existence of such particles would be evidence for physics beyond that model. In this thesis, a direct search for leptoquarks is performed in the jets and missing transverse energy final state. For this analysis, a trigger had to be developed along with a tool to precisely determine its efficiency. An analysis of events exhibiting the aco-planar jets topology was performed on a data sample corresponding to an integrated luminosity of 85 pb{sup -1}. This analysis has resulted in the determination of an exclusion region on the possible masses of leptoquarks ranging from 85 GeV/c{sup 2} to 109 GeV/c{sup 2} at the 95% confidence level. (author)

  11. A feedback microprocessor for hadron colliders

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1992-12-01

    A feedback microprocessor has been built for the TEVATRON. It has been constructed to be applicable to hadron colliders in general. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor software includes a finite state machine. Each state corresponds to a specific TEVATRON operation and has a state-specific TEVATRON model. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime corrections. We also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. In this paper we will describe this device and its use to control the TEVATRON tunes as well as other possible applications

  12. Measuring the running top-quark mass

    International Nuclear Information System (INIS)

    Langenfeld, Ulrich; Uwer, Peter

    2010-06-01

    In this contribution we discuss conceptual issues of current mass measurements performed at the Tevatron. In addition we propose an alternative method which is theoretically much cleaner and to a large extend free from the problems encountered in current measurements. In detail we discuss the direct determination of the top-quark's running mass from the cross section measurements performed at the Tevatron. (orig.)

  13. Search for SUSY in gauge mediated and anomaly mediated supersymmetry breaking models

    International Nuclear Information System (INIS)

    Nunnnemann, Thomas

    2004-01-01

    In this note, recent results on the search for Gauge Mediated Supersymmetry Breaking (GMSB) and Anomaly Mediated Supersymmetry Breaking (AMSB) at the LEP and Tevatron colliders are summarized. We report on DOe's search for GMSB in di-photon events with large missing transverse energy and discuss the sensitivity of similar searches based on future Tevatron integrated luminosities. (orig.)

  14. Recent results of high p(T) physics at the CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Soushi; /Okayama U.

    2005-02-01

    The Tevatron Run II program has been in progress since 2001. The CDF experiment has accumulated roughly five times as much data as did Run I, with much improved detectors. Preliminary results from the CDF experiment are presented. The authors focus on recent high p{sub T} physics results in the Tevatron Run II program.

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Finding the evidence of new physics beyond the Standard Model is one of the primary goals of RunII of the Tevatron. Many dedicated searches for new physics are ongoing at the Tevatron but in order to broaden the scope and maximize the chances of finding the new physics, we also search in a model-independent way.

  16. Measuring the top anti-t Production Cross-Section in the Electron + Jets Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV with the D0 Detector at the Tevatron: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su-Jung; /Bonn U.

    2004-02-01

    The measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV using the final state with an electron and jets is studied with Monte Carlo event samples. All methods used in the real data analysis to measure efficiencies and to estimate the background contributions are examined. The studies focus on measuring the electron reconstruction efficiencies as well as on improving the electron identification and background suppression. With a generated input cross section of 7 pb the following result is obtained: {sigma}{sub t{bar t}} = (7 {+-} 1.63(stat){sub -1.14}{sup +0.94} (syst)) pb.

  17. Measurements of the Top Quark Pair Production Cross Section in Lepton + Jets Final States using a Topological Multivariate Technique as well as Lifetime b-Tagging in Proton-Anti-proton Collisions at √s =1.96 TeV with the DØ Detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Tobias F. [Univ. of Bonn (Germany)

    2005-01-01

    Two alternative measurements of the t¯t production cross section at √s = 1.96 TeV in proton-antiproton collisions in the lepton+jets channel are presented. The t¯t production cross section is extracted by combining the kinematic event information in a multivariate discriminant. The measurement yields σp¯p → t¯t + x = 5.13-1.57+1.76(stat)-1.10+0.96(syst) ± 0.33 (lumi) pb in the muon+jets channel, using 229.1 pb-1, and in the combination with the electron+jets channel (226.3 pb-1) σp¯p → t¯t + x = 6.60-1.28+1.37(stat)-1.11+1.25(syst) ± 0.43 (lumi) pb. The second measurement presented reconstructs explicitly secondary vertices to d lifetime b-tagging. The measurement combines the muon+jets and the electron+jets channel, using 158.4 pb-1 and 168.8 pb-1, respectively: σp¯p → t¯t + x = 8.24-1.25+1.34(stat)-1.63+1.89(syst) ± 0.54 (lumi) pb.

  18. Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from tt¯ production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2015-09-01

    We present a simultaneous measurement of the forward-backward asymmetry and the top-quark polarization in tt¯ production in dilepton final states using 9.7 fb-1 of proton-antiproton collisions at √s=1.96 TeV with the D0 detector. To reconstruct the distributions of kinematic observables we employ a matrix element technique that calculates the likelihood of the possible tt¯ kinematic configurations. After accounting for the presence of background events and for calibration effects, we obtain a forward-backward asymmetry of Att¯=(15.0±6.4(stat)±4.9(syst))% and a top-quark polarization times spin analyzing power in the beam basis of κP=(7.2±10.5(stat)±4.2(syst))%, with a correlation of -56% between the measurements. If we constrain the forward-backward asymmetry to its expected standard model value, we obtain a measurement of the top polarization ofκP=(11.3±9.1(stat)±1.9(syst))%. If we constrain the top polarization to its expected standard model value, we measure a forward-backward asymmetry of Att¯=(17.5±5.6(stat)±3.1(syst))%. A combination with the D0 Att¯ measurement in the lepton+jets final state yields an asymmetry of Att¯=(11.8±2.5(stat)±1.3(syst))%. Within their respective uncertainties, all these results are consistent with the standard model expectations.

  19. Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M. -C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d’Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D’Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M. -A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savitskyi, M.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.

    2015-10-01

    Here, we present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The t-channel cross section is measured to be σt=2.25+0.29-0.31 pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t=3.30+0.52-0.40 pb , without assuming the standard model value for the ratio σs/σt. Moreover, the resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb|=1.02+0.06-0.05, corresponding to |Vtb|>0.92 at the 95% C.L.

  20. Measurements of the top quark pair production cross section in lepton+jets final states using a topological multivariate technique as well as lifetime b-tagging in proton-antiproton collisions at {radical}(s)=1.96 TeV with the DOe detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Golling, T.

    2005-01-01

    Two alternative measurements of the tt production cross section at {radical}(s)=1.96 TeV in proton-antiproton collisions in the lepton+jets channel are presented. The tt production cross section is extracted by combining the kinematic event information in a multivariate discriminant. The measurement yields {sigma}{sub p} {sub anti} {sub p{yields}}{sub t} {sub anti} {sub t+X} = 5.13{sub -1.57}{sup +1.76} (stat) {sub -1.10}{sup +0.96} (syst) {+-}0.33 (lumi) pb in the muon+jets channel, using 229.1 pb{sup -1}, and in the combination with the electron+jets channel (226.3 pb{sup -1}) {sigma}{sub p} {sub anti} {sub p{yields}}{sub t} {sub anti} {sub t}+X = 6.60{sub -1.28}{sup +1.37} (stat) {sub -1.11}{sup +1.25} (syst) {+-} 0.43 (lumi) pb. The second measurement presented reconstructs explicitly secondary vertices to do lifetime b-tagging. The measurement combines the muon+jets and the electron+jets channel, using 158.4 pb{sup -1} and 168.8 pb{sup -1}, respectively: {sigma}{sub p} {sub anti} {sub p{yields}}{sub t} {sub anti} {sub t+X} = 8.24{sub -1.25}{sup +1.34} (stat) {sub -1.63}{sup +1.89} (syst) {+-} 0.54 (lumi) pb. (orig.)