WorldWideScience

Sample records for tevatron fermilab

  1. Fermilab | Tevatron | Tevatron Symposium | Agenda

    Science.gov (United States)

    Industry Students and teachers Media Tevatron Navbar Toggle About Leadership and Organization Leadership and video archive Resources for Employees Researchers Job seekers Neighbors Industry Students and Haun Music: John Zorn Costumes: Ariane Dolan Dancers: Simone Baechle, Zada Cheeks, Katie Graves, and

  2. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  3. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  4. Fermilab enters the Tevatron era

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The advent of the world's first superconducting accelerator/storage ring has transformed the physics programme at the Fermi National Accelerator Laboratory. The primary and secondary beam energies (and the coming colliding beam energies) are double those previously available at Fermilab and at the CERN SPS. There is heavy investment in the fixed target programme to use these beam energies and, at present, even more pressure is driving the preparations for proton-antiproton colliding beam operation at energies up to 1 TeV per beam. Since it is the revitalized machine which is making all this possible, we begin with news on machine performance and development. (orig.).

  5. Neutrino results from the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Shaevitz, M.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Bolton, T.A.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; De Barbaro, P.; Salcumoto, W.K.; Kinnel, T.S.; Sandler, P.H.; Smith, W.H.

    1995-01-01

    Results from the high-energy, high-statistics studies of neutrino nucleon interactions by the CCFR collaboration at the Fermilab Tevatron are described. Using a data sample of over 3.7million events with energies up to 600GeV, precision measurements are presented for the weak mixing angle, sin 2 θ w , the structure functions, F 2 (x,Q 2 ) and xF 3 (x,Q 2 ), aud the strange quark distribution, xs(x,Q 2 ). Comparisons of these measurements to those obtained in other processes are made in the context of global electroweak and QCD tests. Prospects for the next generation measurements by the NuTeV collaboration at Fermilab are also presented. ((orig.))

  6. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  7. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  8. Increasing the energy of the Fermilab Tevatron accelerator

    International Nuclear Information System (INIS)

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R ampersand D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented

  9. Fermilab Tevatron and Pbar source status report

    International Nuclear Information System (INIS)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10 31 cm -2 sec -1 , production rates up to 4 x 10 11 antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade

  10. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    International Nuclear Information System (INIS)

    Martin, P.; Dinkel, J.; Ducar, R.

    1987-01-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for acceleration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented

  11. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  12. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb -1 at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production

  13. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10{sup 30} per sq cm per s and a record weekly integrated luminosity of 10{sup 60} inverse nanobarns. The peak goal for the present run of 5.0 x 10{sup 30} has already been exceeded.

  14. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10 30 per sq cm per s and a record weekly integrated luminosity of 10 60 inverse nanobarns. The peak goal for the present run of 5.0 x 10 30 has already been exceeded

  15. First results from bent crystal extraction at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    1996-07-01

    First results from Fermilab Experiment 953 are presented. E853 is an experiment to test the feasibility and efficiency of extracting a low intensity beam from the halo of the Tevatron using channeling in a bent silicon crystal. The motivation for the experiment is to apply crystal extraction to trans-TeV accelerators like the LHC. Extensive simulation work has been carried out. Two accelerator operating modes have been developed for crystal studies, ''kick'' mode and diffusion mode. Results from the first successful extraction in kick mode are presented

  16. A disoriented chiral condensate search at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Convery, M.E.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of open-quotes disoriented vacuumclose quotes might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC's) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ∼ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events

  17. Proposed Fermilab fixed target experiment: Kaons at the Tevatron

    International Nuclear Information System (INIS)

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required

  18. The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    CERN Document Server

    Baer, Howard W; Tata, Xerxes; Baer, Howard; Tata, Xerxes

    1999-01-01

    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to $m_{H_{SM}}\\sim 120$ GeV via $WH_{SM} \\to \\ell\

  19. Angular Distributions of Three Jet Events in Proton - Anti-Proton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Robert Matthew [Harvard U.

    1989-07-01

    A measurement of three jet angular distributions is made at $\\sqrt{s}$ = 1.8 TeV in protonantiproton collisions at the F'ermilab Tevatron using the Collider Detector _at Ferm.ilab (CDF). Results are presented for three different center of mass variables, cos $\\theta$, $\\psi$, and $\\xi$ and are compared to QCD predictions.

  20. Search for new fermions ('Quirks') at the Fermilab Tevatron Collider

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš

    2010-01-01

    Roč. 105, č. 21 (2010), "211803-1"-"211803-6" ISSN 0031-9007 R&D Projects: GA MŠk LA08047; GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : missing-energy * transverse energy * D0 * Batavia TEVATRON Coll * interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.621, year: 2010 http://arxiv.org/abs/arXiv:1008.3547

  1. Design and operation of the quench protection system for the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1986-05-01

    A method is required to protect the magnets of a superconducting accelerator from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature such that they are no longer superconducting. A brief discussion of the basic properties of superconductors and the phenomenon of quench propagation is given, followed by the configuration of a quench protection system for the Fermilab Tevatron

  2. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  3. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  4. Tevatron

    International Nuclear Information System (INIS)

    Yamada, R.

    1978-01-01

    The main ongoing project at Fermilab is called the Tevatron, meaning 1,000 GeV in beam energy. The following is a list of major constituents for this project: Super Ring; upgrading external beam lines for experimental areas; electron cooling and antiproton acceleration; and colliding beam facility and its detectors. At present the Super Ring is being build and installed in the Main Ring tunnel. Its injection line is completed and under test. Modification of the tunnel for the Switchyard beam lines is finished. All magnets for the Electron Cooling Ring are installed. Protons are being injected into the cooling ring for study. The designs for the colliding beam facility and its detectors will be finalized shortly. These facilities and their development are described

  5. Cornering gauge-mediated supersymmetry breaking with quasistable sleptons at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    There are many theoretical reasons why heavy quasistable charged particles might exist. Pair production of such particles at the Fermilab Tevatron can produce highly ionizing tracks or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasistable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic leptons. We study the relative importance of the resulting signals for the Tevatron run II. The relative fraction of same-sign tracks to other background-free signals is an important diagnostic tool in gauge-mediated supersymmetry breaking that may provide information about mass splittings, tanβ, and the number of messengers communicating supersymmetry breaking. copyright 1999 The American Physical Society

  6. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Ralph J. Pasquinelli

    2011-07-01

    Full Text Available A means for noninvasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  7. Theory-motivated benchmark models and superpartners at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Kane, G.L.; Nelson, Brent D.; Wang Liantao; Wang, Ting T.; Lykken, J.; Mrenna, Stephen

    2003-01-01

    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly- and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Fermilab Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the CERN LHC. In addition, these models are capable of accounting for electroweak symmetry breaking with less severe cancellations among soft supersymmetry breaking parameters than previous benchmark models

  8. Motivation and detectability of an invisibly decaying Higgs boson at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    A Higgs boson with a mass below 150 GeV has a total decay width of less than 20 MeV into accessible standard model states. This narrow width means that the usual branching fractions for such a light Higgs boson are highly susceptible to any new particles to which it has unsuppressed couplings. In particular, there are many reasonable and interesting theoretical ideas that naturally imply an invisibly decaying Higgs boson. The motivations include models with light supersymmetric neutralinos, spontaneously broken lepton number, radiatively generated neutrino masses, additional singlet scalar(s), or right-handed neutrinos in the extra dimensions of TeV gravity. We discuss these approaches to model building and their implications for Higgs boson phenomenology in future Fermilab Tevatron runs. We find, for example, that the Tevatron with 30 fb -1 integrated luminosity can make a 3σ observation in the l + l - +E/ T channel for a 125 GeV Higgs boson that is produced with the same strength as the standard model Higgs boson but always decays invisibly. We also analyze the b bar b+E/ T final state signal and conclude that it is not as sensitive, but it may assist in excluding the possibility of an invisibly decaying Higgs boson or enable confirmation of an observed signal in the dilepton channel. We argue that a comprehensive Higgs boson search at the Tevatron should include the possibility that the Higgs boson decays invisibly. copyright 1999 The American Physical Society

  9. Investigation of hadronic matter at the Fermilab Tevatron Collider. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, E.W.

    1985-01-01

    Hadronic matter at very high energy densities is investigated. The present experimental effort is focused on a search for a new quark-gluon plasma phase expected to occur when temperatures of 240 MeV are achieved. Instrumentation for several unique signatures is being developed to exploit the first operation of the Fermilab Tevatron Collider in 1986. The capital projects funded under this contract are a 240-element trigger hodoscope array, and in phase II a segmented photon detector. For these projects $172K are requested for the period 1986 February 1 through 1987 January 31 to complete the trigger hodoscope, and $160K for the period 1987 February 1 through 1988 January 31 to construct a portion of the photon detector. These figures are as presented in the original proposal. Due to budget constraints on the Fermilab experimental support program, we will not be able to receive the full complement of necessary electronics from the Fermilab PREP pool in the required period. Consequently, an additional $35K is requested for the period 1986 February 1 through 1987 January 31 for a portion of the electronics for the 240-channel trigger hodoscope. For the same reasons, Fermilab cannot provide the required magnet on schedule; a one year delay is proposed. As this would seriously impact our physics goals, the collaboration is attempting to fund the magnet without delay through the universities. Efforts to date have concentrated on the design and testing of the hodoscope. Extensive measurements on the radiation levels and effects during the various accelerator cycles have been made. These data are essential to the proper selection of scintillator and design of electronics. These tests are now complete, and final construction is beginning. 11 refs

  10. Digital Low Level RF Systems for Fermilab Main Ring and Tevatron

    Science.gov (United States)

    Chase, B.; Barnes, B.; Meisner, K.

    1997-05-01

    At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.

  11. Enhancing the top-quark signal at Fermilab Tevatron using neural nets

    International Nuclear Information System (INIS)

    Ametller, L.; Garrido, L.; Talavera, P.

    1994-01-01

    We show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the Fermilab Tevatron. The main features of t bar t and background events in a mixed sample are projected on a single output, which controls the efficiency, purity, and statistical significance of the t bar t signal. We consider a feed-forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs. Our main results are based on the exhaustive comparison of the neural net performances with those obtainable from the standard experimental analysis, by imposing different sets of linear cuts over the same variables, showing how the neural net approach improves the standard analysis results

  12. Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos

  13. Sources of b quarks at the Fermilab Tevatron and their correlations

    International Nuclear Information System (INIS)

    Field, R.D.

    2002-01-01

    The leading-logarithm order QCD hard scattering Monte Carlo models of HERWIG, ISAJET, and PYTHIA are used to study the sources of b quarks at the Fermilab Tevatron. The reactions responsible for producing b and b(bar sign) quarks are separated into three categories: flavor creation, flavor excitation, and parton-shower or fragmentation. Flavor creation corresponds to the production of a bb(bar sign) pair by gluon fusion or by annihilation of light quarks, while flavor excitation corresponds to a b or b(bar sign) quark being knocked out of the initial state by a gluon or a light quark or antiquark. The third source occurs when a bb(bar sign) pair is produced within a parton shower or during the fragmentation process of a gluon or a light quark or antiquark (includes gluon splitting). The QCD Monte Carlo models indicate that all three sources of b quarks are important at the Tevatron and when combined they qualitatively describe the inclusive cross-section data. Correlations between the b and b(bar sign) quark are very different for the three sources and can be used to isolate the individual contributions

  14. Top-squark mixing effects in the supersymmetric electroweak corrections to top-quark production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Yang, J.M.; Li, C.S.

    1996-01-01

    Taking into account the mixing effects between left- and right-handed top squarks, we calculate the genuine supersymmetric electroweak correction to top-quark production at the Fermilab Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections. copyright 1996 The American Physical Society

  15. FERMILAB

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Neutrino experimentation at higher energies was among the justifications for the construction of Fermilab and the earliest studies utilized these new beams produced with 350-400 GeV protons. This pre-Tevatron period used both electronic counters and the new 15-foot cryogenic bubble chamber. The counter experimental programme was basically divided into two generations. The first covered the discovery of new phenomena and confirmation of the parton model using high rate wide-band and the first dichromatic narrow-band neutrino beams. The second concentrated on precision measurements with dichromatic beams. One flagship experiment, designated ''E1 A'', was originally a collaboration of Harvard, Pennsylvania and Wisconsin, and was the prototype of large neutrino calorimeters: a target/ calorimeter followed by a large set of iron toroidal magnets. E1A and its successor, E310 (which included Rutgers), ran for a total of 6,650 hours from 1972 through 1978. Contemporary with these experiments was another large counter experiment by CalTech and Fermilab, designated originally as E21 A. Along with its successors, E262, E320, and E356 (which collected data* over some 4,600h) it took part in the first generation programme, and subsequently spearheaded the second generation with precision measurements of both charged current structure functions and the weak mixing angle. Finally, this latter collaboration extended its participation into the early Tevatron era, and will continue through the 1990s

  16. Investigation of hadronic matter at the Fermilab Tevatron Collider: Technical progress report, 1986 October-1987 October

    International Nuclear Information System (INIS)

    Anderson, E.W.

    1987-01-01

    An investigation of hadronic matter at very high energy densities is reported. The present experiment, E-735, is a search for a deconfined quark-gluon plasma phase of matter expected to occur when temperatures of 240 MeV are achieved. Preliminary data have been obtained during the first operation of the Fermilab Tevatron Collider during the period January to May 1987. The collaboration is about to publish first results on the charged particle multiplicity and transverse momentum distributions. In addition, we have data on the particle identification of the produced secondaries. Both measurements are regarded on theoretical grounds to be sensitive indicators of the formation of a high temperature plasma. The capital project funded under this contract was a 240-element trigger hodoscope array, with associated electronics and monitor. The hodoscope was completed and performed to design expectations in the high-rate and high-radiation environment of the Collider. Scientific personnel supported under this contract were also responsible for the implementation of the data acquisition system used for E-735. Although the system underwent several unanticipated modifications in response to changing schedules, the required service was provided. Preparations are currently under way for the principal data acquisition during the spring of 1988. At that time we will have in place the central tracking chamber, and the remainder of the spectrometer chambers. Tests will also be made on backgrounds and detector materials appropriate to our proposal, P-787, to measure leptons and photons in the third Collider running period

  17. Dimuon production by neutrinos in the Fermilab 15-ft bubble chamber at the Tevatron

    Science.gov (United States)

    Jain, V.; Harris, F. A.; Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G. G.; Jabiol, M. A.; Jacques, P.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1990-04-01

    The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ-μ+ and μ+μ-, and 11 μ-μ-) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ-μ- and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ-μ-/μ- for muon momenta above 4 GeV/c is 1.2×10-3, and for momenta above 9 GeV/c this limit is 1.1×10-3. The opposite-sign-dimuon-to-single-muon ratio is (0.62+/-0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65+/-0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

  18. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ziqing [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  19. Evading the top-quark mass bound at the Fermilab Tevatron: New signals for the top quark

    International Nuclear Information System (INIS)

    Mukhopadhyaya, B.; Nandi, S.

    1991-01-01

    If an SU(2)-singlet charge-2/3 quark exists, current data allow a wide range for the parameters of the 4x4 mixing matrix in which the usual ''hard-lepton'' signal of the top quark is suppressed. For a light Higgs boson, the top quark decays predominantly via the flavor-changing Yukawa interaction, thus evading the Fermilab Tevatron bounds on its mass. For a heavier Higgs boson, flavor-changing neutral-current decays become important, giving rise to anomalous Z-pair production, testable at the upgraded Tevetron, at the CERN Large Hardon Collider, and at the Superconducting Super Collider

  20. Measurement of the Top Mass in the All - Jets Channel with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Brian M. [Florida State U.

    2002-01-01

    We describe a measurement of the top quark mass in $t\\overline{t}$ production where the final state is 6 or more jets, which is otherwise known as the all-jets channel. The mass is extracted from 110.2 $pb^{-1}$ of data taken with the D0 detector at the Fermilab Tevatron (center-of-mass energy ps = 1.8 TeV) from 1993-96. The top quark mass is measured to be $176.6^{+17.1}_{-13.4}$ $GeV/c^2$. The corresponding cross section is estimated to be $11.5^{+4.9}_{-4.7}$ pb.

  1. Generation and diagnostics of uncaptured beam in the Fermilab Tevatron and its control by electron lenses

    Directory of Open Access Journals (Sweden)

    Xiao-Long Zhang

    2008-05-01

    Full Text Available In the collider run II, the Tevatron operates with 36 high intensity bunches of 980 GeV protons and antiprotons. Particles not captured by the Tevatron rf system pose a threat since they can quench the superconducting magnets during acceleration or at beam abort. We describe the main mechanisms for the origination of this uncaptured beam, and present measurements of its main parameters by means of a newly developed diagnostics system. The Tevatron electron lens is effectively used in the collider run II operation to remove uncaptured beam and keep its intensity in the abort gaps at a safe level.

  2. Search for Leptoquarks Decaying to $\\mu$ + $X$ Meson with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Karmgard, Daniel John [Florida State U., SCRI

    1999-01-01

    We describe a search for the pair production of second generation leptoquarks that decay to muons plus other particles in 94 $pb^{-1}$ of data taken with the D0 detector at the Fermilab Tevatron (center-of-mass energy $\\sqrt{s}$ = 1.8 TeV) from 1993{96. The search places limits on the cross sections and mass of second generation leptoquarks for various branching ratios and couplings. For both scalar leptoquarks decaying into a muon and a quark the mass limit is 200 GeV/$c^2$ while for one scalar leptoquark decaying into a muon and a quark with the other scalar leptoquark decaying into a neutrino and a quark the mass limit is 160 GeV/$c^2$ at the 95% confidence level.

  3. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Heinmiller, James Matthew [Univ. of Illinois, Chicago, IL (United States)

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e+e-b$\\bar{b}$ in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb-1 of integrated luminosity accumulated with the D0 detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p$\\bar{p}$ → ZH) x BR(H → b$\\bar{b}$) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV.

  4. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    International Nuclear Information System (INIS)

    Heinmiller, James Matthew; Illinois U., Chicago

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e + e - b(bar b) in p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb -1 of integrated luminosity accumulated with the D(null) detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p(bar p) → ZH) x BR(H → b(bar b)) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV

  5. BTEV: a dedicated B physics detector at the Fermilab Tevatron Collider

    International Nuclear Information System (INIS)

    Butler, J.N.

    1996-11-01

    The capabilities of future Dedicated Hadron Collider B Physics experiments are discussed and compared to experiments that will run in the next few years. The design for such an experiment at the Tevatron Collider is presented and an evolutionary path for developing it is outlined. 9 refs., 3 figs., 4 tabs

  6. A programmable finite state module for use with the Fermilab Tevatron Clock

    International Nuclear Information System (INIS)

    Beechy, D.

    1987-10-01

    A VME module has been designed which implements several programmable finite state machines that use the Tevatron Clock signal as inputs. In addition to normal finite state machine type outputs, the module, called the VME Finite State Machine, or VFSM, records a history of changes of state so that the exact path through the state diagram can be determined. There is also provision for triggering and recording from an external digitizer so that samples can be taken and recorded under very precisely defined circumstances

  7. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    OpenAIRE

    CDF Collaboration; Aaltonen, T.

    2007-01-01

    We present the first observation and cross section measurement of exclusive dijet production in pbar-p interactions, pbar + p --> pbar + dijet + p. Using a data sample of 310 pb-1 collected by the Run II Collider Detector at Fermilab at sqrt{s}=1.96 TeV, exclusive cross sections for events with two jets of transverse energy ET >= 10 GeV have been measured as a function of minimum ET(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of exp...

  8. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  9. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Science.gov (United States)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  10. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Directory of Open Access Journals (Sweden)

    A. V. Petrenko

    2011-09-01

    Full Text Available Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  11. Observation of exclusive dijet production at the Fermilab Tevatron pp collider

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.

    2008-01-01

    We present the first observation and cross section measurement of exclusive dijet production in pp interactions, pp→p+dijet+p. Using a data sample of 310 pb -1 collected by the Run II Collider Detector at Fermilab at √(s)=1.96 TeV, exclusive cross sections for events with two jets of transverse energy E T jet ≥10 GeV have been measured as a function of minimum E T jet . The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb -1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J z =0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at √(s)=14 TeV are discussed.

  12. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    International Nuclear Information System (INIS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Gonzalez, B. Alvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.

    2007-01-01

    The authors present the first observation and cross section measurement of exclusive dijet production in (bar p)p interactions, (bar p)p → (bar p) + dijet + p. Using a data sample of 310 pb -1 collected by the Run II Collider Detector at Fermilab at √s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E T jet (ge) 10 GeV have been measured as a function of minimum E T jet . The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb -1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J z = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at √s = 14 TeV are discussed

  13. Search for New Physics at the Fermilab Tevatron p(bar p) Collider

    International Nuclear Information System (INIS)

    Rolli, Simona

    2011-01-01

    We report on selected recent results from the CDF and D0 experiments on searches for physics beyond the Standard Model using data from the Tevatron collider running p(bar p) collisions at √s = 1960 GeV. Over the past decades the Standard Model (SM) of particle physics has been surprisingly successful. Although the precision of experimental tests improved by orders of magnitude no significant deviation from the SM predictions has been observed so far. Still, there are many questions that the Standard Model does not answer and problems it can not solve. Among the most important ones are the origin of the electro-weak symmetry breaking, hierarchy of scales, unification of fundamental forces and the nature of gravity. Recent cosmological observations indicates that the SM particles only account for 4% of the matter of the Universe. Many extensions of the SM (Beyond the Standard Model, BSM) have been proposed to make the theory more complete and solve some of the above puzzles. Some of these extension includes SuperSymmetry (SUSY), Grand Unification Theory (GUT) and Extra Dimensions. At CDF and D0 we search for evidence of such processes in proton-antiproton collisions at √(s) = 1960 GeV. The phenomenology of these models is very rich, although the cross sections for most of these exotic processes is often very small compared to those of SM processes at hadron colliders. It is then necessary to devise analysis strategies that would allow to disentangle the small interesting signals, often buried under heavy instrumental and/or physics background. Two main approaches to search for physics beyond the Standard Model are used in a complementary fashion: model-based analyses and signature based studies. In the more traditional model-driven approach, one picks a favorite theoretical model and/or a process, and the best signature is chosen. The selection cuts are optimized based on acceptance studies performed using simulated signal events. The expected background is

  14. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  15. Coherent production of π+ and π- mesons by charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, R. C.; Cence, R.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G.; Harris, F.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Jones, R. W.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Mann, W. A.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Wittek, W.; Yost (E632 Collaboration), G. P.

    1989-11-01

    Coherent single-pion production on neon nuclei is studied using the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mixture and exposed to the Tevatron neutrino beam. In the neutrino energy range 40-300 GeV, the net signal is 20+/-6 events, giving a corrected rate per charged-current event of (0.26+/-0.10)%. The cross section and kinematic distributions agree with the predictions of a model based on partial conservation of axial-vector current and meson dominance.

  16. Fermilab | Tevatron | Guest Book

    Science.gov (United States)

    challenge of the best kind. From the long days setting up the very basics of life (a work space and coffee . I sincerely hope I have the opportunity to work with many of you again. I look forward to the next . It had those cool rounded shapes that probably helped to inspire the Art Deco era. Let's hope that

  17. Celebrating the Tevatron legacy

    CERN Multimedia

    2012-01-01

    Fermilab hosted an exceptional event on 11 June: the Tevatron Impact symposium. More than 800 people attended to hear how the Tevatron advanced our understanding of fundamental physics.   A version of this "Director's Corner" by Pier Oddone first appeared in Fermilab Today on 12 June.   The development of accelerator technology for the Tevatron has influenced every subsequent major hadron accelerator. We heard reviews on the detector technologies and trigger systems developed with the Tevatron that are essential today for high-luminosity machines like the LHC. There were also talks on the superconducting-wire industry that made MRI magnets ubiquitous, and we discussed the major computational systems that use large farms of Linux-based commodity processors. Researchers who worked on the Tevatron also established multivariate analysis techniques that now allow us to squeeze the maximum information from complex data sets. One focus of the symposium was the ...

  18. Fermilab Future

    CERN Multimedia

    Kathryn Grim

    2011-01-01

    The closure of Fermilab’s Tevatron this autumn will mark the end of an historic era in particle physics. But as physicists continue to comb through data from the Tevatron detectors, the laboratory will continue to pursue a greater understanding of the make-up of the Universe on multiple experimental frontiers.   In August 2010, construction crews began installing the roof over the enclosure that will house the NOvA detector. Photo by Dan Traska of Einarson Flying Service. “We plan to extract every bit of physics we can from this final Tevatron running period,” Fermilab Director Pier Oddone wrote in a column for Fermilab Today. “The Tevatron has already exceeded all expectations and, given the large data sets, we will continue to find new results and discoveries in the Tevatron data for years to come.” This spring, particle astrophysicists at Fermilab will ship to Chile components of a 570-megapixel camera scientists will install on the Blanco tele...

  19. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  20. Physics at the Tevatron

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Physics Results from the Tevatron : The Tevatron proton-antiproton collider at Fermilab in the US is currently the world's highest energy collider. At the experiments CDF and D0 a broad physics programme is being pursued, ranging from flavour physics via electroweak precision measurements to searches for the Higgs boson and new particles beyond the Standard Model. In my lecture I will describe some of the highlight measurements in the flavour, electroweak and searches sectors, and the experimental techniques that are used.

  1. Coupling in the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-β quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note

  2. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bocci, Andrea [Rockefeller Univ., New York, NY (United States)

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  3. Fermilab History and Archives Project | Home

    Science.gov (United States)

    Special Events Early Users Meetings (1979 - 1989) The Tevatron Natural History Discoveries Technology Site Fermilab History and Archives Project Fermilab History and Archives Project Fermi National Accelerator Laboratory Home About the Archives History & Archives Online Request Contact Us Site Index

  4. Status of Fermilab E-710

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1993-08-01

    This report give the current status of E-710, an experiment at the Fermilab bar pp Tevatron Collider to measure elastic scattering, total cross sections and diffraction dissociation up to √s = 1.8 TeV

  5. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  6. Support of hadroproduction of bottom using the 800 GeV/c primary proton beam at the Fermilab tevatron. Final performance report, June 14, 1988--May 14, 1992

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The High Energy Physics (HEP) group at Prairie View A ampersand M University is a collaborator with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980's at Fermilab with the study of the charmonium states, J/ψ and χ, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC)

  7. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  8. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  9. FERMILAB: Call for physics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Several hundred physicists attended a special Fermilab 'All Experimenter's Meeting' on November 20 to hear Director John Peoples call for new Tevatron Collider proposals for the years 2000-2005, when the new Main Injector will be complete. At the Tevatron proton-antiproton collider, the CDF and DO experiments are currently completing improvements for Run II to use the Tevatron when the Main Injector is complete later in this decade. New proposals would be aimed at a Collider Run III to follow these CDF and DO efforts

  10. Recent results from E-735 at the Fermilab tevatron proton-antiproton collider with √s=1.8 TeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; DeBonte, R.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Carter, T.; Goshaw, A.T.; Oh, S.A.; Walker, W.D.; Wesson, D.K.

    1989-01-01

    E-735 is searching for signs of the quark-gluon-plasma phase transition in minimum bias proton-antiproton events. Results from the 1987 run at the Tevatron Collider at √s=1.8 TeV are presented. Included are distributions of the average p t versus multiplicity dependence for charged particles, and preliminary particle identification analysis using time of flight. (orig.)

  11. Recent Results from the Tevatron

    International Nuclear Information System (INIS)

    Demorden, L.

    1998-06-01

    We review recent results from fixed-target and collider experiments at the Fermilab Tevatron. Among the topics discussed are jet production rates, α S measurements, the anti d/anti u ratio in the proton sea, diffraction, heavy quark physics and leptoquark searches

  12. Tau identification at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Stephen; /Chicago U., EFI

    2005-07-01

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  13. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  14. From the Tevatron to Project X

    CERN Multimedia

    Pier Oddone, Fermilab director (from CERN Courier)

    2011-01-01

    In the October issue of the CERN Courier, Fermilab Director Pier Oddone will present the past, present and future of the US laboratory after the Tevatron. The Bulletin presents some early extracts from his article…   Fermilab Director, Pier Oddone. The end of September marks the end of an era at Fermilab, with the shutdown of the Tevatron after 28 years of operation at the frontiers of particle physics. The Tevatron’s far-reaching legacy spans particle physics, accelerator science and industry. The collider established Fermilab as a world leader in particle physics research, a role that will be strengthened with a new set of facilities, programmes and projects in neutrino and rare-process physics, astroparticle physics, and accelerator and detector technologies. The Tevatron exceeded every expectation ever set for it. This remarkable machine achieved luminosities with antiprotons once considered impossible, reaching more than 4x1032 cm-2s-1 instantaneous luminosity and...

  15. Fermilab at 50

    CERN Document Server

    Lykken, Joseph David

    2018-01-01

    Fermilab — originally called the National Accelerator Laboratory — began operations in Illinois on June 15, 1967. Operated and managed by The University of Chicago and Universities Research Association, LLC for the US Department of Energy, it has the distinction of being the only US national laboratory solely dedicated to the advancement of high-energy particle physics, astrophysics and cosmology. It has been the site of major discoveries and observations: the top and bottom quarks; the tau neutrino; direct CP violation in kaon decays; a quasar 27 billion light years away from us; origin of high-energy cosmic rays; and confirmation of the evidence of dark energy, among others. For 25 years it operated the world's highest energy particle collider, the Tevatron. Fermilab contributed collaboratively to the Tevatron's successor, the Large Hadron Collider, which discovered the Higgs boson in 2012. Fermilab's core competencies in accelerators, superconducting technologies, detectors and computing have positione...

  16. Tevatron operational experiences

    International Nuclear Information System (INIS)

    Norris, B.L.; Theilacker, J.C.

    1989-02-01

    Fermilabs superconducting accelerator, the Tevatron has been operational for nearly six years. The history of its operation is presented. Several long shutdowns for superconducting dipole repairs are discussed. The dominant factor influencing the repair was conductor motion which fatigued the cable in the magnet ends. Borescoping and x-raying techniques were used to determine which magnet ends required repair. Detailed downtime logs were kept for each of the running periods. A discussion of the sources of downtime and a comparison for different operating modes is presented

  17. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.; Batavia, IL)

    1985-01-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper (1) summarizes performance

  18. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.

    1985-06-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper summarizes performance

  19. Search for $W'\\to t b $ in Events with Large Missing Transverse Energy and Jets with the CDF detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Ludovico [Univ. of Rome Tor Vergata (Italy)

    2012-01-01

    In the scope of the strong ongoing data analysis efforts of the CDF col- laboration at Fermilab, we present a search for the production of mas sive W1 bosons decaying to a top and a bottom quark in p$\\bar{p}$ collisions at √s = 1.96 TeV. To perform this search, we select events with large Missing Transverse Energy plus two or three jets, in which the W generated from top decays leptonically, and either the e or µ is lost or the τ is reconstructed as a jet. A complete study of the selected sample is discussed, including the creation and subsequent optimization of a Neural Network-based multivariate tool to reject the QCD multijet background from the signal region. Finally, we perform a likelihood-based multichannel Bayesian fit procedure on the invariant transverse mass of the Missing Transverse Energy and jets to extract 95% CL limits on σ(p$\\bar{p}$ . → W') × B(W' → tb) for MW' = 200 GeV/c2

  20. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    Science.gov (United States)

    Willocq, S.; Aderholz, M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Yost, G. P.

    1993-04-01

    The coherent production of π and ρ mesons in νμ(ν¯μ)-neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (ν¯μ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53+/-9) μ+/-π-/+ coherent events and (19+/-7) μ+/-π-/+π0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2+/-0.7)×10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1+/-0.8)×10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at ||t||<0.1 GeV2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions.

  1. Electroweak results from the tevatron

    International Nuclear Information System (INIS)

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings

  2. Electroweak results from the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  3. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  4. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  5. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  6. Bid for Fermilab an effort to keep U.S. a leader in particle physics

    CERN Multimedia

    Van, Jon

    2006-01-01

    During 20 years, the world's most powerful accelerator, the Tevatron, was in Fermilab, Batavia, Ill.; but next year, Fermilab will lose that title, as in CERN, a new machine will be brought into service. (1,5 pages)

  7. U. of C. to bid for Fermilab School hopes to bring new accelerator to site

    CERN Multimedia

    Van, Jon

    2006-01-01

    For more than 20 years, Fermilab in Batavia is home to the world's most powerful atomic particle accelerator, the Tevatron, but Fermilab will lose that title next year when a new machine in Switzerland and France fires up. (2 pages)

  8. Fermilab | Contact Fermilab

    Science.gov (United States)

    Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom -840-3000 Fax: 630-840-4343 Shipping address Fermilab Receiving Wilson Street and Kirk Road Batavia IL 60510-5011 Phone: 630-840-3000 Visiting address Fermilab entrance Kirk Road and Pine Street Batavia IL

  9. Tevatron targets three-year extension

    CERN Multimedia

    Harris, Margaret

    2010-01-01

    "Fermilab's Tevatron collider could get a new lease on life following a campaign to keep the facility running beyond the end of 2011, when the rival Large Hadron Collider (LHC) at Cern is scheduled to shut down for 15 months of repairs" (0.75 page)

  10. Fermilab | About Fermilab

    Science.gov (United States)

    2015. thumb Vanessa Peoples, Chief Financial Officer Vanessa Peoples is Fermilab's chief financial oversees the research program of the laboratory as the chief research officer and works with the Department and an advisor to the laboratory director. thumb Sergey Belomestnykh, Chief Technology Officer As CTO

  11. Top quark mass measurement at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  12. Fermilab Today

    Science.gov (United States)

    Argentine Tango thru April 28 - Student Discount Available Calling all softball players Fermilab Management Management class offered May 5, 12, & 19 Performance Review class offered May 26 Fermilab Functions class

  13. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  14. Fermilab | About | Organization | Fermilab Organization

    Science.gov (United States)

    Industry Students and teachers Media Organization Fermilab Organization Organization Fermilab Org Chart Accelerator Division Accelerator Physics Center CMS Center Core Computing Division ESH&Q FESS Finance Section LBNF Project Line Organization LBNF Project Director LCLS-II

  15. Tevatron in the 1990s

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1989-01-01

    This paper reports that in 1978, Fermilab set out a goal of building a superconducting accelerator (Energy Saver) which would raise the proton energy to close to 1000 GeV for operation in two modes. Tevatron I would provide proton-antiproton collisions at a total CM energy of near 2.0 TeV to study the particle mass domain beyond 100 GeV. Tevatron II would provide extensive facilities for the programmatic study of Standard Model physics in an upgraded fixed-target program. There was of course the realization that with the right mixture of precision and imagination, the collider could add significantly to Standard Model physics (e.g. W and Z physics, W, Z pairs, B-physics) and that the fixed-target program could explore beyond the Standard Model (e.g., rare K-decays, CP violation). In 1988, we are engaged in setting out the future program of the Laboratory based upon the success of the Energy Saver, TeV I and TeV II construction programs. This future program assures the operation of the TEVATRON facility for physics is the overriding priority between now and perhaps 1993 and it also assumes that the Superconducting Super Collider (SSC) will be funded for construction in 1990 and will begin producing physics by 1999. A brief history of upgrades is presented in section XI

  16. Recent QCD Studies at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  17. Top quark production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Varnes, Erich W.; /Arizona U.

    2010-09-01

    The Fermilab Tevatron has, until recently, been the only accelerator with sufficient energy to produce top quarks. The CDF and D0 experiments have collected large samples of top quarks. We report on recent top quark production measurements of the single top and t{bar t} production cross sections, as well as studies of the t{bar t} invariant mass distribution and a search for highly boosted top quarks.

  18. Searches for new physics at the Tevatron

    International Nuclear Information System (INIS)

    Merritt, K. Wyatt

    1997-01-01

    This paper summarizes searches at the Fermilab Tevatron for a wide variety of signatures for physics beyond the Standard Model. These include searches for supersymmetric particles, in the two collider detectors and in one fixed target experiment. Also covered are searches for leptoquarks, dijet resonances, heavy gauge bosons, and particles from a fourth generation, as well as searches for deviations from the Standard Model predictions in dijet angular distributions, dilepton mass distributions, and trilinear gauge boson couplings

  19. Twenty years of diffraction at the Tevatron

    International Nuclear Information System (INIS)

    Goulianos, K.; Rockefeller U.

    2005-01-01

    Results on diffractive particle interactions from the Fermilab Tevatron (bar p)p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held

  20. Supporting multiple control systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  1. Multibunch operation in the Tevatron Collider

    International Nuclear Information System (INIS)

    Holt, J.A.; Finley, D.A.; Bharadwaj, V.

    1993-05-01

    The Tevatron Collider at Fermilab is the world's highest energy hadron collider, colliding protons with antiprotons at a center of mass energy of 1800 GeV. At present six proton bunches collide with six antiproton bunches to generate luminosities of up to 9 x 10 30 cm -2 s -1 . It is estimated that to reach luminosities significantly greater than 10 31 cm -2 s -1 while minimizing the number of interactions per crossing, the number of bunches will have to be increased. Thirty-six bunch operation looks like the most promising plan. This paper looks at the strategies for increasing the number of particle bunches, the new hardware that needs to be designed and changes to the operating mode in filling the Tevatron. An interactive program which simulates the filling of the Tevatron collider is also presented. The time scale for multibunch operation and progress towards running greater than six bunches is given in this paper

  2. Prospects for antiproton experiments at Fermilab

    International Nuclear Information System (INIS)

    Kaplan, Daniel M.

    2012-01-01

    Fermilab operates the world’s most intense antiproton source. Newly proposed experiments can use those antiprotons either parasitically during Tevatron Collider running or after the end of the Tevatron Collider program. For example, the annihilation of 5 to 8 GeV antiprotons is expected to yield world-leading sensitivities to hyperon rare decays and CP violation. It could also provide the world’s most intense source of tagged D 0 mesons, and thus the best near-term opportunity to study charm mixing and, via CP violation, to search for new physics. Other measurements that could be made include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world’s most precise measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons offer a great opportunity for a broad and exciting physics program at Fermilab in the post-Tevatron era.

  3. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  4. Tests of QCD in W and Z production at Tevatron

    International Nuclear Information System (INIS)

    Abachi, S.

    1995-01-01

    We present measurements of the production cross sections times leptonic branching fractions and the transverse momentum distributions of W and Z bosons in p bar p collisions at √s = 1.8 TeV using data collected with the DO detector at the Fermilab Tevatron p bar p collider. A preliminary measurement of the W charge asymmetry is also presented

  5. Tevatron energy and luminosity upgrades beyond the Main Injector

    International Nuclear Information System (INIS)

    Amidei, D.; Kamon, T.; Lopez, J.; McIntyre, P.; White, J.

    1994-08-01

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 10 33 cm -2 sec -1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  6. Simulation of beam-beam effects in tevatron

    International Nuclear Information System (INIS)

    Mishra, C.S.; Assadi, S.; Talman, R.

    1995-08-01

    The Fermilab accelerator complex is in the middle of an upgrade plan Fermilab III. In the last phase of this upgrade the luminosity of the Tevatron will increase by at least one order of magnitude. In order to keep the number of interactions per crossing manageable for experiments, the number of bunches will be increased from 6 x 6 to 36 x 36 and finally to ∼100 x 100 bunches. The beam dynamics of the Tevatron has been studied from Beam-Beam effect point of view in a ''Strong-Weak'' representation with a single particle being tracked in presence of other beam. This paper describes the beam-beam effect in 6 x 6 operation of Tevatron

  7. Fermilab timeline generation system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Knopf, W.R.; Thomas, A.D.

    1985-06-01

    In this paper the technique used to control the relative timing and synchronization of the major accelerator systems at Fermilab is described. The various operating modes of the injector accelerators include fixed target and colliding beam operation in conjunction with simultaneous machine studies. For example, in a 60 second interval the conventional main Ring may be called upon to: (a) load the Tevatron with 12 high intensity Booster batches each containing 82 rf bunches at 150 GeV, (b) transfer a Booster batch at 8 GeV with 8 rf bunches to the Debuncher or Accumulator, (c) accelerate high intensity beam several times to 120 GeV for antiproton production, and (d) accelerate beam to 150 GeV for Main Ring studies. In the case of colliding beam operation, the different tasks can be even more varied. All this requires a simple, flexible means of coordination

  8. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  9. Fermilab III

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding.

  10. Physics History Books in the Fermilab Library

    Energy Technology Data Exchange (ETDEWEB)

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  11. Physics History Books in the Fermilab Library

    International Nuclear Information System (INIS)

    Tompson, Sara

    1999-01-01

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification

  12. Tevatron The Cinderella story or the art of collider

    CERN Document Server

    CERN. Geneva

    2007-01-01

    The Tevatron Collider at Fermilab (Batavia, IL, USA) is the world's highest energy particle collider at 1.8TeV c.m.e. The machine was a centerpiece of the US and world's High Energy Physics for many years. Currently, the Tevatron is in the last years of its operation in so-called Run II which started 2001 and is tentatively scheduled to end in 2010. In this lecture series, we'll try to learn from the exciting story of the Tevatron Collider Run II: the story of long preparations, great expectations, initial difficulties, years of "blood and sweat", continuous upgrades, exceeding its goals, high emotions, tune-up of accelerator organization for "combat fighting". The lectures will cover Introduction to the Tevatron, its history and Run II; "Plumbing" Issues; Beam Physics Issues; Luminosity Progress; Organization of Troops and Lessons for LHC.

  13. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  14. Fermilab Library

    Science.gov (United States)

    Tevatron, and the data obtained thus far from the LHC, with intuitive connections between data and theory Institutional Subscription Trial Overleaf is an online LaTeX and Rich Text collaborative writing and publishing tool with integrated real-time preview. We now have a trial institutional subscription of Overleaf Pro

  15. Initial operation of the Tevatron collider

    International Nuclear Information System (INIS)

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented

  16. Shielding design at Fermilab: Calculations and measurements

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1986-11-01

    The development of the Fermilab accelerator complex during the past two decades from its concept as the ''200 BeV accelerator'' to that of the present tevatron, designed to operate at energies as high as 1 TeV, has required a coincidental refinement and development in methods of shielding design. In this paper I describe these methods as used by the radiation protection staff of Fermilab. This description will review experimental measurements which substantiate these techniques in realistic situations. Along the way, observations will be stated which likely are applicable to other protron accelerators in the multi-hundred GeV energy region, including larger ones yet to be constructed

  17. Operations aspects of the Fermilab Central Helium Liquefier facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1996-09-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  18. Operations aspects of the Fermilab Central Helium Liquefier Facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 degrees K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  19. Present state of Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab continues to work on raising the particle energy of the Tevatron by lowering magnet temperatures using cold vapor compressors. In 1995, another two rounds of power tests were completed. These power tests, although showing significant improvement over the initial tests of 1993-94, have led to the conclusion that 1000 GeV operation cannot be attained without replacing/rearranging magnets with lower quench currents before the next Collider Run in 1999. Development of more cold compressor control strategies also continues

  20. Standard Model Higgs Searches at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  1. Preparations for Muon Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Popovic, M.; Prebys, E.; /Fermilab; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  2. Dedicating Fermilab's Collider

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions

  3. Detector implications for eletroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    Madaras, R.J.

    1996-12-01

    D0 and CDF are two large, powerful, multipurpose detectors with outstanding tracking, calorimeter and muon systems that have done an excellent job in exploiting the Top Quark, b Quark, QCD, New Phenomena/Exotics and Electroweak Physics at the Fermilab Tevatron Collider. The upgrades of the D0 and CDF detectors will further enhance their capabilities for physics at the Tevatron. The addition of a magnetic field and silicon vertex chamber will open up new physical opportunities for D0, and the replacement of the plug and forward gas calorimeters with new scintillator based calorimeters will give CDF uniform calorimetry over all η

  4. Fermilab | Home

    Science.gov (United States)

    Industry Students and teachers Media ... Five (more) fascinating facts about DUNE Engineering the Mathematics in Music June 2 10 a.m. Get to Know the Lederman Science Center June 3 1 p.m. Ask a Scientist Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry

  5. Tunneling beyond the Fermilab site

    International Nuclear Information System (INIS)

    Baker, S.; Elwyn, A.; Lach, J.; Read, A.

    1983-01-01

    An accelerator that crosses the Fermilab site boundary must have a minimum effect on the surrounding environment and the people residing in the area. Unobstructed public access should be allowed above the ring except in relatively few areas such as the injection, dump, and experimental regions. The accelerator should be a benign and unobtrusive neighbor not only when it is completed but also in the construction period. For these reasons underground tunneling for all or most of the ring seems attractive. In this note we look into some questions raised by tunneling beyond the Fermilab site. Most of our discussion is of general applicability. However, we will use as examples two specific ring configurations. The examples have not been optimized from the point of view of physics output or accelerator technology but are just specific examples which allow us to study questions of tunneling. One is a ring of 5 km radius (5 TeV) tangent to the Tevatron and entirely east of the Fox River and fed by a beam from the Tevatron which crosses under the river. We assume that each of these machines will have 100 beam fills per year and we scale the maximum intensities with the accelerator radii. Thus we assume that there will be 1.0 E14 protons in each beam of the 20 TeV machine and 2.5 E13 for the 5 TeV machine

  6. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  7. Non-SUSY Searches at the Tevatron

    International Nuclear Information System (INIS)

    Strologas, John

    2011-01-01

    We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb -1 . We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous γ + E T + X production, and searches for vector-like quarks.

  8. FERMILAB: operation resumes in meson area; fast neutron therapy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Improvements and modifications in the Meson Area at Fermilab are described. The target train was rebuilt and energy range of some beams raised to 400 GeV with provisions for Tevatron beams of 1000 GeV in the future. The work of the fast neutron therapy facility is summarised. (W.D.L.).

  9. Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R ampersand D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved

  10. Search for the Higgs boson in the WH channel and production of Wbb-bar in 1.96 TeV pp-bar collisions in the D0 experiment at the Fermilab Tevatron; Recherche du boson de Higgs dans le canal WH et etude de la production Wbb-bar dans les collisions pp-bar a 1.96 TeV dans l'experience D0 aupres du Tevatron de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Beauceron, St

    2004-05-15

    The introduction of the Higgs boson in the standard model provides a mechanism to explain the origin of the masses of the elementary particles. The Higgs boson has not yet been discovered but a lower limit on its mass has been set at 114.4 GeV at 95% confidence level by LEP experiments. The search for the Higgs boson has been pursued at the Tevatron, proton-antiproton collider, in the associated production channel WH with a Higgs mass lower than 135 GeV where the Higgs decay in bb-bar. The detector D0 is used to record the signals. For this analysis, the calorimeter and the tracker are the main sub-detector. The signals from the calorimeter have been studied through a calibration and a study on the noise level in order to improve the reconstruction of the objects. The missing transverse energy, the electrons and the jets are well identified objects so they can be used in our analysis W({yields} e{nu}) + jets. As D0 has a new tracker and solenoid system, information from this system allow us to tag jets when they are originating from a b-quark. The analysis of events W({yields} e{nu}) + 2*b-tag jets has been made on 174 pb{sup -1}. An upper limit of the cross section production of the process W({yields} e{nu})bb-bar has been derived at 20.3 pb at 95% confidence level. This process is the main irreducible background of the WH {yields} e{nu}bb-bar. In the second part of the analysis, the search for the Higgs boson has been done for different mass values between 105 GeV and 135 GeV. Upper Limits on cross section production times branching ratio have been set. For a Higgs mass of 115 GeV, the upper limit is set of 12.4 pb at 95% confidence limit. (author)

  11. Search for the Higgs boson in the WH channel and production of Wbb-bar in 1.96 TeV pp-bar collisions in the D0 experiment at the Fermilab Tevatron; Recherche du boson de Higgs dans le canal WH et etude de la production Wbb-bar dans les collisions pp-bar a 1.96 TeV dans l'experience D0 aupres du Tevatron de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Beauceron, St

    2004-05-15

    The introduction of the Higgs boson in the standard model provides a mechanism to explain the origin of the masses of the elementary particles. The Higgs boson has not yet been discovered but a lower limit on its mass has been set at 114.4 GeV at 95% confidence level by LEP experiments. The search for the Higgs boson has been pursued at the Tevatron, proton-antiproton collider, in the associated production channel WH with a Higgs mass lower than 135 GeV where the Higgs decay in bb-bar. The detector D0 is used to record the signals. For this analysis, the calorimeter and the tracker are the main sub-detector. The signals from the calorimeter have been studied through a calibration and a study on the noise level in order to improve the reconstruction of the objects. The missing transverse energy, the electrons and the jets are well identified objects so they can be used in our analysis W({yields} e{nu}) + jets. As D0 has a new tracker and solenoid system, information from this system allow us to tag jets when they are originating from a b-quark. The analysis of events W({yields} e{nu}) + 2*b-tag jets has been made on 174 pb{sup -1}. An upper limit of the cross section production of the process W({yields} e{nu})bb-bar has been derived at 20.3 pb at 95% confidence level. This process is the main irreducible background of the WH {yields} e{nu}bb-bar. In the second part of the analysis, the search for the Higgs boson has been done for different mass values between 105 GeV and 135 GeV. Upper Limits on cross section production times branching ratio have been set. For a Higgs mass of 115 GeV, the upper limit is set of 12.4 pb at 95% confidence limit. (author)

  12. Higgs decay to bottom quarks at the Tevatron

    International Nuclear Information System (INIS)

    Stange, A.; Marciano, W.; Willenbrock, S.

    1993-10-01

    We study the production and detection of the standard-model Higgs boson at the Fermilab Tevatron. The most promising mode is WH and ZH associated production followed by leptonic decay of the weak vector bosons and H → b bar b. It may be possible to detect a Higgs boson of mass m H = 60--80 GeV with 1000 pb -1 of integrated luminosity

  13. Review of Physics Results from the Tevatron: Top Quark Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Cecilia E.; Vellidis, Costas

    2014-09-17

    We present results on top quark physics from the CDF and D0 collaborations at the Fermilab Tevatron proton anti-proton collider. These include legacy results from Run II that were published or submitted for publication before mid-2014, as well as a summary of Run I results. The historical perspective of the discovery of the top quark in Run I is also described.

  14. Tests of QCD in W and Z production at Tevatron

    International Nuclear Information System (INIS)

    Alitti, J.; Chevalier, L.; Ducros, Y.; Lebrat, J.F.; Mangeot, P.

    1995-01-01

    We present measurements of the production cross sections times leptonic branching fractions and the transverse momentum distributions of W and Z bosons in pp-bar collisions at √ s = 1.8 TeV using data collected with the DΦ detector at the Fermilab Tevatron pp-bar collider. A preliminary measurement of the W charge asymmetry is also presented. (authors). 27 refs., 9 figs., 3 tabs

  15. Programmable high power beam damper for the Tevatron

    International Nuclear Information System (INIS)

    Crisp, J.; Goodwin, R.; Gerig, R.

    1985-06-01

    A bunch-by-bunch beam damper has been developed for the Fermilab Tevatron. The system reduces betatron oscillation amplitudes and incorporates some useful machine diagnostics. The device is programmable via look-up tables so the output is an arbitrary function, on a bunch-by-bunch basis, of the beam displacement. We are presently using this feature to measure the betatron tune throughout the acceleration cycle. 4 refs

  16. Tevatron HTS power lead test

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2004-01-01

    Two pairs of ASC 6 kA power leads developed for the Tevatron were successfully tested at Fermilab at over-current conditions. Stable operation was achieved while operating at a current of 9.56 kA for five hours and while continuously ramping between 0-9.56 kA at a ramp rate of 200 A/s for one hour. The minimum required liquid nitrogen flow rate was measured to be 1.5 g/s at 10 kA. After ramping up to 10 kA at 200A/s, it took only 15 minutes to stabilize the upper copper section of the lead with a flow of 1.8 g/s of liquid nitrogen vapor. Testing under extreme operating conditions--270-370 kPa liquid nitrogen vapor pressure and over 0.1 T external magnetic field--demonstrated that the HTS part of the lead can safely operate in the current sharing mode and that this design has large operating margin

  17. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  18. Physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Field, Rick; /Florida U.

    2006-04-01

    The theme of the XXXIV International Meeting on Fundamental Physics held in El Escorial, Spain on April 2-7, 2006 was ''From HERA and the TEVATRON to the LHC''. This is a summary of the four lectures I presented on ''Physics at the Tevatron''. Heavy quark production and the production of photons, bosons, and jets at the Tevatron are discussed. Also, a detailed study at the ''underlying event'' at CDF is presented together with a discussion of PYTHIA 6.2 tunes. A look back at the ''old days'' of Feynman-Field collider phenomenology is included.

  19. Fermilab | Science | Particle Accelerators

    Science.gov (United States)

    perhaps most widely felt in the development of the World Wide Web and in the superconducting wire and Fermilab Search Toggle Fermilab Navbar Toggle Search Search Home About Science Jobs Contact Phone public events Fermilab Public Events Lederman Science Center Fermilab Natural Areas Folk and Barn Dancing

  20. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gernot August [Univ. of Mainz (Germany). Inst. for Physics

    2009-03-01

    The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Δmd(Δms) between neutral Bd and $\\bar{B}$d (Bs and $\\bar{B}$s) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing p$\\bar{p}$ collisions at {radical}s = 1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the 'golden', fully hadronic decay mode Bs → πDs(Φπ)X at D0 is presented in this thesis. All data, taken between April 2002 and August 2007 with the D0 detector, corresponding to an integrated luminosity of integral Ldt = 2.8 fb-1 is used. The oscillation frequency Δms and the ratio |Vtd|/|Vts| are determined as Δms = (16.6-0.4+0.5(stat)-0.3+0.4(sys)) ps-1, |Vtd|/|Vts| = 0.213-0.003+0.004(exp) ± 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is

  1. Tevatron physics results

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    I will summarize the physics results from the Tevatron experiments with particular emphasis on the experimental methods used in different kinds of analysis. In particular, the Tevatron is a proton-antiproton collider that has now accumulated more than 2 fb^-1 of luminosity in the two experiments, called CDF and D0. In this lecture I will review the results on inclusive productions of jets, W- and Z-bosons, the results in the flavor sector, the measurements of top production, searches for Higgs boson production and searches for physics beyond the Standard Model. In each case I will explain the basic experimental concepts and methods needed for making the measurement.

  2. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  3. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  4. CERN scientists take part in the Tevatron Run II performance review committee

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Tevatron Run II is under way at Fermilab, exploring the high-energy frontier with upgraded detectors that will address some of the biggest questions in particle physics.Until CERN's LHC switches on, the Tevatron proton-antiproton collider is the world's only source of top quarks. It is the only place where we can search for supersymmetry, for the Higgs boson, and for signatures of additional dimensions of space-time. The US Department of Energy (DOE) recently convened a high-level international review committee to examine Fermilab experts' first-phase plans for the accelerator complex. Pictured here with a dipole magnet in CERN's LHC magnet test facility are the four CERN scientists who took part in the DOE's Tevatron review. Left to right: Francesco Ruggiero, Massimo Placidi, Flemming Pedersen, and Karlheinz Schindl. Further information: CERN Courier 43 (1)

  5. Scientific Opportunity: the Tevatron and the LHC

    CERN Multimedia

    2010-01-01

    The press makes much of the competition between CERN’s LHC and Fermilab’s Tevatron in the search for the Higgs boson. This competitive aspect is real, and probably adds spice to the scientific exploration, but for us such reporting often feels like spilling the entire pepper shaker over a fine meal. The media’s emphasis on competition obscures the more important substance of our long-standing collaboration in scientific discovery.   Our laboratories and our communities have worked together for decades. Europeans have contributed greatly to the Tevatron’s many successes, including the discovery of the top quark, the discovery of fast oscillations in the decay of strange B mesons and the many searches for new phenomena. Americans have contributed to many programs at CERN, notably the extraordinary precision measurements of LEP, and more recently construction of the LHC accelerator and detectors. Fermilab scientists played a vital role throughout 2009 in...

  6. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  7. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  8. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1988-01-01

    Fermilab has tested two compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Both Creare Inc. and Cryogenic Consultants Inc. have supplied units for evaluation. The Creare machine, a high speed centrifugal pump/compressor, yielded 60% adiabatic efficiency but had difficulty withstanding two-phase flow. Cryogenic Consultants provided a reciprocating unit which achieved 59% efficiency and, although lacking the operating characteristics of the turbomachine, endured throughout testing and was insensitive to two-phase flow. Test results are discussed

  9. Seismic studies for Fermilab future collider projects

    International Nuclear Information System (INIS)

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators

  10. Academic Training - Tevatron: studying pp collisions at the highest energy

    CERN Multimedia

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 15, 16, 17, 18 May Main Auditorium, bldg. 500 on 15, 16, 17 May - Council Chamber on 18 May Physics at the Tevatron B. HEINEMANN, Univ. of Liverpool, FERMILAB Physics Results from the Tevatron The Tevatron proton-antiproton collider at Fermilab in the US is currently the world's highest energy collider. At the experiments CDF and D0 a broad physics programme is being pursued, ranging from flavour physics via electroweak precision measurements to searches for the Higgs boson and new particles beyond the Standard Model. In my lecture I will describe some of the highlight measurements in the flavour, electroweak and searches sectors, and the experimental techniques that are used. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/...

  11. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  12. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  13. Bunch coalescing and bunch rotation in the Fermilab Main Ring: Operational experience and comparison with simulations

    International Nuclear Information System (INIS)

    Martin, P.S.; Wildman, D.W.

    1988-01-01

    The Fermilab Tevatron I proton-antiproton collider project requires that the Fermilab Main Ring produce intense bunches of protons and antiprotons for injection into the Tevatron. The process of coalescing a small number of harmonic number h=1113 bunches into a single bunch by bunch-rotating in a lower harmonic rf system is described.The Main Ring is also required to extract onto the antiproton production target bunches with as narrow a time spread as possible. This operation is also discussed. The operation of the bunch coalescing and bunch rotation are compared with simulations using the computer program ESME. 2 refs., 8 figs

  14. Silicon strip detector system for Fermilab E706

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Plants, D; Shepard, P F; Wilkins, R [Pittsburgh Univ., PA (USA); Hossain, S [Northeastern Univ., Boston, MA (USA)

    1984-09-15

    Fermilab Experiment E706 is an experiment to study direct photon production in hadron-hadron collisions at the Fermilab Tevatron II. A part of the charged particle spectrometer is a silicon strip detector system used to determine the position of interaction vertices in the production target and to provide angular formation about the secondary hadrons produced in a collision. We present some design criteria, as well as the results of tests of a wafer similar to those to be used in the experiment.

  15. Supersymmetry at the Tevatron?

    International Nuclear Information System (INIS)

    Lammel, S.

    1998-02-01

    These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and D0, completed a long data taking period in summer of 1995, yielding over 100 pb -1 of proton-antiproton interactions. The data recorded by the experiments are still being analyzed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available

  16. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  17. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  18. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented

  19. Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets

    CERN Document Server

    Velev, Gueorgui; Annala, Gerald; Bauer, Pierre; Carcagno, Ruben H; Di Marco, Joseph; Glass, Henry; Hanft, Ray; Kephart, Robert; Lamm, Michael J; Martens, Michael A; Schlabach, Philip; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  20. Measurement of the top quark properties at the Tevatron and the LHC

    CERN Document Server

    INSPIRE-00040958

    2014-01-01

    Almost two decades after its discovery at Fermilab's Tevatron collider experiments, the top quark is still under the spotlight due to its connections to some of the most interesting puzzles in the Standard Model. The Tevatron has been shut down two years ago, yet some interesting results are coming out of the CDF and D0 collaborations. The LHC collider at CERN produced two orders of magnitude more top quarks than Tevatron's, thus giving birth to a new era for top quark physics. While the LHC is also down at the time of this writing, many top quark physics results are being extracted out of the 7\\,TeV and 8\\,TeV proton proton collisions by the ATLAS and CMS collaborations, and many more are expected to appear before the LHC will be turned on again sometime in 2015. These proceedings cover a selection of recent results produced by the Tevatron and LHC experiments.

  1. Fermilab Education Office - Physicists

    Science.gov (United States)

    on Education Server, but to take full advantage of all of this site's features, you should turn Custom Search Connect with the Fermilab Education Office! Facebook Fermilab Education Office Join these groups: Science Adventures Group Teacher Resource Center Group Twitter Fermilab Education Office For more

  2. Accelerator Preparations for Muon Physics Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  3. Magnetic performance of new Fermilab high gradient quadrupoles

    International Nuclear Information System (INIS)

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2θ coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs

  4. Fermilab turns 50! Congratulations!

    CERN Multimedia

    Staff Association

    2017-01-01

    This year Fermilab turns 50 and the celebrations are ongoing. The ties between CERN and Fermilab are numerous and have been ranging from competition between two labs at the forefront of their field, e.g. with the chase of the top quark, finally discovered by Fermilab, to outright collaboration, e.g. on LHC low-beta quadrupole magnet development and production and in the CMS collaboration. In June, in the name of the CERN staff and scientific community, the CERN Staff Association sent a message to the Fermilab staff and scientific community, through Dr. Nigel Lockyer, Fermilab Director. The letter, and the assurance from Nigel Lockyer that the message has been passed onto the Fermilab community can be found on our website. Congratulations to Fermilab on its fiftieth Anniversary, and to the staff and collaborators who made this laboratory through their hard work, dedication and vision!

  5. Resonant second generation slepton production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Autermann, Christian Tobias [RWTH Aachen Univ. (Germany)

    2006-12-01

    A search for R-parity violating supersymmetry with the D0 detector at the Fermilab Tevatron p$\\bar{p}$-collider is presented. Assuming a non-zero LQ$\\bar{d}$ coupling λ$'\\atop{2jk}$ leads to final state with two muons and jets. A total integrated luminosity of 375 pb-1 collected between April 2002 and August 2004 is utilized. The observed number of events is in agreement with the Standard Model expectation, and limits on Rp supersymmetry are derived.

  6. The dijet invariant mass at the Tevatron Collider

    International Nuclear Information System (INIS)

    Giannetti, P.

    1990-01-01

    The differential cross section of the process p + pbar → jet + jet + X as a function of the dijet invariant mass has been measured with the CDF detector at a center of mass energy of 1.8 TeV at the Tevatron Collider in Fermilab. The present analysis is based on the sample of events collected in the 1988/89 run, amounting to a total integrated luminosity of 4.2 pb -1 . A comparison to leading order QCD and quark compositeness predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. 10 refs., 6 figs

  7. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  8. Minimax: Multiparticle physics at the TeVatron collider

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-01-01

    The author and two dozen others are engaged in a small test/experiment in the Fermilab Tevatron collider. It is called Minimax, and its purpose is to explore large-cross-section physics in the forward direction. The primary goal of Minimax is search for events containing the residue of disoriented chiral condensate (dcc) produced in the primary collision. The theoretical ideas are very speculative. But if they are right, they could provide an interpretation of the Centauro/anti-Centauro anomalies claimed to have been seen in cosmic-ray events. In this paper, the history and status of Minimax is described

  9. Top Production at the Tevatron: The Antiproton Awakens

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Kenneth [Nebraska U.

    2017-07-01

    A long time ago, at a laboratory far, far away, the Fermilab Tevatron collided protons and antiprotons at $\\sqrt{s} = 1.96$ TeV. The CDF and D0 experiments each recorded datasets of about 10 fb$^{-1}$. As such experiments may never be repeated, these are unique datasets that allow for unique measurements. This presentation describes recent results from the two experiments on top-quark production rates, spin orientations, and production asymmetries, which are all probes of the $p\\bar{p}$ initial state.

  10. High Mass Standard Model Higgs searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Petridis Konstantinos A.

    2012-06-01

    Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.

  11. Electroweak and b-physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb -1 and 16 pb -1 , respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios Τ(W → ell ν), the total W width, gauge boson couplings, W decay asymmetry and W'/Z' search. Preliminary new results on b physics are presented: B o - bar B o mixing from D0, and masses and lifetimes of B-mesons from CDF

  12. Review of physics results from the Tevatron: QCD physics

    Energy Technology Data Exchange (ETDEWEB)

    Mesropian, Christina [Rockefeller U.; Bandurin, Dmitry [Virginia U.

    2015-02-17

    We present a summary of results from studies of quantum chromodynamics at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include Run II results for the time period up to the end of Summer 2014. A brief description of Run I results is also given. This review covers a wide spectrum of topics, and includes measurements with jet and vector boson final states in the hard (perturbative) energy regime, as well as studies of soft physics such as diffractive and elastic scatterings, underlying and minimum bias events, hadron fragmentation, and multiple parton interactions.

  13. Fermilab Antiproton source, Recycler ring and Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-22

    The antiproton source for a proton-antiproton collider at Fermilab was proposed in 1976 [1]. The proposal argued that the requisite luminosity (~1029 cm-2sec-1) could be achieved with a facility that would produce and cool approximately 1011 antiprotons per day. Funding for the Tevatron I project (to construct the Antiproton source) was initiated in 1981 and the Tevatron ring itself was completed, as a fixed target accelerator, in the summer of 1983 and the Antiproton Source was completed in 1985. At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, Accumulator and Recycler), 25 independent multi-GHz stochastic cooling systems, the world’s only relativistic electron cooling system and a team of technical experts equal to none. Sustained accumulation of antiprotons was possible at the rate of greater than 2.5×1011 per hour. Record-size stacks of antiprotons in excess of 3×1012 were accumulated in the Accumulator ring and 6×1012 in the Recycler. In some special cases, the antiprotons were stored in rings for more than 50 days. Note, that over the years, some 1016 antiprotons were produced and accumulated at Fermilab, which is about 17 nanograms and more than 90% of the world’s total man-made quantity of nuclear antimatter. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II [2], neutrino experiments using 8 GeV and 120 GeV proton beams, as well as a test beam facility and other fixed target experiments using 120 GeV primary proton beams. The following sections provide a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  14. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  15. The Fermilab Accelerator control system

    Science.gov (United States)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  16. The Fermilab accelerator control system

    International Nuclear Information System (INIS)

    Bogert, D.

    1986-01-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A ''Host'' computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded ''events'' in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of 'exception conditions' and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the ''Host'' processors. (orig.)

  17. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    Gian Giudice; Ellis, Nick; Jakobs, Karl; Mage, Patricia; Seymour, Michael H; Spiropulu, Maria; Wilkinson, Guy; CERN-FNAL Summer School; Hadron Collider Physics Summer School

    2007-01-01

    For the past few years, experiments at the Fermilab Tevatron Collider have once again been exploring uncharted territory at the current energy frontier of particle physics. With CERN's LHC operations to start in 2007, a new era in the exploration of the fundamental laws of nature will begin. In anticipation of this era of discovery, Fermilab and CERN are jointly organizing a series of "Hadron Collider Physics Summer Schools", whose main goal is to offer a complete picture of both the theoretical and experimental aspects of hadron collider physics. Preparing young researchers to tackle the current and anticipated challenges at hadron colliders, and spreading the global knowledge required for a timely and competent exploitation of the LHC physics potential, are concerns equally shared by CERN, the LHC host laboratory, and by Fermilab, the home of the Tevatron and host of CMS's LHC Physics Center in the U.S. The CERN-Fermilab Hadron Collider Physics Summer School is targeted particularly at young postdocs in exp...

  18. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barreiro Guimaraes da Costa, Joao; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Beecher, Daniel Paul; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bizjak, Ilija; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Eusebi, Ricardo; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Nurse, Emily L; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Riddick, Thomas C; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shekhar, Ravi; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stelzer-Chilton, Oliver; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Sun, Siyuan; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Tecker-Shreyber, Irina; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-04-03

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  19. Fermilab Physicists don't see higgs, argue they should keep looking

    CERN Document Server

    Cho, Adrian

    2010-01-01

    "This year's International Conference on High Energy Physics was a case study in irony. The meeting was billed as the coming-out party for the Large Hadron Collider (LHC), the gigantic European atom smasher that started taking data in March, but the buzz surrounded results form the older Tevatron collider at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois." (1 page)

  20. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given

  1. Recent results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Vellidis, Costas; Bravina, L.; Foka, Y.; Kabana, S.

    2015-01-01

    The Tevatron p$\\bar{p}$ collider was shut down in 2011, after 10 years of high performance operation at a center-of-mass energy √s = 1.96 TeV in Run II. The two experiments, CDF and DZero, continue to analyze the collected data, aiming to extract all possible information regarding studies of the standard model and searches for new physics. A short review of some of the recent measurements at the Tevatron, and of the impact of the Tevatron program to high energy physics, is presented.

  2. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  3. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    International Nuclear Information System (INIS)

    Edstrom, Dean R.

    2009-01-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron

  4. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  5. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-01-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation of the Fermilab superconducting Tevatron accelerator is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics run at the previous energy of 900 GeV. This has allowed the author to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which have taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, the new satellite refrigerator controls system is capable of the expansion necessary to reach this goal. New features are being added to the controls systems which will allow for more intelligent control and better diagnostics for component monitoring and trending

  6. Fermilab Education Office - Volunteer

    Science.gov (United States)

    Search Opportunities for Education and Outreach for Employees and Users Fermilab employees, users, and contribute and let us know. If you have ideas for education and outreach that are not listed here, email presents the Director's Award for exceptional support to Fermilab's K–12 Education programs. Visit schools

  7. FERMILAB: Bob Wilson 80

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-06-15

    On March 4, an international symposium and tribute was held at Fermilab in honour of the Laboratory's founding director Robert Rathbun Wilson on the occasion of his 80th birthday. The symposium - 'Celebrating an Era of Courage and Creativity' - featured talks and reflections by many of Wilson's colleagues and friends including Fermilab Director John Peoples and Director Emeritus Leon Lederman.

  8. Applying EVM principles to Tevatron Beam Position Monitor Project

    International Nuclear Information System (INIS)

    Banerjee, Bakul

    2005-01-01

    At Fermi National Accelerator Laboratory (Fermilab), the Tevatron high energy particle collider must meet the increasing scientific demand of higher beam luminosity. To achieve this higher luminosity goal, U. S. Department of Energy (DOE) sponsored a major upgrade of capabilities of Fermilab's accelerator complex that spans five years and costs over fifty million dollars. Tevatron Beam Position Monitor (BPM) system upgrade is a part of this project, generally called RunII upgrade project. Since the purpose of the Tevatron collider is to detect the smashing of proton and anti-protons orbiting the circular accelerator in opposite directions, capability to detect positions of both protons and antiprotons at a high resolution level is a desirable functionality of the monitoring system. The original system was installed during early 1980s, along with the original construction of the Tevatron. However, electronic technology available in 1980s did not allow for the detection of significantly smaller resolution of antiprotons. The objective of the upgrade project is to replace the existing BPM system with a new system utilizing capabilities of modern electronics enhanced by a front-end software driven by a real-time operating software. The new BPM system is designed to detect both protons and antiprotons with increased resolution of up to an order of magnitude. The new system is capable of maintaining a very high-level of data integrity and system reliability. The system consists of 27 VME crates installed at 27 service buildings around the Tevatron ring servicing 236 beam position monitors placed underground, inside the accelerator tunnel. Each crate consists of a single Timing Generator Fanout module, custom made by Fermilab staff, one MVME processor card running VxWorks 5.5, multiple Echotek Digital Receiver boards complimented by custom made Filter Board. The VxWorks based front-end software communicates with the Main Accelerator Control software via a special

  9. B physics at the tevatron

    International Nuclear Information System (INIS)

    1998-07-01

    Precision B-physics results from the CDF and D0 Collaborations based on data collected during the Tevatron 1992-96 run are presented. In particular we discuss the measurement of the B s meson lifetime, B c meson observation, and B 0 - anti B 0 mixing results obtained using time-evolution analyses. Prospects for the next Tevatron run, starting in 1999, are also reported

  10. Updated overview of the Tevatron control system

    International Nuclear Information System (INIS)

    Lucas, P.

    1987-10-01

    A single unified control system is used for all of the Fermilab accelerators and storage rings, from the LINAC to the Tevatron and antiproton source. A review of the general features is given - these include a 'host' system consisting of a number of minicomputers integrated with many distributed microprocessors in a variety of subsystems, usage of an in-house developed protocol, GAS, for communication between the two classes of machines, and a Parameter Page program, designed in conjunction with the system database, which allows a wide variety of quantities to be read and set in a coherent fashion. Recent developments include the implementation of a block transfer and 'fast time plot' facility through CAMAC, inclusion of several new computers in the host, a better understanding of system throughput, greatly improved reliability, advent of programs which sequence a large number of independent operations, and the construction of new hardware subsystems. Possible future system upgrades will be briefly presented. A summary of the utilization of a quite large software staff, at a time when the system is no longer under construction, will be discussed

  11. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  12. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  13. Fermilab back in business

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The implementation of the energy saver into the Fermilab accelerator is described by which protons can be accelerated to 500 GeV. Furthermore the new experimental areas and the extraction system are described. (HSI).

  14. Hadron physics at Fermilab

    International Nuclear Information System (INIS)

    Ferbel, T.

    1976-01-01

    Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures

  15. Experimental program at Fermilab

    International Nuclear Information System (INIS)

    Jovanovic, D.

    1974-01-01

    The experimental program at Fermilab is briefly surveyed: accelerators and experimental areas, current experiments such as elastic scattering of π +- , K +- , p +- , on proton and deuteron total cross sections, neutrino physics, high transverse momentum [fr

  16. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  17. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  18. FERMILAB: Bob Wilson 80

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On March 4, an international symposium and tribute was held at Fermilab in honour of the Laboratory's founding director Robert Rathbun Wilson on the occasion of his 80th birthday. The symposium - 'Celebrating an Era of Courage and Creativity' - featured talks and reflections by many of Wilson's colleagues and friends including Fermilab Director John Peoples and Director Emeritus Leon Lederman

  19. Fermilab Research Program Workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1984-05-01

    The Fermilab Research Program Workbook has been published annually for the past several years to assist the Physics Advisory Committee in the yearly program review conducted during its summer meeting. While this is still a major aim, it is hoped that the Workbook will also prove useful to others seeking information on the current status of Fermilab experiments and the properties of beams at the Laboratory. In addition, short summaries of approved experiments are also included

  20. Squark production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Hoepker, R.; Spira, M.; Zerwas, P.M.

    1994-11-01

    We have determined the QCD corrections to the production of squark-antisquark pairs in p anti p collisions at the Tevatron. If the next-to-leading order corrections are taken into account, the renormalization/factorization scale dependence of the theoretical prediction for the cross section is reduced considerably. The higher order corrections increase the production cross section at the Tevatron by about a factor two if we compare the next-to-leading order prediction at a scale near the sqaurk mass with the lowest order prediction for which, in the experimental analyses, the scale was identified with the invariant energy of the parton subprocess. This results in a rise of the experimental lower bound on the squark mass from the Tevatron by about 20 GeV. (orig.)

  1. A facility to test short superconducting accelerator magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R ampersand D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-β Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented

  2. 2007 2008 ACADEMIC TRAINING PROGRAMME: Tevatron: The Cinderella Story or The Art Of Collider Commissioning

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 01, 03, 04, 05 October 2007 Main Auditorium, bldg. 500 Tevatron: The Cinderella Story or The Art Of Collider Commissioning V. SHILTSEV / Fermi National Accelerator Laboraty, Batavia IL, USA The Tevatron Collider at Fermilab (Batavia, IL, USA) is the world’s highest energy particle collider at 1.8TeV c.m.e. The machine was a centerpiece of the US and world’s High Energy Physics for many years. Currently, the Tevatron is in the last years of its operation in so-called Run II which started 2001 and is tentatively scheduled to end in 2010. In this lecture series, we’ll try to learn from the exciting story of the Tevatron Collider Run II: the story of long preparations, great expectations, initial difficulties, years of "blood and sweat", continuous upgrades, exceeding its goals, high emotions, tune-up of accelerator organization for "combat fighting". The lectures will cover Introduction to the Tevatron, its history and Run II; "Plumbing"...

  3. Prospects for 6- to 10-Tesla magnets for a Tevatron upgrade

    International Nuclear Information System (INIS)

    Mantsch, P.M.

    1989-01-01

    This paper reports on prospects for 6- to 10-tesla magnets for a Teratron upgrade. The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: (1) bar pp at 3 x 10 31 --Increase luminosity by improvements to the bar p source. (2) p bar p at 1 TeV and 2 x 10 32 --Move the main ring to a new tunnel, build a second Tevatron ring. (3) bar pp > 1.5 TeV and 7 x 10 30 --Replace the Tevatron with a higher energy ring. The last two options require new higher-field magnets. The second option requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron-strength (4.4-T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8- to 9-tesla magnets

  4. Prospects for 6 to 10 tesla magnets for a TEVATRON upgrade

    International Nuclear Information System (INIS)

    Mantsch, Paul M.

    1988-01-01

    The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: /bar p/p at 3 /times/ 10 31 --Increase luminosity by improvements to the p source. pp at 1 TeV and 2 /times/ 10 32 --Move the main ring to a new tunnel, build a second Tevatron ring, and /bar p/p > 1.5 TeV and 7 /times/ 10 30 --Replace the tevatron with a higher energy ring. The last two options requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron strength (4.4 T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8--9 tesla magnets. The viability of the high-energy option then depends on the practicality of sizable numbers of reliable 8--9 tesla dipoles as well as 800 6.6-tesla dipoles. The following develops a specification for an 8.8 T dipole, examines the design considerations and reviews the current state of high-field magnet development. 22 figs., 3 tabs

  5. Multiple Parton Interactions in p$bar{p}$ Collisions in D0 Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Golovanov, Georgy [Joint Inst. for Nuclear Research (JINR), Dubna (Russia)

    2016-01-01

    The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy

  6. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  7. Improvement of the voltage properties of the Fermilab electrostatic septa

    International Nuclear Information System (INIS)

    Trbojevic, D.; Crawford, C.; Childress, S.; Tinsely, D.

    1985-01-01

    In the Fermilab Tevatron Switchyard proton beam splits are initiated by a wire array electrostatic septum. At 1 TeV energy, and with fields limited to 50 kV/cm, and electrostatic septum more than 20 meters in length is required to produce the required angular separation between the beams for the Proton and Neutrino/Meson lines. New techniques have been investigated that will allow reliable operation at fields above 75 kV/cm with resultant beam line economy. Changes in construction and conditioning procedures have been studied using a short sample of an electrostatic septum

  8. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes

  9. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  10. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  11. Impedances and beam stability issues of the Fermilab recycler ring

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10 12 anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole)

  12. Fermilab turns up the heat on electron cooling

    CERN Document Server

    Riesselmann, K

    2002-01-01

    A technique that was first proposed by Gersh Budker in 1966 is being injected with new life by a team of physicists at Fermilab in the US. Working on an ambitious electron-cooling project, the team set a new world record for DC beam power, they maintained a continuous 3.5 MeV electron beam with a current of more than 500 mA for up to 8 h with only short interruptions. They use an electron beam to cool antiprotons inside Fermilab's 3 km Recycler antiproton storage ring and boost the luminosity of the laboratory's Tevatron collider. When the electron-cooling system is complete, electrons and antiprotons will travel side by side in the Recycler.

  13. Achievements and Lessons from Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.

    2011-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - beginning operation in December of 1985 until it was overtaken by LHC in 2011. The aim of the this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 10 30 cm -2 s -1 , however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. Tevatron will be shut off September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. Below we briefly present the history of the Tevatron, major advances in accelerator physics, and technology implemented during the long quest for better and better performance. We also discuss some lessons learned from our experience.

  14. New Measurements of Upsilon Spin Alignment at the Tevatron

    Directory of Open Access Journals (Sweden)

    Jones Matthew

    2012-06-01

    Full Text Available We describe a new analysis of γ(nS → μ+μ− decays collected in pp¯ $par p$ collisions with the CDF II detector at the Fermilab Tevatron. This analysis measures the angular distributions of the final state muons in the γ rest frame, providing new information about γ production polarization. We find the angular distributions to be nearly isotropic up to γ pT of 40 GeV/c, consistent with previous measurements by CDF, but inconsistent with results obtained by the D0 experiment. The results are compared with recent NLO calculations based on color-singlet matrix elements and non-relativistic QCD with color-octet matrix elements.

  15. A development plan for the Fermilab proton source

    International Nuclear Information System (INIS)

    Holmes, S. D.

    1997-01-01

    The present Fermilab Proton Source is composed of a 750 KV ion source, a 400 MeV Linac, and an 8 GeV Booster synchrotron. This facility currently provides proton beams at intensities up to 5 x 10 10 protons/bunch for injection into the Main Ring in support of the current Tevatron fixed target run. Following completion of the Main Injector project in 1999, the Proton Source is expected to provide protons to the Main Injector at an intensity of 6 x 10 10 protons/bunch as required to meet established performance goals for Tevatron Collider Run II. With the advent of the Main Injector the demand for protons in support of a diverse physics research program at Fermilab will grow. This is because the Main Injector creates a new capability for simultaneous operation of the collider and fixed target programs at 120 GeV. It has also been recently appreciated that a physics program based on the utilization of unallocated 8 GeV Booster cycles is potentially very attractive. A variety of experiments are either approved or under consideration including the Neutrinos at the Main Injector (NUMI) project, Kaons at the Main Injector (KAMI), and an rf separated K + beam for CPT tests, all utilizing 120 GeV protons, and a low energy neutrino (MiniBooNe) or muon program based on 8 GeV protons from the Booster. In addition significant effort is now being invested in defining paths to a factor of five improvement in Tevatron collider luminosity beyond those expected in Run II and in understanding the possible future siting of either a very large hadron collider or a modest energy ''First Muon Collider'' (FMC) at Fermilab. Support for these varied activities is beyond the capabilities of the current Proton Source--in the case of the FMC by about a factor of ten as measured in delivered protons per second. The purpose of this document is to describe a possible evolution of the Fermilab Proton Source over the next ten years. The goal is to outline a staged plan, with significant

  16. Report of the Fermilab ILC Citizens' Task Force

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  17. Fermilab's quest to keep power

    CERN Multimedia

    Kunz, Tona

    2005-01-01

    Fermilab wants to build a new collider, but first it must secure federal funding. Fermilab officials have set an ambitious goal of research and development paired with politicking for the next few years (3 pages)

  18. Message from Fermilab Director

    CERN Multimedia

    2009-01-01

    With this issue’s message, Fermilab Director Pier Oddone opens a new series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer, wrote a message in Tuesday’s edition of Fermilab TodayPerspectivesNothing is more important for our worldwide particle physics community than successfully turning on the LHC later this year. The promise for great discoveries is huge, and many of the plans for our future depend on LHC results. Those of us planning national programmes in anticipation of data from the LHC face formidable challenges to develop future facilities that are complementary to the LHC, whatever the physics discoveries may be. At Fermilab, this has led us to move forcefully with a programme at the intensity frontier, where experiments with neutrinos and rare decays open a complementary window into nature. Our ultimate goal for a unified picture of nat...

  19. The Fermilab antihydrogen program

    CERN Document Server

    Mandelkern, M A

    1999-01-01

    The antihydrogen atom, the bound state of an antiproton and a positron, is the antiparticle of the hydrogen stem. Until very recently no antimatter atoms had been observed. Experiments at CERN and Fermilab have reported observations of small amounts of antihydrogen but are in sharp disagreement. At Fermilab we have produced a background-free sample of 66 atoms. CPT invariance predicts that the spectrum and the lifetimes of antihydrogen states are identical to those of hydrogen. This fundamental symmetry has not been tested in atoms. Experiments for the further study of antihydrogen are planned for both laboratories. At CERN a new antiproton accumulator is expected to facilitate the trapping of cold antihydrogen, followed by high precision spectroscopic measurements. At Fermilab an interferometric technique analogous to measurement of the K/sub S/K/sub L/ mass difference will be used to determine the n =2 antihydrogen spectrum using a beam of high momentum antihydrogen atoms. (11 refs).

  20. ASIC design at Fermilab

    International Nuclear Information System (INIS)

    Yarema, R.

    1991-06-01

    In the past few years, ASIC (Application Specific Integrated Circuit) design has become important at Fermilab. The purpose of this paper is to present an overview of the in-house ASIC design activity which has taken place. This design effort has added much value to the high energy physics program and physics capability at Fermilab. The two approaches to ASIC development being pursued at Fermilab are examined by looking at some of the types of projects where ASICs are being used or contemplated. To help estimate the cost of future designs, a cost comparison is given to show the relative development and production expenses for these two ASIC approaches. 5 refs., 14 figs., 7 tabs

  1. Fermilab and Latin America

    International Nuclear Information System (INIS)

    Lederman, Leon M.

    2006-01-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet

  2. QA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1988-01-01

    This paper opens with a brief overview of the purpose of Fermilab and historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, (1) what is hermeneutics and why are hermeneutical considerations relevant for QA, (2) a critical analysis of NQA-1 focussing on teleological aspects of the standard, (3) a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  3. Fermilab's DART DA system

    International Nuclear Information System (INIS)

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported

  4. Fermilab Education Office - Director's Award

    Science.gov (United States)

    Search The Director's Award Exceptional Service To Fermilab's K-12 Education Programs The many successes of Fermilab's K-12 education programs depend on the talents of the over 200 employees, users, and $1,000, made possible by an anonymous donor to Fermilab Friends for Science Education, recognizes one

  5. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode

    NARCIS (Netherlands)

    Aaltonen, T.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.

    2010-01-01

    We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background

  6. Using the circulating beam in the Fermilab antiproton accumulator for experiments

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1988-01-01

    The Fermilab Accumulator is a storage ring optimized for stacking and stochastic cooling 8 GeV antiprotons for the Tevatron collider. Minor modifications have been made to provide for beam in the energy range 8.0-2.9 GeV of luminosity /approximately/10 31 cm -2 s/sup - 1/ with a hydrogen jet internal target. Experience to date consists of machine studies and detector engineering run with protons. 7 refs

  7. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  8. Tevatron serial data repeater system

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1981-01-01

    A ten megabit per second serial data repeater system has been developed for the 6.28km Tevatron accelerator. The repeaters are positioned at each of the thirty service buildings and accommodate control and abort system communications as well as distribution of the Tevatron time and energy clocks. The repeaters are transparent to the particular protocol of the transmissions. Serial data are encoded locally as unipolar two volt signals employing the self-clocking Manchester Bi-Phase code. The repeaters modulate the local signals to low-power bursts of 50 MHz rf carrier for the 260m transmission between service buildings. The repeaters also demodulate the transmission and restructure the data for local utilization. The employment of frequency discrimination techniques yields high immunity to the characteristic noise spectrum

  9. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  10. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  11. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  12. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  13. Production Farms at Fermilab

    International Nuclear Information System (INIS)

    Fischler, M.; Rinaldo, F.; Wolbers, S.

    1994-05-01

    UNIX Farms at Fermilab have been used for more than than three years to solve the problem of providing massive amounts of CPU processing power for event reconstruction. System configurations, parallel processing software, administration and allocation issues, production issues and other experiences and plans are discussed

  14. Fermilab | Publications and Videos

    Science.gov (United States)

    collection of particle physics books and journals. The Library also offers a range of services including Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle

  15. Fermilab Education Office - Contacts

    Science.gov (United States)

    Search The Office of Education and Public Outreach: Contacts All telephone numbers require area code Presentations for Presenters 840-3094 Office of Education and Public Outreach Spencer Pasero spasero@fnal.gov Education Office 840-3076 Fermilab Friends for Science Education General Questions Susan Dahl sdahl@fnal.gov

  16. Fermilab Education: Physicists

    Science.gov (United States)

    Search Education and Outreach: Resources and Opportunties for Fermilab employees and Users A variety of resources and opportunities are available for physicists interested in education and outreach (For general Data (6–12) Physical Science/Physics Instructional Resources (K–12) US Particle Physics Education and

  17. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  18. B physics at the Tevatron

    International Nuclear Information System (INIS)

    Morello, M.J.

    2011-01-01

    The CDF and DO experiments at the Tevatron pp collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e + e - colliders. This provides a rich, and highly rewarding program that is currently reaching full maturity. I report a few recent world-leading results on rare decays, CP-violation in B 0 s s mixing, b→s penguin decays, and charm physics.

  19. A realtime feedback microprocessor for the TEVATRON

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1993-01-01

    A feedback microprocessor has been built for the TEVATRON. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor includes a finite state machine. Each state corresponds to a specific TEVATRON operation. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime correction. The authors also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. This talk will describe use of this device to control the TEVATRON tunes and discuss other uses

  20. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  1. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5x10 3l cm -2 with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10x10 3l cm -2 sec -1 , resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to ∼100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described

  2. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  3. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Fermilab

    2006-01-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations

  4. Deterioration of the Skew Quadrupole Moment in Tevatron Dipoles Over Time

    CERN Document Server

    Syphers, Michael J

    2005-01-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by t...

  5. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-06-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 μs. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 μs needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  6. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 μs. The current waveform is required to rise to 90% of I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 μs needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  7. Search for supersymmetric particles decaying into tri-leptons through R-parity violation, with D0 Run-II experiment at Fermilab; Recherche de particules supersymetriques se desintegrant en R-parite violee (couplage {lambda}(121)) dans un etat final a trois leptons, avec les donnees du Run-II de l'experience D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Magnan, A.M

    2005-07-15

    This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,{chi}{sub 1}), each one decaying into ee{nu}{sub {mu}} or e{mu}{nu}{sub e} with a {lambda}(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb{sup -1} of analyzed data, for 0.4 + 0.35 - 0.05 (sta) {+-} 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan({beta}) = 5, A{sub 0} = 0, m{sub 0} = 100 and 1000 GeV.c{sup -2} and both signs of {mu}. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c{sup -2}), we can exclude, at 95% Confidence Level, the region m({chi}{sub 1}{sup {+-}}) < 200 GeV.c{sup -2} for all masses of {chi}{sub 1}{sup 0} LSP. (author)

  8. First measurement of the W-boson mass in run II of the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-12

    We present a measurement of the W-boson mass using 200 pb{-1} of data collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at run II of the Fermilab Tevatron. With a sample of 63 964 W-->enu candidates and 51 128 W-->munu candidates, we measure M_{W}=80 413+/-34{stat}+/-34{syst}=80,413+/-48 MeV/c;{2}. This is the most precise single measurement of the W-boson mass to date.

  9. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Toback, David [Texas A-M; ŽIvković, Lidija [Belgrade U.

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  10. BFKL Tests at the Tevatron

    International Nuclear Information System (INIS)

    Goussiou, A.

    1997-06-01

    The azimuthal decorrelation of jets as a function of their rapidity separation and the dependence of the fraction of jet events with central rapidity gaps on the center of mass energy are studied in p anti p collisions at the Tevatron. The preliminary results on jet decorrelation are in disagreement with calculations based on the Leading Logarithmic Approximation for BFKL resummation. The preliminary results on the √s--dependence of the central rapidity gap events are in disagreement with the two-gluon model for color-singlet exchange

  11. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  12. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2012-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  13. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2011-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  14. Parton distribution and Tevatron jet data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.

    2011-05-01

    We study the impact of Tevatron jet data on a global fit of parton distribution functions and on the determination of the value of the strong coupling constant α s (M Z ). The consequences are illustrated for cross sections of Higgs boson production at Tevatron and the LHC. (orig.)

  15. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system

  16. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system

  17. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  18. Measurements of Top Properties at the Tevatron

    International Nuclear Information System (INIS)

    Husemann, Ulrich; Yale U.

    2007-01-01

    The large data samples of thousands of top events collected at the Tevatron experiments CDF and D(O) allow for a variety of measurements to analyze the properties of the top quark. Guided by the question ''Is the top quark observed at the Tevatron really the top quark of the standard model,'' we present Tevatron analyses studying the top production mechanism including resonant t(bar t) production, the V -A structure of the t → Wb decay vertex, the charge of the top quark, and single-top production via flavor-changing neutral currents

  19. General P-T fit construction for He, N2, Ar, H2 and Ne VPT used at Fermilab

    International Nuclear Information System (INIS)

    Geynisman, M.; Makara, J.

    1992-01-01

    Polynomial fits are constructed for Fermilab Tevatron vapor pressure thermometers (VPT) for use with ACNET database. Fit coefficients and P-T graphs are included. Fits cover the VPT saturation region and the gas region. The thermodynamic analysis of VPT bulb is used to define transition points for each cryogenic VPT with given geometry and ''charge'' conditions. The methodology is described to repeat fit construction calculations for any geometry and ''charge'' conditions if required

  20. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  1. Precision electroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    James, Eric B.

    2006-01-01

    An overview of Tevatron electroweak measurements performed by the CDF and Dφ experiments is presented. The current status and future prospects for high precision measurements of electroweak parameters and detailed studies of boson production are highlighted. (author)

  2. Tevatron alignment issues 2003-2004

    International Nuclear Information System (INIS)

    Volk, J.T.; Annala, J.; Elementi, L.; Gelfand, N.; Gollwitzer, K.E.; Greenwood, J.; Martens, M.; Moore, C.; Nobrega, A.; Russell, A.D.; Shiltsev, V.; Stefanski, R.; Sager, T.; Syphers, M.J.; Wojcik, G.

    2005-01-01

    It was observed during the early part of Run II that dipole corrector currents in the Tevatron were changing over time. Measurement of the roll for dipoles and quadrupoles confirmed that there was a slow and systematic movement of the magnets from their ideal position. A simple system using a digital protractor and laptop computer was developed to allow roll measurements of all dipoles and quadrupoles. These measurements showed that many magnets in the Tevatron had rolled more than 1 milliradian. To aid in magnet alignment a new survey network was built in the Tevatron tunnel. This network is based on the use of free centering laser tracker. During the measurement of the network coordinates for all dipole, quadrupole and corrector magnets were obtained. This paper discusses roll measurement techniques and data, the old and new Tevatron alignment network

  3. The upgraded Tevatron front end

    International Nuclear Information System (INIS)

    Glass, M.; Zagel, J.; Smith, P.; Marsh, W.; Smolucha, J.

    1990-01-01

    We are replacing the computers which support the CAMAC crates in the Fermilab accelerator control system. We want a significant performance increase, but we still want to be able to service scores of different varieties of CAMAC cards in a manner essentially transparent to console applications software. Our new architecture is based on symmetric multiprocessing. Several processors on the same bus, each running identical software, work simultaneously at satisfying different pieces of a console's request for data. We dynamically adjust the load between the processors. We can obtain more processing power by simply plugging in more processor cards and rebooting. We describe in this paper what we believe to be the interesting architectural features of the new front-end computers. We also note how we use some of the advanced features of the Multibus TM II bus and the Intel 80386 processor design to achieve reliability and expandability of both hardware and software. (orig.)

  4. The Fermilab ACNET upgrade

    International Nuclear Information System (INIS)

    Briegel, C.; Johnson, G.; Winterowd, L.

    1990-01-01

    The Fermilab Accelerator Controls Network (ACNET) upgrade consists of a new physical medium (IEEE 802.5 token ring), additions to the calling sequence and added processor support. ACNET is the accelerator control backbone network for all data communication. A proprietary network was replaced by an IEEE standard enabling an open network with excellent characteristics for the control system. The calling sequence was enhanced for the added capabilities of the token-ring interface such as 'gather-read' and 'scatter-write'. In addition to prior support of DEC PDP11s under RS11M and VAXs under VMS, the ACNET calling sequence was implemented in the language C for the IBM PC with MS-DOS and Motorola 680x0 with MTOS using VME bus. Additional support is in progress for Intel 80x86 with MTOS using Multibus II. (orig.)

  5. W mass and Triple Gauge Couplings at Tevatron

    Directory of Open Access Journals (Sweden)

    Pétroff Pierre

    2013-05-01

    Full Text Available The W mass is a crucial parameter in the Standard Model (SM of particle physics, providing constraints on the mass of the Higgs boson as well as on new physics models via quantum loop corrections. On the other hand, any deviation of the triple gauge boson couplings (TGC from their values predicted by the SM would be also an indication for new physics. We present recent measurements on W boson mass and searches for anomalous TGC (aTGC in Wγ, Zγ, WW, WZ and ZZ at Fermilab Tevatron both by CDF and DØ Collaborations. The CDF Collaboration has measured the W boson mass using data corresponding to 2.2 fb−1 of integrated luminosity. The measurement, performed using electron and muon decays of W boson, yields a mass of MW = 80387 ± 19 MeV. The DØ Collaboration has measured MW = 80367 ± 26 MeV with data corresponding to 4.3 fb−1 of integrated luminosity in the channel W → ev. The combination with an earlier DØ result, using independant data sample at 1 fb−1 of integrated luminosity, yields MW = 80375 ± 23 MeV. The limits on anomalous TGCs parameters are consistent with the SM expectations.

  6. The KAMI experiment at Fermilab

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2001-01-01

    The KAMI experiment at Fermilab is planning to measure the CP violation parameter, η, by observing more than 100 K L → π 0 νν-bar events. Basic studies performed for the new experiment are presented

  7. Vertically Integrated Circuits at Fermilab

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  8. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  9. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  10. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  11. FERMILAB: First D0 physics results

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: The excitement of observing the first collision in the DO detector at Fermilab's Tevatron protonantiproton collider on May 12 1992 was the payoff for more than eight years of hard work by a large and dedicated group of physicists, students, engineers, technicians and other support staff. The DO detector - an international collaboration of about 370 physicists (including some 65 graduate students) from 36 institutions - had completed the journey from design (1983-1984) to final construction and subsequent rolling in to the collision hall in February 1992. Commissioning the detector with beam lasted from May-July 1992 and went very well. The collaboration showed that the detector was well on the way to achieving design goals including precision measurements of electrons, muons and photons, together with quark and gluon jets, and to be sensitive to missing transverse energy indicative of noninteracting particles such as neutrinos. With the start of the physics run in August 1992, the collaboration turned its attention to extracting the first results in time for the major (DPF) meeting at Fermilab last November (January, page 12). By the mid- January break in the run, DO had accumulated about 7 inverse picobarns of physics data. Large samples of Ws and Zs have been logged in both electron and muon channels. This will allow sensitive studies of the W mass and of the triple WWZ gauge boson coupling. The strengths of the detector will provide a powerful tool to search for the elusive top quark. With the top expected to decay solely to a W boson and a b quark, sensitivity is needed to leptons, jets and missing transverse energy, or combinations of them. The search is underway. The full coverage of the detector, and the ability to trigger on jets at small angles makes it well suited for studies of quark field (QCD) dynamics. In addition, fine segmentation and good energy resolution allow good measurement of direct photons, revealing the gluon content of

  12. Review of the Fermilab main ring accelerator study program as directed to the pp program

    International Nuclear Information System (INIS)

    Griffin, J.E.; MacLachlan, J.A.; Bridges, J.F.

    1981-01-01

    Recently the colliding beam goals at Fermilab have been redirected toward 2 TeV c.m. pp physics to be done in the Tevatron. The booster-main ring complex will be the proton injector and the source of protons for anti-proton production. Consequently, the emphasis of recent studies in the main ring has been directed at those problems which arise from the beam manipulation necessary for the pp scenario. These studies are divided into three categories: 1) true storage studies directed toward revealing problems and techniques likely to apply to storage in the Tevatron, 2) beam manipulations necessary for the production of anti-protons, and 3) beam manipulations necessary for producing single proton bunches containing 10/sup 11/ protons each. 16 refs

  13. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  14. Fermilab Plan with a High Intensity Proton Source

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fermilab, the US’s primary laboratory for particle physics, proposes a plan to maintain leadership for the laboratory and U.S. particle physics in the quest to discover the fundamental nature of the physical universe in the decades ahead. Discoveries of the physics of the Quantum Universe would come from powerful next generation particle accelerators. Fermilab’s Tevatron, currently the world’s most powerful particle accelerator, will shut down by the end of this decade after the LHC at CERN begins operations. At the LHC, U.S. physicists will join scientists from around the world in the exploration of the physics of the Terascale. To follow the LHC, physicists propose the International Linear Collider, a globally funded and operated accelerator to build on LHC results and illuminate Terascale science. Fermilab will work to host the proposed ILC in the U.S. as soon as possible, maintaining the nation’s historic leadership of frontier particle physics. Should events postpone the start of the ILC, Ferm...

  15. FERMILAB: More antiprotons

    International Nuclear Information System (INIS)

    Visnjic, Vladimir

    1993-01-01

    The excellent performance of the Fermilab antiproton complex during the recent Collider run and its future potential are the cumulative result of many improvements over the past few years, ranging from major projects like upgrading the stack-tail stochastic cooling system in the Accumulator to minor improvements like automating tuning procedures. The antiprotons are created when the 120 GeV proton beam from the Main Ring hits the target. A good target should have high yield of antiprotons, should not melt, and should not crack due to shock waves. The old copper target has been replaced by a new one made of nickel. The yield into the Debuncher is 2 x 10 -5 antiprotons/proton. While this is only marginally better than for copper, the nickel target has high melting point energy (1070 J/g) and a low rate of increase in pressure with deposited energy, making it the target of choice for the proton intensities expected in the Main Injector era (June, page 10). Of the broad spectrum of all kinds of secondaries, only a tiny fraction are 8 GeV antiprotons. The 8 GeV negative charge secondaries are bent through 3° by a new pulsed magnet. Instead of a 200-turn magnet with coils separated by epoxy as in the past, the new magnet has one turn carrying 45.5 kA of current. This single turn pulsed magnet uses radiation hard ceramic and is much more robust

  16. Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Palencia, Jose Enrique; /Fermilab

    2009-01-01

    We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.

  17. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-02

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  18. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  19. Determination of the jet energy scale at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, A.; Hatakeyama, K. [Rockefeller Univ., New York, NY 10021 (United States); Canelli, F. [Univ. of California at Los Angeles, Los Angeles, CA 90024 (United States)]. E-mail: canelli@fnal.gov; Heinemann, B. [Univ. of Liverpool, Liverpool L69 7ZE (United Kingdom); Adelman, J.; Hoffman, D.; Kwang, S.; Malkus, A.; Shochet, M. [Enrico Fermi Inst., Univ. of Chicago, Chicago, IL 60637 (United States); Ambrose, D. [Univ. of Pennsylvania, Philadelphia, PA 19104 (United States); Arguin, J.-F. [Univ. of Toronto, Toronto, Canada M5S 1A7 (Canada); Barbaro-Galtieri, A.; Currat, C.; Gibson, A.; Movilla-Fernandez, P.A. [Ernest Orlando Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Budd, H.; Chung, Y.S.; Sakumoto, W.; Yun, G. [Univ. of Rochester, Rochester, NY 14627 (United States); Chung, K. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Cooper, B. [Univ. College London, London WC1E 6BT (United Kingdom); D' Onofrio, M. [Univ. of Geneva, CH-1211 Geneva 4 (Switzerland); Dorigo, T. [Univ. of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova (Italy); Erbacher, R. [Fermi National Accelerator Lab., Batavia, IL 60510 (United States); Field, R. [Univ. of Florida, Gainesville, FL 32611 (United States); Flanagan, G. [Michigan State Univ., East Lansing, MI 48824 (United States); Happacher, F. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Italy); Introzzi, G. [Univ. of Pavia, Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, I-27100 Pavia (Italy); Kuhlmann, S.; Nodulman, L.; Proudfoot, J. [Argonne National Lab., Argonne, IL 60439 (United States); Jun, S.; Paulini, M.; Tiwari, V. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Latino, G. [Istituto Nazionale di Fisica Nucleare Pisa, Univ. of Pisa, Siena and Scuola Normale Superiore of Pisa, I-56127 Pisa (Italy)] [and others

    2006-10-15

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron pp-bar collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50GeV the jet energy scale is determined with a 3% systematic uncertainty.

  20. Measurement of B(t→ b)/B(t→Wq) at the collider detector at Fermilab

    International Nuclear Information System (INIS)

    Acosta, D.

    2005-01-01

    We present a measurement of the ratio of top-quark branching fractions R = Β(t → Wb)/Β(t → Wq) using lepton-plus-jets and dilepton data sets with integrated luminosity of ∼162 pb -1 collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t(bar t) events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level

  1. Superconducting dipole magnet requirements for the Fermilab Phase 3 upgrade, SSC high energy booster, and Fermilab independent collider

    International Nuclear Information System (INIS)

    Nicol, T.H.; Kerby, J.S.

    1989-09-01

    In July 1988 a small working group was formed to develop a conceptual design for a high field superconducting dipole magnet suitable for use in the Phase III upgrade at Fermilab. The Phase III upgrade calls for replacement of the existing Tevatron with higher field magnets to boost the energy of the fixed target program to 1.5 TeV and to add a 1.8 TeV collider program. As the work of this group evolved it became clear that the resulting design might be applicable to more than just the proposed upgrade. In particular, it seemed plausible that the work might be applicable to the high energy booster (HEB) for the SSC. At the Breckenridge Workshop in August 1989 interest in a third project began to surface, namely the revamping of an earlier proposal for a dedicated collider at Fermilab. We refer to this proposal as the FNAL Independent Collider. The requirements for the dipole magnets for this independent collider appear to be remarkably similar to those proposed for the Phase III upgrade and the SSC HEB. The purpose of this report is to compare the conceptual design of the dipoles developed for the Phase III proposal with the requirements of those for the SSC HEB, the FNAL Independent Collider, and a hybrid design which could serve the needs of both. The Phase III design will be used as the reference point for parameter scaling. 4 figs., 3 tabs

  2. Mechanical and electrical design of the Fermilab lithium lens and transformer system

    International Nuclear Information System (INIS)

    Dugan, G.; Hojvat, C.; Lennox, A.J.; Biallas, G.; Cilyo, F.; Leininger, M.; McCarthy, J.; Sax, W.; Snowdon, S.

    1983-03-01

    A lithium-lens focusing device will be used for the collection of 8-GeV antiprotons in the Fermilab Tevatron I Project. The details of the mechanical and electrical design of the Fermilab lens and its associated toroidal transformer are discussed. The lens, with a radium of 1 cm and length 15 cm, is expected to achieve gradients of 1000 T/m for a focal distance of 0.225 m. The gradient requires a current on the order of 5 x 10 5 A, resulting in large electromagnetic and thermal stresses. The power-supply discharge current and the effect of the inductance of the power leads and connections are minimized by the use of a toroidal matching transformer surrounding the lens itself

  3. Redesign of the low energy section of the Fermilab linac to improve beam brightness

    International Nuclear Information System (INIS)

    Schmidt, C.; Noble, R.; Palkovic, J.; Mills, F.E.

    1988-10-01

    The critical parameters which limit the luminosity of the Fermilab Tevatron Collider are the beam emittances, both longitudinal and transverse, at each stage in the acceleration sequence. Improvements to reduce invariant emittance growth at earlier acceleration stages necessarily encourage improvements in all downstream stages. Recent advances in linac technology should permit a significant increase in the beam brightness of the Fermilab linac. A redesign of the low energy section of the linac is envisioned to include a circular aperture H/sup /minus// source, a short 30-keV transport line (solenoids, Gabor lenses or einzel lenses) for matching to a radio frequency quadrupole linac (RFQ), and injection at approximately 2 MeV into a new 200 MHz Alvarez linac tank for acceleration to 10 MeV. 9 refs., 1 fig

  4. Multiplicities and minijets at Tevatron Collider energies

    International Nuclear Information System (INIS)

    Sarcevic, I.

    1989-01-01

    We show that in the parton branching model, the probability distribution does not obey KNO scaling. As energy increases, gluon contribution to multiplicities increases, resulting in the widening of the probability distribution, in agreement with experimental data. We predict that the widening of the distribution will stop at Tevatron Collider energies due to the dominant role of gluons at these energies. We also find that the gluon contribution to the 'minijet' cross section increases with energy and becomes dominant at the Tevatron Collider. We calculate QCD minijet cross sections for a variety of structure functions, QCD scales and p T min . We compare our theoretical results with the experimental data and find that some of the structure functions and choices of scale are preferred by the experimental data. We give theoretical predictions for the minijet cross section at the Tevatron Collider, indicating the possibility of distinguishing between different sets of structure functions and choices of scale. (orig.)

  5. Beta measurements and modeling the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1993-06-01

    The Tevatron collider is now able with two low-β (β*=0.25--0.5m) interaction regions denoted as B0 and D0. This lattice allows independent operation of the interaction regions which required that the previous collider lattice, used in 1988--89, had to be modified. In order to see how well the lattice conforms to the design, measurements of the β function have been carried out at 15 locations in the new Tevatron collider lattice. Agreement can be obtained between the measurements and a computer model for the Tevatron, based on the design, only if the strengths of the gradients in the quadrupoles in the low-β triplet are allowed to differ from their design values. It is also observed that the lattice is very sensitive to the precise values of the gradients in these magnets

  6. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  7. Top and Electroweak Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, P. [Comenius U.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  8. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  9. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    International Nuclear Information System (INIS)

    Lamm, Michael; Zlobin, Alexander

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory (1)-(2). In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  10. Fermilab Physics Program for the 1990's

    International Nuclear Information System (INIS)

    Stanfield, K.C.

    1990-01-01

    Following a brief introduction to Fermilab facilities and a review of the accelerator status and plans, the physics potential for the Fermilab III upgrade program is discussed for both the fixed target and collider modes

  11. Design and operation of the quench protection system for the Fermilab tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1989-01-01

    The operation of a superconducting accelerator, in addition to cryogenic requirements, introduces a new complexity not present in a conventional accelerator. A method is required for protecting the magnets from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature so that they are no longer superconducting. The development of that system is the topic of this chapter. Any quench protection system has two very important ingredients. First, it must be designed with sufficient integrity to remain functional even under abnormal circumstances. The magnets must be protected during power failures, for example. Quenches involving a large number of components can also be hazardous because of the redistribution of voltages during the quench. Some of the system integrity can be achieved through redundancy. Frequent testing of critical elements of the system also assures the overall integrity. Second, the quench protection system must protect against damage from quenches regardless of their location or the excitation current at the time. It is not sufficient to protect just the magnet coils; either the leads between magnets must be fully stabilized or the quench protection system must protect them. The next section presents a brief discussion of the basic properties of superconductors and the phenomenon of quench propagation. 10 references, 13 figures

  12. Single-top-squark production via baryon-number-violating couplings at the Fermilab Tevatron Collider

    International Nuclear Information System (INIS)

    Berger, E. L.; Harris, B. W.; Sullivan, Z.

    1999-01-01

    We consider the s-channel R-parity-violating production of a single light top squark tilde t 1 and its subsequent R-parity-conserving decay. For masses in the range 180-325 GeV, and R-parity-violating couplings λ 3ij double p rime > 0.02-0.05, we show that discovery of the top squark is possible with 2 fb -1 of integrated luminosity at run II. If no evidence for the top squark is found, the bound on λ 3ij '' can be reduced by up to an order of magnitude with existing data from run I, and by two orders of magnitude at run II

  13. The Fermilab data storage infrastructure

    International Nuclear Information System (INIS)

    Jon A Bakken et al.

    2003-01-01

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework

  14. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  15. Fermilab Security Site Access Request Database

    Science.gov (United States)

    Fermilab Security Site Access Request Database Use of the online version of the Fermilab Security Site Access Request Database requires that you login into the ESH&Q Web Site. Note: Only Fermilab generated from the ESH&Q Section's Oracle database on May 27, 2018 05:48 AM. If you have a question

  16. Are PDFs still consistent with Tevatron data?

    Directory of Open Access Journals (Sweden)

    Sullivan Zack

    2018-01-01

    Full Text Available As active data taking has moved to the LHC at CERN, more and more LHC data have been included into fits of parton distribution functions. An anomaly has arisen where formerly excellent agreement between theoretical predictions and experiment in single-top-quark production at the Tevatron is no longer quite as good. Is this indicative of a deeper issue?

  17. Photon final states at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mario; /University Coll. London

    2008-04-01

    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  18. Fundamentally new physics at the Tevatron Collider?

    International Nuclear Information System (INIS)

    Chan Hongmo; Nellen, L.; Tsou Sheungtsun

    1989-02-01

    A new dispersion relation analysis of present pp-bar scattering data suggests the existence by Tevatron Collider energies of a threshold, of such nature, as is unlikely to be explainable in terms of known physics or any of its standard projections. (author)

  19. J/{psi} polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Butenschoen, Mathias; Kniel, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-12-15

    We study the polarization observables of J/{psi} hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate {sup 3}P{sup [8]}{sub J} color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/{psi} production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/{psi} polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  20. J/ψ polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    International Nuclear Information System (INIS)

    Butenschoen, Mathias; Kniel, Bernd A.

    2011-12-01

    We study the polarization observables of J/ψ hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate 3 P [8] J color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/ψ production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/ψ polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  1. Top anti-top Asymmetries at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Yvonne Reinhild [DESY

    2012-11-01

    The heaviest known elementary particle today, the top quark, has been discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab. Recently, the CDF and D0 collaborations have studied the forward-backward asymmetry in ttbar events, resulting in measured values larger than the standard model prediction. With the start of the LHC at CERN in 2010, a new top quark factory has opened and asymmetry measurements in ttbar have also been performed in a proton proton environment with higher collision energy. No deviations from the standard model have been noticed so far in the measurements of ATLAS and CMS. This article discusses recent results of asymmetry measurements in ttbar events of the ATLAS, CDF, CMS and D0 collaborations.

  2. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Aushev, V; Aushev, Y; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brochmann, M; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapelain, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cuth, J; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Drutskoy, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, A; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franc, J; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schott, M; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shkola, O; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stefaniuk, N; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfmeister, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2018-01-26

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of sqrt[s]=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A_{FB}^{tt[over ¯]}=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

  3. Status of the observed and predicted b anti-b production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Happacher, F.; Giromini, P.; /Frascati; Ptohos, F.; /Cyprus U.

    2005-09-01

    The authors review the experimental status of the b-quark production at the Fermilab Tevatron. They compare all available measurements to perturbative QCD predictions (NLO and FONLL) and also to the parton-level cross section evaluated with parton-shower Monte Carlo generators. They examine both the single b cross section and the so called b{bar b} correlations. The review shows that the experimental situation is quite complicated because the measurements appear to be inconsistent among themselves. In this situation, there is no solid basis to either claim that perturbative QCD is challenged by these measurements or, in contrast, that long-standing discrepancies between data and theory have been resolved by incrementally improving the measurements and the theoretical prediction.

  4. First observation of vector boson pairs in a hadronic final state at the tevatron collider.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-08-28

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 + or - 239(stat) + or - 144(syst) diboson candidate events and measure a cross section sigma(pp[over ]-->VV + X) of 18.0 + or - 2.8(stat) + or - 2.4(syst) + or -1.1(lumi) pb, in agreement with the expectations of the standard model.

  5. B-meson production in the Parton Reggeization approach at Tevatron and the LHC

    International Nuclear Information System (INIS)

    Karpishkov, A.V.; Saleev, V.A.; Nefedov, M.A.; Shipilova, A.V.; Samara State Aerospace Univ.; Hamburg Univ.

    2014-11-01

    We study the inclusive hadroproduction of B 0 , B + , and B 0 s mesons at leading order in the parton Reggeization approach using the universal fragmentation functions extracted from the combined e + e - annihilation data from CERN LEP1 and SLAC SLC colliders. We have described B-meson transverse momentum distributions measured in the central region of rapidity by the CDF Collaboration at Fermilab Tevatron and CMS Collaboration at LHC within uncertainties and without free parameters, applying Kimber-Martin-Ryskin unintegrated gluon distribution function in a proton. The forward B-meson production (2.0< y<4.5) measured by the LHCb Collaboration also has been studied and expected disagreement between our theoretical predictions and data has been obtained.

  6. Measurements of a Newly Designed BPM for the Tevatron Electron Lens 2

    Science.gov (United States)

    Scarpine, V. E.; Kamerdzhiev, V.; Fellenz, B.; Olson, M.; Kuznetsov, G.; Kamerdzhiev, V.; Shiltsev, V. D.; Zhang, X. L.

    2006-11-01

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses (˜1 us) of up to ˜1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new, compact four-plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsed with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency-dependent transverse position offset may be reduced to ˜0.1 mm for the beam structures of interest.

  7. The Fermilab anti pp collider

    International Nuclear Information System (INIS)

    Harrison, M.

    1984-01-01

    The goal of the Tevatron I project is to achieve anti pp collisions in the centre-of-mass energy range up to 2 TeV with a luminosity of at least 10 30 cm -2 sec -1 . The project involves adapting the Tevatron to function as a storage ring and modifying the lattice to provide low-beta interaction points; changes to the Main Ring to allow anti p transfers and the installation of experimental equipment; and the construction of a anti p source. Major experimental areas will be located in the socalled BO and DO straight sections together with smaller, more specialized experiments in several of the other interacting regions. (orig./HSI)

  8. The FIFE Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Herner, K. [Fermilab; Levshina, T. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  9. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  10. Radiation hard silicon microstrip detectors for Tevatron experiments

    International Nuclear Information System (INIS)

    Korjenevski, Sergey

    2004-01-01

    The Silicon Microstrip Tracking detectors at the CDF and D0 experiments have now been operating for almost three years at Fermilab. These detectors were designed originally for an integrated luminosity of 2fb -1 . As the expected luminosity for Run IIb at the Tevatron collider was initially envisioned to reach 15fb -1 , radiation tolerances of both devices were revisited, culminating in proposals for new systems. With reduced expectations for total luminosity at ∼6fb -1 , the full detector-replacement projects were terminated. The CDF detector is expected nevertheless to cope efficiently with the lower anticipated dose, however, the D0 experiment is planning a smaller-scale project: a Layer-0 (L0) upgrade of the silicon tracker (D0SMT). The new device will fit between the beam line and the inner layer of the current Tracker. Built of single-sided sensors, this upgrade is expected to perform well in the harsh radiation environment, and be able to withstand an integrated luminosity of 15fb -1 . Prototypes of Run IIb sensors were irradiated using 10MeV protons at the tandem Van de Graaff at the James R. McDonald Laboratory at Kansas State University. A fit to the 10MeV proton data yields a damage parameter αp=11x10-17Acm. This is consistent with results from RD48 (αp=9.9x10-17Acm). The scaling of damage to 1MeV neutron fluence uses a hardness factor (κ) derived from the non-ionizing components of the energy loss (NEIL). NEIL predicts a hardness factor of 3.87 for 10MeV protons. We obtained an experimental value of this factor of 2.54, or 34% smaller than scaling predictions from NEIL

  11. Observation of Central Exclusive Diphoton Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Brucken, Jens Erik [Univ. of Helsinki (Finland); Helsinki Inst. of Physics (Finland)

    2013-01-01

    We have observed exclusive γγ production in proton-antiproton collisions at the Tevatron at √ s = 1.96 TeV. We use data corresponding to 1.11 ± 0.07 fb-1 integrated luminosity taken by the Run II Collider Detector at Fermilab, with a trigger requiring two electromagnetic showers, each with transverse energy ET > 2 GeV, and vetoing on hits in the forward beam shower counters. We select events with two electromagnetic showers, each with transverse energy ET > 2.5 GeV and pseudorapidity |η| < 1.0, with no other particles detected in -7.4 < η < +7.4. The two showers have similar ET and an azimuthal angle separation Δφ ~ π; we find 34 events with exactly two matching charged particle tracks, agreeing with expectations for the QED process p¯p → p+e+e- + ¯p by two photon exchange; and we find 43 events with no tracks. The latter are candidates for the exclusive process p¯p → p + γγ + ¯p by double pomeron exchange. We use the strip and wire chambers at the longitudinal shower maximum position within the calorimeter to measure a possible exclusive background from IP + IP → π0π0, and conclude that it is consistent with zero and is < 15 events at 95% C.L. The measured cross section is σγγ,excl(|η| < 1, ET (γ) > 2.5 GeV) = 2.48 +0.40 -0.35(stat) +0.40 -0.51(syst) pb and in agreement with the theoretical predictions. This process is closely related to exclusive Higgs boson production pp → p + H + p at the Large Hadron Collider. The observation of the exclusive production of diphotons shows that exclusive Higgs production can happen and could be observed with a proper experimental setup.

  12. Fermilab-Latin America collaboration

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1994-01-01

    Fermilab's program of collaboration with Latin America was initiated by then-Director Leon Lederman about 1980. His goal was to aid Latin American physics, and particularly its particle physics; this latter aim is in keeping with the Laboratory's particle physics mission. The reasons for collaboration between institutions in the US and Latin America are many, including geographic and cultural, together with the existence of many talented scientists and many centers of excellence in the region. There are also broader reasons; for example, it has been stated frequently that physics is the basis of much technology, and advanced technology is a necessity for a country's development. There is nothing unique about Fermilab's program; other US institutions can carry out similar activities, and some have carried out individual items in the past. On the Latin American side, such collaboration enables institutions there to carry out forefront physics research, and also to have the advantages of particle physics spin-offs, both in expertise in related technologies and in scientist training. In addition to particle physics, collaboration is possible in many other related areas. Although particle physics is frequently viewed as open-quotes big scienceclose quotes, all of the large research groups in the field are composed of many small university groups, each of which contributes to the experiment, the analysis and the physics. Fermilab is an international laboratory, open to all users; a research proposal is accepted on scientific merit and technical competence, not on the country of origin of the scientists making the proposal. Currently, of Fermilab's approximately 1400 users, about 30% are from non-US institutions. It should be noted here that Fermilab's funds, which come from the US government, are for particle physics only; however, there is some flexibility in interpretation of this

  13. Long-range beam-beam interactions in the Tevatron: Comparing simulation to tune shift data

    International Nuclear Information System (INIS)

    Saritepe, S.; Michelotti, L.; Peggs, S.

    1990-07-01

    Fermilab upgrade plans for the collider operation include a separation scheme in the Tevatron, in which protons and antiprotons are placed on separate helical orbits. The average separation distance between the closed orbits will be 5σ (σ of the proton bunch) except at the interaction regions, B0 and D0, where they collide head-on. The maximum beam-beam total tune shift in the Tevatron is approximately 0.024 (the workable tune space between 5th and 7th order resonances), which was reached in the 1988--1989 collider tun. Helical separation scheme allows us to increase the luminosity by reducing the total beam-beam tune shift. The number of bunches per beam will be 6 in the 1991 collider tun, to be increased to 36 in the following collider runs. To test the viability of this scenario, helical orbit studies are being conducted. The most recent studies concentrated on the injection of 36 proton bunches, procedures related to opening and closing of the helix, the feed-down circuits and the beam-beam interaction. In this paper, we present the results of the beam-beam interaction studies only. Our emphasis is on the tune shift measurements and the comparison to simulation. 4 refs., 9 figs., 2 tabs

  14. Production of single top quark - results from the Tevatron and the LHC

    CERN Document Server

    Moon, Chang-Seong

    2014-01-01

    We present the most recent measurements of single top quark production cross section by the CDF and D0 experiments at the Fermilab Tevatron Collider and the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The data were collected at the Tevatron corresponding to an integrated luminosity of up to 9.7 fb$^{-1}$ of proton-antiproton ($p\\bar p$) collisions at a centre-of-mass energy of 1.96 TeV and at the LHC corresponding to an integrated luminosity of up to 4.9 fb$^{-1}$ of proton-proton ($pp$) collisions at a centre-of-mass energy of 7 TeV in 2011 and up to 20.3 fb$^{-1}$ at a centre-of-mass energy of 8 TeV in 2012. The measurements of single top quark production in $s$-channel, $t$-channel and associated production of a top quark and a $W$-boson ($tW$ production) are presented separately and lower limits on the CKM matrix element $|V_{tb}|$ from the single top quark cross section are set.

  15. Review of searches for Higgs bosons and beyond the standard model physics at the Tevatron

    International Nuclear Information System (INIS)

    Duperrin, Arnaud

    2009-01-01

    The energy frontier is currently at the Fermilab Tevatron accelerator, which collides protons and antiprotons at a center-of-mass energy of 1.96 TeV. The luminosity delivered to the CDF and DOe experiments has now surpassed the 4 fb -1 . This paper reviews the most recent direct searches for Higgs bosons and beyond-the-standard-model (BSM) physics at the tevatron. The results reported correspond to an integrated luminosity of up to 2.5 fb -1 of Run II data collected by the two Collaborations. Searches covered include the standard model (SM) Higgs boson (including sensitivity projections), the neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM), charged Higgs bosons and extended Higgs models, supersymmetric decays that conserve or violate R-parity, gauge-mediated supersymmetric breaking models, long-lived particles, leptoquarks, compositeness, extra gauge bosons, extra dimensions, and finally signature-based searches. Given the excellent performance of the collider and the continued productivity of the experiments, the Tevatron physics potential looks promising for discovery with the coming larger data sets. In particular, evidence for the SM Higgs boson could be obtained if its mass is light or near 160 GeV. The observed (expected) upper limits are currently a factor of 3.7 (3.3) higher than the expected SM Higgs boson cross section at m H =115 GeV and 1.1(1.6) at m H =160 GeV at 95% C.L. (orig.)

  16. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  17. The Tevatron Hadron Collider: A short history

    International Nuclear Information System (INIS)

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade

  18. Tevatron B0 low beta tuning report

    International Nuclear Information System (INIS)

    Johnson, D.E.

    1982-01-01

    A detailed study of the low beta insertion for the B0 experimental area has been carried out and is described below. This insertion is similar to the Type C low beta previously report, anti p Note 169, although some changes have been made to the quadrupole lengths and positions. This insertion is designated Type E. The purpose of the study was to see if it is possible to turn the insertion on in a smooth and continuous manner and tune the insertion to a value of β* of less than one meter while maintaining the overall tune of the j Tevatron to a constant value. This was found to be possible. An examination of chromaticity corrections for the Tevatron with the low beta insertion on in various configurations was also undertaken

  19. Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models

    CERN Document Server

    Wang, Y

    2002-01-01

    We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.

  20. Longitudinal damping in the Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  1. Photons and diphotons from the Tevatron

    International Nuclear Information System (INIS)

    Blair, R.

    1997-08-01

    Photon measurements from the CDF and D0 collaboration are described. The subjects touched on are loosely organized around the fact that they all have some bearing on the structure functions and pQCD. The methodology of collider measurements is briefly reviewed, and the results for single photons, photons plus jets, photons plus charm and diphotons are discussed. Finally there is a very brief indication of what is expected from the Tevatron based experiments in the future

  2. Longitudinal damping in the Tevatron collider

    International Nuclear Information System (INIS)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs

  3. Higgs boson studies at the Tevatron

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L.; Abbott, B.; Abazov, V. M.; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman

    2013-01-01

    Roč. 88, č. 5 (2013), "052014-1"-"052014-29" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Higgs particle * mass * vector boson * gluon * fusion * Batavia TEVATRON Coll * CDF * DZERO * anti-p p * interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.864, year: 2013

  4. Dedication of Fermilab's LHC Remote Operations Center

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    Fermilab's Remote Operations Center will be dedicated simultaneously at Fermilab in the U.S. and from CMS (Point 5) in Cessy, France. Speakers will include: from the U.S. DOE Undersecretary for Science Raymond Orbach and Fermilab Director Pier Oddone (U.S.); and from CERN Director General Robert Aymar, CMS Spokesperson Jim Virdee, LHC Project Leader Lyn Evans and US CMS Project Manager Joel Butler.

  5. Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb$^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group

    2014-07-10

    We summarize the current top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) results with the most precise published and preliminary Run II (2001--2011) measurements based on data corresponding to up to 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is $M_{top} = 174.34 \\pm 0.64 ~GeV/c^2$, corresponding to a relative precision of 0.37%.

  6. Fermilab R and D test facility for SSC magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-01-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs. 2 tabs

  7. Modern operator's consoles for accelerator control at Fermilab

    International Nuclear Information System (INIS)

    Lucas, P.; Cahill, K.; Peters, R.; Smedinghoff, J.

    1991-01-01

    Since the construction of the Tevatron the Fermilab accelerator complex has been controlled from operator's consoles based on PDP-11 computers and interaction with display hardware via Camac. In addition the Linac has been controllable from microprocessor-based local consoles. The new generation of console devices is based on VAXstation computers, networked by Ethernet and Token Ring, and utilizing the X-windows protocol. Under X the physical display (server) can be driven by any network node, and need not be part of the console computer (client). This allows great flexibility in configuring display devices - with X-terminals, Unix workstations, and Macintoshes all having been utilized. Over half of the 800 application programs on the system have been demonstrated to work properly in the new environment. The modern version of a Linac local console runs in a Macintosh. These are networked via Token Ring to Linac local control stations. They provide color graphics and a hard copy capability which was previously lacking

  8. CPS and the Fermilab farms

    International Nuclear Information System (INIS)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described

  9. CPS and the Fermilab farms

    Energy Technology Data Exchange (ETDEWEB)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  10. Beyond the standard model at Tevatron

    International Nuclear Information System (INIS)

    Pagliarone, C.

    2000-01-01

    Tevatron experiments performed extensive searches for physics beyond the Standard Model. No positive results have been found so far showing that the data are consistent with the SM expectations. CDF and D0 continue the analysis of Run I data placing limits on new physics, including Supersymmetry, large space time dimensions and leptoquark models. With the Run II upgrades, providing an higher acceptance and higher luminosity, it will be possible to make important progresses in the search for new phenomena as well as in setting limits on a larger variety of theoretical models

  11. Electroweak physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Aihara, H.

    1993-08-01

    Preliminary results on electroweak physics from the 1992--1993 run with the CDF and D0 detectors at the Tevatron collider are presented. New measurements of the ratio of the W and Z production cross sections times the branching fractions for subsequent decay into leptons are shown. The W width, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted. The status of a measurement of the charge asymmetry of electrons from W decay is given. Also shown are a study of diboson (Wγ, Zγ and WZ) production and a search for a new neutral gauge boson (Z')

  12. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  13. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  14. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  15. New diffractive results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  16. Gluino-pair production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Spira, M.; Zerwas, P.M.

    1995-05-01

    The next-to-leading order QCD corrections to the production of gluino pairs at the Tevatron are presented in this paper. Similar to the production of squark-antisquark pairs, the dependence of the cross section on the renormalization/factorization scale is reduced considerably by including the higher-order corrections. The cross section increases with respect to the lowest-order calculation which, in previous experimental analyses, had been evaluated at the scale of the invariant energy of the partonic subprocesses. (orig.)

  17. Next generation farms at Fermilab

    International Nuclear Information System (INIS)

    Cudzewicz, R., Giacchetti, L., Leininger, M., Levshina, T., Pasetes, R., Schweitzer, M., Wolbers, S.

    1997-01-01

    The current generation of UNIX farms at Fermilab are rapidly approaching the end of their useful life. The workstations were purchased during the years 1991-1992 and represented the most cost-effective computing available at that time. Acquisition of new workstations is being made to upgrade the UNIX farms for the purpose of providing large amounts of computing for reconstruction of data being collected at the 1996-1997 fixed-target run, as well as to provide simulation computing for CMS, the Auger project, accelerator calculations and other projects that require massive amounts of CPU. 4 refs., 1 fig., 2 tabs

  18. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  19. The Fermilab Farms in 1996

    International Nuclear Information System (INIS)

    1997-05-01

    The farms in 1996 began a period of transition. The old farms continue to be used but do not provide sufficient CPU power, memory, or network bandwidth for all of the tasks which are required. Therefore we have purchased and installed a substantial increment of new farms and are working on adding another increment during 1997. The purpose of all this activity is to provide computing for the fixed target run and for the other large computing users who cannot be accommodated on the other systems that are available at Fermilab

  20. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  1. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  2. Neutrino SuperBeams at Fermilab

    International Nuclear Information System (INIS)

    Parke, Stephen J.

    2011-01-01

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  3. Electroweak, top and bottom physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ukegawa, Fumihiko; /Tsukuba U.

    2004-10-01

    The Tevatron Run-II program has been in progress since 2001, and the CDF and D0 experiments have been operational with upgraded detectors. Coupled with recent improvements in the Tevatron accelerator performance, the experiments have started producing important physics results and measurements. They report these measurements as well as prospects in the near future.

  4. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  5. An Ionization Profile Monitor for the Tevatron

    CERN Document Server

    Jansson, Andreas; Bowie, Kwame; Bross, Alan; Dysert, Robert; Fitzpatrick, Thomas; Kwarciany, Richard; Lundberg, Carl; Nguyen, Hogan; Rivetta, Claudio H; Slimmer, David; Valerio, Linda; Zagel, James

    2005-01-01

    Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be in...

  6. Central Exclusive Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G. [Fermilab

    2014-11-10

    The Collider Detector at Fermilab, CDF, observed for the first time in hadron-hadron collisions photon-photon (gamma + gamma -> e+e-, mu+mu-) and photon-pomeron (gamma + \\BbbP -> J/psi, psi(2S)) interactions, as well as $p+\\bar{p}\\rightarrow p+\\chi_c+\\bar{p}$ by double pomeron exchange, \\BbbP + \\BbbP or DPE. Exclusive pi+pi- production was also measured at $\\sqrt{s} = 900~{\\rm GeV}$ and 1960 GeV; resonance structures are discussed.

  7. Matter-Antimatter Differences using Muons: D0 Result on anomalous Dimuon Charge Asymmetry using Full Tevatron Data Set

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    We measure the inclusive single muon charge asymmetry and the like-sign dimuon charge asymmetry in p-pbar collisions using the full data set of 10.4 fb-1 collected with the D0 detector at the Fermilab Tevatron. The standard model predictions of the charge asymmetries induced by CP violation are small in magnitude compared to the current experimental precision, so non-zero measurements could indicate new sources of CP violation. The measurements differ from the standard model predictions of CP violation in these asymmetries with a significance of 3.6 standard deviations. These results are interpreted in a framework of B meson mixing within the CKM formalism to measure the relative width difference Delta Gamma_d / Gamma_d between the mass eigenstates of the B0 meson system, and the semileptonic charge asymmetries a_sl^d and a_sl^s of the B0 and B0_s mesons respectively.

  8. Recent QCD results from the Tevatron bar pp collider at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Yu, Jaehoon

    1994-06-01

    Abstract: Recent results of QCD studies from the CDF and D0 experiments at the Tevatron bar pp collider at Fermilab are presented. The inclusive jet cross section, the internal structure of jets, di-jet angular distributions, di-jet triple differential cross sections, and properties of multi-jet final states are studied and compared with NLO QCD predictions. The comparisons show good agreement between theoretical predictions and the experimental data in general. Some systematic disagreement between LO predictions and the data are observed in di-jet triple differential cross sections. Results of a rapidity gap study are also presented together with an upper limit on the gap fraction. In addition, the inclusive photon cross section and the di-photon cross sections are presented and compared with NLO QCD predictions

  9. Measurement of the t (bar t) cross section at the Run II Tevatron using Support Vector Machines

    International Nuclear Information System (INIS)

    Whitehouse, Benjamin Eric

    2010-01-01

    This dissertation measures the t(bar t) production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p(bar p) collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb -1 . A system of learning machines is developed to recognize t(bar t) events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t(bar t) production cross section is then measured in this framework, and found to be σ t# bar t# = 7.14 ± 0.25 (stat) -0.86 +0.61 (sys) pb.

  10. The Fermilab physics class library

    International Nuclear Information System (INIS)

    Fischler, M.; Brown, W.; Gaines, I.; Kennedy, R.D.; Marraffino, J.; Michelotti, L.; Sexton-Kennedy, E.; Yoh, J.; Adams, D.; Paterno, M.

    1997-02-01

    The Fermilab Physics Class Library Task Force has been formed to supply classes and utilities, primarily in support of efforts by CDF and D0 toward using C++. A collection of libraries and tools will be assembled via development by the task force, collaboration with other HEP developers, and acquisition of existing modules. The main emphasis is on a kit of resources which physics coders can incorporate into their programs, with confidence in robustness and correct behavior. The task force is drawn from CDF, DO and the FNAL Computing and Beams Divisions. Modules-containers, linear algebra, histograms, etc.-have been assigned priority, based on immediate Run II coding activity, and will be available at times ranging from now to late May

  11. Rare KL decays at Fermilab

    International Nuclear Information System (INIS)

    Schnetzer, St.

    1997-01-01

    Recent results and the future prospects for rare K L decay at Fermilab are described. A summary of all rare decay results from E799 Phase I (the 1991 run) are presented. Three new results: K L → e + e - μ + μ - , K L → π 0 μe, and π 0 → e + e - e + e - are discussed in detail. Improvements for KTeV (the 1996-1997 run) are discussed and the expected sensitivities listed. Finally, the KAMI program for rare decays with the Main Injector (2000 and beyond) is presented with emphasis on a search for the decay K L → π 0 νν-bar at O(10 -12 ) single-event-sensitivity. (author)

  12. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  13. Fermilab muon g-2 experiment

    Science.gov (United States)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  14. The Muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chapelain, Antoine [Cornell U., Phys. Dept.

    2017-01-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  15. Physics at a New Fermilab Proton Driver

    International Nuclear Information System (INIS)

    Geer, Steve

    2005-01-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. The Fermilab Director has requested further development of the physics case for a new Fermilab Proton Driver, exploring both its ability to support a World class neutrino program, and the other physics opportunities it would provide. A physics study has been ongoing for the last 6 months. The emerging physics case will be presented.

  16. Nonlinear dynamics experiment in the Tevatron

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1989-01-01

    Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs

  17. Recent heavy flavor results from the Tevatron

    International Nuclear Information System (INIS)

    Dorigo, Mirco

    2012-01-01

    The CDF and D0 experiments at the Tevatron p(bar p) collider have pioneered and established the role of flavor physics in hadron collisions. A broad program is now at its full maturity. We report on three new results sensitive to physics beyond the standard model, obtained using the whole CDF dataset: a measurement of the difference of CP asymmetries in K + K - and π + π - decays of D 0 mesons, new bounds on the B s 0 mixing phase and on the decay width difference of B s 0 mass-eigenstates, and an update of the summer 2011 search for B (s) 0 mesons decaying into pairs of muons. Finally, the D0 confirmation of the observation of a new hadron, the χ b (3P) state, is briefly mentioned.

  18. Wanted: Fermilab director who can build consensus

    CERN Multimedia

    Pierce, G M

    2004-01-01

    "With current Fermilab Director Michael Witherell stepping down in July 2005, an appointed committee has vowed to find a new leader who will keep the Batavia lab at the forefront of the high-energy physics field" (1 page).

  19. City shows gratitude for Fermilab relationship

    CERN Multimedia

    Pierce, Gala

    2006-01-01

    "Part of last week Batavia Chamber of Commerce celebration wasn't just to salute one of Batavia's heroes - Carla Hill - but to commemorate a 40-year relationship between the city and Fermilab" (1 page)

  20. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  1. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  2. Data acquisition systems at Fermilab

    International Nuclear Information System (INIS)

    Votava, M.

    1999-01-01

    Experiments at Fermilab require an ongoing program of development for high speed, distributed data acquisition systems. The physics program at the lab has recently started the operation of a Fixed Target run in which experiments are running the DART[1] data acquisition system. The CDF and D experiments are preparing for the start of the next Collider run in mid 2000. Each will read out on the order of 1 million detector channels. In parallel, future experiments such as BTeV R ampersand D and Minos have already started prototype and test beam work. BTeV in particular has challenging data acquisition system requirements with an input rate of 1500 Gbytes/sec into Level 1 buffers and a logging rate of 200 Mbytes/sec. This paper will present a general overview of these data acquisition systems on three fronts those currently in use, those to be deployed for the Collider Run in 2000, and those proposed for future experiments. It will primarily focus on the CDF and D architectures and tools

  3. CP violation experiment at Fermilab

    International Nuclear Information System (INIS)

    Hsiung, Yee B.

    1990-07-01

    The E731 experiment at Fermilab has searched for ''direct'' CP violation in K 0 → ππ, which is parametrized by var-epsilon '/var-epsilon. For the first time, in 20% of the data set, all four modes of the K L,S → π + π - (π 0 π 0 ) were collected simultaneously, providing a great check on the systematic uncertainty. The result is Re(var-epsilon '/var-epsilon) = -0.0004 ± 0.0014 (stat) ± 0.0006(syst), which provides no evidence for ''direct'' CP violation. The CPT symmetry has also been tested by measuring the phase difference Δφ = φ 00 - φ ± between the two CP violating parameters η 00 and η ± . We fine Δφ = -0.3 degrees ± 2.4 degree(stat) ± 1.2 degree(syst). Using this together with the world average φ ± , we fine that the phase of the K 0 -bar K 0 mixing parameter var-epsilon is 44.5 degree ± 1.5 degree. Both of these results agree well with the predictions of CPT symmetry. 17 refs., 10 figs

  4. A Search for Supersymmetry via Chargino-Neutralino Production in Low-$p_T$ Dimuon with the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Rekovic, Vladimir [Univ. of New Mexico, Albuquerque, NM (United States)

    2007-05-01

    We have searched for evidence of supersymmetry with 1 $fb^-1$ with collected with low-$p_T$ dimuon triggers of the Collider Detector on Tevatron Run II, at Fermilab. We looked for trilepton events in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV. In the Minimal Supersymmetric Standard Model (MSSM) we expect chargino-neutralino pair production, with subsequent decay into three isolated leptons. We observe one event of three isolated muons, a possible hint of supersymmetry.

  5. Inclusive b and b anti b production with quasi-multi-Regge kinematics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A. [Hamburg Univ. (Germany). II. Institut fuer Theoretische Physik; Saleev, V.A.; Shipilova, A.V. [Samara State University (Russian Federation)

    2010-03-15

    We consider b-jet hadroproduction in the quasi-multi-Regge-kinematics approach based on the hypothesis of gluon and quark Reggeization in t-channel exchanges at high energies. The preliminary data on inclusive b-jet and b anti b-dijet production taken by the CDF Collaboration at the Fermilab Tevatron are well described without adjusting parameters. We find the main contribution to inclusive b-jet production to be the scattering of a Reggeized gluon and a Reggeized b-quark to a b quark, which is described by the effective Reggeon-Reggeon-quark vertex. The main contribution to b anti b-pair production arises from the scattering of two Reggeized gluons to a b anti b pair, which is described by the effective Reggeon-Reggeon-quark-quark vertex. Our analysis is based on the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions using as input the Martin-Roberts-Stirling-Thorne collinear parton distribution functions of the proton. (orig.)

  6. Search for super symmetry at the Tevatron using the trilepton signature

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Sourabh Shishir [Rutgers Univ., New Brunswick, NJ (United States)

    2008-10-01

    This dissertation describes a search for the associated production of the supersymmetric particles, the chargino and the neutralino, through their R-parity conserving decays to three leptons and missing energy. This search is carried out using the data collected at the CDF experiment at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider at Fermilab. The results are obtained by combining five independent channels with varying signal to background ratio. Overall, a total of 6.4 ± 1.1 background events from standard model processes and 11.4 ± 1.1 signal events for a particular choice of mSUGRA model parameters are expected. The observation of 7 events in data is consistent with the standard model background expectation, and the mSUGRA model is constrained. Limits are set on the cross section of Chargino-Neutralino pair production, and a limit on the mass of the chargino is extracted. A method of obtaining model-independent results is also discussed.

  7. Exploratory orbit analysis of Tevatron helical upgrade: One: A first look

    International Nuclear Information System (INIS)

    Michelotti, L.; Saritepe, S.

    1989-04-01

    A key feature of the Tevatron upgrade is the placement of proton and anti-proton bunches on the branches of a double helix which winds around the current closed orbit. Electrostatic separators will transfer the bunches on and off the double helix so that they experience head-on collisions only at the experimental areas, B0 and D0, all other encounters occurring at large transverse separation. In this way the number of bunches, and the luminosity, can be increased without a proportional growth in the beam-beam tune shift. The scenario raises a number of beam dynamics issues, especially (a) the consequences of sampling magnetic fields far from the magnets' center lines, and (b) the effects of the long-range beam-beam interaction. This report presents the results of calculations and simulations done to date to explore (b); a Fermilab team have been studying (a), both experimentally and theoretically, but we shall not review those efforts here. 9 refs., 17 figs

  8. arXiv Addendum to: Predictions for Higgs production at the Tevatron and the associated uncertainties

    CERN Document Server

    Baglio, Julien

    2010-01-01

    We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism $gg \\to H$ and the Higgs-strahlung processes $q \\bar q \\to VH$ with $V=W/Z$, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use of an effective theory approach in the determination of the radiative corrections in the $gg \\to H$ process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs--strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fus...

  9. A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Nevis Labs, Columbia U.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\\Lambda^{NLO,(4)}_{\\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \\pm 0.68}$

  10. The Fermilab proton-antiproton collider upgrades

    International Nuclear Information System (INIS)

    Marriner, J.P.

    1996-10-01

    The plans for increases in the Tevatron proton-antiproton collider luminosity in the near future (Run II) and the more distant future (TeV33) are described. While there are many important issues, the fundamental requirement is to produce more antiprotons and to use them more efficiently

  11. Fermilab Linac Upgrade Conceptual Design: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-07-01

    The goal of the Tevatron Collider Upgrade program is to improve the Collider luminosity and the fixed-target intensity. The Linac portion of this project will increase the energy of the existing 200- MeV linac to 400 MeV in order to reduce beam emittance degradation in the Booster.

  12. LCLS-II Cryomodules Production at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Tug [Fermilab; Grimm, Chuck [Fermilab; Kaluzny, Joshua [Fermilab; Orlov, Yuriy [Fermilab; Peterson, Thomas [Fermilab; Premo, Ken [Fermilab

    2017-05-01

    LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab (JLab) will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Fermilab and JLab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications, in advance of 16 and 17 production 1.3 GHz cryomodules, respectively. Fermilab is solely responsible for the 3.9 GHz cryomodules. After the prototype cryomodule tests are complete and lessons learned incorporated, both laboratories will increase their cryomodule production rates to meet the challenging LCLS-II project requirement of approximately one cryomodule per month per laboratory. This paper presents the Fermilab Cryomodule Assembly Facility (CAF) infrastructure for LCLS-II cryomodule production, the Fermilab prototype 1.3 GHz CW cryomodule (pCM) assembly and readiness for production assembly.

  13. A dumbed-down approach to unite Fermilab, its neighbors

    CERN Multimedia

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  14. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  15. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  16. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  17. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  18. Status of accelerator development at Fermilab

    International Nuclear Information System (INIS)

    Owen, C.W.

    1976-01-01

    The Fermilab accelerator is comprised of four major systems: the high-energy beam-extraction and switching system, the main accelerator (main ring), the booster, and the linear accelerator. The Fermilab accelerator produces accelerated beams for a vigorous international high-energy physics program. The basic design features and operation for high-energy physics have been described a number of times in the past. A report is given which, for the most part, discusses in detail only those features that are particularly significant in increasing the usefulness of the accelerator as a tool for high-energy physics

  19. The Fermilab Main Injector Technical Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-08-01

    This report contains a description of the design, cost estimate, and construction schedule of the Fermilab Main Injector (FMI) Project. The technical, cost, and schedule baselines for the FMI Project have already been established and may be found in the Fermilab Main Injector Title I Design Report, issued in August 1992. This report updates and expands upon the design and schedule for construction of all subsystem components and associated civil construction described in the Title I Design Report. The facilities described have been designed in conformance with DOE 6430.1A, "United States Department of Energy General Design Criteria."

  20. The 1994 Fermilab Fixed Target Program

    International Nuclear Information System (INIS)

    Conrad, J.

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production

  1. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab

  2. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-01-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper the author reviews recent results from charm and beauty fixed target experiments at Fermilab

  3. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  4. Constraints on unparticles from top properties measured at Tevatron

    International Nuclear Information System (INIS)

    Islam, Rashidul; Dahiya, Mamta; Dutta, Sukanta

    2013-01-01

    We discuss the recent observations of the top pair production at Tevatron through flavor conserving and flavor violating channels via vector and tensor unparticles. The unparticle sector is considered to be a color singlet or octet. We have used the unparticle propagators modified for full conformal invariance to investigate the contribution of these unparticles to the observed forward backward asymmetry and the spin correlation in top pair production at Tevatron. We also discuss the impact of the flavor violating couplings of unparticles to the third generation quarks on (a) pair production of same sign tops/antitops at TeVatron and (b) the partial top decay width for Γ u (t → uU V )

  5. Tevatron-for-LHC Report of the QCD Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  6. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  7. Signal processing for longitudinal parameters of the Tevatron beam

    International Nuclear Information System (INIS)

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.

    2005-01-01

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz

  8. TEVATRON Searches for Large Extra Dimensions and Leptoquarks

    International Nuclear Information System (INIS)

    Mattingly, S.

    2002-01-01

    This paper presents searches for large extra dimensions and leptoquarks in p(anti)p collisions from Run 1 at the Tevatron. Large extra dimensions are searched for in real graviton production with a monojet or monophoton and in virtual graviton exchange processes with electron or photon pairs. Results from leptoquark searches are presented for three generations of leptoquarks. No evidence of signal is found in any searches for large extra dimensions or leptoquarks and limits are placed. Perceptivities for these searches in the Tevatron's Run 2 are discussed and initial Run 2 data is presented. (author)

  9. Introduction to colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Thompson, J.

    1994-10-01

    The Fermi National Accelerator Laboratory is currently the site of the world's highest center-of-mass energy proton-antiproton colliding beam accelerator, the Tevatron. The CDF and D OE detectors each envelop one of two luminous regions in the collider, and are thus wholly dependent on the accelerator for their success. The Tevatron's high operating energy, reliability, and record setting integrated luminosity have allowed both experiments to make world-class measurements and defined the region of physics that each can explore. The following sections are an overview of the highlights of the accelerator operation and are compiled from many sources. The major sources for each section are listed at the beginning of that section

  10. Correction magnets for the Fermilab Recycler Ring

    International Nuclear Information System (INIS)

    James T Volk et al.

    2003-01-01

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements

  11. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  12. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  13. Strategic directions of computing at Fermilab

    Science.gov (United States)

    Wolbers, Stephen

    1998-05-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R&D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object-oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and projects. R&D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing.

  14. Fermilab "Dumbfounded" by fiasco that broke magnet

    CERN Multimedia

    2007-01-01

    "In what is being described as a "pratfall on the world stage", the quadrupole magnet that Fermilab built for the Large Hadron Collider (LHC) particle accelerator failed high-pressure testing dramatically last week, resulting in a loud "bang" and a cloud of dust in the LHC tunnel." (1,5 page)

  15. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  16. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  17. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  18. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  19. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  20. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  1. Fermilab ACP multi-microprocessor project

    International Nuclear Information System (INIS)

    Gaines, I.; Areti, H.; Biel, J.; Bracker, S.; Case, G.; Fischler, M.; Husby, D.; Nash, T.

    1984-08-01

    We report on the status of the Fermilab Advanced Computer Program's project to provide more cost-effective computing engines for the high energy physics community. The project will exploit the cheap, but powerful, commercial microprocessors now available by constructing modular multi-microprocessor systems. A working test bed system as well as plans for the next stages of the project are described

  2. FERMILAB: Physics in the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-12-15

    Brainstorming workshops are a regular feature of the high energy physics scene, but a recent Workshop on Physics at Fermilab in the 1990s was one of the most important in the Laboratory's 20-year history, charting the aims of a research centre which will retain the distinction of having the highest energy accelerator in the world well into the next decade.

  3. Strategic directions of computing at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1997-04-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R ampersand D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object- oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and project. R ampersand D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing

  4. Cloud services for the Fermilab scientific stakeholders

    International Nuclear Information System (INIS)

    Timm, S; Garzoglio, G; Mhashilkar, P

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality. (paper)

  5. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  6. Fermilab | Science | Inquiring Minds | Questions About Physics

    Science.gov (United States)

    Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  7. Fermilab | Physics for Everyone | Lecture Series

    Science.gov (United States)

    Industry Students and teachers Media Physics for Everyone Navbar Toggle About Leadership and Organization Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle

  8. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    International Nuclear Information System (INIS)

    Deluca Silberberg, Carolina

    2009-01-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1 . Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T . From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by

  9. Tevatron-for-LHC Report: Preparations for Discoveries

    CERN Document Server

    Abdullin, Salavat; Asai, Shoji; Atramentov, Oleksiy Vladimirovich; Baer, Howard; Balazs, Csaba; Bartalini, Paolo; Belyaev, Alexander; Bernhard, Ralf Patrick; Birkedal, Andreas; Buescher, Volker; Cavanaugh, Richard; Chen, Mu-Chun; Clement, Christophe; Datta, AseshKrishna; de Boer, Ytsen R.; De Roeck, Albert; Dobrescu, Bogdan A.; Drozdetskiy, Alexey; Gershtein, Yuri S.; Glenzinski, Douglas A.; Group, Robert Craig; Heinemeyer, Sven; Heldmann, Michael; Hubisz, Jay; Karlsson, Martin; Kong, Kyoungchul; Korytov, Andrey; Kraml, Sabine; Krupovnickas, Tadas; Lafaye, Remi; Lane, Kenneth; Ledroit, Fabienne; Lehner, Frank; Lin, Cheng-Ju; Macesanu, Cosmin; Matchev, Konstantin T.; Menon, Arjun; Milstead, David; Mitselmakher, Guenakh; Morel, Julien; Morrissey, David; Mrenna, Steve; O'Farrill, Jorge; Pakhotin, Yu.; Perelstein, Maxim; Plehn, Tilman; Rainwater, David; Raklev, Are; Schmitt, Michael; Scurlock, Bobby; Sherstnev, Alexander; Skands, Peter Z.; Sullivan, Zack; Tait, Timothy M.P.; Tata, Xerxes; Torchiani, Ingo; Trocme, Benjamin; Wagner, Carlos; Weiglein, Georg; Zerwas, Dirk

    2006-01-01

    This is the "TeV4LHC" report of the "Physics Landscapes" Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  10. Experience with the new reverse injection scheme in the Tevatron

    International Nuclear Information System (INIS)

    Saritepe, S.; Goderre, G.; Annala, G.; Hanna, B.; Braun, A.

    1993-01-01

    In the new injection scenario the antiproton beam is injected onto a helical Tevatron orbit to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedures. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Ring. Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. The orbit closure was performed in the Main Ring. In the new scheme the lambertson magnets have to be moved, separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS (Tevatron Beam Synchronized Clock) event $D8 as MRBS (Main Ring Beam Synchronized Clock) $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the Main Ring

  11. On Self-Similarity of Top Production at Tevatron

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2012-01-01

    Roč. 3, č. 8 (2012), s. 815-820 ISSN 2153-120X R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10480505 Keywords : top quark * Tevatron Subject RIV: BE - Theoretical Physics http://www.scirp.org/journal/PaperInformation.aspx?paperID=21690

  12. Race for the Higgs hots up as Tevatron seeks extension

    CERN Multimedia

    Banks, Michael

    2009-01-01

    "With researchers at Cern's Large Hadron Collider (LHC) having circulated protons for the first time since last year's accident, the US Department of Energy (DOE) is requesting $25m so that the Tevatron collider at the Fermi National Accelerator Laboratory in Illinois can run for an extra year until 2011" (0.25 page)

  13. Searches for New Phenomena at the Tevatron and at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Arnd

    2006-10-01

    Recent results on searches for new physics at Run II of the Tevatron and highlights from HERA are reported. The searches cover many different final states and a wide range of models. All analyses have at this point led to negative results, but some interesting anomalies have been found.

  14. Tevatron: recent results and prospects at the upgrade

    International Nuclear Information System (INIS)

    Mondal, Naba K.

    1998-01-01

    In this article, we review some of the recent results from CDF and DΦ experiments at the Tevatron and their prospects at the upgrade. Among the topics discussed are top quark physics, electroweak physics, QCD physics and new physics beyond standard model. (author)

  15. Explaining Tevatron leptons photons missing- T events with ...

    Indian Academy of Sciences (India)

    Abstract. The CDF experiment reported a lepton photon missing transverse energy. (/ET) signal 3σ in excess of the standard model prediction in Tevatron Run I data. The excess can be explained by the resonant production of a smuon, which subsequently decays to a muon, a photon and a gravitino. Here, we perform ...

  16. Combination of CDF and D0 results on the mass of the top quark using up $9.7\\:{\\rm fb}^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group [Fermilab; Aaltonen, T. [Fermilab

    2016-08-05

    We summarize the current top quark mass (mt) measurements from the CDF and D0 experiments at Fermilab. We combine published results from Run I (1992–1996) with the most precise published and preliminary Run II (2001–2011) measurements based on $p\\bar{p}$ data corresponding to up to 9.7 fb$-$1 of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic contributions in quadrature, the preliminary Tevatron average mass value for the top quark is mt = 174.30 ± 0.65 GeV/c2, corresponding to a relative precision of 0.37%.

  17. Collider Detector (CDF) at FERMILAB: an overview

    International Nuclear Information System (INIS)

    Theriot, D.

    1984-07-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 150 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati Laboratory and University of Pisa), and Japan (KEK National Laboratory and Unversity of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies

  18. Collider detector at Fermilab - CDF. Progress report

    International Nuclear Information System (INIS)

    Theriot, D.

    1985-06-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 180 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati National Laboratory and University of Pisa), and Japan (KEK National Laboratory and University of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies. 7 refs., 14 figs

  19. Online modeling of the Fermilab accelerators

    International Nuclear Information System (INIS)

    McCrory, Elliott S.; Michelotti, Leo; Ostiguy, Jean-Francois

    2001-01-01

    We have implemented access to beam physics models of the Fermilab accelerators and beamlines through the Fermilab control system. The models run on Unix workstations, communicating with legacy controls software through a front end redirection mechanism (the open access server), a relational database and a simple text-based protocol over TCP/IP. The clients and the server are implemented in object-oriented C++. We discuss limitations of our approach and the difficulties that arise from it. Some of the obstacles may be overcome by introducing a new layer of abstraction. To maintain compatibility with the next generation of accelerator control software currently under development at the laboratory, this layer would be implemented in Java. We discuss the implications of that choice

  20. The search for the Higgs at the Tevatron; La recherche du Higgs au Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, A

    2004-07-01

    The Tevatron has undergone an impressive technical renovation program whose final aim is to reach an integrated luminosity of 15 fb{sup -1} per experiment. Both CDF and DO detectors have been upgraded in the fields of detection, triggering, track reconstruction and particle identification. In the framework of the standard model, theoretical studies show that for a luminosity of only 2 fb{sup -1} (that is the first step of the renovation program) CDF and DO could barely extend the domain already excluded by LEP for the existence of the Higgs boson. On the other hand for a luminosity of 15 fb{sup -1}, a standard Higgs boson could be excluded up to 180 GeV/c{sup 2} and discovered up to 125 GeV/c{sup 2}. Moreover, a 3*{sigma} result could be obtained in the decay channels H {yields} bb-bar and H {yields} W{sup +}W{sup -} up to 180 GeV/c{sup 2}. In the framework of the minimal supersymmetric standard model (MSSM), at least 20 fb{sup -1} are required for the discovery of the Higgs boson in the energy range: 80 {<=} m{sub A} {<=} 380 GeV/c{sup 2}. (A.C.)

  1. Charm production asymmetries at the Fermilab experiments

    International Nuclear Information System (INIS)

    Carter, T.

    1997-01-01

    I present asymmetries between the production of charm particles and anti-particles from Fermilab experiments, E687, E769 and E791. The results are shown as a function of x F and p t 2 for D ± and D s ± mesons and for pion, kaon and photon beams and compared against current models. Results are also shown for a recent analysis of correlations between production of charm mesons and an associated pion. 14 refs., 5 figs., 3 tabs

  2. Reliability of the Fermilab Antiproton Source

    International Nuclear Information System (INIS)

    Harms, E. Jr.

    1993-05-01

    This paper reports on the reliability of the Fermilab Antiproton source since it began operation in 1985. Reliability of the complex as a whole as well as subsystem performance is summarized. Also discussed is the trending done to determine causes of significant machine downtime and actions taken to reduce the incidence of failure. Finally, results of a study to detect previously unidentified reliability limitations are presented

  3. Status of the Fermilab lattice supercomputer project

    International Nuclear Information System (INIS)

    Mackenzie, P.; Eichten, E.; Hockney, G.

    1988-10-01

    Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs

  4. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  5. FERMILAB Annual Users' Meeting

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an atmosphere full of promise a record 370 users met at Fermilab in April for the 15th annual Users' Meeting. The gathering took place in the midst of activities to bring beam through one-third of the Energy Saver. Laboratory Director Leon Lederman and his staff reported that the ring was nearing completion and that circulating beam could follow soon

  6. FERMILAB: Physics in the 1990s

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Brainstorming workshops are a regular feature of the high energy physics scene, but a recent Workshop on Physics at Fermilab in the 1990s was one of the most important in the Laboratory's 20-year history, charting the aims of a research centre which will retain the distinction of having the highest energy accelerator in the world well into the next decade

  7. Analyzing terabytes of data at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1994-05-01

    Computing demands of High Energy Physics are increasing steadily due to the demands of larger datasets and increasingly sophisticated detector systems and analysis techniques. Fermilab has been meeting these demands by the use of many different computing techniques. Most of these techniques attempt to utilized the most cost-effective computing resources while providing effective solutions to the problems that are created by multi-Terabyte data samples and large collaborations. New strategies are being developed to allow improved access to the data

  8. Recent results from Fermilab E769

    International Nuclear Information System (INIS)

    Gay, C.

    1990-01-01

    Fermilab Experiment E769 obtained a data sample of 400M events during the 1987-88 Fixed Target run using a 250 GeV hadron beam incident on a target consisting of thin foils of W, Cu, Al and Be. Preliminary results on the atomic number, Feynman x and p t 2 dependence of D + production based on 25% of the total data sample are presented

  9. Charmed baryons photoproduced in FOCUS at Fermilab

    CERN Document Server

    Ratti, S P

    2001-01-01

    FOCUS collected over 7 * 10/sup 7/ triggers and more than 10/sup 6/ fully reconstructed charm particles in a photoproduction experiment at Fermilab. The experimental setup is an upgraded version of a multiparticle spectrometer used in the previous experiment E687. Data on charmed meson spectroscopy have been presented by F.L Fabbri in this Section. Here data on photoproduction of charmed baryons are presented.

  10. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  11. Hadroproduction of charm at Fermilab E769

    International Nuclear Information System (INIS)

    Alves, G.A.; Anjos, J.C.; de Mello Neto, J.R.T.; de Miranda, J.M.; da Motta, H.; dos Reis, A.C.; Santoro, A.F.S.; Souza, M.H.G.; Appel, J.A.; Dixon, R.L.; Fenker, H.C.; Green, D.R.; Kwan, S.; Lueking, L.H.; Mantsch, P.M.; Spalding, W.J.; Stoughton, C.; Streetman, M.E.; Bracker, S.B.; Gay, C.; Jedicke, R.; Luste, G.J.; Cremaldi, L.M.; Summers, D.J.; Errede, D.; Sheaff, M.; Kaplan, D.; Leedom, I.; Reucroft, S.; Karchin, P.E.; Ross, W.R.; Wu, Z.; Metheny, J.; Milburn, R.H.; Napier, A.; de Oliveira, A.B.

    1990-01-01

    Experiment E769 at Fermilab obtained charm hadroproduction data during the 1987-88 Fixed Target running period with a 250 GeV hadron beam incident on thin target foils of Be, Al, Cu, and W. From an analysis of 25% of the recorded 400M trigger sample we have explored the Feynman x, p t 2 and the atomic number dependence of charm quark production using samples of D + and D 0 mesons. 7 refs., 4 figs

  12. Grids, virtualization, and clouds at Fermilab

    International Nuclear Information System (INIS)

    Timm, S; Chadwick, K; Garzoglio, G; Noh, S

    2014-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  13. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  14. Software inspections at Fermilab -- Use and experience

    International Nuclear Information System (INIS)

    Berman, E.F.

    1998-01-01

    Because of the critical nature of DA/Online software it is important to commission software which is correct, usable, reliable, and maintainable, i.e., has the highest quality possible. In order to help meet these goals Fermi National Accelerator Laboratory (Fermilab) has begun implementing a formal software inspection process. Formal Inspections are used to reduce the number of defects in software at as early a stage as possible. These Inspections, in use at a wide variety of institutions (e.g., NASA, Motorola), implement a well-defined procedure that can be used to improve the quality of many different types of deliverables. The inspection process, initially designed by Michael Fagan, will be described as it was developed and as it is currently implemented at Fermilab where it has been used to improve the quality of a variety of different experiment DA/Online software. Benefits of applying inspections at many points in the software life-cycle and benefits to the people involved will be investigated. Experience with many different types of Inspections and the lessons learned about the inspection process itself will be detailed. Finally, the future of Inspections at Fermilab will be given

  15. Grids, virtualization, and clouds at Fermilab

    Science.gov (United States)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  16. Research for the boson of Higgs and for couplings of capacity quartic abnormal in the channel WW in electrons in the experiment D0 in Tevatron

    International Nuclear Information System (INIS)

    Chapon, Emilien

    2013-01-01

    Two physics analyzes are presented in this thesis, both probing the electroweak sector of the Standard Model using events with two oppositely charged electrons and missing transverse energy. The events are selected from the full Run II data sample of 9.7 fb -1 of proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96 TeV. The first analysis is a search for the Higgs boson in H → WW → evev decays. To validate the search methodology, the non-resonant WW production cross section is measured. In the Higgs boson search, no significant excess above the background expectation is observed. Upper limits on the Higgs boson production cross section are therefore derived, within the Standard Model, but also within a theoretical framework with a fourth generation of fermions, and in the context of fermiophobic Higgs boson couplings. A search for anomalous quartic gauge couplings between the photon and the W boson is then presented, using exclusive W boson pair production, allowing to probe new physics effects. The selection of the events and the analysis techniques used are mostly identical to those used in the first analysis, the search for the Higgs boson. The limits set on this type of anomalous couplings are the first ones from the Tevatron and the most stringent ones at the time of the publication. (author) [fr

  17. Construction and performance of silicon detectors for the small angle spectrometers of the collider detector of Fermilab

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1987-01-01

    The manufacturing process of a series of position sensitive silicon detectors is described together with the tests performed to optimize the performance of the detectors. The detectors are Schottky diodes with strips on the ohmic contact which allow to determine the position of the incoming ionizing particles by charge partition. Four detectors were assembled in a telescope and tested inside the vacuum pipe of the Tevatron Collider at Fermilab. The system is a prototype of the Small Angle Silicon Spectrometer, designed primarily to study p-anti p elastic and diffractive cross sections, and is a part of the Collider Detector of Fermilab (CDF). Several tests were performed to check the efficiency and the linearity of response of various regions of the detectors. Scans of the beam halo were also done in high and low β optics to check how close to the beam the detectors could be operated. Finally, the dependence of the detector response on temperature and integrated radiation dose was investigated. (orig.)

  18. Fermilab 1982. Annual report of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    The state of Fermilab is reviewed for 1982, and summaries are given in the following areas: fabricating energy saver superconducting magnets; present knowledge and future directions in particle physics; accomplishments of Fermilab in a decade of operation 1972 to 1982; a photo essay on the energy saver installation work in the Main Ring Tunnel; a listing of 1982 Fermilab experimental, general, and theoretical publications; and a listing of the 1982 workshop and seminar series

  19. Report of the Fermilab Committee for Site Studies

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  20. Report of the Fermilab Committee for Site Studies

    International Nuclear Information System (INIS)

    Steve, Holmes; Vic, Kuchler

    2001-01-01

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions

  1. The A0 abort system for the Tevatron upgrade

    International Nuclear Information System (INIS)

    Crawford, C.

    1989-01-01

    The installation of electrostatic separator modules at B48 and C17 in the Tevatron necessitates changes to the Tevatron abort system. There will no longer be room for either the proton or antiproton kicker magnets used in the present system. The kickers at C17 will be permanently removed. The kickers at B48 will be temporarily removed for collider operation and will be replaced for fixed target operation. The existing proton abort system will remain unchanged during fixed target operation. This note describes a proposed abort system for operation in the collider mode for 22 on 22 bunches and provides details of specifications for the required components. In certain cases, for example in the case of the pulsers for the magnets and the absorber assembly, system components are designed with the option of upgrading to 44 on 44 bunch operation in mind. 8 refs., 14 figs

  2. Tevatron-for-LHC Report: Preparations for Discoveries

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, V.; Carena, Marcela S.; Dobrescu, Bogdan A.; Mrenna, S.; Rainwater, D.; Schmitt, M.

    2006-08-01

    This is the ''TeV4LHC'' report of the ''Physics Landscapes'' Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  3. Status of the Tevatron CDF and D0 experiments

    International Nuclear Information System (INIS)

    Rolli, Simona

    2010-01-01

    The status of the Tevatron Collider is reviewed and highlights of the rich physics program carried out by the CDF and D0 experiments are presented. The Tevatron Collider has been performing remarkably well in the past few years and it is continuing to deliver record luminosity. The machine collides proton and anti-proton beams at an energy in the center of mass of 1.96 TeV, with average peak luminosity of 300E30 cm -2 s -1 . The total delivered luminosity is slightly above 9 fb -1 . The CDF and D0 experiments have been collecting data with an average efficiency of 90%, while the experiments have enjoyed an annual doubling of the integrated luminosity delivered and recorded. This has led to an avalanche of new results from areas as diverse as QCD, top, searches for new physics and the area of electroweak symmetry breaking with particular focus on direct searches for the Higgs boson. The physics reach of the Tevatron is built on a mountain of measurements that confirm the ability of the Tevatron collaborations to use their detectors to discover new particles. Each measurement is of itself a significant result. Measurements begin with the largest cross section processes, those of B physics, but move on to processes with small branching ratios and backgrounds that are hard to distinguish from the signal. The measurement of Bs oscillations demonstrates the performance of the silicon tracking and vertexing. Discovery of single top production, WZ production, and evidence for the ZZ production in both leptonic and now hadronic modes provide the final base camp from which the Higgs summit is in sight. Processes such as single top and ZZ act as important messengers heralding the impending arrival of the Higgs. This journey through lower and lower cross section processes represents our approach to provide convincing evidence of these processes, first as discovery then as measurements that constrain the Standard Model.

  4. Searching for directly decaying gluinos at the Tevatron

    International Nuclear Information System (INIS)

    Alwall, Johan; Le, My-Phuong; Lisanti, Mariangela; Wacker, Jay G.

    2008-01-01

    This Letter describes how to perform searches over the complete kinematically-allowed parameter space for new pair-produced color octet particles that each subsequently decay into two jets plus missing energy at the Tevatron. This Letter shows that current searches can miss otherwise discoverable spectra of particles due to CMSSM-motivated cuts. Optimizing the H T and E/ T cuts expands the sensitivity of these searches

  5. Present searches for Higgs signatures at the Tevatron

    International Nuclear Information System (INIS)

    Groer, L.

    1997-08-01

    We present results for various searches for signatures of standard and non-standard model Higgs boson decays conducted at the collider detectors CDF and D0 using ∼100 pb -1 of integrated luminosity each from the Tevatron collider Run 1 (1992-96) at √s=1.8 TeV. No evidence for a Higgs boson decay is found and various limits are set

  6. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    International Nuclear Information System (INIS)

    Seligman, W.G.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F 2 and xF 3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to α S (M Z 2 ) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q 0 2 = 5GeV 2 ) = (2.22 ± 0.34) x (1 - x) 4.65±0.68

  7. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Benjamin Eric [Tufts Univ., Medford, MA (United States)

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  8. Search for the supersymmetric partner of bottom quark at DO at Tevatron. Studies on missing transverse energy

    International Nuclear Information System (INIS)

    Calvet, S.

    2007-09-01

    Supersymmetry, the extension of the Standard Model of particle physics, is searched for, by trying to observe the supersymmetric partner of the bottom quark (b-bar). This search is performed by using events with a final state comprising 2 coplanar b-quark jets and missing transverse energy and coming from a sample of 992 pb -1 of data collected by the D0 detector at the Tevatron, the Fermilab pp-bar collider. The absence of an excess of events in comparison to Standard Model expectations leads to exclude sb masses up to 201 GeV and neutralino masses up to 94 GeV. The missing transverse energy has been studied carefully under 2 points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then during the process Z → νν + jets that is an important background noise and in which the transverse momentum of Z turns into missing energy because of the no-detection of the neutrinos. (author)

  9. Search for supersymmetric partner of bottom quark at d0 at Tevatron. Studies on missing transverse energy

    International Nuclear Information System (INIS)

    Calvet, Samuel Pierre; Marseille, CPPM

    2007-01-01

    Supersymmetry, extension of the Standard Model of Particle Physics (SM), is searched for by trying to observe the supersymmetric partner of bottom quark ((tilde b)). This search is performed using events with a final state comprising two acoplanar b-quark jets and missing transverse energy (MET) and coming from a sample of 992 pb -1 of data collected by the D0 detector at the Tevatron, the Fermilab p(bar p) collider. The absence of an excess of events in comparison to MS expectations leads to exclude sb masses up to 201 GeV, neutralino masses up to 94 GeV. The MET has been studied under two points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then, within the framework of the ALPGEN generator, the simulation of the Z boson transverse momentum which appears as MET when the Z boson decays into neutrino

  10. Search for supersymmetric partner of bottom quark at d0 at Tevatron. Studies on missing transverse energy

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Samuel Pierre [Univ. of the Mediterranean, Marseille (France)

    2007-09-21

    Supersymmetry, extension of the Standard Model of Particle Physics (SM), is searched for by trying to observe the supersymmetric partner of bottom quark ($\\tilde{b}$). This search is performed using events with a final state comprising two acoplanar b-quark jets and missing transverse energy (MET) and coming from a sample of 992 pb-1 of data collected by the D0 detector at the Tevatron, the Fermilab p$\\bar{p}$ collider. The absence of an excess of events in comparison to MS expectations leads to exclude sb masses up to 201 GeV, neutralino masses up to 94 GeV. The MET has been studied under two points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then, within the framework of the ALPGEN generator, the simulation of the Z boson transverse momentum which appears as MET when the Z boson decays into neutrino.

  11. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Columbia Univ., New York, NY (United States)

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F2 and xF3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to αS(MZ2) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q02 = 5GeV2) = (2.22 ± 0.34) x (1 - x)4.65±0.68.

  12. Final module tuning of the 805 MHz side-coupled cavities for the Fermilab linac group

    International Nuclear Information System (INIS)

    Qian, Z.; Champion, M.; Miller, H.W.; Moretti, A.; Padilla, R.

    1992-01-01

    As part of the Fermilab Tevatron collider upgrade program the last four linac drift-tube tanks are to be replaced with seven side-coupled cavity modules that will operate at an accelerating gradient of 8 MV/V. Each module is composed of four accelerating sections connected by three bridge couplers and is driven by a 12 MW 805 MHz klystron rf power supply. Sixteen accelerating cells and fifteen coupling cells are brazed into an accelerating section. The modules were tuned such that the π/2 mode of each section and the TM 010 mode of the individual bridge coupler agreed within 2 KHz of the module accelerating mode, the accelerating cell frequency was tuned within ± % KHz and the section stopbands were 50-100 KHz under vacuum. The main cell rms field deviation was in general <1% within any section and the section average rms field deviation was in all but one case <1%. The phase shift from section to section was tuned to <1 degree. The coupling between waveguide and cavity was tuned to match the 30 ma beam loading. 3 tabs., 4 figs., 6 refs

  13. Fermilab R and D test facility for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-02-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs., 2 tabs

  14. Medium energy electron cooling R and D at Fermilab -- Context and status

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling at the proposed Recycler 8 GeV storage ring has been identified as a key element in exploiting the capacity of the Fermilab Main Injector for an additional factor of ten in Tevatron luminosity above the goal for the next collider run, ultimately to > 10 33 cm -2 s -1 . The most basic requirement for increased luminosity is a large stack of antiprotons cooled to emittance comparable to that of the proton beam. Although electron cooling is inferior to the stochastic technique for cooling large emittance beams, its rate is practically independent of the antiproton intensity. For cooling intense beams of low or moderate emittance, electron cooling excels. The realization of electron cooling for 8 GeV antiprotons requires major extension of existing practice in electron energy and length of the cooling interaction region. It will require 4.3 MeV dc electron beam maintaining high quality and precise collinearity with the antiprotons over a 66 m straight section. The initial goal of the R and D project is 200 mA electron current in about three years; the plan is to reach 2 A over the following three years

  15. Operational experience with the Fermilab 150 GeV injection kicker

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1985-01-01

    The Fermilab E17 injection kicker has been in operation for more than 12000 filament hours and has logged almost 350,000 pulses since commissioning without major failure. The kicker system uses EEV 1193B and 1193C double-ended thyratrons in the MAIN, CLIP and DUMP configuration. In typical operation, the pulser produces 4800 A, 20 μs pulses at a charging voltage of 60kV and is capable of operating at a 80kV charging voltage. Any failure of the injection process can cause the Tevatron cryogenic magnets to quench. This includes any misfires of the injection kicker. Considerable effort was made to maximize reliability and provide interlocks to limit the problems that could happen from injection kicker misfires. The operating experience and reliability of the EEV thyratron will be discussed. Also, the use of the fiber optics, unique charging power supplies, and unusual digital interlocks and the role they play in improved reliability will be discussed

  16. Groundwater migration of radionuclides at Fermilab

    International Nuclear Information System (INIS)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-01-01

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab's inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits

  17. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  18. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  19. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  20. Dilepton Production at Fermilab and RHIC

    International Nuclear Information System (INIS)

    Peng, J.C.; McGaughey, P.L.; Moss, J.M.

    1999-01-01

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC

  1. The VAXONLINE software system at Fermilab

    International Nuclear Information System (INIS)

    White, V.; Heinicke, P.; Berman, E.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements

  2. Bunch coalescing in the Fermilab Main Ring

    International Nuclear Information System (INIS)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-01-01

    A new RF system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h=1113 Main Ring RF voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h=53 and h=106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h=1113 bucket. The new system is described and the results of recent coalescing experiments are compared with computer-generated particle tracking simulations

  3. Managing discovery risks--A Tevatron case study

    International Nuclear Information System (INIS)

    Bakul Banerjee

    2004-01-01

    To meet the increasing need for higher performance, Management of Fermi National Accelerator Laboratory has undertaken various projects to improve systems associated with the Tevatron high-energy particle collider located at Batavia, Illinois. One of the larger projects is the Tevatron Beam Position Monitor (BPM) system. The objective of this project is to replace the existing BPM electronics and software system that was originally installed during early 1980s, along with the original construction of the Tevatron.The original system consists of 236 beam position monitors located around the underground tunnel of the accelerator. Above ground control systems are attached to these monitors using pickup cables. When the Tevatron collider is operational, signals received from the BPMs are used to perform a number of control and diagnostic tasks. The original system can only capture the proton signals from the collider. The new system, when fully operational, will be able to capture combined proton and antiproton signals and will be able to separate the antiproton signal from the combined signal at high resolution. This significant enhancement was beyond the range of technical capabilities when the Tevatron was constructed about two decades ago. To take advantage of exceptional progress made in the hardware and software area in past two decades, Department of Energy approved funding of the BPM electronics and software replacement project. The approximate length of the project is sixteen months with a budget of four million dollars not including overhead, escalation, and contingencies. Apart from cost and schedule risks, there are two major risks associated with this research and development project. The primary risk is the risk of discovery. Since the Tevatron beam path is highly complex, BPMs have to acquire and process a large amount of data. In this environment, analysis of data to separate antiproton signals is even more complex. Finding an optimum algorithm that can

  4. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  5. First paper from Tevatron Run II submitted by CDF collaboration

    CERN Multimedia

    2003-01-01

    "Scientists of the Collider Detector at Fermilab submitted today (March 19) the first scientific publication of Collider Run II to the science journal Physical Review D. The paper titled "Measurement of the Mass Difference m(Ds+)-m(D+) at CDF II" summarizes the results of an analysis carried out by CDF scientists Christoph Paus and Ivan Furic, MIT, describing the mass measurement of particles containing charm quarks" (1 page).

  6. Spectroscopy and Decay of $B$ Hadrons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Paulini, Manfred

    2007-02-01

    The authors review recent results on heavy quark physics focusing on Run II measurements of B hadron spectroscopy and decay at the Tevatron. A wealth of new B physics measurements from CDF and D0 has been available. These include the spectroscopy of excited B states (B**, B**{sub s}) and the observation of the {Sigma}{sub b} baryon. The discussion of the decays of B hadrons and measurements of branching fractions focuses on charmless two-body decays of B {yields} h{sup +}h{sup -}. They report several new B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} decay channels.

  7. $B$ physics at the Tevatron: Run II and beyond

    CERN Document Server

    Anikeev, K; Azfar, F.; Bailey, S.; Bauer, C.W.; Bell, W.; Bodwin, G.; Braaten, E.; Burdman, G.; Butler, J.N.; Byrum, K.; Cason, N.; Cerri, A.; Cheung, H.W.K.; Dighe, A.; Donati, S.; Ellis, R.K.; Falk, A.; Feild, G.; Fleming, S.; Furic, I.; Gardner, S.; Grossman, Y.; Gutierrez, G.; Hao, W; Harris, B.W.; Hewett, J.; Hiller, G.; Jesik, R.; Jones, M.; Kasper, P.A.; El-Khadra, A.; Kirk, M.; Kiselev, V.V.; Kroll, J.; Kronfeld, A.S.; Kutschke, R.; Kuznetsov, V.E.; Laenen, E.; Lee, J.; Leibovich, A.K.; Lewis, J.D.; Ligeti, Z.; Likhoded, A.K.; Logan, H.E.; Luke, M.; Maciel, A.; Majumder, G.; Maksimovic, P.; Martin, M.; Menary, S.; Nason, P.; Nierste, U.; Nir, Y.; Nogach, L.; Norrbin, E.; Oleari, C.; Papadimitriou, V.; Paulini, M.; Paus, C.; Petteni, M.; Poling, R.; Procario, M.; Punzi, G.; Quinn, H.; Rakitine, A.; Ridolfi, G.; Shestermanov, K.; Signorelli, G.; Silva, J.P.; Skwarnicki, T.; Smith, A.; Speakman, B.; Stenson, K.; Stichelbaut, F.; Stone, S.; Sumorok, K.; Tanaka, M.; Taylor, W.; Trischuk, W.; Tseng, J.; Van Kooten, R.; Vasiliev, A.; Voloshin, M.; Wang, J.C.; Wicklund, A.B.; Wurthwein, F.; Xuan, N.; Yarba, J.; Yip, K.; Zieminski, A.

    2002-01-01

    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.

  8. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  9. Tevatron as an SSC prototype; experience versus predictions

    International Nuclear Information System (INIS)

    Johnson, R.P.

    1984-01-01

    Early machine experiments on the Tevatron which are relevant to the SSC are discussed. Despite the preliminary nature of the data, there have been some interesting observations which may influence the design of the SSC. In particular, comparisons of measured betatron tunes, chromaticities, and resonance line widths with those predicted from computer simulations using magnetic field measurements have been made; the predictability for low order phenomena seems acceptable. Coasting beam studies indicate long lifetime and lack of strong resonance driving terms. Low energy studies of beam behavior indicate that a dynamic range of a factor of 15 from injection to operation energy should be possible

  10. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  11. J/ψ production: Tevatron and fixed-target collisions

    International Nuclear Information System (INIS)

    Petrelli, A.

    1999-01-01

    In this talk the author shows the results of a fit of the NRQCD matrix elements to the CDF data for direct J/ψ production, by including the radiative corrections to the g g > 3 S 1 [1] channel and the effect of the k T -smearing. Furthermore he performs the NLO NRQCD analysis of J/ψ production in fixed-target proton-nucleon collisions and he fits the colour-octet matrix elements to the available experimental data. The results are compared to the Tevatron ones

  12. The CDF SVX II upgrade for the Tevatron Run II

    International Nuclear Information System (INIS)

    Bortoletto, Daniela

    1997-01-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R and D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage

  13. Top and Higgs at the Tevatron: Measurements, searches, prospects

    International Nuclear Information System (INIS)

    Konigsberg, J.

    2000-01-01

    In this paper we summarize the status of Top Quark Physics and of searches for the Standard Model Higgs at the Tevatron. Results from both the CDF and D0 experiments are discussed and the prospects for the upcoming Run 2, in the year 2001, are outlined. Much work has been performed on these topics and due to the nature of these proceedings only a brief explanation can be offered here. For more details the reader should turn to the excellent sources listed in the reference section

  14. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  15. Studies of neutron dissociation at Fermilab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The latest results obtained in a continuing investigation of neutron dissociation in (pπ - ) systems in neutron--nucleus collisions between 50 and 300 GeV/c are summarized. The nuclear coherent dissociation data are discussed first; then new measurements of total cross sections of neutrons on nuclei in the Fermilab momentum range are presented; finally, neutron dissociation using a hydrogen target is considered, and the hydrogen data are compared with expectations from simple Deck models. A substantial correlation was observed between the mass and the t of the system produced. The spin structure of the pπ - amplitudes at low mass was described surprisingly well by the simple Deck mechanism. The t-channel helicity amplitudes contained comparable contributions from flip and nonflip terms, and the states produced were not restricted to those expected on the basis of the Morrison rule. (19 figures, 2 tables) (U.S.)

  16. Operational experience with the Fermilab Linac

    International Nuclear Information System (INIS)

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-01-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H - ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility (NTF). The beam intensity is typically 35 mA with pulse widths of 30 μsec for the Booster for high energy physics and 57 μsec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed. (Author) 15 refs., 2 tabs

  17. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  18. The Fermilab computing farms in 2000

    International Nuclear Information System (INIS)

    Troy Dawson

    2001-01-01

    The year 2000 was a year of evolutionary change for the Fermilab computer farms. Additional compute capacity was acquired by the addition of PCs for the CDF, D0 and CMS farms. This was done in preparation for Run 2 production and for CMS Monte Carlo production. Additional I/O capacity was added for all the farms. This continues the trend to standardize the I/O systems on the SGI O2x00 architecture. Strong authentication was installed on the CDF and D0 farms. The farms continue to provide large CPU resources for experiments and those users whose calculations benefit from large CPU/low IO resources. The user community will change in 2001 now that the 1999 fixed-target experiments have almost finished processing and Run 2, SDSS, miniBooNE, MINOS, BTeV, and other future experiments and projects will be the major users in the future

  19. Some recent experimental results from Fermilab

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark

  20. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  1. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  2. In celebration of the fixed target program with the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Appel et al.

    2001-12-28

    The Tevatron is the world's first large superconducting accelerator. With its construction, we gained the dual opportunities to advance the state of the art in accelerator technology with the machine itself and in particle physics with the experiments that became possible in a higher energy regime. There have been 43 experiments in the Tevatron fixed target program. Many of these are better described as experimental programs, each with a broad range of physics goals and results, and more than 100 collaborating physicists and engineers. The results of this program are three-fold: (1) new technologies in accelerators, beams and detectors which advanced the state of the art; (2) new experimental results published in the refereed physics journals; and (3) newly trained scientists who are both the next generation of particle physicists and an important part of the scientific, technical and educational backbone of the country as a whole. In this book they compile these results. There are sections from each experiment including what their physics goals and results were, what papers were published, and which students have received degrees. Summaries of these results from the program as a whole are quite interesting, but the physics results from this program are too broad to summarize globally. The most important of the results appear in later sections of this booklet.

  3. Review of Physics Results from the Tevatron: Higgs Boson Physics

    International Nuclear Information System (INIS)

    Junk, Thomas R.; Juste, Aurelio

    2015-01-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DO. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeVTevatron: gluon-gluon fusion, WH and ZH associated production, vector boson fusion, and tt ¯ H production, and in five main decay modes: H→bb ¯ , H→τ + τ − , H→WW (∗) , H→ZZ (∗) , and H→γγ . An excess of events was seen in the H→bb ¯ searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV

  4. Successful observation of Schottky signals at the Tevatron collider

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1989-08-01

    We have constructed a Schottky detector for the Tevatron collider in the form of a high-Q (∼5000) cavity which operates at roughly 2 GHz, well above the frequency at which the Tevatron's single-bunch frequency spectrum begins to roll off. Initial spectra obtained from the detector show clearly observable Schottky betatron lines, free of coherent contaminants; also seen are the ''common-mode'' longitudinal signals due to the offset of the beam from the detector center. The latter signals indicate that at 2 GHz, the coherent single-bunch spectrum from the detector is reduced by >80 dB; therefore, in normal collider operation, the Schottky betatron lines are >40 dB greater than their coherent counterparts. We describe how the data we have obtained give information on transverse and longitudinal emittances, synchrotron frequency, and betatron tunes, as well as reveal what may be previously unobserved phenomena. Space limitations restrict us to presenting only as much data as should be necessary to convince even the skeptical reader of the validity of the claim made in the paper's title. 3 refs., 2 figs

  5. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-09-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics at the previous energy of 900 GeV. This has allowed us to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which has taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, our new satellite refrigerator controls system is capable of the expansion necessary to reach our goal. New features are being added to the control system which will allow for more intelligent control and better diagnostics for component monitoring and trending

  6. Preparing for 1000 GeV physics at Fermilab

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The superconducting proton beams and the neutrino beams at Fermilab prepared for the research with 1000 GeV colliding proton and antiproton beams are described. Especially a new developed helium transfer line is described. (HSI).

  7. A review of the Fermilab fixed-target program

    Energy Technology Data Exchange (ETDEWEB)

    Rameika, R. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which use the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.

  8. Fermilab's new management looks to land linear collider

    CERN Multimedia

    Feder, Toni

    2007-01-01

    "As of 1 January, the Universities Research Association (URA), which has managed Fermilab since the lab's inception 40 years ago, is sharing the responsibility with the University of Chicago." (1,5 page)

  9. The Fermilab ISDN Pilot Project: Experiences and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-12-31

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

  10. The Fermilab ISDN Pilot Project: Experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking

  11. The Fermilab ISDN pilot project: experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1996-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. each home was equipped with a basic rate ISDN (BRI) Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking. (author)

  12. Costs to build Fermilab in 1984 dollars

    International Nuclear Information System (INIS)

    Jordan, N.G.; Livdahl, P.V.

    1984-02-01

    It is of current interest to examine the costs incurred to date to build Fermi National Accelerator Laboratory and to determine what those costs are when stated in FY 1984 constant dollars. The appended tables are in support of this exercise and are based on all costs for Equipment items (reduced by obsolescence) and all Plant Projects which have been appropriated through FY 1984. Also included are non-plant costs which are required to complete the Energy Saver, Tevatron I and II projects (i.e., Equipment and R and D in support of Construction). This study makes the assumption that all funding through FY 1984 will have been costed by the end of FY 1986. Those costs incurred in FY 1985 and FY 1986 have been deflated to FY 1984 dollars. See Appendix A for the DOE inflation factors used in the conversion to FY 1984 dollars. The costs are identified in three categories. The Accelerator Facilities include all accelerator components, the buildings which enclose them and utilities which support them. The Experimental Facilities include all beam lines, enclosures, utilities and experimental equipment which are usable in current experimental programs. The Support Facilities include lab and office space, shops, assembly facilities, roads, grounds and the utilities which do not specifically support the Accelerator or Experimental Facilities, etc

  13. Commissioning and First Results from the Fermilab Cryomodule Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; et al.

    2017-05-01

    A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

  14. 3D design activities at Fermilab-Opportunities for physics

    International Nuclear Information System (INIS)

    Yarema, Raymond; Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Lipton, Ron; Christian, Dave

    2010-01-01

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  15. 3D design activities at Fermilab-Opportunities for physics

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Raymond, E-mail: yarema@fnal.go [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Lipton, Ron; Christian, Dave [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2010-05-21

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  16. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    International Nuclear Information System (INIS)

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given

  17. Fixed target beauty physics from Tevatron to SSC (E771)

    International Nuclear Information System (INIS)

    Lau, K.

    1992-01-01

    The E771 beauty experiment at Fermilab is described. The Super Fixed Target Beauty Facility (SFT) proposal to perform fixed target beauty physics at the SSC is a natural evolution. The unique features of SFT include crystal channeling extraction from the SSC main ring, which allows the experiment to operate concurrently with the collider experiments. The slow extraction rate (≅2x10 8 protons/s) does not limit the lifetime of the stored beams. The proposed beauty spectrometer and its capability in CP violation studies are described. (author) 19 refs.; 2 figs.; 2 tabs

  18. Measurement of direct CP violation parameters in B± → J/ψK± and B± → J/ψπ± decays with 10.4 fb-1 of Tevatron data.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Beattie, M; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hart, B; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Holzbauer, J; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lamont, I; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; Mason, N; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2013-06-14

    We present a measurement of the direct CP-violating charge asymmetry in B(±) mesons decaying to J/ψK(±) and J/ψπ(±) where J/ψ decays to μ(+) μ(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B(-) and B(+) mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/ψK) = [0.59 ± 0.37]%, which is the most precise measurement to date, and A(J/ψπ) = [-4.2 ± 4.5]%. Both measurements are consistent with standard model predictions.

  19. Top-quark mass measurements: Alternative techniques (LHC + Tevatron)

    CERN Document Server

    Adomeit, Stefanie; The ATLAS collaboration

    2014-01-01

    Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

  20. Searches for Long-lived Particles at the Tevatron Collider

    International Nuclear Information System (INIS)

    Adams, T.; Florida State U.

    2008-01-01

    Several searches for long-lived particles have been performed using data from p(bar p) collisions from Run II at the Tevatron. In most cases, new analysis techniques have been developed to carry out each search and/or estimate the backgrounds. These searches expand the discovery potential of the CDF and D0 experiments to new physics that may have been missed by traditional search techniques. This review discusses searches for (1) neutral, long-lived particles decaying to muons, (2) massive, neutral, long-lived particles decaying to a photon and missing energy, (3) stopped gluinos, and (4) charged massive stable particles. It summarizes some of the theoretical and experimental motivations for such searches