WorldWideScience

Sample records for tetraphenylborate catalyst studies

  1. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  2. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Renn, Dominik; Zernickel, Anna; Du, Weiyuan; Sekar, Nethi; Eppinger, Jö rg

    2018-01-01

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  3. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun

    2018-03-19

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  4. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  5. Tetraphenylborate Catalyst Development for the Oak Ridge National Laboratory 20-L Continuously Stirred Tank Reactor Demonstration

    International Nuclear Information System (INIS)

    Barnes, M.J.

    2001-01-01

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation as one of the three alternatives to replace the In-Tank Precipitation Facility at the Savannah River Site. The proposed design incorporates two continuous stirred tank reactors (CSTR) a concentrate tank and a sintered metal crossflow filter. Previous use of tetraphenylborate in batch operation and testing demonstrated the ability of the feed material to catalyze the decomposition of tetraphenylborate. The Small Tank Tetraphenylborate Precipitation design seeks to overcome the processing limitation of the unwanted reaction by rapid throughput and temperature control. Nitrogen inerting of the vapor space helps mitigate any safety (i.e., flammable) concerns of the reaction

  6. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  7. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  8. Literature Review of the Effects of Tetraphenylborate on Saltstone Grout: Benzene Evolution and TCLP Performance

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2004-01-01

    As part of the program to disposition the tetraphenylborate (TPB) in Tank 48H and return the tank to service, Salt Processing Development requested a review of the literature to assess the state of knowledge pertaining to incorporation of tetraphenylborate slurries in saltstone grout with respect to benzene generation rates and leaching performance. Examination of past studies conducted at Savannah River Site (SRS) on the incorporation of TPB slurries in saltstone provides a basis for developing a more focused scope of experimental studies. Tank 48H currently contains potassium and cesium tetraphenylborate salts as a result of a demonstration of the In Tank Precipitation (ITP) process in 1983 and subsequent ITPradioactive start-up operations in 1995. The tank currently contains approximately 240,000 gallons of salt solution with approximately 19,000 kg of potassium and cesium tetraphenylborate salts. The presence of the TPB salts makes the waste incompatible with existing High Level Waste treatment facilities. The TPB salts in Tank 48H must be treated or removed to meet the scheduled return to service date of 2007. The two preferred options for disposition of the TBP slurries in Tank 48H include: (1) Aggregation of the material with the Defense Waste Processing Facility (DWPF) recycle stream and disposal in the Saltstone Processing Facility (SPF), and (2) In-Situ Thermal Decomposition using heat in combination with pH reduction and catalyst addition. The current literature review along with the current experimental studies provide a basis for determining the feasibility of the option to incorporate the TPB slurries into saltstone grout

  9. Sodium Tetraphenylborate Catalyst Identification: Preliminary Studies Set 2

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1997-05-01

    This document details the results of these tests and represents the second report of the task designed to identify soluble NaTPB decomposition catalysts. This task, performed as part of the DNFSB Recommendation 96-1 Implementation Plan, partially fulfills the request by High Level Waste Engineering and the ITP Flow Sheet Team in task Technical Request HLW-TTR-97008

  10. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson , R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation.

  11. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation

  12. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  13. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  14. In-Tank Peroxide Oxidation Process for the Decomposition of Tetraphenylborate in Tank 48H

    International Nuclear Information System (INIS)

    DANIEL, LAMBERT

    2005-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at the Savannah River Site (SRS). Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. The TPB was added during an in-tank precipitation process to removed soluble cesium, but excessive benzene generation curtailed this treatment method. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to routine Tank Farm service. Tank 48H currently contains approximately 240,000 gallons of alkaline slurry with approximately 19,000 kg (42,000 lb) of potassium and cesium tetraphenylborate (KTPB and CsTPB). Out of Tank processing of the Tank 48H has some distinct advantages as aggressive processing conditions (e.g., high temperature, low pH) are required for fast destruction of the tetraphenylborate. Also, a new facility can be designed with the optimum materials of construction and other design features to allow the safe processing of the Tank 48H waste. However, it is very expensive to build a new facility. As a result, an in-tank process primarily using existing equipment and facilities is desirable. Development of an in-tank process would be economically attractive. Based on success with Fentons Chemistry (i.e., hydrogen peroxide with an iron or copper catalyst to produce hydroxyl radicals, strong oxidation agents), testing was initiated to develop a higher pH oxidation process that could be completed in-tank

  15. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  16. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    International Nuclear Information System (INIS)

    Eibling, R.E.; Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L.

    1994-01-01

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions

  17. Combustibility of tetraphenylborate solids

    International Nuclear Information System (INIS)

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  18. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  19. (Methoxymethylidenedimethylazanium tetraphenylborate acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2014-03-01

    Full Text Available In the cation of the title salt, C4H10NO+·C24H20B−·C2H3N, the C—N bond lengths are 1.2864 (16, 1.4651 (17 and 1.4686 (16 Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2978 (15 Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. C—H...π interactions are present between the methine H atom and two of the phenyl rings of the tetraphenylborate ion. The latter forms an aromatic pocket in which the cation is embedded. The iminium ion is further connected through a C—H...N hydrogen bond to the acetonitrile molecule. This leads to the formation of a two-dimensional supramolecular pattern along the bc plane.

  20. 3-Methyl-4,5-dihydrooxazolium tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2014-03-01

    Full Text Available In the cation of the title salt, C4H8NO+·C24H20B−, the C—N bond lengths are 1.272 (2, 1.4557 (19 and 1.4638 (19 Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3098 (19 Å shows that double-bond character and charge delocalization occurs within the NCO plane of the cation. In the crystal, a C—H...π interaction is present between the methylene H atom of the cation and one phenyl ring of the tetraphenylborate ion. The latter forms an aromatic pocket in which the cation is embedded.

  1. Influence of particulates on crossflow filter performance with tetraphenylborate precipitate

    International Nuclear Information System (INIS)

    Peterson, R.A.; Nash, C.A.; McCabe, D.J.

    1995-01-01

    The pretreatment of High Level Waste at the Savannah River Site, prior to vitrification, includes tetraphenylborate precipitation of cesium. Also, strontium and actinides are removed from solution by sorption on monosodium titanate. The resulting slurry is concentrated and washed using 0.4 micron stainless steel Mott filters in a crossflow assembly. The rate of filtrate production is governed by a number of parameters including the concentration of both soluble and insoluble solids present in the process stream. The major insoluble constituents in the process stream are tetraphenylborate solids. However, the presence of small quantities of monosodium titanate as well as sludge particulates, typically less than 10% of the total solids concentration, produces up to a 50% decline in the rate of filtrate production. The cake that develops during filtration is the primary resistance to flow of filtrate. In addition, experimental data indicate the filter cake is enriched in the insoluble solids relative to the bulk of the solution. The presence of these insoluble solids in the filter cake influences not only the overall filtrate flow rate, but also the mechanisms by which the filter cake is formed

  2. Tetraphenylborate as a non - coordinating anion in hexamethyphosphoramine (HMPA) and tetramethylurea (TMU) lanthanide complexes

    International Nuclear Information System (INIS)

    Kuya, M.K.; Serra, O.A.

    1979-01-01

    The synthesis of the HMPA and TMU complexes of rare earth ions using tetraphenylborate, a non-coordinating anion, as a precipitating agent is reported. The compounds obtained conform to the general formula LnL 6 (B PHI 4 ) 3 (Ln=Ce-Lu,Y, whe L=HMPA and Ln=nd, Sm,Eu,Er,Y when L=TMU). The characterization by conductance, infrared and visible measurements is consistent with the lack of donor capacity of tetraphenylborate ion, and with a coordination number six in a nearly octahedral site symmetry for both type of compounds. The TMU complexes seem to be more stable than the corresponding HMPA ones, indicating that the steric factor can be more important than the donor capacity of the ligands in this type of lanthanide compounds. (author) [pt

  3. (Butoxymethylidenedimethylazanium tetraphenylborate acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2014-04-01

    Full Text Available In the title solvated salt, C7H16NO+·C24H20B−·C2H3N, the C—N bond lengths in the cation are 1.2831 (19, 1.467 (2 and 1.465 (2 Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2950 (18 Å shows a double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. The two C atoms of the n-butyl group are disordered over the two sites, with refined occupancy ratios of 0.890 (5:0.110 (5 and 0.888 (4:0.112 (4. In the crystal, C—H...π interactions occur between the methine H atom, H atoms of the –N(CH32 and –CH2 groups of the cation, and two of the phenyl rings of the tetraphenylborate anion. The latter interaction forms an aromatic pocket in which the cation is embedded. Thus, a two-dimensional pattern is created in the ac plane.

  4. A study of the complex formation of bivalent lanthanides with tetraphenylborate-ion in organic solvents. Izuchenie kompleksoobrazovaniya dvukhvalentnykh lantanoidov s tetrafenilborat-ionom v organicheskikh rastvoritelyakh

    Energy Technology Data Exchange (ETDEWEB)

    Veleshko, I E; Mikheev, N B; Kulyukhin, S A

    1992-01-01

    Interaction of bivalent lanthanides with tetraphenylborate-ion (BPh[sub 4][sup -]) in solutions of CH[sub 3]CN and C[sub 2]H[sub 5]OH was studied by the methods of cocrystallization, conductometry and spectrophotometry.It is shown that no complexing between Ln[sup 2+] and BPh[sub 4][sup -] takes place in ethanol, wheras in CH[sub 3]CN formation of second sphere complexes of the composition [Ln(CH[sub 3]CN)[sub n

  5. Crystal structure of 2-dimethylamino-1-ethoxycarbonyl-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-11-01

    Full Text Available The asymmetric unit of the title salt, C10H20N3O2+·C24H20B−, contains two cations and two tetraphenylborate ions. The C—N bond lengths in the central CN3 unit of the guanidinium ions range between 1.323 (2 and 1.381 (2 Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The cationic six-membered rings are nonplanar, the dihedral angles between the N/C/N and C/C/C planes ranging from 45.8 (1 to 53.6 (1°. In the crystal, C—H...π interactions are present between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ions. The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

  6. On the nature of the outer-sphere coordination of bivalent f-elements with tetraphenylborate ion

    International Nuclear Information System (INIS)

    Mikheev, N.B.; Kulyukhin, S.A.

    1993-01-01

    On the basis of the data on complex formation of Eu 2+ , Yb 2+ and Es 2+ with tetraphenylborate ion (BPh 4 - ) in different media a conclusion is made that formation of outerspheric complexes between bivalent f-elements and BPh 4 :-ions occurs due to electron channeling from cation in unsaturated π-bonds of BPh 4 - ion with formation of exchangeable single-electron chemical bond. 9 refs.,1 tab

  7. N,N,N′,N′-Tetramethyl-N′′-[2-(trimethylazaniumylethyl]guanidinium bis(tetraphenylborate acetone disolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title solvated salt, C10H26N42+·2C24H20B−·2C3H6O, comprises one cation, two tetraphenylborate ions and two acetone solvent molecules. The N and methyl C atoms of the terminal trimethylammonium group are disordered over two sets of sites, with a refined occupancy ratio of 0.846 (3:0.154 (3. The C—N bond lengths in the central C3N unit of the guanidinium ion range between 1.3308 (16 and 1.3508 (16 Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The C—N bond lengths in the terminal trimethylammonium group have values close to that of a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ion is connected by N—H...O and C—H...O hydrogen bonds with the acetone molecules. C—H...π interactions are present between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the bc plane.

  8. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  9. Dosage of cesium 137 in radioactive wastes by the application of sodium tetraphenylborate; Dosage du cesium 137 dans les effluents radioactifs par le tetraphenylborate de sodium

    Energy Technology Data Exchange (ETDEWEB)

    Testemale, G; Girault, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A simple technique of the dosage of {sup 137}Cs has been developed. The technique consists in the formation of cesium tetraphenyl borate, followed by a double extraction with isoamyl acetate, and washing of the organic phase. The counting of known parts of the cesium solution assaying of its purity by {gamma} spectrometry enable the determination of the {sup 137}Cs. The yield is about 98 per cent. (authors) [French] Une technique simple du dosage du {sup 137}Cs a ete mise au point. Elle consiste en une double extraction du tetraphenylborate de cesium forme par l'acetate d'isoamyle suivie d'un lavage de la phase organique. Des comptages sur des parties aliquotes de la solution de cesium et un controle de purete par spectrometrie {gamma} permettent la determination de cet element. Rendement: environ 98 pour cent. (auteurs)

  10. N,N,N′,N′,N′′-Pentamethyl-N′′-[2-(trimethylazaniumylethyl]guanidinium bis(tetraphenylborate acetone monosolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title solvated salt, C11H28N42+·2C24H20B−·C3H6O, comprises two cations, four tetraphenylborate anions and two acetone molecules. One cation shows an orientational disorder at the CN3 moiety and two sets of N-atom positions were found related by a 60° rotation, with a refined occupancy ratio of 0.935 (1:0.065 (1. The respective nitrogen-bonded –CH2 and –CH3 groups are included in the disorder model. The C—N bond lengths in the central CN3 units of both guanidinium ions range between 1.3329 (17 and 1.364 (16 Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and one positive charge is delocalized in the CN3 plane. The C—N bond lengths in the terminal trimethylammonium groups have values close to a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ions are connected by C—H...O hydrogen bonds with the acetone molecules. C—H...π interactions are present between the guanidinium and acetone hydrogen atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the bc plane.

  11. Determination of radiocesium in environmental water samples using copper ferro(II)cyanide and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Popov, L.; Kuleff, I.; Djingova, R.

    2006-01-01

    A procedure for the radiochemical separation and radiochemical purification of radiocesium ( 134 Cs and 137 Cs) in bulk environmental water samples is proposed. Radiocesium was removed from the water by cation-exchange with copper ferro(II)cyanide and was purified by precipitation with sodium tetraphenylborate. The influence of the concentration of potassium in the water sample on the chemical yield was investigated. The validation of the proposed method was carried out by analyzing reference materials. The application of the method was demonstrated with the determination of the concentration of radiocesium in water samples from rivers around NPP 'Kozloduy', Bulgaria, Danube and Ogosta. (author)

  12. N,N,N′,N′,N′′,N′′,N′′′,N′′′-Octamethyl(but-2-ynebisamidinium bis(tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title salt, C12H24N42+.2C24H20B−, comprises half a cation and one tetraphenylborate ion. An inversion centre is situated at the mid-point of the triple C[triple-bond]C bond in the cation. The bisamidinium C—N bonds [1.3249 (11 and 1.3267 (11 Å] have double-bond character and both positive charges are delocalized between the dimethylamino groups. The bonds between the N atoms and the terminal C-methyl groups all have values characteristic for a typical single bond [1.4656 (12–1.4687 (12 Å]. The acetylenic bond length [1.1889 (18 Å] is consistent with a triple C[triple-bond]C bond and the butyne carbon chain is almost linear. C—H...π interactions between the bisamidinium methyl H atoms and the phenyl C atoms of the tetraphenylborate ions are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern in the ab plane.

  13. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  14. 2-Dimethylamino-1-(2-ethoxy-2-oxoethyl-3-methyl-4,5-dihydroimidazolium tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-01-01

    Full Text Available In the crystal structure of the title salt, C10H20N3O2+·C24H20B−, the C—N bond lengths in the cation are 1.327 (3, 1.339 (3 and 1.342 (3 Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms, indicating only a slight deviation from a trigonal–planar geometry. The positive charge is delocalized in the CN3 plane. The ethoxy group is disordered over two orientations, with an occupancy ratio of 0.60 (1:0.40 (1. C—H...π interactions are present between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ac plane.

  15. Tank 50H Tetraphenylborate Destruction Results

    International Nuclear Information System (INIS)

    Peters, T.B.

    2003-01-01

    We conducted several scoping tests with both Tank 50H surrogate materials (KTPB and phenol) as well as with actual Tank 50H solids. These tests examined whether we could destroy the tetraphenylborate in the surrogates or actual Tank 50H material either by use of Fenton's Reagent or by hydrolysis (in Tank 50H conditions at a maximum temperature of 50 degrees C) under a range of conditions. The results of these tests showed that destruction of the solids occurred only under a minority of conditions. (1)Using Fenton's Reagent and KTPB as the Tank 50H surrogate, no reaction occurred at pH ranges greater than 9. (2)Using Fenton's Reagent and phenol as the Tank 50H surrogate, no reaction occurred at a pH of 14. (3)Using Fenton's Reagent and actual Tank 50H slurry, a reaction occurred at a pH of 9.5 in the presence of ECC additives. (4)Using Fenton's Reagent and actual Tank 50H slurry, after a thirty three day period, all attempts at hydrolysis (at pH 14) were too slow to be viable. This happened even in the case of higher temperature (50 degrees C) and added (100 ppm) copper. Tank 50H is scheduled to return to HLW Tank Farm service with capabilities of transferring and receiving salt supernate solutions to and from the Tank Farms and staging feed for the Saltstone Facility. Before returning Tank 50H to Tank Farm service as a non-organic tank, less than 5 kg of TPB must remain in Tank 50H. Recently, camera inspections in Tank 50H revealed two large mounds of solid material, one in the vicinity of the B5 Riser Transfer Pump and the other on the opposite side of the tank. Personnel sampled and analyzed this material to determine its composition. The sample analysis indicated presence of a significant quantity of organics in the solid material. This quantity of organic material exceeds the 5 kg limit for declaring only trace amounts of organic material remain in Tank 50H. Additionally, these large volumes of solids, calculated as approximately 61K gallons, present other

  16. Crystal structure of di-μ-aqua-μ-(pyrazine N,N′-dioxide-κ2O:O-bis(diaquasodium tetraphenylborate dihydrate pyrazine N,N′-dioxide monosolvate

    Directory of Open Access Journals (Sweden)

    Elaine P. Boron

    2015-12-01

    Full Text Available The search for novel lanthanide coordination networks using pyrazine N,N′-dioxide (pzdo, C4H4N2O2 as a structure-directing unit, led to the synthesis and the structure determination of the title compound, [Na2(C4H4N2O2(H2O6][B(C6H54]2·C4H4N2O2·2H2O. The crystal structure is comprised of discrete [{Na(H2O2}2(μ-H2O2(μ-pzdo]2+ cations and tetraphenylborate anions, as well as pzdo and H2O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaI atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H...O hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry -1 into rectangular grid-like layers parallel to the bc plane. Additional C—H...O, O—H...O, C—H...π and O—H...π interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H...π and O—H...π hydrogen bonds involving the tetraphenylborate anion.

  17. cis-Bis(2,2′-bipyridine-κ2N,N′bis(dimethyl sulfoxide-κOzinc bis(tetraphenylborate dimethyl sulfoxide monosolvate

    Directory of Open Access Journals (Sweden)

    Stefania Tomyn

    2011-12-01

    Full Text Available In the mononuclear title complex, [Zn(C10H8N22(C2H6OS2](C24H20B2·C2H6OS, the ZnII ion is coordinated by four N atoms of two bidentate 2,2′-bipyridine molecules and by the O atoms of two cis-disposed dimethyl sulfoxide molecules in a distorted octahedral geometry. The S atom and the methyl groups of one of the coordinated dimethyl sulfoxide molecules are disordered in a 0.509 (2:0.491 (2 ratio. The crystal packing is stabilized by C—H...O hydrogen bonds between the dimethyl sulfoxide solvent molecules and tetraphenylborate anions.

  18. Photoinduced Charge Shifts and Electron Transfer in Viologen-Tetraphenylborate Complexes: Push-Pull Character of the Exciplex.

    Science.gov (United States)

    Santos, Willy G; Budkina, Darya S; Deflon, Victor M; Tarnovsky, Alexander N; Cardoso, Daniel R; Forbes, Malcolm D E

    2017-06-14

    Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (k obs < 10 12 s -1 ) and twisted (k obs ∼ 10 10 s -1 ) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 μs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V •+ ).

  19. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  20. Crystal Structure of [Bis(DIMETHYLFORMAMIDE Bis (2,2’-PYRIDYLQUINOLINE Iron (II] Bis-(TETRAPHENYLBORATE

    Directory of Open Access Journals (Sweden)

    Bohari M. Yamin

    2009-11-01

    Full Text Available The goal of this research is to obtain single crystal and structural information of iron(II complex with 2,(2'-pyridylquinoline(pq ligands. The reaction of iron(II salt with 2,(2'-pyridylquinoline ligand and sodiumtetraphenylborate in the molar ratio of 1:3:2 in methanol-N,N-dimethylformamide(dmf solution results in an iron(IIcomplex. The formula of the [Fe(pq2(dmf2](BPh42 complex has been obtained from the iron(II and C, H, N contents.Single crystal of [Fe(pq2(dmf2](BPh42 suitable for X-ray investigation was obtained by evaporation of the complexsolution in N,N-dimethylformamide at room temperature after 24 hours. This compound crystallizes in monoclinicsystem with C2/c space group, a = 27.950(4, b = 14.169(7, c = 17.717(9 Å and b = 105.669(11°. The structureconsist of iron(II is chelated by two pq ligands through the N atoms and two dmf molecules in a six-coordinationenvironment. The charge of the [Fe(pq2(dmf2]2+ cation is balanced by two tetraphenylborate (BPh4- anions.

  1. Crystal structure of N′′-benzyl-N′′-[3-(benzyldimethylazaniumylpropyl]-N,N,N′,N′-tetramethylguanidinium bis(tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available In the crystal structure of the title salt, C24H38N42+·2C24H20B−, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.3364 (13, 1.3407 (13 and 1.3539 (13 Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyldimethylazaniumylpropyl group have single-bond character. In the crystal, C—H...π interactions between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions are present, leading to the formation of a two-dimensional supramolecular pattern parallel to the ac plane.

  2. Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure

    DEFF Research Database (Denmark)

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows

  3. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  4. Evaluation of the Small-Tank Tetraphenylborate Process Using a Bench-Scale, 20-L Continuous Stirred Tank Reactor System at Oak Ridge National Laboratory: Results of Test 5

    International Nuclear Information System (INIS)

    Lee, D.D.

    2001-01-01

    The goal of the Savannah River Salt Waste Processing Program (SPP) is to evaluate the presently available technologies and select the most effective approach for treatment of high-level waste salt solutions currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina. One of the three technologies currently being developed for this application is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate (TPB) to precipitate and remove radioactive cesium from the waste and monosodium titanate (MST) to sorb and remove radioactive strontium and actinides. Oak Ridge National Laboratory is demonstrating this process at the 1:4000 scale using a 20-L-capacity continuous-flow stirred-tank reactor (CSTR) system. Since March 1999, five operating campaigns of the 20-L CSTR have been conducted. The ultimate goal is to verify that this process, under certain extremes of operating conditions, can meet the minimum treatment criteria necessary for processing and disposing of the salt waste at the Savannah River Saltstone Facility. The waste acceptance criteria (WAC) for 137 Cs, 90 Sr, and total alpha nuclides are 137 Cs and 90 Sr are to obtain decontamination factors (DFs) of 40,000 (99.998% removal) and 26 (96.15% removal), respectively. (DF is mathematically defined as the concentration of contaminant in the waste feed divided by the concentration of contaminant in the effluent stream.)

  5. Study of ammonia synthesis over uranium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  6. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  7. Disposition of nonflammable low-level radioactive wastes using supercritical water with ruthenium(IV) oxide catalyst

    International Nuclear Information System (INIS)

    Sugiyama, Wataru

    2013-01-01

    This paper presents the distribution behavior of iron, cobalt, cesium, iodine and strontium attached to nonflammable organic materials, in solid, liquid and gas phases during the decomposition of these materials using supercritical water with ruthenium(IV) oxide (RuO 2 ) catalyst. The distributions of these elements under various conditions (initial amounts, with/without precipitation reagent) were determined by using their radioisotopes as simulated low-level radioactive wastes (LLW) in order to ease the detection of trace amounts of elements even in solid and gas phases. Iron and cobalt were found only in the solid phase when iron hydroxide was added as a precipitation reagent before the supercritical water reaction. Cesium, iodine and strontium were found in the liquid phase after the reaction. Therefore, by adding precipitation reagents such as sodium tetraphenylborate, and sodium carbonate (Na 2 CO 3 ) (or sodium hydrogen carbonate (NaHCO 3 )) and silver nitrate (AgNO 3 ) aqueous solutions to each resultant liquid phase containing cesium, strontium and iodine, respectively, these elements can be successfully recovered only in the solid phase. The gases produced during the decomposition of the organic material contain no radioactivity under all conditions in this study. These results indicate that all of the elements investigated in this study (iron, cobalt, cesium, iodine and strontium) can be recovered successfully by this supercritical water process using RuO 2 Consequently, this process is suggested as a predominant candidate for the treatment of nonflammable organic materials in LLW. (author)

  8. Non-conventional plasma assisted catalysts for diesel exhaust treatment. A case study

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Srinivas Kumar, P.K.; Ravi, V.

    2002-01-01

    The author reports the application of pulse discharges along with catalysts in treating the exhaust gas at higher temperatures. In the present work, a plasma reactor, filled with catalysts, called as plasma catalytic reactor, is studied for removal of oxides of nitrogen, total hydrocarbons and carbon monoxide. The experiments are conducted on an actual diesel engine exhaust at no-load and at different temperatures starting from room temperature to 300 degree C. The removal efficiencies of these pollutants are studied. The experiments are carried out with both conventional and non-conventional catalysts. The idea is to explore the pollutant removal efficiency characteristics by non-conventional catalysts. The efficiency results are compared with that of conventional catalysts. The experiments are carried out at a constant pulse repetition rate of 120 pps. Both pellet and honeycomb type catalysts are used in the study

  9. Activation of heterogenised rhodium carbonylation catalyst infrared spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Scurrell, M S

    1977-01-01

    In a study related to heterogeneous versions of homogeneous catalysts active in carbonylation of methanol to acetic acid, the catalyst consisted of 1Vertical Bar3< rhodium as rhodium trichloride supported on 13X zeolite and evacuated at 437/sup 0/K. Contacting the catalyst with carbon monoxide caused two bands, at 2025 and 2095 cm/sup -1/, to appear. Contact with a mixture of carbon monoxide and methyl iodide (the usual promoter) caused bands at 2085, 1710, 1440, and 1370 cm/sup -1/ to appear; the first two correspond to the bands at 2062 and 1711 cm/sup -1/ in homogeneous catalysts attributed to the formation of Rh(CH/sup 3/CO)(CO)X/sup 2/I/sup -/. Spectra.

  10. 57Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    International Nuclear Information System (INIS)

    Castelao-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-01-01

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials

  11. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS

    International Nuclear Information System (INIS)

    Adu-Wusu, K

    2006-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains ∼240,000 gallons of alkaline slurry with about 2 wt % potassium and cesium tetraphenylborate (KTPB and CsTPB). The main radioactive component in Tank 48H is 137 Cs. The waste also contains ∼0.15 wt % Monosodium Titanate (MST) which has adsorbed 90 Sr, U, and Pu isotopes. A System Engineering Evaluation of technologies/ideas for the treatment of TPB identified Wet Air Oxidation (WAO) as a leading alternative technology to the baseline aggregation approach. Over 75 technologies/ideas were evaluated overall. Forty-one technologies/ideas passed the initial screening evaluation. The 41 technologies/ideas were then combined to 16 complete solutions for the disposition of TPB and evaluated in detail. Wet Air Oxidation (WAO) is an aqueous phase process in which soluble or suspended waste components are oxidized using molecular oxygen contained in air. The process operates at elevated temperatures and pressures ranging from 150 to 320 C and 7 to 210 atmospheres, respectively. The products of the reaction are CO 2 , H 2 O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). The basic flow scheme for a typical WAO system is as follows. The waste solution or slurry is pumped through a high-pressure feed pump. An air stream containing sufficient oxygen to meet the oxygen requirements of the waste stream is injected into the pressurized

  12. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  13. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  14. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  15. Report of liquefaction catalyst study meeting (March 1996); Ekika shokubai kentokai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Studied in the research are four iron-based catalysts, which are natural pyrite, synthetic iron sulfide, synthetic iron hydroxide, and catalyst-attached carbon. Tanito Harum coal is treated in a 0.01t/d-capable continuous operation furnace (once-through) under conditions of 450 degrees C and 170kgf/cm{sup 2} with catalyst addition of 1.0, 3.0wt% (catalyst-attached carbon 0.6, 1.0wt%), and a liquid yield of 41.5-48.6wt%-daf coal is achieved. A higher yield results when more catalyst is added. The same yield as achieved by the addition of 3wt% natural pyrite is obtained by the addition of 1.9wt% synthetic iron sulfide, 1.5wt% of synthetic iron hydroxide, or 0.7wt% catalyst-attached coal. The catalyst cost for treating a ton of coal is 4-9 hundred yen, which is far more expensive than the cost set forth as the target. Catalysts whose production process embodiment is now under study are natural pyrite and synthetic iron sulfide, and studies for others are just preliminary. Provided that the practical application of the liquefaction technology realizes in about 2000, then the petroleum price is predicted to be 23 dollars per barrel. Coal liquefaction products will have to be produced at a cost which will enable competition with the said petroleum price. (NEDO)

  16. Study of PtNi/C catalyst for direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F.

    2014-01-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  17. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  18. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  19. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  20. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.

    Science.gov (United States)

    Kim, Jincheol; Kim, Taegyu

    2018-02-01

    Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.

  2. Hydrophobic catalyst applications in the nuclear field and in environmental studies

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2002-01-01

    The paper presents methods of preparation and applications of hydrophobic platinum catalysts in nuclear field and environmental protection. These catalysts allow the transport of gaseous reactants and reaction products to and from catalytic active centers since the pore blocking by water is avoided. Hence the activity and stability of the catalysts increase and isotopic exchange columns with simpler internal structure can be achieved. The aim of the paper is: 1. to give a data base regarding the preparation methods of the optimal catalyst type; 2. to indicate the utilization and operation procedures of hydrophobic catalysts with mixed and simple packings; 3. to evaluate the performances and applications of hydrophobic catalysts. Over one hundred of hydrophobic catalysts of the active metal/support type were prepared in our laboratory. Hydrophobic features were obtained by different methods like these: - coating a hydrophilic conventional catalyst with a hydrophobic agent such as silicone or teflon; - supporting the active metal directly into the pores of a hydrophobic support; - mixing the teflon powder with a hydrophilic conventional catalyst; coating the support with teflon followed by the impregnation with the precursor of the active metal. The most important application of these catalysts is detritiation of the heavy water used as moderator and coolant in CANDU type reactors. Build-up of tritium in heavy water following the neutron capture by deuterium leads to a reduction in the moderating properties and at the same time leads to a contamination hazard for both operation personnel and environment. Tritium recovery leads this way to both improving the moderating qualities of the heavy water and obtaining valuable pure tritium of high importance in fusion research and other laboratory studies. One gram of tritium costs about USD 10,000. The physical chemical process is water-hydrogen catalyzed isotopic exchange. Also discussed in the paper is the separation of

  3. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  4. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  5. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  6. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  7. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  8. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  10. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  11. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  12. Sexual selection studies: A NESCent catalyst meeting

    NARCIS (Netherlands)

    Roughgarden, J.; Adkins-Regan, E.; Akcay, E.; Hinde, C.A.; Hoquet, T.; O'Connor, C.; Prokop, Z.M.; Prum, R.O.; Shafir, S.; Snow, S.S.; Taylor, D.; Cleve, Van J.; Weisberg, M.

    2015-01-01

    A catalyst meeting on sexual selection studies was held in July 2013 at the facilities of the National Evolutionary Synthesis Center (NESCent) in Durham, NC. This article by a subcommittee of the participants foregrounds some of the topics discussed at the meeting. Topics mentioned here include the

  13. Study of the effect of ionizing radiation for utilization of spent cracking catalysts

    International Nuclear Information System (INIS)

    Kondo, Fernando Mantovani

    2014-01-01

    Catalyst is a substance that changes the rate of a reaction. In the petroleum industry the commonly catalysts are used for Fluid Catalytic Cracking (FCC) and Hydrocatalytic Cracking (HCC), which one applied in a specific stage. These catalysts are used to facilitate the molecular chains cracking which will generate a mixture of hydrocarbons. However, the catalyst gradually loses its activity, either by changing its original molecular structure or by its contamination from other petroleum molecules. The application of ionizing radiation (electron beam and gamma rays) over these spent catalysts was studied to contribute with the extraction of metals or rare-earths of high added-value. Tests carried out with FCC catalysts were used the techniques of 60 Co irradiation and electron beam (EB) and had as a subject the extraction of lanthanum (La 2 O 3 ), regeneration and utilization of these catalysts. However, the use of ionizing radiation has not contributed in these processes. Meanwhile with HCC catalysts the irradiation used was electron beam and had as a subject the extraction of molybdenum (MoO 3 ). In temperature around 750°C, these irradiated catalysts of the lower region have an extraction yield twice higher compared to non-irradiated ones, in other words 57.65% and 26.24% respectively. (author)

  14. Crystal structure of N′′-(2-ethoxy-2-oxoethyl-N,N,N′,N′-tetramethyl-N′′-[3-(1,3,3-trimethylureidopropyl]guanidinium tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available In the title salt, C16H34N5O3+·C24H20B−, the C—N bond lengths in the cation are 1.3368 (16, 1.3375 (18 and 1.3594 (17 Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. In the crystal, weak C—H...O contacts are observed between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate anions. In addition, C—H...π interactions involving guanidinium H atoms and aromatic rings of the anion are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ab plane.

  15. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  16. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    microcopy (STEM) to measure size and structure, energy dispersive X-ray spectroscopy (EDS) to measure atomic composition, X-ray absorption spectroscopy (XAS) to measure oxidation state and metal coordination, Fourier transform infrared spectroscopy (FTIR) to study adsorbed species, laser Raman spectroscopy to probe metal oxide promoters, and temperature programmed reaction/desorption to study the energetics of adsorption and desorption processes. We have studied our bimetallic catalysts for the selective cleavage of carbon-oxygen bonds, and we have studied the effects of adding metal oxide promoters to supported platinum and gold catalysts for water-gas shift (i.e., the production of hydrogen by reaction of carbon monoxide with water). We anticipate that the knowledge obtained from our studies will allow us to identify promising directions for new catalysts that show high activity, selectivity, and stability for important reactions, such as the conversion of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

  17. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  18. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  19. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  20. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  1. Methodology study for the catalyst obtention to low temperature fuel cells (DEFC)

    International Nuclear Information System (INIS)

    Oliveira, Emilia Lucena de; Korb, Matias De Angelis; Correa, Patricia dos Santos; Radtke, Claudio; Malfatti, Celia de Fraga; Rieder, Ester

    2010-01-01

    Different methods to elaboration of catalysts in direct ethanol fuel cells (low temperature fuel cells) have been proposed in the literature. The present work aims to study a simplified methodology to obtain Pt-Sn-Ni alloys, used as catalysts in low temperature fuel cells. Impregnation/reduction method was employed to obtain Pt- Sn-Ni alloys supported on carbon, using ethylenoglycol as reductor agent and carbon Vulcan XC72R as support. Different amounts of Pt, Sn e Ni were studied, with the intent to obtain the maximum catalytic effect. The catalysts were obtained in an alkaline range, at 130 deg C, using the proportion ethylenoglycol:water 75/25 v/v. The analytical techniques used in this study was RBS (Rutherford Backscattering Spectroscopy), X Ray Diffraction and Cyclic Voltammetry. (author)

  2. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  3. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  4. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  5. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  6. Moessbauer study of CO-precipitated Fischer-Tropsch iron catalysts

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Bukur, D.B.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of precipitated Fischer-Tropsch (FT) iron catalysts, viz. 100 Fe/5 Cu/4.2 K/x SiO 2 , where x = 0, 8, 16, 24, 25, 40, or 100, have shown that reduction of the oxide precursor in CO gives rise to χ-carbide Fe 5 C 2 whose amount decreases with an increase of SiO 2 content. The χ-carbide is converted into magnetite Fe 3 O 4 while catalyzing the FT synthesis reaction. A correlation between FT activity and the content of χ-carbide in the catalysts was found, which indicated that χ-carbide is active for FT synthesis reaction. (orig.)

  7. Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil

    International Nuclear Information System (INIS)

    Guo, Xiaoya; Zheng, Yong; Zhang, Baohua; Chen, Jinyang

    2009-01-01

    Catalyst HZSM-5 was used in bio-oil catalytic cracking upgrading. The precursor of coke on the catalyst was analyzed by means of TGA, FTIR and C13 NMR. Precursors of coke deposited in the pore of the molecular sieve were mainly aromatic hydrocarbon with the boiling point range from 350 o C to 650 o C. Those on the outer surface of the pellet precursor were identified as saturated aliphatic hydrocarbons with the boiling point below 200 o C. The activity of HZSM-5 was studied after regeneration. In terms of yield of organic distillate and formation rate of coke, results showed that catalytic activity change moderately during the first three times of regeneration.

  8. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  9. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  10. FY 1990 Study Meeting of Catalyst (Iron system). Data; 1990 nendo shokubai kento kai (Tetsu kei) shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The FY 1990 Study Meeting of Iron-system Catalyst was held at NEDO on March 12, 1991, and the data were arranged. In the study meeting, papers titled as follows were made public: About the behavior of H{sub 2}S on iron-system catalyst by Muroran Institute of Technology; Results of the test on iron-system catalyst in the BCL project by Research Institute, Mitsubishi Kasei Corp.; Results of the test on iron-system catalyst by 2.4 t/d PDU by NKK; Results of the test on iron-system catalyst by 0.1 t/d BSU by Mitsui Engineering and Shipbuilding Co.; Results of the test on iron-system catalyst by 1 t/d PSU by Nippon Steel Corp.; Results of the research at Government Industrial Development Laboratory, Hokkaido, and the study; Results of the research at National Chemical Laboratory for Industry and the study; Results of the research at the University of Tokyo and the study; Details of the development of synthetic iron sulfide and the attainment up to now by Asahi Chemical Industry Co. Moreover, the plenary session was held on research items for the development of iron-system catalyst in future. (NEDO)

  11. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  12. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    Formaldehyde (CH2O) may be synthesized industrially by selective oxidation of methanol over an iron-molybdate (Fe-Mo) oxide catalyst according to: CH3OH + ½O2 →CH2O + H2O. The reaction is normally carried out in a multitubular reactor with excess of air at 250-400 °C (yield = 90-95 %), known...... the activity of the catalyst [2]. Pure MoO3 in itself has low activity. Literature from the last decades agrees that the major reason for the deactivation is loss of molybdenum from the catalyst. Molybdenum forms volatile species with methanol, which can leave behind Mo poor zones. The catalyst is usually...

  13. Catalytic Study on TiO2 Photo catalyst Synthesised Via Microemulsion Method on Atrazine

    International Nuclear Information System (INIS)

    Ruslimie, C.A.; Hasmizam Razali; Khairul, W.M.

    2011-01-01

    Titanium dioxide photo catalyst was synthesised by microemulsions method under controlled hydrolysis of titanium butoxide, Ti(O(CH 2 ) 3 )CH 3 . The synthesised TiO 2 photo catalyst was compared with Sigma-commercial TiO 2 by carrying out the investigation on its properties using scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis and thermal gravimetric analysis (TGA). The photo catalytic activities for both photo catalysts were studied for atrazine photodegradation. (author)

  14. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  15. Supporting Statewide Implementation of the Learning School Initiative. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    This is the first in a series of reports based on a research study, Developing Effective Professional Learning Communities in Catalyst Schools, conducted between February 2015 and June 2016. "Catalyst schools" were elementary- and secondary-level schools selected to participate in a pilot project intended to explore how best to support…

  16. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  17. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  18. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  19. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  20. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  1. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  2. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    Science.gov (United States)

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  3. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, H.E.L.; Leonel, L.V. [Comissao Nacional de Energia Nuclear - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil)

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh{sub 4}) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 {mu}g/g and 0.1 {mu}g/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities (''garimpos'') in Mariana, Minas Gerais, Brazil. (orig.)

  4. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

  5. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    OpenAIRE

    Achmad Roesyadi; Danawati Hariprajitno; Nurjannah Nurjannah; Santi Dyah Savitri

    2013-01-01

    It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and cata...

  6. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  7. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  8. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  9. From fundamental studies of reactivity on single crystals to the design of catalysts

    Science.gov (United States)

    H. Larsen, Jane; Chorkendorff, Ib

    One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as

  10. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  11. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  12. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  13. In operando Detection of Three-Way Catalyst Aging by a Microwave-Based Method: Initial Studies

    Directory of Open Access Journals (Sweden)

    Gregor Beulertz

    2015-07-01

    Full Text Available Initial studies on aging detection of three way catalysts with a microwave cavity perturbation method were conducted. Two physico-chemical effects correlate with the aging state. At high temperatures, the resonance frequencies for oxidized catalysts (λ = 1.02 are not influenced by aging, but are significantly affected by aging in the reduced case (λ = 0.98. The catalyst aging state can therefore potentially be inferred from the resonance frequency differences between reduced and oxidized states or from the resonance frequency amplitudes during lambda oscillations. Secondly, adsorbed water at low temperatures strongly affects the resonance frequencies. Light-off experiment studies showed that the resonance frequency depends on the aging state at temperatures below the oxygen storage light-off. These differences were attributed to different water sorption capabilities of differently aged samples due to a surface area decrease with proceeding aging. In addition to the aging state, the water content in the feed gas and the temperature affect the amount of adsorbed water, leading to different integral electrical material properties of the catalyst and changing the resonance properties of the catalyst-filled canning. The classical aging-related properties of the catalyst (oxygen storage capacity, oxygen storage light-off, surface area, agreed very well with data obtained by the microwave-based method.

  14. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    Science.gov (United States)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  15. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  16. Moessbauer spectroscopy and nuclear inelastic scattering studies on polynuclear oxo-bridged iron catalyst-first results

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Buerck, U. van; Wagner, F. E.; Laschat, S.

    2008-01-01

    Polynuclear iron catalysts are interesting materials because of their novel properties. In the future they may help to replace high cost and hazardous heavy metal catalysts by efficient, non toxic and economic iron compounds. In this work, we present some preliminary results on a novel polynuclear oxo-bridged iron catalyst. The chemical environment of the metal species (Fe) was studied under Gif-type conditions (Fe catalyst/Zn/O 2 in pyridine/acetic acid) with cyclohexene as substrate. Such Gif-type catalysts are able to catalyse the selective oxidation of alkanes and alkenes. The characterization was done by Moessbauer spectroscopy and nuclear inelastic scattering. In order to identify the intermediate species during the reaction (selective oxidation using molecular O 2 ), a freeze-quench technique was used. This also helps to understand the kinetics of the chemical reaction.

  17. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  18. Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism

    International Nuclear Information System (INIS)

    Hinnemann, Berit; Moses, Poul Georg; Noerskov, Jens K

    2008-01-01

    The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships

  19. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  20. Flow dynamics study of catalyst powder in catalytic cracking unit for troubleshooting

    Directory of Open Access Journals (Sweden)

    Yelgaonkar Vivek

    2017-12-01

    Full Text Available Gamma scanning and radiotracer applications are very effective and inexpensive tools to understand and optimize the process as well as troubleshoot the various types of problems in many chemical, petrochemical industries and refineries. These techniques are non-invasive; hence, the problems can be pinpointed online, which leads to reduce the downtime, schedule the shutdown and maintenance of the plant equipment, rendering huge economic benefits. In a leading refinery of India, the catalytic cracking unit (CCU was malfunctioning. It was suspected by the refinery engineers that the catalyst powder was being carried over to the fractionator, which could have led to erosion of the fractionator column internals resulting in their rupture, and consequentially, to the fire hazard. To understand the flow behaviour of the catalyst powder and to ensure the mechanical integrity, catalyst accumulation and choking, both radiotracer study and gamma scanning of the CCU reactor was carried out. The reactor consists of a riser, three primary cyclones and three secondary cyclones. Gamma scanning of the reactor was carried out with the help of an automatic gamma scanner using 1.8 GBq of Co-60 sealed source. Results showed that the catalyst powder was accumulated in one of the secondary cyclones and uneven density distribution was observed in another secondary cyclone. The radiotracer study was carried out using the irradiated catalyst powder as a radiotracer, which contains 0.9 GBq of Na-24. The radiotracer was injected in the reactor through the specially fabricated injection system. Radiation measurement was done using the thermally insulated and collimated NaI(Tl scintillation detectors located at various strategic locations coupled to a multi-detector data acquisition system. The data were mathematically analysed. It was confirmed that the catalyst powder was accumulated in one of the secondary cyclones with no flow downwards. This resulted in excess powder

  1. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    Directory of Open Access Journals (Sweden)

    Achmad Roesyadi

    2013-03-01

    Full Text Available It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and catalytic cracking process. HZSM-5 was synthesized using Plank methods. The characterization of the synthesized catalysts used AAS (Atomic Absorption Spectroscopy and BET (Brunaueur Emmet Teller. The cracking was carried out in a fixed bed microreactor with diameter of 1 cm and length of 16 cm which was filled with 0.6 gram catalyst. The Zn/HZSM-5 catalyst was recommended for cracking palm oil for the high selectivity to gasoline. © 2013 BCREC UNDIP. All rights reserved.(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012; Revised: 19th November 2012; Accepted: 20th December 2012[How to Cite: A. Roesyadi, D. Hariprajitno, N. Nurjannah, S.D. Savitri, (2013. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 185-190.(doi:10.9767/bcrec.7.3.4045.185-190][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4045.185-190 ] View in  |

  2. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  3. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  4. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  5. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  6. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  7. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman...... spectroscopy, while changes in the gas phase were observed by mass spectrometry (MS). Transmission electron microscopy (TEM) was also applied to characterise the catalyst. The catalyst has a bimodal particle size distribution and exhibits a high deactivation rate. During the in situ study the catalyst appears...... to reduce further at the induction period of FTS, while crystallite growth is been detected in the same period. At steady state FTS the amount of metallic Co is constant. A change in the volumetric flow towards higher conversions did not affect the degree of reduction or the crystallite size of the catalyst...

  8. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  9. Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Umeda, Minoru; Kokubo, Mitsuhiro; Mohamedi, Mohamed; Uchida, Isamu

    2003-01-01

    We have developed a porous-microelectrode (PME) to investigate the electroactivity of catalyst particles for proton exchange membrane fuel cells. The cavity at the tip of the PME was filled with Pt/C catalysts prepared by impregnation method. Cyclic voltammograms (CVs) recorded in 1 N H 2 SO 4 aqueous solution revealed that the active area of the stacked catalysts exist not only at the surface but also inside of the stack. For methanol electrooxidation, 30 wt.% Pt/C exhibited the highest electroactivity, whereas the 50 wt.% Pt/C showed extremely small current. The small current is considered as a result of a small active-surface area. Methanol oxidation peak potential shifted toward cathodic direction as Pt-loading decreased, which agrees well with the Pt-oxide formation potential. The activation energy for methanol oxidation was assessed to be 44±3 kJ mol -1 for all Pt/C catalysts and Pt-disc electrode

  10. Experimental study of simultaneous Athabasca bitumen recovery and upgrading using ultradispersed catalysts injection

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, R.; Pereira, P. [University of Calgary (Canada)

    2011-07-01

    As the demand for oil is continuously increasing, the need for unconventional resources is rising. Oil extraction from bitumen and heavy oil reservoirs requires advanced techniques in order to decrease the viscosity of the oil. To increase the recovered original oil in place (OOIP) of a reservoir and decrease refining costs, new techniques to upgrade oil in situ are being developed. The current study investigates the use of ultra-dispersed (UD) submicronic catalysts to decrease oil viscosity. The experiment involved the injection of the catalyst and hydrogen gas in a sand pack saturated with Athabasca bitumen. Analysis was carried out by building recovery curves, and by comparing the oil recovery from the catalyzed process with that of catalyst-free processes. The study demonstrated that the oil recovered from the new technique had higher API gravity and lower viscosity, indicating the success of the in situ upgrading process.

  11. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  12. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    Science.gov (United States)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  13. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  14. A Comparative Study of Solvothermal and Sol-Gel-Derived Nanocrystalline Alumina Catalysts for Ethanol Dehydration

    Directory of Open Access Journals (Sweden)

    Mingkwan Wannaborworn

    2015-01-01

    Full Text Available The ethanol dehydration to ethylene over alumina catalysts prepared by solvothermal and sol-gel methods was investigated. Also, a commercial alumina was used for comparison purposes. The results showed that the catalytic activity depends on the properties of catalyst derived from different preparation methods and reaction temperature. The alumina synthesized by solvothermal method exhibited the highest activity. This can be attributed to the higher surface area and larger amount of acid site, especially the ratio of weak/strong acid strength as determined by N2 physisorption and NH3-TPD studies. The solvothermal-derived catalyst exhibited an excellent performance with complete ethanol conversion and 100% selectivity to ethylene at 350°C in comparison with other ones. In addition, we further studied the catalytic dehydration of alumina catalyst modified with Fe. The presence of 10 wt.% Fe decreased both conversion and ethylene selectivity. However, the acetaldehyde selectivity apparently increased. It was related to the dehydrogenation pathway that takes place on Fe species.

  15. An EXAFS study of the structure of Co-Mo hydrodesulfurization catalysts

    International Nuclear Information System (INIS)

    Clausen, B.S.; Topsoe, H.; Candia, R.; Villadsen, J.; Lengeler, B.

    1981-05-01

    By analysing the extended X-ray absorption fine structure (EXAFS) of the Mo absorption edge, structural information about both calcined and sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts has been obtained. The calcined catalysts show only one strong backscatterer peak in the radial distribution function, which indicates that molybdenum is present in a highly disordered structure. For the Co-Mo/Al 2 O 3 catalyst the presence of cobalt seems to have some effect on the immediate surroundings of molybdenum. Upon sulfiding the catalysts, an ordering of the molybdenum-containing phase takes place as evidenced by the observation of a contribution from the second coordination shell. From a comparison with EXAFS data obtained on well-crystallized MoS 2 it is concluded that the molybdenum atoms in the catalysts are present in MoS 2 -like structures. Furthermore, from a comparison of the amplitude of the Mo-backscatterer peak it is found that these MoS 2 -like structures are ordered in very small domains. (orig.)

  16. The study of catalysts for synthesis of higher alcohols from CO + H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Niu Yugin; Chen Zhenghua; Liu Xiulan; Li Yu; Bo Luhong

    1988-03-01

    Catalysts for synthesis of higher alcohols from CO+H/sub 2/ were developed, and the effects of preparing methods, Zn/Cr atomic ratio and K/sub 2/0 content on catalyst activity were investigated. The effects of the technological parameters were studied. An 1000 h long term test was carried out in order to investigate the catalyst life. Experimental results show that the catalyst has high activity and selectivity, as well as good stability. In the long term test under reaction conditions of 400-405 degrees C, 14-15 MPa, 5000h/sup -1/ (with respect to exit gas), the alcohol product composition is methanol 73-75%; ethanol 1.5-2.2%; propanol 2.2-2.5%; isobutanol 15-17; isopentanol 1-1.5%, while the activity and selectivity are 0.3-0.32 ml/ml cat.h and more than 90% respectively. 5 refs., 4 figs., 2 tabs.

  17. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Wang, Pengbo; Qian, Hongjia; Gao, Xiaohang; Zhang, Yue

    2018-07-01

    Levulinic acid (LA) is an ideal platform chemical that can be produced through acid-catalyzed dehydration and hydrolysis of hexose sugars obtained from lignocellulosic materials. In this study, SnCl 4 was identified as an efficient catalyst for LA production and the reaction kinetics was investigated in a single water phase under different reaction conditions. The Box-Behnken design response surface methodology (RSM) was applied to determine the optimized reaction conditions and three individual variables including reaction temperature, duration, and catalyst concentration were evaluated. An appealing LA yield of 76.0% was achieved at 193 °C and 17 min with 82 mM SnCl 4 catalyst. A kinetics model was developed to predict the yields of glucose, HMF, and LA, which are tally with the experimental results. The analysis of the related kinetic parameters and the results of the RSM experiment helped to provide insights into the interplay between various reaction steps with SnCl 4 as catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Synthesis, characterization and electrochemical studies of Pt- W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, R.; Shahid, S.; Ansari, M. S.

    2013-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 * 10-6 cm/ s and in basic media it was 4.92 * 10-5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media. (author)

  19. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  20. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  1. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Directory of Open Access Journals (Sweden)

    Abhishek Dhar

    2017-12-01

    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  2. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  3. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  4. A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance

    Science.gov (United States)

    Workman, Michael J., Jr.

    Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed. There has been a significant amount of research effort directed toward the development of platinum-group metal free (PGM-free) catalysts, yet there is a lack of consensus on both the engineering parameters necessary to improve the technology and the fundamental science that would facilitate rational design. I have engaged in research on PGM-free catalysts based on inexpensive and abundant reagents, specifically: nicarbazin and iron. Catalysts made from these precursors have previously proven to be among the best PGM-free catalysts, but their continued advancement suffered from the same lack of understanding that besets all catalysts in this class. The work I have performed address both engineering concerns and fundamental underlying principles. I present results demonstrating correlations between physical structure, chemical speciation, and synthesis parameters, as well as addressing active site chemistry and likely locations. My research presented herein introduces new morphology analysis techniques and elucidates several key structure-to-property characteristics of catalysts derived from iron and nicarbazin. I discuss the development and application of a new length-scale specific surface analysis technique that allows for analysis of well-defined size ranges from a few nm to several microns. The existing technique of

  5. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel

    International Nuclear Information System (INIS)

    Yahya, Noor Yahida; Ngadi, Norzita; Jusoh, Mazura; Halim, Noor Amirah Abdul

    2016-01-01

    Highlights: •Simple synthesis of mesoporous calcium titanate by sol-gel-hydrothermal method. •Improvement of characteristics and catalytic activity from commercial CaO. • Production of biodiesel at relatively mild reaction conditions. - Abstract: Mesoporous calcium titanate (MCT) catalyst was synthesized via a sol-gel-hydrothermal method and investigated as a catalyst for biodiesel production from waste cooking oil (WCO). Calcium was supported on titanate in order to increase their surface area, stability and consequently, improve its performance in the transesterification of WCO to biodiesel. Synthesized catalyst was characterized with powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N_2 physisorption, Fourier transform-infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and carbon dioxide temperature-programmed desorption (CO_2-TPD). The catalyst possessed high surface area, basicity and stability than calcium oxide (CaO) catalyst. The highest biodiesel yield achieved was 80.0% in 3:1 of methanol to WCO molar ratio, 0.2 wt.% of MCT catalyst for 1 h at 65 °C. Reusability study suggested that this catalyst can be recycled for five successive runs.

  6. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  7. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  8. Synthesis, characterization and electrochemical studies of Pt-W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Shahid, Saliha; Ansari, Muhammad Shahid

    2014-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 x 10 −6 cm/ s and in basic media it was 4.92 x 10 −5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media

  9. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  10. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  11. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant [University of Pittsburgh

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  12. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  13. Moessbauer study on the formation process of Fe-K composition in iron-based catalyst for dehydrogenation of ethylbenzene

    International Nuclear Information System (INIS)

    Jiang Keyu; Zhao Zhenjie; Yang Xielong

    2001-01-01

    Fe-K spinel structure is the predecessor of active phase of potassium promoted iron-based catalyst for dehydrogenation of ethylbenzene. Moessbauer spectroscopy has been used to study the formation process of Fe-K spinel structure which depends on the catalyst composition and preparing condition. The results may prove useful for production of industrial catalyst

  14. Study of iron-zinc catalysts by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Arriola, S.H.

    1990-01-01

    The Moessbauer parameters were determined on a series of catalyst mixtures of iron and zinc oxides with variable quantities of zinc. A change in the crystal structure of the iron oxide when introducing zinc into the samples was observed. The corundum structure of the α-Fe 2 O 3 phase was transformed into the spinel type of zinc ferrite when zinc oxide was present in any quantity. A strong electronic interaction between the zinc ferrite and the zinc oxide present in excess was evident. The catalysts were analyzed using x-ray fluorescence and x-ray diffraction methods. (author) 10 refs.; 4 figs.; 2 tabs

  15. A study on the polymer catalyst manufacturing technology

    International Nuclear Information System (INIS)

    Chung, Heung Seok; Lee, Han Soo; Kang, Hee Seok; Paek, Seung Uh; Kim, Kwang Rak; Koo, Jee Hyu; Chung, Yong Won; Sung, Ki Ung; Na, Jeong Won; Hwang, Seong Tae; Kim, Yong Ik; Choi, Yoon Dong

    1994-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 1988 Mg during the period 1992-2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  16. STUDY OF EPOXIDE DECYCLISATION OF CARYOPHYLENE OXIDE WITH SYNTHETIC ZEOLITE AS CATALYSTS

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available The reaction of epoxide ring opening of caryophillene oxide has been done using zeolite H-Y, H-sodalit, and H-ZSM-5 as catalysts. The reactions were done in two types, there were in dioxane solvent at temperature of 110 oC and without solvent at temperature of 175 oC. The catalyst weight was 10 % from caryophillene oxide weight, and the time of reaction was four hours. The product of reaction was analyzed using GC, FTIR, and GC-MS. The reactions of caryophillene oxide in dioxane solvent with the three kinds of zeolites did not give any targeted product. Whereas, the reactions without solvent gave three main products, there was one compound with one group of secondary hidroxyl (secondary alcohol, and two compounds of ketone from caryophillene. The reaction product of caryophillene oxide obtained without using solvent with the three type of catalysts were then compared. Conversion of three main products produced by H-ZSM-5 catalyst, H-sodalit catalyst and H-Y catalyst were 82.11 %, 54.92 % and 38.53 % respectively. For that reason, the transformation of caryophillene oxide using H-ZSM-5 catalyst was considered to be the best selective product. The alcohol product was resulted from reaction between caryophillene oxide and Bronsted acid, and  the ketone products was resulted from the reaction with Lewis acid in zeolite.   Keywords: Epoxide ring opening, HY, H-sodalit and HZSM-5

  17. Catalyst Schools' Implementation of the Learning School Approach. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    "Catalyst schools" were 28 elementary and secondary schools selected to participate in a pilot project begun in July 2014, which explored how best to support teacher professional learning through decentralization of decision making and implementation of the Learning School approach. The pilot project was the first phase in a statewide…

  18. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  19. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  20. ETEM Studies of Electrodes and Electro-catalysts

    DEFF Research Database (Denmark)

    Jooss, Christian; Mildner, Stephanie; Beleggia, Marco

    2016-01-01

    Environmental TEM is an excellent tool for gaining insight into the atomic and electronic structure of electro-catalysts under operating conditions. Several electrochemical reactions such as oxidation/reduction processes of electrodes, heterogeneous gas phase catalysis of water splitting...

  1. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  2. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  3. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  4. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  5. Study on the structure of Co/ZrO2-SiO2 catalysts by XAFS

    International Nuclear Information System (INIS)

    Gao Haiyan; Xiang Hongwei; Li Yongwang; Sun Yuhan; Liu Tao; Xie Yaning; Hu Tiandou

    2002-01-01

    The Co-based catalysts have been extensively used in converting CO to longer chain hydrocarbons which can then be hydrocracked to diesel oil with high grade. SiO 2 is one of the most commonly used carriers for Co-based catalysts. It is showed that commercial silica carrier after modification can lead to much high reaction activity and selectivity to heavy hydrocarbons. But the structure of Co-based catalysts supported on the modified carrier has not been clearly understood. XAFS is used to investigate the change of structure of cobalt species in Co-based catalysts supported on modified carriers. The result from XAFS indicate that the structure of Co-based catalysts supported on modified carrier has certain change in comparison with Co-based catalyst supported on commercial silica. The interaction between carrier and metal is woken in the modified catalysts. Especially, the structure of catalysts after reduction have distinct difference. The extent of reduction in modified catalysts is much more than the catalyst supported on commercial silica. Cobalt species of the catalyst supported commercial silica after reduction dose exist mainly in the form of cobalt metal forms and may exist in the form of Co 2 SiO 4 surface compound

  6. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  7. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  8. In-situ Spectroscopic Studies and Modelling of Crystallization Processes of Sulphuric Acid Catalysts

    DEFF Research Database (Denmark)

    Oehlers, C.; Fehrmann, Rasmus; Masters, Stephen Grenville

    1996-01-01

    Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe the crystall......Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe...

  9. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  10. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  11. Cerium-containing catalysts for obtaining ethylene from ethanol

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-10-01

    Full Text Available The catalysts Се/γ-Al2O3 и Се-La/γ-Al2O3 were studied by methods of electron microscopy (EM and temperature-programmed desorption (TPD of ammonia. Their activity was studied in reaction of ethanol dehydration with formation of ethylene. Modification of Се/γ-Al2O3 catalyst by Lanthanum promotes dispersion of the catalyst and increases the amount of acidic sites. This modification positively affects the catalyst activity.

  12. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  13. Deactivation of SCR catalysts by potassium: A study of potential alkali barrier materials

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Castellino, Francesco

    2017-01-01

    The use of coatings in order to protect vanadia based SCR catalysts against potassium poisoning has been studied by lab- and pilot-scale experiments. Three-layer pellets, consisting of a layer ofa potential coating material situated between layers of fresh and potassium poisoned SCR catalyst, were...... the coating process. Potassium had to some extent penetrated the MgO coat, and SEM analysis revealed it to be rather thick and fragile. Despite these observations, the coating did protect the SCR catalyst against potassium poisoning to some degree, leaving promise of further optimization....... used to test the ability of the barrier layer to block the diffusion of potassium across the pellet. Of MgO, sepiolite and Hollandite manganese oxide, MgO was the most effective potassium barrier, and no potassium was detected in the MgO layer upon exposure to SCR conditions for 7 days. Two monoliths...

  14. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  15. Kinetics study of ethanol steam reforming on Pt/CeO{sub 2} based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qi, A. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering; Thurgood, C.; Amphlett, J. [Royal Military College of Canada, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering; Peppley, B. [Queens Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2009-07-01

    Interest in fuel cell systems operating on fuels derived from renewable energy sources is increasing because they have the potential to produce electricity with high efficiency and minimal emissions of carbon dioxide and other pollutants. Bioethanol is currently produced by the fermentation of non-edible biomass, through conventional means and also through advances in enzyme technology. The authors previously reported on the steam reforming of bioethanol with a stable ceria supported precious metal catalyst, developed in-house. The catalyst had good thermal stability and resisted carbon formation. This paper reported on a more recent kinetic study in which the influence of operating conditions were quantified. The operating conditions included temperature, steam/carbon ratios, and gas hourly velocities. The results of standard catalyst characterization techniques such as BET, TGA, SEM and TPR were also provided. The data was used to drive an empirical rate expression. The study also investigated a potential rate mechanism.

  16. Catalyst study for the decontamination of atmospheres containing few traces of tritium

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The conversion of tritium at very low activity level using catalytic oxidation followed by water trapping is studied in the loop BEATRICE in order to measure kinetic parameters required for the design of the NET tritium clean-up system. Two precious-metal catalysts (Pd/alumina and Pt/alumina) are very efficient in removing tritium from contaminated gas mixtures down to a few MPC level at low temperatures, without need of isotopic swamping. However at room temperature, the trapping of tritium species on the catalyst surface gives rise to a progressive deactivation with time. Best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at low temperatures

  17. Preparation and characterization of the perovskite catalysts : activity studies for diesel surrogate (dodecane) reforming

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.; Kundu, A.; Karan, K.; Peppley, B. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Canada's northern communities rely on diesel fuel for generating electricity. The process of converting diesel to electricity in internal combustion engines is not efficient and generates significant amounts of unwanted products. This paper presented an alternative process whereby diesel is reformed into hydrogen-rich reformate which can then be fed to a solid oxide fuel cell. This alternative process converts energy more efficiently and eliminates the formation of nitrogen oxides (NOx) and soot. This study focused on the development of LaFeO{sub 3} based perovskite catalysts for diesel reforming. The activity of the perovskite catalysts was assessed for steam reforming of dodecane, a surrogate for diesel. In order to study the effect on catalytic activity, various perovskite materials were prepared by doping the perovskite at A-site to minimize the coke deposition and at B-site to improve the activity. Preliminary results for dodecane reforming for selected perovskites were promising. Additional testing is underway regarding catalyst activity and stability studies as well carbon and sulphur poisoning.

  18. Study of the butyl acetate synthesis - 1. Catalyst selection

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2004-01-01

    Full Text Available In this work, a laboratory scale selection study over eight catalytic agents was made, in the acetic acid and butyl alcohol esterification reaction (seven lon exchange resins and a zeolytic solid. Considering some physicochemical characteristics as the activation pre-treating requirements, acidity, thermal stability, reaction performance, etc., it was found that macroporous ion exchange resins are the most efficient catalysts, especially Lewatit K-2431 resin.

  19. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  20. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  1. Does Pelletizing Catalysts Influence the Efficiency Number of Activity Measurements? Spectrochemical Engineering Considerations for an Accurate Operando Study

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Perez-Ferreras, Susana; Banares, Miguel A.

    2013-01-01

    of, for example, support oxides might take place, which in turn affects the pore size distribution and the porosity of the catalyst, leading to the observation of lower activity values due to decreased catalyst efficiency. This phenomenon can also apply to conventional activity measurements......, in the cases that pelletizing and recrushing of samples are performed to obtain adequate particle size fractions for the catalytic bed. A case study of an operand investigation of a V2O3-WO3/TiO2-sepiolite catalyst is used as an example, and simple calculations of the influence of catalyst activity...... and internal pore diffusion properties are considered in this paper for the evaluation of catalyst performance in, for example, operando reactors. Thus, it is demonstrated that with a pelletizing pressure of...

  2. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  3. Recent Advances in the Mechanistic Studies of Alkylaromatic Conversions over Zeolite Catalysts

    International Nuclear Information System (INIS)

    Min, Hyung-Ki; Hong, Suk Bong

    2013-01-01

    The transformation of alkylaromatic hydrocarbons using zeolite catalysts play big part in the current petrochemical industry. Here we review recent advances in the understanding of the reaction mechanisms of various alkylaromatic conversions with respect to the structural and physicochemical properties of zeolite catalysts employed. Indeed, the shape-selective nature of zeolite catalysts determines the type of reaction intermediates and hence the prevailing reaction mechanism together with the product distribution. The prospect of zeolite catalysis in the development of more efficient petrochemical processes is also described

  4. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  5. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  6. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  7. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  8. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  9. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  10. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  11. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  12. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  13. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  14. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  15. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  16. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.

    Science.gov (United States)

    Rayner, Matthew K; Billing, David G; Coville, Neil J

    2014-06-01

    This study focuses on the use of in situ powder X-ray diffraction (PXRD) and quantitative phase analysis using the Rietveld method to monitor the structural properties of a titania-supported iron (10% Fe/TiO2) pre-catalyst during calcination (oxidation) and activation (reduction) in the temperature range 25-900°C. The TiO2 oxidation study revealed an increase in anatase particle size before the anatase to rutile phase transformation, lending credibility to the bridging mechanism proposed by Kim et al. [(2007), Mater. Sci. Forum, 534-536, 65-68]. Pre-catalyst oxidation experiments allowed for the determination of a suitable calcination temperature (450°C) of the pre-catalyst in terms of maximum hematite concentration and appropriate particle size. These experiments also confirmed that the anatase to rutile phase transformation occurred at higher temperatures after Fe addition and that anatase was the sole donor of Ti(4+) ions, which are known to migrate into hematite (Gennari et al., 1998), during the formation of pseudobrookite (Fe2TiO5) at temperatures above 690°C. Using the results from the oxidation experiments, two pre-catalyst samples were calcined at different temperatures; one to represent the preferred case and one to represent a case where the pre-catalyst had been excessively heated. Samples of the excessively heated catalysts were exposed to different reducing gas atmospheres (5, 10 and 100% H2/N2) and heated in the in situ PXRD reactor, so that diffraction data could be collected during the activation process. The results show that reduction with gases containing low concentrations of H2 (5 and 10%) led to the formation of ilmenite (FeTiO3) and we were able to show that both anatase and rutile are consumed in the reaction. Higher concentrations of H2 led to the formation of magnetite (Fe3O4) and metallic iron (Fe(0)). We also noted a decrease in the anatase to rutile transformation temperature under reducing atmospheres when compared with the pre-catalyst

  17. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  18. Shining X-rays on catalysts at work

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, J-D, E-mail: jdg@kt.dtu.d [Technical University of Denmark, Department of Chemical and Biochemical Engineering, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.

  19. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.

    Science.gov (United States)

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-10-23

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  20. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    Directory of Open Access Journals (Sweden)

    Peter Fremerey

    2015-10-01

    Full Text Available In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  1. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  2. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  3. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  4. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  5. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, T.S.; Lefferts, Leonardus; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher

  6. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  7. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  8. Study of the performance of vanadium based catalysts prepared by grafting in the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Santacesaria, E.; Carotenuto, G.; Tesser, R.; Di Serio, M. [Naples Univ. (Italy). Dept. of Chemistry

    2011-07-01

    The oxidative dehydrogenation (ODH) of propane has been investigated by using many different vanadia based catalysts, prepared by grafting technique and containing variable amounts of active phase supported on SiO{sub 2} previously coated, by grafting in three different steps, with multilayer of TiO{sub 2}. A depth catalytic screening, conducted in a temperature range of 400-600 C, at atmospheric pressure and in a range of residence time W/F=0.08-0.33 ghmol{sub -1}, has shown that the vanadium oxide catalysts on TiO{sub 2}-SiO{sub 2} support, prepared by grafting have good performances in the ODH of propane. In particular, a preliminary study has demonstrated that higher selectivities can be obtained employing catalysts having a well dispersed active phase that can be achieved with a V{sub 2}O{sub 5} content lower than 10%{sub w}t. It is well known that, in the case of redox catalysts, an increase of the selectivity can be achieved not only by using an adequate catalytic system but also via engineering routes like decoupling catalytic steps of reduction and re-oxidation. In fact it has been observed that by operating in dehydrogenating mode, on the same catalysts, a higher selectivity is obtained although the catalyst is poisoned by the formation of coke on the surface. As consequence of the results obtained in dehydrogenation, in this work has been explored the possibility to feed low amounts of oxygen, below the stoichiometric level with the aim to keep clean the surface from coke but maintaining high the selectivity, because, dehydrogenation reaction prevails. In this work, the behavior of catalysts containing different amounts of V2O5 has been studied in the propane-propene reaction by using different ratios C{sub 3}H{sub 8}/O{sub 2} included in the range 0-2. (orig.)

  9. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  10. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  11. Deactivation Studies of Rh/Ce0.8Zr0.2O2 Catalysts in Low Temperature Ethanol Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Platon, Alex; Roh, Hyun-Seog; King, David L.; Wang, Yong

    2007-10-30

    Rapid deactivation of Rh/Ce0.8Zr0.2O2 catalysts in low temperature ethanol steam reforming was studied. A significant build-up of carbonaceous intermediate, instead of carbon deposit, was observed at a lower reaction temperature which was attributed to the rapid catalyst deactivation. Co-feed experiments indicated that acetone and ethylene caused more severe catalyst deactivation than other oxygenates such as acidic acid and acetaldehyde.

  12. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  13. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  14. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  15. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  16. Deuterium absorption in Mg{sub 70}Al{sub 30} thin films with bilayer catalysts: A comparative neutron reflectometry study

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Harrower, Chris T.; Kalisvaart, Peter [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Bird, Adam [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Teichert, Anke [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Instituut voor Kern-en Stralingsfysica and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Laboratorium voor Vaste-Stoffysica en Magnetisme and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wallacher, Dirk; Grimm, Nico; Steitz, Roland [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mitlin, David [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Fritzsche, Helmut, E-mail: Helmut.Fritzsche@nrc-cnrc.gc.ca [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2011-05-05

    Highlights: > Mg{sub 70}Al{sub 30} thin films studied for hydrogen absorption using in situ neutron reflectometry. > Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. > Measurements reveals deuterium spillover from the catalysts to the MgAl phase. > The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. > Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  17. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Jianxing, Ren; Fangqin, Li; Jiang, Wu; Qingrong, Liu; Yongwen, Yang; Zhongzhu, Qiu

    2010-01-01

    Nitrogen oxides (NO x ) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NO x emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NO x formation mechanism and control were studied, and SCR deNO x technology was used to control NO x emissions from coal-fired boilers. Analyzed the relationship between deNO x efficiency and characteristics of SCR DeNO x catalyst. Through analysis, affecting SCR DeNO x catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  18. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  19. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  20. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  1. HZSM-5 CATALYST FOR CRACKING PALM OIL TO BIODIESEL: A COMPARATIVE STUDY WITH AND WITHOUT PT AND PD IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Agus Budianto

    2014-05-01

    Full Text Available The Needs of healthy environment and green energy poses a great demand for alternative energy. Biofuel is one of the alternative energy products that are environmentally friendly. Biofuel can be made from plant oils, especially palm oil. Cracking of palm oil into biofuel is constrained by the availability of catalysts. Moreover the available catalyst still gives a low yield. This research aims to study the effect of Pt and Pd impregnation into HZSM-5 catalyst on the catalytic properties. Another aim is to obtain the operating conditions of the catalytic cracking process of palm oil into biofuel which gives the highest yield and selectivity, especially for biodiesel and biogasoline fractions. Catalytic cracking process was carried out in a micro fixed bed reactor with diameter of 1 cm and length of 16 cm. The reactor was filled with a catalyst. The results of the study successfully prove that Pt and Pd impregnated into HZSM-5 catalyst can increase the yield and selectivity of biodiesel. Pd and Pt are highly recommended to increase the yield and selectivity of biodiesel.

  2. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  3. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  4. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  5. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  6. Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; van Steenbergen, M.J.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2009-01-01

    Aqueous impregnation of mesoporous silica as a first step in catalyst preparation was studied to investigate the distribution of the metal-precursor solution over the support. The degree of pore-filling after impregnation was determined using the freezing point depression of confined liquids. A

  7. A new catalyst for heavy water production and its prospect

    International Nuclear Information System (INIS)

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  8. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Science.gov (United States)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  9. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  10. Chemisorption studies of Pt/SnO2 catalysts

    Science.gov (United States)

    Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.

    1990-01-01

    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.

  11. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  12. A nanostructural study of Raney-type nickel catalysts

    NARCIS (Netherlands)

    Devred, F.

    2004-01-01

    Raney-type nickel catalysts have been applied in commercial hydrogenation reactions for decades. They are relatively cheap and have proven to be very efficient in hydrogenation. The preparation process is relatively simple, but it appears that many parameters have an influence on the performance of

  13. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  14. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  15. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  16. Modified aluminoplatinum catalysts for the reaction of cyclotrimerization of ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Vasina, T V; Bragin, O V; Lutovinova, V N; Preobrazhenskii, A V; Savostin, Yu A

    1981-01-01

    The influence of additions of various metals (Sc, Zr, Sn, and Re) on the dispersity of Pt particles on an Al-Pt catalyst for the reaction of ethylene cyclotrimerization was studied. It was shown that introduction of additives of different natures and concentrations, employment of different conditions for H/sub 2/ reduction and thermal treatment of the catalyst, and other things allow the dispersity of the Pt on the catalyst to be varied within the range 0.06-1 GAMMA (GAMMA - the fraction of Pt accessible for reaction on the surface of the support). For most of the studied catalysts a symbiotic relation between the dispersity of the Pt particles and the activity of the A1-Pt catalyst in the studied reaction is observed.

  17. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  18. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  19. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  20. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  1. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  2. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  3. Catalysts Efficiency Evaluation by using CC Analysis Test

    Directory of Open Access Journals (Sweden)

    Arina Negoitescu

    2011-10-01

    Full Text Available The study emphasizes the necessity of the catalysts efficiency testing. Diagnosis systems using lambda probes are based on the capacity of the catalyst oxygen storage. Comparing the lambda probe signals upstream and downstream of catalyst provides an indication on catalyst activity, although the correlation between oxygen storage capacity and catalyst efficiency is still difficult. Diagnosis for the 1.4 Renault Clio Symbol was accomplished in the Road Vehicles Lab at the Politehnica University of Timisoara using AVL Dicom 4000. The tests showed that the engine worked with lean mixture being necessary a fuel mixture correction calculated by the control unit ECU. A compensation of 0.14 % vol is required for the engine correct operation and emissions integration within permissible limits

  4. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  5. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  6. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Wang, Yanhui; Zhu, Jingli; Ma, Runyu

    2007-01-01

    Catalytic reduction of NO using ammonia upon series prepared catalysts under 423-573 K in a fixed bed reactor was investigated. Results showed that the performance of supported platinum catalyst could be improved by addition of La and Ce to it. Experimental studies indicated that the suitable molar ratio of Pt:La:Ce would be 1.0:3.78:3.56, Pt-La-Ce (c). Results also found Pt-La-Ce (c) catalyst had good stability and tolerance to certain amounts of sulfur compounds under the used experimental conditions. Characterization for the fresh and used catalysts showed the Pt-La-Ce (c) catalyst had a stable structure. In addition, based on experimental data and using a nonlinear regression algorithm method, an empirical macrodynamic equation was obtained in this study

  7. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2015-01-01

    Full Text Available This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD, N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR techniques. The results indicated that the textural characteristics of CNTs supports significantly impacted on the catalytic performance of Ni/CNTs. The catalyst Ni/CNTs-E (CNTs using ethanol as carbon source had good reducibility, high specific surface area, and moderate defects, resulting in higher CO2 conversion and CH4 yield, followed by Ni/CNTs-C (commercial CNTs and Ni/CNTs-A (CNTs using acetonitrile as carbon source. Based on Arrhenius formula, activation energies of the catalysts were calculated and were found decreased for Ni/CNTs-A and Ni/CNTs-E.

  8. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  9. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  10. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  11. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  12. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  13. A study on the deactivation and stability of hydrophobic catalyst for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Sohn, Soon Hwan

    2006-02-01

    The hydrophobic catalyst has been prepared by deposition of platinum on porous styrene divinylbenzene copolymers(Pt/SDBC) and at the same time a separated type catalytic reactor has been developed for the Wolsong tritium removal facility(WTRF). Several tests carried out to obtain the experimental performance data of the Pt/SDBC with a recycle reactor system. The long-term stability was also measured with the Pt/SDBC catalyst immersed in water for a long time. The long-term deactivations of the Pt/SDBC catalyst were evaluated quantitatively by mathematical models. The simple mathematical models were presented to evaluate the uniform poisoning and shell progressive poisoning to be occurred simultaneously during the hydrogen isotope exchange between hydrogen gas and liquid water in the Liquid Phase Catalytic Exchange(LPCE) column. The uniform poisoning was well characterized by a time on stream theory and then the deactivation parameters were determined from the experimental performance data. The impurity poisoning was derived by a shell progressive model with two-layer mass transfer. The water vapor condensation was a main cause of the reversible uniform poisoning for the Pt/SDBC catalyst. The values of the decay rate constant (K d ) and order of the decay reaction(m) were of 2 and 4, respectively, based on the experimental data. It indicated that the decay might be attributable to pore mouth poisoning. From the long-term stability of the catalyst immersed in water, there was no intrinsic decay of catalyst activity due to water logging to the catalyst. The activity decreased by only 7% over 18 months, which was equivalent to a catalyst half-life longer than 15 years. On the basis of the above deactivation parameters, the values for k c /k co with Thiele modulus=20 after 3 years and 10 years of operation were expected about 19% and 15% of the initial activity, respectively, while the values for k c /k co with Thiele modulus=100 were of about 22% and 18%, respectively

  14. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  15. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  16. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of basic nitrogen poisoning on adsorption of hydrogen on a hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Entz, R.W.; Seapan, M.

    1985-01-01

    Activity of a hydrotreatment catalyst depends on the hydrogen adsorption characteristics of the catalyst. In this work, the adsorption of hydrogen on a Ni-Mo/Al/sub 2/O/sub 3/ catalyst (shell 324) has been studied using a TGA at 1 atm pressure and 200-400 0 C temperature. Hydrogen adsorption on a calcined catalyst was shown to be of activated type with a sudden increase in hydrogen adsorption around 350 0 C. When the catalyst is extracted with Tetrahydrofuran (THF), the hydrogen adsorption increases gradually as the temperature is increased, approaching a monolayer coverage of the catalyst surface. It is shown that solvent extraction of catalyst changes its hydrogen adsorption characteristics significantly. Indeed, at 400 0 C, an extracted catalyst adsorbs about four times more hydrogen than an unextracted catalyst. Adsorption of basic nitrogen compounds on the catalyst interferes with the hydrogen adsorption. The adsorption of pyridine, piperidine, n-pentylamine, and ammonia were studied at 400 0 C. It is shown that the strength of adsorption of piperidine and n-pentylamine are relatively similar, however their adsorption strength is higher than pyridine. Ammonia is the weakest adsorbing compound studied. These observations are in agreement with other studies

  18. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  19. Wet chemical synthesis of nickel supported on alumina catalysts

    International Nuclear Information System (INIS)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de

    2016-01-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al_2O_3), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl_2O_4. The Al_2O_3 e Ni/Al_2O_3 catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al_2O_3 and Ni/Al_2O_3 catalysts were 8.69 m"2/g and 5.56 m"2/g, respectively. (author)

  20. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  1. Idealized mixing impacts

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    The dispersion of tetraphenylborate in continuous stirred tank reactors plays a significant role in the utility achieved from the tetraphenylborate. Investigating idealized mixing of the materials can illuminate how this dispersion occurs

  2. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  3. Study on positron annihilation spectroscopy of methanol synthesis catalyst CuO/ZnO

    International Nuclear Information System (INIS)

    Liu Qisheng; Dai Guohuan; Sun Jiying; Ding Yingru; Yao Jianhua

    1989-01-01

    A new method was developed for determining the solid solubility of a metal oxide series prepared by precipitation using the positron lifetime parameters. The positron lifetime spectra of a series of CuO/ZnO catalysts prepared by precipitation were measured, in which the CuO at % contents were different before and after reducing. The relations between the solid solubility of the catalysts and the positron lifetime parameters were obtained, from which a result of solid solubility of 12 CuO at% after reducing had been found. The viewpoint that the Cu + ion acted as the active centre in the CuO/ZnO catalyst was supported

  4. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  5. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  6. An XPS [x-ray photoelectron spectroscopy] study of the sulfidation-regeneration cycle of a hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shang, D.Y.; Adnot, A.; Kaliaguine, S. (Laval Univ., Ste-Foy, PQ (Canada)); Chmielowiec, J. (Petro Canada Products Co., Mississauga, ON (Canada))

    1993-10-01

    The formation of sulfates in an industrial Ni-W hydroprocessing (HP) catalyst was investigated by x-ray photoelectron spectroscopy (XPS). A small fluidized bed test unit with on-line sampling device was constructed to simulate industrial sulfidation and oxyregeneration processes of HP catalysts. The results obtained show that the sulfates observed on the surface of sulfided catalysts are not formed during the sulfidation process. Two oxidation processes seem to be responsible for the formation of sulfates: one happens when the catalyst is exposed to air before it is properly cooled and the other is a slow conversion at ambient temperature. The two different processes might be associated to different sulfidic species formed during the sulfidation processes, with the sulfides in the bulk of catalyst particles being more easily oxidized than the ones on the external surface of the catalyst particles. The sulfate formed during the air oxidation of sulfided catalysts, as well as that after oxyregeneration, is not aluminum sulfate but nickel sulfate in both cases. XPS results also indicate that oxygenates in the feedstock are not directly involved in the sulfate formation. 18 refs., 9 figs., 6 tabs.

  7. Soybean oil transesterification: Study of using Nb2O5.xH2O as catalyst in biodiesel production

    Directory of Open Access Journals (Sweden)

    Deborah A. dos Santos

    2012-06-01

    Full Text Available Economic and environmental reasons show a trend towards replacing fossil fuels with biofuels such as those from triglycerides. Biodiesel can be obtained from vegetable oils and animal fat through several processes such as transesterification, esterification, usually with methanol, ethanol or through pyrolysis, all of them in the presence of an acid or basis catalyst. The use of solid catalysts in biodiesel production has the following advantages: easy recovery and reuse, thus decreasing process costs and amount of waste generated.1 Some of the problems in the use of solid catalysts are: low concentration of active sites, microporosity, and leaching of active sites.2 Studies aiming at developing methodologies involving hydrated niobium oxide as catalyst in biodiesel production have been carried out by our research group.3,4 Parameters such as the use of assistant solvent to increase the boiling point of the mixture (toluene, ethylene glycol, and DMSO, pre-thermal treatment (calcinations and catalyst molar concentration were initially assessed in esterification, oleic acid, and methanol reactions.  From these studies we could observe that high temperatures and excessive alcohol favor esterification reactions.  The best reaction conditions were then used as models and employed in transesterification reactions of soybean oil.  DMSO (Dimethyl sulfoxide was the solvent used to increase the reaction medium temperature without evaporating all the methanol. Transesterification reactions were carried out with soybean oil (0.5 g, methanol (0.85 g, DMSO (2.50 ml, and hydrated niobium oxide as catalyst in ratios of 20% and 100% (in relation to oil mass.  Catalyst was employed without pretreatment and after pretreatment at 115 °C, 300 °C, and 500 °C. The reactions occurred at 170 °C, under reflux for 48 hours.  A reaction without a catalyst was also carried out. All the reactions have shown conversion using CCD and they have been determined by 1H NMR

  8. Elucidation of reaction mechanism for m -cresol hydrodeoxygenation over Fe based catalysts: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yongchun; Wang, Yong

    2017-09-01

    Fe based catalysts are promising for hydrodeoxygenation (HDO) of lignin derived phenolics due to their high selectivity for aromatics. In this work, the reaction mechanism of m-cresol HDO on Fe catalysts and the kinetic consequence with Pd addition were elucidated by examining the effect of H2, H2O and m-cresol pressures on toluene formation rate on Fe and PdFe catalysts. A direct CO bond cleavage mechanism is proposed for HDO catalysis on both Fe and PdFe catalysts, while Pd provides a facilitated reaction pathway at the PdFe interface and therefore promotes the catalysis on Fe without changing the high selectivity towards aromatics.

  9. Study of propane partial oxidation on vanadium-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, G.A.; Khalamejda, S.V.; Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    The present results indicate that maximum selectivity to acrylic acid can be reached over V-P-Zr-O catalysts. When the hydrocarbon concentration is 5.1 vol.% the selectivity is about 30% at quite high paraffin conversion. Conclusively, some explanations to the observed facts can be given. The V-P-O catalyst promotion with lanthanum by means of mechanochemical treatment is distinguished by the additive uniform spreading all over the matrix surface. Such twophase system is highly active in propane conversion (lanthanum oxide) and further oxidation of the desired products. The similar properties are attributed to V-P-Bi-La-O catalyst. Bismuth, tellurium and zirconium additives having clearly defined acidic properties provoke the surface acidity strengthening and make easier desorption of the acidic product (acrylic acid) from the surface lowering its further oxidation. Additionally, since bismuth and zirconium are able to form phosphates and, according to, to create space limitations for the paraffin molecule movement out of the active group boundaries, this can be one more support in favour of the selectivity increase. With this point of view very interesting results were obtained. It has been shown that the more limited the size of the vanadium unit, the higher the selectivity is. Monoclinic phase AV{sub 2}P{sub 2}O{sub 10} which consists in clusters of four vanadium atoms is sensibly more reactive than the orthorhombic phase consists in V{sub {infinity}} infinite chains. (orig.)

  10. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  11. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  12. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  13. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  14. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  15. Catalytic Activity Studies of Vanadia/Silica–Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition

    Directory of Open Access Journals (Sweden)

    Niina Koivikko

    2018-02-01

    Full Text Available In this work, silica–titania supported catalysts were prepared by a sol–gel method with various compositions. Vanadia was impregnated on SiO2-TiO2 with different loadings, and materials were investigated in the partial oxidation of methanol and methyl mercaptan to formaldehyde. The materials were characterized by using N2 physisorption, X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, X-ray photoelectron spectroscopy (XPS, Scanning transmission electron microscope (STEM, NH3-TPD, and Raman techniques. The activity results show the high importance of an optimized SiO2-TiO2 ratio to reach a high reactant conversion and formaldehyde yield. The characteristics of mixed oxides ensure a better dispersion of the active phase on the support and in this way increase the activity of the catalysts. The addition of vanadium pentoxide on the support lowered the optimal temperature of the reaction significantly. Increasing the vanadia loading from 1.5% to 2.5% did not result in higher formaldehyde concentration. Over the 1.5%V2O5/SiO2 + 30%TiO2 catalyst, the optimal selectivity was reached at 415 °C when the maximum formaldehyde concentration was ~1000 ppm.

  16. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts...

  17. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  18. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  19. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  20. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  1. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  2. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  3. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts...... catalysts were studied in the selective oxidation of propane to acrylic acid, revealing that active sites appear on the entire M1 surface and illustrating the high sensitivity of catalyst performance on the catalyst synthesis method....

  4. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  5. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  6. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane

    Directory of Open Access Journals (Sweden)

    Ashutosh Mishra

    2013-03-01

    Full Text Available The complete oxidation of n-Hexane and iso-Octane was studied individually in a fixed bed tubular flow reactor over CuO-CeO2 catalysts synthesized via four different methods namely urea-nitrate combustion method, urea gelation/co-precipitation method, citric acid sol-gel method and co-impregnation method. Laser diffraction was employed in catalysts characterization. The results obtained from the complete conversion of n-Hexane and iso-Octane revealed that the CuO-CeO2 catalysts prepared by urea-nitrate combustion method (UNC showed the best performance than the catalysts prepared by other methods used in the present investigation. CuO-CeO2 catalysts prepared by UNC method achieve total n-Hexane and iso-Octane conversion to CO2 at lower temperatures of 280 0C and 340 0C respectively due to the larger surface area of the catalysts which increases the specific rate of reaction. © 2013 BCREC UNDIP. All rights reservedReceived: 30th October 2012; Revised: 30th November 2012; Accepted: 3rd December 2012[How to Cite: A. Mishra, B.D. Tripathi, A.K. Rai, R. Prasad (2013. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane. Bulletin of Chemical Reaction Engineering & Catalysis, 7(3: 172-178. (doi:10.9767/bcrec.7.3.4076.172-178][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4076.172-178 ] View in  |

  7. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-01-01

    Highlights: ► Oxidative desulfurization was studied with WO x /ZrO 2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO x /ZrO 2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO x /ZrO 2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO 2 ) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO 3 and monoclinic ZrO 2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO x /ZrO 2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  8. Removal of residual palm oil-based biodiesel catalyst using membrane ultra-filtration technique: An optimization study

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2014-09-01

    Full Text Available In this research work, residual potassium hydroxide catalyst was removed from palm oil-based alkyl esters (biodiesel using membrane separative technique, with the aim of achieving high-quality biodiesel that meets international standard specifications. Further, Central Composite Design (CCD coupled with Response Surface Methodology (RSM was employed to study the effects of the system variables such as flow rate, temperature and transmembrane pressure (TMP on the retention of potassium. At the optimum conditions, the coefficient of retention (%R of the catalyst was 93.642, and the content of the potassium was reduced from 8.328 mg/L to 0.312 mg/L; a value well below the one specified by both EN 14214 and ASTM D6751 standards. In addition, the comparison between predicted and experimental values for the catalyst retention offers a reasonable percentage error of 0.081%. Therefore, this study has proven that membrane technique can be used to post treat crude biodiesel; in order to achieve high-quality biodiesel fuel that can be efficiently used on diesel engines.

  9. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  10. Evaluating the NOx Storage Catalysts (NSC Aging: A Preliminary Analytical Study with Electronic Microscopy

    Directory of Open Access Journals (Sweden)

    Leonarda Bellebuono

    2017-10-01

    Full Text Available This paper describes an expeditious and reliable method for determining the thermal effects in a static condition of commercial NOx storage catalysts (NSCs using scanning electron microscopy with an energy dispersive X-ray analytical system (SEM/EDS. It is worth remarking that possible changes in the morphology and in the elemental composition of the catalyst may be considered as the most important causes of the lower conversion of NOx. The information attained in this work indicates that Pt nanoparticle sintering is strongly increased by the oxygen exposure, and this can be considered a very useful preliminary investigation for the studies already present in the literature on the efficiency of NSCs.

  11. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  12. A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

    Directory of Open Access Journals (Sweden)

    Ezekiel Dixon Dikio

    2011-01-01

    Full Text Available The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope (FE-SEM, Energy Dispersive x-ray Spectroscopy (EDS, Raman spectroscopy, Thermogravimetric Analysis (TGA and Transmission Electron Microscope (TEM. A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.

  13. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  14. Mechanistic Studies on Chabazite-Type Methanol-to-Olefin Catalysts: Insights from Time-Resolved UV/Vis Microspectroscopy Combined with Theoretical Simulations

    NARCIS (Netherlands)

    Van Speybroeck, V.; Hemelsoet, K.L.J.; De Wispelaere, K.; Qian, Q.|info:eu-repo/dai/nl/34138609X; Van der Mynsbrugge, J.; De Sterck, B.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Waroquier, M.

    2013-01-01

    The formation and nature of active sites for methanol conversion over solid acid catalyst materials are studied by using a unique combined spectroscopic and theoretical approach. A working catalyst for the methanol-to-olefin conversion has a hybrid organic–inorganic nature in which a cocatalytic

  15. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  16. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts : Effect of catalyst synthesis protocols on activity

    NARCIS (Netherlands)

    Piskun, A.s.; Ftouni, J.; Tang, Z.; Weckhuysen, B.m.; Bruijnincx, P.c.a.; Heeres, Hero J.

    2018-01-01

    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance

  17. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  18. Electroreduction of oxygen on carbon-supported gold catalysts

    International Nuclear Information System (INIS)

    Erikson, Heiki; Juermann, Gea; Sarapuu, Ave; Potter, Robert J.; Tammeveski, Kaido

    2009-01-01

    The electrochemical reduction of oxygen was studied on Au/C catalysts (20 and 30 wt%) in 0.5 M H 2 SO 4 and 0.1 M KOH solutions using the rotating disk electrode (RDE) method. The thickness of the Au/C-Nafion layers was varied between 1.5 and 10 μm. The specific activity of Au was independent of catalyst loading in both solutions, indicating that the transport of reactants through the catalyst layer does not limit the process of oxygen reduction under these conditions. The mass activity of 20 wt% Au/C catalysts was higher due to smaller particle size. The number of electrons involved in the reaction and the Tafel slopes were found; the values of these parameters are similar to that of bulk polycrystalline gold and indicate that the mechanism of O 2 reduction is not affected by carbon support or the catalyst configuration.

  19. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  20. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    International Nuclear Information System (INIS)

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-01-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO 2 ) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO 2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO 2 . CNT growth on SiO 2 exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO 2 and showed a base growth mode with a growth rate greater than 2 μm/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process

  1. Dynamical properties of nano-structured catalysts for methane conversion: an in situ scattering study

    DEFF Research Database (Denmark)

    Kehres, Jan

    /NiO particles in a fresh catalyst sample showed a Ni/NiO core shell structure. The Ni lattice parameter decreased during the reduction due to the release of stress between the Ni core and the NiO shell. Ni particles sintered during heating in hydrogen after the reduction of the NiO shell. Dry reforming......The reactivity of catalyst particles can be radically enhanced by decreasing their size down to the nanometer range. The nanostructure of a catalyst can have an enormous and positive influence on the reaction rate, for example strong structure sensitivity was observed for methane reforming...... range from 298 - 1023 K. Correlated crystallite and particle growth due to sintering were observed after the decomposition of the surfactant. Furthermore transformations from rod to spherical particle shape were observed. In situ reduction experiments of a Ni/MgAl2O4 catalyst were performed. The Ni...

  2. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  3. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    , development and testing of metal oxide based H2SO4 catalysts, support of the ILS for catalyst studies, conducting a long term catalyst stability test at anticipated operating temperatures and pressures, and developing capabilities for conducting pressurized catalyst tests.

  4. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Diaz-Garcia, L.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Cortez de la Paz, M.T.

    2006-01-01

    Four NiMo catalyst supported on Al 2 O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 A for HDS and HDN

  5. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    Science.gov (United States)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  6. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    OpenAIRE

    Yanyan Feng; Wen Yang; Wei Chu

    2015-01-01

    This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR) techniques. The results indica...

  7. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    Directory of Open Access Journals (Sweden)

    Basseem B. Hallac

    2018-02-01

    Full Text Available The extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt % lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe3O4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible light using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe2O3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe+2.57 for the catalyst with no lanthana and Fe+2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe+2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe+2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. The paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.

  8. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  9. Asymptotic stability of a catalyst particle

    DEFF Research Database (Denmark)

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  10. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  11. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  12. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2005-01-01

    Supported ionic liquid phase (SILP) catalysts have been studied with regard to their long-term stability in the continuous gas-phase hydroformylation of propene. Kinetic data have been acquired by variation of temperature, pressure, syngas composition, substrate concentration, and residence time...

  13. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    Science.gov (United States)

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO 2 and CeO 2 and mixtures thereof (Ce 1 Ti 2 O x ) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeO x /npAu catalyst was 0.06 s -1 . Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OH ads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OH ads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeO x /npAu) show direct reaction with formic acid and its decomposition to CO 2 and H 2 . The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  14. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    -based catalysts synthesized at Hampton University, (ii) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (iii) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to attrition study of the iron-based catalysts. Precipitated silica appeared to decrease attrition resistance of spray-dried iron FT catalysts. It was found that the catalyst with precipitated silica content at around 12wt% showed the lowest attrition resistance. The results of net change in volume moment and catalyst morphology showed supporting evidences to the attrition results. Catalysts with low attrition resistance generated more fines loss, had higher net change in volume moment and showed more breakage of particles. BET surface area and pore volume of this catalyst series fluctuated; therefore no conclusion can be drawn from the data obtained. However, catalyst with no precipitated silica showed the lowest in BET surface area and pore volume, as expected. Addition of precipitated silica to the catalysts had no effect to the phase changes of iron that could have significant influence to catalyst attrition. The presence of precipitated silica is needed for enhancing catalyst surface area; however, the amount of silica added should be compromising with attrition resistance of catalysts

  15. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  16. Catalyst performance in magnetic esterification methyl soy oil

    International Nuclear Information System (INIS)

    Araujo, N.O.; Pereira, K R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A.C.F. de M.

    2016-01-01

    Growing concerns about the environment have encouraged the search for new fuels, including biodiesel, obtained from lipid sources that react with alcohol and catalyst. This aimed of this study to synthesize type catalyst (Ni-Zn)Fe_2O_4 and evaluate it in soy oil esterification. The catalyst was synthesized by combustion reaction and characterized by XRD, FTIR and BET. The esterification was carried out at high pressure reactor at 140°C for 1 hour with molar ratio of oil:alcohol 1:15 to 1 and 3% catalyst. From the XRD it was observed the formation of inverted spinel phase. FTIR revealed the presence of the vibrational bands 586, 1381, 1628, 2352, 2922, 3147 and 3457cm"-"1 and surface area 48m"2g"-"1, 10nm pore diameter and type IV isotherm, suggesting mesoporous material characteristic. The results indicate biodiesel conversion of 31.9% and 27.3% when using 1% and 3% catalyst, respectively. (author)

  17. Green nano-catalyst for methanolysis of non-edible Jatropha oil

    International Nuclear Information System (INIS)

    Teo, Siow Hwa; Rashid, Umer; Taufiq-Yap, Yun Hin

    2014-01-01

    Highlights: • A green nano heterogeneous base catalyst was prepared from CaO. • Transesterified Jatropha curcas oil achieved 95% of biodiesel yield at 65 °C. • Parameters affecting catalyst reaction were optimized. • Biodiesel produced was satisfied the International biodiesel standards. - Abstract: Non-edible feedstocks are regarded as a sustainable source of renewable energy. In order to find renewable, cheaper and easier methods to obtain energy, attention has been paid to develop potential green catalyst to produce renewable biodiesel. The catalyst was characterized by X-ray diffraction (XRD) results in combination with thermogravimetry–differential thermal analysis (TG–DTA), Brunauer–Emmer–Teller (BET), Fourier transfrom-infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis depicted that calcium methoxide (Ca(OCH 3 ) 2 ) catalysts were in size of 34.7 nm. The reaction parameters namely; reaction time, methanol/oil molar ratio, catalyst dosage were investigated for fatty acid methyl ester (FAME) yield. The highest biodiesel yield (95%) was appraised under the optimum condition (i.e. catalyst amount of 2 wt.%; methanol/oil molar ratio of 15:1, reaction time of 90 min). The Ca(OCH 3 ) 2 phase of catalyst can be regarded as an active phase to get high yield of biodiesel which was confirmed from characterization study. Furthermore, important fuel properties were also investigated and satisfied the ASTM D6751 and European 14214 biodiesel standards. Thus, Ca(OCH 3 ) 2 catalyst prepared in this study was having efficient, low toxicity, cost effective and easy to prepare for green fuels production especially biodiesel

  18. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  19. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  20. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  1. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies.

    Science.gov (United States)

    Dolan, Nicholas S; Scamp, Ryan J; Yang, Tzuhsiung; Berry, John F; Schomaker, Jennifer M

    2016-11-09

    The development of new catalysts for selective nitrene transfer is a continuing area of interest. In particular, the ability to control the chemoselectivity of intermolecular reactions in the presence of multiple reactive sites has been a long-standing challenge in the field. In this paper, we demonstrate examples of silver-catalyzed, nondirected, intermolecular nitrene transfer reactions that are both chemoselective and flexible for aziridination or C-H insertion, depending on the choice of ligand. Experimental probes present a puzzling picture of the mechanistic details of the pathways mediated by [( t Bu 3 tpy)AgOTf] 2 and (tpa)AgOTf. Computational studies elucidate these subtleties and provide guidance for the future development of new catalysts exhibiting improved tunability in group transfer reactions.

  2. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  3. A MECHANISTIC STUDY OF RHODIUM TRI(ORTHO-TERT-BUTYLPHENYL)PHOSPHITE COMPLEXES AS HYDROFORMYLATION CATALYSTS

    NARCIS (Netherlands)

    JONGSMA, T; CHALLA, G; VANLEEUWEN, PWNM

    1991-01-01

    A mechanistic study of the hydroformylation cycle with a rhodium tri(o-t-butylphenyl)phosphite complex as catalyst is presented. Spectroscopic experiments prove that under hydroformylation conditions this complex is coordinated by only one phosphite. The complex has a high activity in the

  4. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  5. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Rajpure, K.Y.

    2011-01-01

    Research highlights: → The two step approach for quantitative XPS analysis of ZnO films has been reported. → Surface composition and chemical states of F and In/ZnO catalysts have been studied. → The chemical shifts and Auger parameter have been investigated. - Abstract: X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing an elemental composition of surfaces and the local chemical environment of adsorbed species. The surface composition and chemical states of the F/ZnO and In/ZnO catalysts deposited using spray technique have been studied by high resolution and high sensitivity X-ray photoelectron spectroscopy. A hybrid multiline method is proposed for quantitative XPS analysis that combines the first principles approach with the experimental determination of overall response function. The chemical shifts of XPS core lines for Zn (2P 3/2 , F 1s and In 3d) and Auger parameter for zinc (β Zn = 2012.6, 2011.48 eV for F/ZnO and In/ZnO, respectively) have been calculated. The results have been used to determine the bond iconicity (0.55).

  6. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  7. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  8. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  9. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  10. Ligh oil-gas cracking on zeolite-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhmarova, G M; Topchieva, K V

    1977-01-01

    A comparative study was made of the activity of cation-decationized forms of zeolite-containing catalysts in the cracking of the kerosene-gas oil fraction. The greatest benzene yield was obtained at 400/sup 0/. Temperatures greater than that lead to a more intense cracking and to changes in the redistributive ability of the catalysts. An increase in the polyvalent cations was shown to have little effect on the activity of the thermally processed zeolite-containing catalysts but did lead to a reduction in the activity of the thermally processed samples. 5 tables, 6 references.

  11. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  12. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  13. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  14. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  15. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  16. Propagation of a plasma streamer in catalyst pores

    Science.gov (United States)

    Zhang, Quan-Zhi; Bogaerts, Annemie

    2018-03-01

    Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.

  17. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  18. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    Science.gov (United States)

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  19. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  20. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  1. Conditions for reduction of ironmolybdenum-tungsten catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Simulina, N.A.; Karibdzhanyan, N.A.; Lachinov, S.S.; Anfimov, V.A.; Shumlyakovskij, Ts.I.

    1977-01-01

    The reduction of Fe-Mo-W catalyst MB-5, used for synthesis of ammonia, has been studied in the reactor of extracolumn reduction. The results obtained have been compared with similar results for the catalyst CA-1. It has been shown that reduction of the catalyst MB-5 proceeds more intensive and is completed at lower temperature and for a shorter period of time. The samples of the catalyst MB-5 discharged from different layers in the reactor are more active than CA-1 reduced under identical conditions

  2. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  3. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-11-01

    Full Text Available In this work, system identification method is used to capture the reactor characteristics of production rate of polyethylene (PE based on published experimental data. The identification method is used to measure the percentage effect on the production rate of PE by measuring the effect of input factors of temperature of reaction, hydrogen concentration, and [Al]/[Ti] molar catalyst ratio. Temperature of reaction has big effects equal 52.4 % on the output of the system and 47.6 % on interaction of the system's parameters compare to other two factors. Also, hydrogen concentration has big effect equal 45.66 % on the output of the system and 14.7 % on interaction of the system's parameters. [Al]/[Ti] molar catalyst ratio has big effect on interaction of the system equal 28.6 and 1.94 % on the output of the system but less than the reaction temperature and hydrogen concentration. All these results depend on experiment results and these results are very important in industrial plants. ©2011 BCREC UNDIP. All rights reserved(Received: 13rd May 2011; Revised: 27th July 2011; Accepted: 22th September 2011[How to Cite: Ahmmed S. Ibrehem. (2011. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 137-146. doi:10.9767/bcrec.6.2.874.137-146][How to Link / DOI: http://dx,doi.org/10.9767/bcrec.6.2.874.137-146 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/874 ] | View in 

  4. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  5. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  6. A study on the properties of blended regenerated spent catalyst and cement sandcrete blocks

    International Nuclear Information System (INIS)

    Amissah, Emmanuel Kofi

    2016-07-01

    Sandcrete is widely used as building material. Its properties greatly depend on the properties and proportions of its constituents. The main binder material to produce sandcrete is the Portland cement. The uncertainty about future availability of commonly used Portland materials concomitantly with the environmental problems such as greenhouse gases emissions and high cost of clinker consumption are highlighting the need of identifying other materials for the construction industry, which will aid in minimizing the clinker consumption and reduce the greenhouse gas emissions and cost in the production of cement. The purpose of this study is to examine the properties of sandcrete blocks produced with blended Regenerated Spent Catalyst and cement. In this work, two different series of sandcrete mixtures in which cement was partially replaced with Regenerated Spent Catalyst(RSC) within the range of 5% to 20% (by mass) with an increment of 5%. 100% cement sandcrete was also prepared as reference sandcrete. The physical properties studied were compressive strength, water absorption and setting time. Chemical property studied was chloride content. Comparison of data between the control and that of cement with additives were made. The results obtained in this study clearly indicated that substituting Portland cement up to 20wt. % RSC gave sandcrete strengths higher than the 32.5N/mm 2 , which corresponds to that of Portland cement. The replacement of Portland cement with 10 wt. % of RSC gave the highest strength of 34.0 N/mm 2 . Thus, Regenerated Spent Catalyst may be utilized as effective mineral additive for designing durable sandcrete structures. The optimum amount of RSC recommended to be added as an additive to the Portland cement is 10%. (au)

  7. NO reduction by CO over noble-metal catalysts under cycled feedstreams

    International Nuclear Information System (INIS)

    Muraki, H.; Fujitani, Y.

    1986-01-01

    The reduction of NO with CO was studied over α-Al/sub 2/O/sub 3/-supported Pt, Pd, Rh, Ru, and Ir catalysts. The activities were measured by using cycled feeds and steady noncycled feed. The activity sequence of the catalysts tested was Rh > Ru > Ir > Pd > Pt. The activities of Pt and Pd catalysts were increased under the cycled feed. The periodic operation effect on the Pt catalyst was more predominant than that on the Pd catalyst. The order of periodic operation effect corresponded to the order of their susceptibility to CO self-poisoning

  8. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... is to identify which sites are active towards specific molecules and in getting insight to what the ideal catalyst should look like in terms of morphology. Dimethyl carbonate is an environmentally benign compound that can be used as a solvent and precursor in chemical synthesis or as a fuel and fuel additive...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  9. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  10. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  11. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  12. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  13. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  14. Synthesis of Dicyclopentadiene Oligomer Over Nanoporous Al-MCM-41 Catalysts.

    Science.gov (United States)

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Kwon, Tae Soo; Park, Y K; Jeon, Jong-Ki

    2016-05-01

    One step reaction composed of DCPD oligomerization and DCPD oligomer isomerization was investigated over nanoporous Al-MCM-41 catalysts. The effects of aluminum grafting over MCM-41 on the catalyst characteristics were studied with respect to the synthesis of TCPD isomer. Physical and chemical properties of the catalysts were analyzed by N2 adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The overall number of acid sites as well as the number of Lewis acid sites increased with increasing of aluminum content over MCM-41. When utilizing MCM-41 and Al-MCM-41 as the catalyst, DCPD oligomerization reaction activity greatly increased compared to the thermal reaction. The highest TCPD isomer selectivity over the Al-MCM-41 catalyst with the highest aluminum content could be ascribed to the largest amount of acid sites. This study showed an increased level of TCPD isomer selectivity by an increasing level of Lewis acid sites through aluminum addition over MCM-41.

  15. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  16. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  17. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  18. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  19. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  20. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  1. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  2. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  3. Quantitative positron annihilation studies in citrates, halides and oxyhalides chemisorbed on γ-alumina catalyst

    International Nuclear Information System (INIS)

    Luo, X.H.; Jean, Y.C.; Cheng, K.L.

    1987-01-01

    A quantitative study of the γ-alumina catalyst chemisorbed by nitrates, halides, and oxyhalides has been conducted with the positron annihilation spectroscopy (PAS). Catalysts containing Fe, Co, or Ni have been extensively used in chemical industry and petroleum refining. The positron or Ps annihilation can provide a profile information about the bulk, near surface, and void. It is an in-situ surface technique. The PAS technique has shown its capability to determine the nitrate or chloride in γ-alumina as low as 0.02% in solids. It is interesting to note that the PAS may offer the oxidation state information in solids. This is not surprising because the positron annihilation is sensitive to the electron density variation in environments. Positron annihilation models for halides and oxyhalides are proposed

  4. Catalyst study for the decontamination of glove-box atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chobot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium cleanup system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  5. Catalyst study for the decontamination of glove-boxe atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium clean-up system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  6. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  7. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  8. A hard X-ray study of a manganese-terpyridine catalyst in a chromium-based Metal Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Alexandra V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    Hydrogen produced from water splitting is a promising source of clean energy. However, a robust catalyst is necessary to carry out the water oxidation step of water splitting. In this study, the catalyst studied was [(terpy)Mn(μ-O)2Mn(terpy)]3+ (MnTD) synthesized in the Metal Organic Framework (MOF) MIL-101(Cr), and the method used for analysis was hard X-ray powder diffraction. The diffraction data was used to detect the presence of MOF in different catalytic stages, and lattice parameters were assigned to the samples containing MOF. Fourier maps were constructed with GSAS II to determine the contents of the MOF as preliminary studies suggested that MnTD may not be present. Results showed that MOF is present before catalysis occurs but disappears by the time 45 minutes of catalysis has ensued. Changes in the MOF’s lattice parameters and location of electron density in the Fourier maps suggest attractions between the MOF and catalyst that may lead to MOF degradation. Fourier maps also revealed limited, if any, amounts of MnTD, even before catalysis occurred. Molecular manganese oxide may be the source of the high rate of water oxidation catalysis in the studied system.

  9. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  10. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst and at ...

  11. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  12. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  13. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  14. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    Science.gov (United States)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a

  15. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  16. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  17. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  18. Oxidative coupling of methane over alkali-promoted simple molybdate catalysts

    International Nuclear Information System (INIS)

    Discoll, S.A.; Zhang, L.; Ozkan, U.S.

    1992-01-01

    The study of various metal oxides and alkali promoted metal oxide catalysts has received much interest in recent years after the earlier reports of ethylene synthesis through oxidative coupling of methane, and of achieving high selectivities over a Li/MgO catalyst under methane and oxygen cofeed conditions. The addition of promoter ions to several oxide catalysts has been studied to determine the effect of the promoter ion on catalytic activity and selectivity. The authors' work has focused on the use of alkali promoters for a simple molybdate catalyst. MnMoO 4 . A study of Na, Li, K, Mg, Ba, Mn, Co, Fe, Cu, Zn, and Ni molybdates by Kiwi et al showed that with the exception of NiMoO 4 , the molybdates were stable for long periods of time under reaction conditions for oxidative coupling. At a conversion level of about 60%, selectivities ranged from 9.8% to 16.6%. The MnMoO 4 and K 2 MnMoO 4 molybdates were the least selective catalysts. Another molybdate, PbMoO 4 , was studied by Baerns et al., with 19% selectivity to C 2 hydrocarbons at 1% conversion. An 11.4% conversion to form aldehyde was also reported. In this paper the authors report the characterization and catalytic behavior of MnMoO 4 catalysts promoted with either Li, Na, or K in oxidative coupling of methane

  19. Development of catalysts for chemical reactions driven by concentrated solar energy

    International Nuclear Information System (INIS)

    Berman, A.; Levitan, R.; Levy, M.

    1992-03-01

    The aim of this phase of the work is to study commercially available low priced catalysts, for the methanation and reforming processes in the closed-loop solar chemical heat pipe. This report summarized some long term tests of commercially available methanation catalysts and the measurement of their active surface before and after reaction. It was found that the 1%Ru on alumina stars catalysts (prepared by Englehard Company according to our request) is very active and stable at 350-750 C. The catalyst 'A' produced in Russia, is less active, however, did not lose the mechanical strength. The 50% Ni/SiO 2 catalyst is active as the 'A' catalyst but loses its activity after treatment at temperature > 600 C, its geometrical size shrinked. (authors). 25 refs., 25 figs., 36 tabs

  20. Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques

    Directory of Open Access Journals (Sweden)

    Khodakov A.

    1999-07-01

    Full Text Available The effect of wetting on the structure and localisation of cobalt species on various supports (Al2O3, SiO2, TiO2, HZSM-5 zeolite was studied using X-ray diffraction, Fourier transform infrared spectroscopy with CO as a molecular probe, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Aqueous impregnation to incipient wetness of reduced and passivated cobalt catalysts results, even in the absence of any promoter, in a considerable decrease in the concentration of Co crystalline phases and modifies the surface sites. The decrease in the concentration of Co3O4 crystallites was especially pronounced on silica supported catalysts prepared via impregnation of cobalt and on a mixture of Co3O4 and HZSM-5 zeolite. Saturation with water of the passivated Co/SiO2 sample results in an amorphous solid with a local structure close to that of Co2SiO4. For Co/Al2O3 and Co/TiO2 catalysts, the effect of wetting on the concentration of Co3O4 crystalline phase was considerably smaller.

  1. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  2. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  3. Catalytic performance of Ni/MgO catalyst in methane dry reforming

    Science.gov (United States)

    Al-Swai, Basem M.; Osman, N. B.; Abdullah, Bawadi

    2017-10-01

    Methane dry reforming to synthesis gas over nickel catalysts supported on magnesium oxide has been studied. The support was prepared via co-precipitation method using ammonia solution (20 wt% in water) as the precipitating agent. 10 wt% of Ni metal was impregnated to form Ni/MgO catalyst. The prepared catalyst was characterized by different techniques, such as XRD, BET, SEM, and TGA analysis. The effect of reaction conditions on the conversions of CH4 and CO2, selectivity of H2 and CO, and carbon deposition were investigated in a tabular furnace reactor. The catalyst afforded as high as 93% CH4 conversion at 900 °C. The catalyst has also shown excellent stability during reaction at relatively higher space velocity (1.8×104 ml g-1 h-1) and 800 °C reaction temperature. TGA characterization of spent catalyst has shown lesser magnitude of carbon deposition on the surface of the catalyst at 900 °C.

  4. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  5. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  6. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  7. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  8. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  9. Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling

    DEFF Research Database (Denmark)

    Bjørgum, Erlend; Chen, De; Bakken, Mari G.

    2005-01-01

    Temperature-programmed desorption (TPD) of CO has been performed on supported and unsupported nickel catalysts. The unsupported Ni catalyst consists of a Ni(14 13 13) single crystal which has been studied under ultrahigh vacuum conditions. The desorption energy for CO at low CO surface coverage...... was found to be 119 kJ/mol, and the binding energy of C to the Ni(111) surface of the crystal was 703 kJ/mol. The supported catalysts consist of nickel supported on hydrotalcite-like compounds with three different Mg2+/Al3+ ratios. The experimental results show that for the supported Ni catalysts TPD of CO...... precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...

  10. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  11. Combined XRD and XANES studies of a Re-promoted Co/γ-Al2O3 catalyst at Fischer–Tropsch synthesis conditions

    DEFF Research Database (Denmark)

    Rønning, Magnus; Tsakoumis, Nikolaos E.; Voronov, Alexey

    2010-01-01

    A cobalt based Fischer–Tropsch catalyst was studied during the initial stages of the reaction at industrially relevant conditions. The catalyst consists of 20wt% cobalt supported on γ-Al2O3 and promoted by 1wt% of rhenium. X-ray diffraction (XRD) in combination with X-ray absorption near edge...

  12. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  13. Tacticities study of high poly-α-olefins, from poly-1-hexene to poly-1-octadecene, obtained with metallocenes catalysts

    International Nuclear Information System (INIS)

    Silva, Luciano F. da; Galland, Griselda B.

    2003-01-01

    High poly-α-olefins such as poly-1-hexene, poly-1-octene, poly-1-decene, poly-1-dodecene, poly-1-tetradecene, poly-1-hexadecene and poly-1-octadecene were obtained with the homogeneous iso specific catalyst rac-Et[Ind]ZrCl 2 /MAO and with the homogeneous syndiospecific catalyst Me 2 C[Cp(9-Flu)]ZrCl 2 /MAO at the polymerization temperatures of 0 deg C, 30 deg C and 60 deg C. The polymers were analyzed by 13 C NMR to study the influence of the α - olefins sizes, the catalysts type and the polymerization temperatures in their tacticities. The stereospecific control of both catalytic systems decreased with the increase of the reaction temperature and with the α-olefin size. (author)

  14. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  15. STUDY ON THE CONCENTRATION EFFECT OF Nb2O5-ZAA CATALYST TOWARDS TOTAL CONVERSION OF BIODIESEL IN TRANSESTERIFICATION OF WASTED COOKING OIL

    Directory of Open Access Journals (Sweden)

    Astuti Tri Padmaningsih

    2010-06-01

    Full Text Available Study on the concentration effect of Nb2O5-ZAA catalyst towards total conversion of biodiesel has been conducted. The natural zeolite (ZA was activated by dipping in NH4Cl solution and was calcined using N2 atmosphere at 500 °C for 5h to produce the ZAA sample. The Nb2O5-ZAA catalyst was made by mixing the activated natural zeolite (ZAA, Nb2O5 3 % (w/w and oxalic acid 10 % (w/w solution, until the paste was formed, followed by drying and calcining the catalyst for 3 h at 500 °C under N2 atmosphere. Catalyst characterizations were conducted by measuring acidity with NH3 gas using gravimetric method and porosimetric analysis using N2 gas adsorption based on the BET equation by surface area analyzer instrument. The Nb2O5-ZAA catalyst was then used as an acid catalyst in free fatty acid esterification reaction of wasted cooking oil in methanol medium with variation of catalyst concentration: 1.25%; 2.5%; 3.75% and 5% towards the weight of oil+methanol. The reaction was continued by transesterification of triglyceride in the used cooking oil using NaOH catalyst in methanol medium. For comparison, the esterification reaction using H2SO4 catalyst 1.25% towards the weight of oil+methanol has been conducted as well. Methyl ester (biodiesel product was analyzed using Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. The characters of biodiesel were analyzed using American Society for Testing and Materials (ASTM method. The results showed that modification of ZAA by impregning Nb2O5 3% (w/w increased the total catalyst acidity from 5.00 mmol/g to 5.65 mmol/g. The Nb2O5-ZAA catalyst has specific surface area of 60.61 m2/g, total pore volume of 37.62x10-3 cc/g and average pore radius of 12.41 Å. The Nb2O5-ZAA catalyst with concentration of 1.25%-5% produced higher total conversion of biodiesel than that of H2SO4 catalyst 1.25%. The Nb2O5-ZAA catalyst with concentration of 3.75% produced the highest total conversion of biodiesel, i

  16. Study on supported binary sulfide catalysts for secondary hydrogenation of coal-derived liquids; Sekitan ekikayu niji suisoka shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Matsubayashi, N.; Sato, T.; Imamura, M.; Yoshimura, Y.; Nishijima, A. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1995-07-28

    To utilize the high performance of supported catalysts in coal liquefaction processes, one of the promising ways is to apply hydroprocessing sulfide catalysts to the secondary hydrogenation of coal-derived liquids which have undergone the solid separation unit. However, when the product yield from the first-stage liquefaction is maximized, the feed stocks in the secondary hydrogenation contain large amounts of residual fractions with preasphaltenes and metallic components. In this case, the development of a long-life catalyst is essential to establish the two-stage process as a practical one. From this viewpoint, the authors have investigated the deactivation causes of supported Ni-Mo sulfide catalysts through the analysis of the used catalysts in the secondary hydrogenation of coal-derived liquids for long periods. The major cause of the catalyst deactivation has been found to be metallic and carbonaceous deposition on the catalyst, which results thin layer which covers the catalyst particles. The catalysts located at the reactor inlet are more rapidly deactivated than those at the rector exit because of larger amounts of metallic foul ants and the above described shell-like layer. Hydrocracking active sites are much heavily deactivated compared with hydrogenation active sites. It is inferred that the basic or polar compounds contained in coal liquids are permanency adsorbed on the hydrocracking active sites. Spectroscopic analysis of the used catalysts clarified the destruction of the active phase of the binary sulfides, through the segregation and crystal growth. The structural changes of the catalysts are very likely caused by heteroatom compounds in the preasphaltenes. Thus, the primary cause of the catalyst deactivation is the preasphaltenes in the coal liquids. Hydroaromatic compounds in the coal liquids suppress the change of the deposited carbonaceous materials into inert coke which permanently deactivate the catalyst.

  17. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  19. A mechanistic study on the oxidative coupling of methane over lithium doped magnesium oxide catalysts

    NARCIS (Netherlands)

    Geerts, J.W.M.H.; Kasteren, van J.M.N.; Wiele, van der K.; Imarisio, G.; Frias, M.; Berntgen, J.M.

    1988-01-01

    To elucidate the importance of various reaction steps in the oxidative convers ion of methane, experiments were carried out with three reaction products: ethane, ethylene and carbon monoxide. These products were studied seperately, in oxidation experiments with and without a catalyst. Moreover , the

  20. A Moessbauer spectroscopic study on the action of Ce in the catalyst for dehydrogenation of etylbenzene to styrene

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Keyu, E-mail: keyujiang@126.com [East China Normal University, Department of Physics (China); Fan Qin; Chen Tong; Miao Changxi [Shanghai Research Institute of Petrochemical Technology, SINOPEC (China); Zhao Zhenji; Yang Xielong [East China Normal University, Department of Physics (China)

    2012-03-15

    Two series of Fe-K catalysts for dehydrogenation of ethylbenzene to styrene were prepared with different amounts and different compounds of the additional element Ce. Moessbauer spectroscopy has been used to determine the Fe compound in the catalyst and to investigate the effect of Ce. The catalytic properties of the catalysts have also been measured. The results show that the element Ce in the catalyst is favorable to form the predecessor of the catalytic active phase, the compound KFe{sub 11}O{sub 17} and that the optimal percentage of CeO{sub 2} is 8%{approx}15% in the catalyst which is favorable to the formation of KFe{sub 11}O{sub 17} and to get better catalytic properties.

  1. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  2. OPTIMATION OF TIME AND CATALYST/FEED RATIO IN CATALYTIC CRACKING OF WASTE PLASTICS FRACTION TO GASOLINE FRACTION USING Cr/NATURAL ZEOLITE CATALYST

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Optimation of time and catalyst/feed ratio in catalytic cracking of waste plastics fraction to gasoline fraction using Cr/Natural Zeolite catalyst has been studied.The natural zeolite was calcined by using nitrogen gas at 500 oC for 5 hours. The chromium supported on to the zeolite was prepared by ion exchange methode with Cr(NO33.9H2O solution with chromium/zeolite concentration of 1% (w/w. The zeolite samples were then calcined  with nitrogen gas at 500 oC for 2 hours, oxidyzed with oxygen gas and reduced with hydrogen at 400 oC for 2 hours. The characterization of the zeolite catalyst by means of Si/Al ratio by UV-Vis spectroscopy, acidity with pyridine vapour adsorption and Na, Ca and Cr contents by atomic adsorption spectroscopy (AAS. The catalyst activity test was carried out in the cracking process of waste plastics fraction with boiling point range of 150 - 250 °C (consisted of C12 - C16 hydrocarbons at 450 oC for 30 min, 60 min and 90 min, and catalyst/feed ratio 1/1, 1/2, 1/3, ¼ (w/w. The result of catalyst activity test  showed  that  the maximum number  conversion of gasoline fraction (C5-C11 is 53,27% with relatively low coke formation using 1/3 catalyst/feed ratio and the cracking time of 60 min.. This  catalyst has  Si/Al ratio = 1,21 (w/w , acidity = 0,16 mmol/g and Na content = 0,81%, Ca content = 0,15% and Cr content 0,24%.   Keywords: zeolite, catalytic cracking, gasoline, chromium.

  3. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  4. Study of PtNi/C catalyst for direct ethanol fuel cell; Estudo do catalisador PtNi/C para celula a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F., E-mail: eticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  5. Study of (La, Ce)(Pd, Mn, Fe, Co) O3-Perovskite catalysts characterization with nanoparticles produced by compressor and vacuum until 20/000 km and comparison with imported catalyst of Iran Khodro

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hossaini, M.

    2009-01-01

    (La,Ce)(Pd,Mn,Fe,Co)O 3 - Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure by compressor and vacuum method. The catalyst was applied on Rd car with XU7 motors model and the amount of emission was monitored with vehicle emission test systems in Sapco Company after 10000 and 20/000 Km. The results indicate low emission in catalyst with vacuum method and were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro Company b ased on the Euro III standards . The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results indicated in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows Nano Particles size on coat. The microstructure evaluation showed that the improved properties can he related to the existence of nano particles on coating.

  6. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  7. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  8. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  9. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  10. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  11. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  12. Carbon-Supported Fe Catalysts for CO2 Electroreduction to High-Added Value Products: A DEMS Study: Effect of the Functionalization of the Support

    OpenAIRE

    Pérez-Rodríguez, S.; García, G.; Calvillo, L.; Celorrio, V.; Pastor, E.; Lázaro, M. J.

    2011-01-01

    Vulcan XC-72R-supported Fe catalysts have been synthesised for the electroreduction of CO2 to high-added value products. Catalysts were obtained by the polyol method, using ethylene glycol as solvent and reducing agent. Prior to the metal deposition, Vulcan was subjected to different oxidation treatments in order to modify its surface chemistry and study its influence on the physicochemical and electrochemical properties of the catalysts, as well as on the product distribution. The oxidation ...

  13. Experimental Studies on the Hydrotreatment of Kraft Lignin to Aromatics and Alkylphenolics Using Economically Viable Fe-Based Catalysts

    Science.gov (United States)

    2017-01-01

    Limonite, a low-cost iron ore, was investigated as a potential hydrotreatment catalyst for kraft lignin without the use of an external solvent (batch reactor, initial H2 pressure of 100 bar, 4 h). The best results were obtained at 450 °C resulting in 34 wt % of liquefied kraft lignin (lignin oil) on lignin intake. The composition of the lignin oil was determined in detail (elemental composition, GC-MS, GC×GC-FID, and GPC). The total GC-detectable monomeric species amounts up to 31 wt % on lignin intake, indicating that 92 wt % of the products in the lignin oil are volatile and thus of low molecular weight. The lignin oil was rich in low-molecular-weight alkylphenolics (17 wt % on lignin) and aromatics (8 wt % on lignin). Performance of the limonite catalyst was compared to other Fe-based catalysts (goethite and iron disulfide) and limonite was shown to give the highest yields of alkylphenolics and aromatics. The limonite catalyst before and after reaction was characterized using XRD, TEM, and nitrogen physisorption to determine changes in structure during reaction. Catalyst recycling tests were performed and show that the catalyst is active after reuse, despite the fact that the morphology changed and that the surface area of the catalyst particles was decreased. Our results clearly reveal that cheap limonite catalysts have the potential to be used for the depolymerization/hydrodeoxygenation of kraft lignin for the production of valuable biobased phenolics and aromatics. PMID:28413733

  14. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  15. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  16. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Brik; Kustov, Arkady

    The deactivation performance of Pt-catalysts for CO oxidation has been studied in relation to use in sewage sludge municipal waste burners, where HMDS was found to poison the industrial catalyst in a similar way to the model Pt/TiO2 catalyst. A promising regeneration procedure was developed based...... on reduction with hydrogen. This procedure had negligible effect on the performance of the SCR catalyst. After treatment with 2% H2, 8% O2 in N2 for one hour, a slight better NO SCR activity was observed due to increase in the concentration V4+ sites. However, after exposure in normal NO SCR gases the activity...

  17. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    International Nuclear Information System (INIS)

    Yang Jianli; Zhun Jisheng; Liu Zhenyu; Zhong Bing

    2002-01-01

    Catalyst plays an important role in direct coal liquefaction (DCL). Iron catalysts are regarded as the most attractive catalysts for DCL. To maximize catalytic effect and minimize catalysts usage, ultra-fine size catalysts are preferred. The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles. Besides the physical size, chemical form of a catalyst or a catalyst precursor is also important in determination of DCL activity. The expended X-ray absorption fine structure spectroscopy technique were used in this study. It was shown that the catalysts tested are in nanomater range and have structure mainly in the form of γ-FeOOH and FeS, or possibly of Fe/O/S. The presence of γ-FeOOH can be attributed to the interaction between Fe and the oxygen containing groups of coal or oxygen from moisture

  18. Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: Role of catalyst support and reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Srivastava, Vimal Chandra; Mishra, Indra Mani [Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2015-09-15

    Ceria and zinc oxide catalyst were impregnated onto various oxide supports, namely Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, individually by deposition-coprecipitation method. The synthesized catalysts (CZA, CZS and CZT having supports Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, respectively) were characterized by X-ray diffraction (XRD), NH{sub 3}- and CO{sub 2}-temperature programmed desorption (TPD) and N2 adsorption. These catalysts were used for synthesis of dimethyl carbonate (DMC) from methanol and propylene carbonate in a batch reactor. CZS was found to have larger average grain size as compared to CZA and CZT. Composite oxides (catalysts) were found to contain individual phases of ZnO, CeO{sub 2} and some spinel forms of Zn, Ce along with their supports. CZS having highest basicity and surface area showed better catalytic activity as compared to CZA and CZT. Effect of reaction temperature and methanol/PC molar ratio on DMC yield was studied and a reaction mechanism has been discussed. Maximum DMC yield of 77% was observed with CZS catalyst at 170 .deg. C with methanol/PC molar ratio of 10.

  19. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  20. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  1. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  2. Solar-assisted photodegradation of isoproturon over easily recoverable titania catalysts.

    Science.gov (United States)

    Tolosana-Moranchel, A; Carbajo, J; Faraldos, M; Bahamonde, A

    2017-03-01

    An easily recoverable homemade TiO 2 catalyst (GICA-1) has been evaluated during the overall photodegradation process, understood as photocatalytic efficiency and catalyst recovery step, in the solar light-assisted photodegradation of isoproturon and its reuse in two consecutive cycles. The global feasibility has been compared to the commercial TiO 2 P25. The homemade GICA-1 catalyst presented better sedimentation efficiency than TiO 2 P25 at all studied pHs, which could be explained by its higher average hydrodynamic particle size (3 μm) and other physicochemical surface properties. The evaluation of the overall process (isoproturon photo-oxidation + catalyst recovery) revealed GICA-1 homemade titania catalyst strengths: total removal of isoproturon in less than 60 min, easy recovery by sedimentation, and reusability in two consecutive cycles, without any loss of photocatalytic efficiency. Therefore, considering the whole photocatalytic cycle (good performance in photodegradation plus catalyst recovery step), the homemade GICA-1 photocatalyst resulted in more affordability than commercial TiO 2 P25. Graphical abstract.

  3. Synthesis of heterogeneous catalyst for the production of biodiesel ...

    African Journals Online (AJOL)

    This study explore the comparison of a suitable heterogeneous catalyst for conversion of triglyceride into fatty acid methyl ester. A series of heterogeneous cerium, manganese, and zinc oxide catalyst supported at mixture of cinder was prepared by co-precipitation and applied for conversion of triglyceride in oil to biodiesel ...

  4. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  5. Characterization and parametrical study of Rh-TPPTS supported ionic liquid phase (SILP) catalysts for ethylene hydroformylation

    DEFF Research Database (Denmark)

    Hanh, Nguyen Thi Ha; Duc, Duc Truong; Thang, Vu Dao

    2012-01-01

    The supported ionic liquid phase (SILP) catalysis technology was applied to continuous, gas-phase hydroformylation of ethylene. Rh-TPPTS SILP catalysts with relatively low ionic liquid loading were shown to be stable and highly activity for ethylene hydroformylation. However, the catalytic activity......, BET surface area and pore morphology of the catalysts depended on the content of ionic liquid. Hence, catalysts with high ionic liquid loading content showed deactivation at high reaction temperatures, possibly caused by redistribution of ionic liquid out of the pores under these conditions. (C) 2012...

  6. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  7. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate

    International Nuclear Information System (INIS)

    Shuit, Siew Hoong; Tan, Soon Huat

    2014-01-01

    Highlights: • First report on the production of biodiesel from low-value industrial by-product using sulphonated MWCNTs as catalyst. • Various sulphonation methods were used to transform MWCNTs into catalysts. • SO 3 H were successfully grafted on the surface of MWCNTs, which resulted in a high biodiesel yield and reuse capacity. • The maximum FAME yield by sulphonated MWCNTs was higher than for other popular solid acid catalysts. - Abstract: Sulphonated multi-walled carbon nanotubes were synthesised and utilised as catalysts to transform palm fatty acid distillate, the low-value by-product of palm oil refineries, into the more valuable product of biodiesel. The most common method to prepare carbon-based solid acid catalysts is thermal treatment with concentrated sulphuric acid, which is a time-consuming and energy-intensive process. Therefore, the feasibility of other sulphonation methods, such as the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate), were examined in this study. The esterification reaction was performed at 170 °C for 3 h at a methanol to palm fatty acid distillate ratio of 20 and catalyst loading of 2 wt% in a pressurised reactor. The fatty acid methyl esters yields achieved by the sulphonated multi-walled carbon nanotubes prepared via thermal treatment with concentrated sulphuric acid, the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate) were 78.1%, 85.8%, 88.0% and 93.4%, respectively. All catalysts could maintain a high catalytic activity even during the fifth cycle. Among the sulphonation methods, the in situ polymerisation of poly(sodium4-styrenesulphonate) produced the catalyst with the highest acid group density. In addition, the resonance structures of the benzenesulphonic acid

  8. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  9. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  10. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  11. Biodiesel production using calcium manganese oxide as catalyst and different raw materials

    International Nuclear Information System (INIS)

    Dias, Joana Maia; Conceição Machado Alvim-Ferraz, Maria; Fonseca Almeida, Manuel; Méndez Díaz, José Diego; Sánchez Polo, Manuel; Rivera Utrilla, José

    2013-01-01

    Highlights: ► Biodiesel production using a calcium manganese oxide catalyst was studied. ► The active specie was Ca 0.9 Mn 0.1 O and its deactivation occurred by hydration. ► The studied catalyst presented lower activation temperature than CaO. ► Biodiesel production and quality using different raw materials is reported. ► Compared to the conventional process, biodiesel water content improved. - Abstract: The use of heterogeneous catalysts for biodiesel production aims to simplify the production process as well as to reduce purification costs and related environmental impacts. Calcium manganese oxide was recently identified by the authors as an interesting heterogeneous catalyst for biodiesel production from animal fat; however, the difference between this and other catalysts, the catalyst activation/deactivation mechanisms, its behaviour in the synthesis using different raw materials as well as the impacts of its use on product quality remained unclear. Therefore, the present work: (i) compared biodiesel production using calcium manganese oxide and other catalysts (CaO and NaOH); (ii) studied the reasons leading to activation/deactivation of the heterogeneous catalyst; (iii) analysed biodiesel heterogeneous synthesis using calcium manganese oxide and different raw materials (lard, waste frying oil and a mixture); and (iv) evaluated raw material and catalyst impact on the product quality. Considering the use of different catalysts, the results showed that, after 8 h of reaction, product purity was similar using the different catalysts, being 92.5 wt.% using both NaOH and calcium manganese oxide and 93.8 wt.% using CaO. The active species of the heterogeneous catalysts were CaO, in the case of calcinated calcium carbonate, and Ca 0.9 Mn 0.1 O, in the case of calcinated calcium manganese oxide. Because the deactivating species were different for both catalysts, the calcium manganese oxide required lower activation temperature, which should be an advantage

  12. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  13. Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Oseweuba Valentine Okoro

    2018-01-01

    Full Text Available In response to existing global focus on improved biodiesel production methods via highly efficient catalyst-free high temperature and high pressure technologies, this study considered the comparative study of catalyst-free technologies for biodiesel production as an important research area. In this study, therefore, catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification and catalyst-free one step supercritical transesterification processes for biodiesel production have been evaluated via undertaking straight forward comparative energetic and environmental assessments. Energetic comparisons were undertaken after heat integration was performed since energy reduction has favourable effects on the environmental performance of chemical processes. The study confirmed that both processes are capable of producing biodiesel of high purity with catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification characterised by a greater energy cost than catalyst-free one step supercritical transesterification processes for an equivalent biodiesel productivity potential. It was demonstrated that a one-step supercritical transesterification for biodiesel production presents an energetically more favourable catalyst-free biodiesel production pathway compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. The one-step supercritical transesterification for biodiesel production was also shown to present an improved environmental performance compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. This is because of the higher potential environment impact calculated for the integrated subcritical lipid hydrolysis and supercritical esterification compared to the potential environment impact calculated for the supercritical transesterification process, when all material and energy flows are

  14. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  15. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  16. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  17. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  18. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  19. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  20. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  1. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  2. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  3. 197Au Moessbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M.

    2000-01-01

    We have studied nano-sized Au catalysts supported on Mg(OH) 2 and TiO 2 using 197 Au Moessbauer spectroscopy. 197 Au Moessbauer spectra observed for Au/Mg(OH) 2 catalysts can be decomposed into one singlet with zero isomer shift and several doublets. One of the doublets shows an isomer shift that is typical for Au I , and other doublets are due to Au III . The relative area of the Au I component shows the maximum value for a specimen calcined at 523 K, which also shows the highest catalytic activity

  4. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    Science.gov (United States)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  5. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed...... that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  6. A Catalyst-for-Change Approach to Evaluation Capacity Building

    Science.gov (United States)

    Garcia-Iriarte, Edurne; Suarez-Balcazar, Yolanda; Taylor-Ritzler, Tina; Luna, Maria

    2011-01-01

    Evaluation capacity building (ECB) has become a popular approach for helping community-based organizations (CBOs) to meet their funders' demands for accountability. This case study reports the ECB process with one staff member using a catalyst-for-change approach. The authors analyzed the role of the catalyst in diffusing evaluation knowledge and…

  7. Chemical nature of catalysts of oxide nanoparticles in environment

    Indian Academy of Sciences (India)

    Carbon nanostructures (CNS) are often grown using oxide nanoparticles as catalyst in chemical vapour deposition and these oxides are not expected to survive as such during growth. In the present study, the catalysts of cobalt- and nickel oxide-based nanoparticles of sizes varying over a range have been reduced at 575 ...

  8. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  9. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  10. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  11. Oxidative desulfurization of benzothiophene and thiophene with WO{sub x}/ZrO{sub 2} catalysts: Effect of calcination temperature of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Zubair; Jeon, Jaewoo [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Jhung, Sung Hwa, E-mail: sung@knu.ac.kr [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Oxidative desulfurization was studied with WO{sub x}/ZrO{sub 2} calcined at different temp. Black-Right-Pointing-Pointer The importance of the phases of zirconia and tungsten oxide was suggested. Black-Right-Pointing-Pointer The catalyst was analyzed thoroughly with Raman and XRD techniques. Black-Right-Pointing-Pointer The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO{sub x}/ZrO{sub 2} catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO{sub x}/ZrO{sub 2} catalyst is around 700 Degree-Sign C. The most active catalyst is composed of tetragonal zirconia (ZrO{sub 2}) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO{sub 3} and monoclinic ZrO{sub 2} for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO{sub x}/ZrO{sub 2} catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  12. Polymer supported organic catalysts for O2 reduction in Li-O2 batteries

    International Nuclear Information System (INIS)

    Weng, Wei; Barile, Christopher J.; Du, Peng; Abouimrane, Ali; Assary, Rajeev S.; Gewirth, Andrew A.; Curtiss, Larry A.; Amine, Khalil

    2014-01-01

    Graphical abstract: - Abstract: A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction catalyst was successfully incorporated in the cathode of Li-O 2 batteries. The addition of the anthraquinone-based catalyst improved the cycleability of the Li-O 2 battery when cycled in a tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with a wide range of analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, electrochemical impedence spectroscopy, and X-ray diffraction were used to interrogate the Li-O 2 battery with and without the organic catalyst present. This study suggests that organic catalysts may serve as light and inexpensive alternatives to the precious metals frequently used in Li-O 2 batteries

  13. Suitability of some promising soot combustion catalysts for application in diesel exhaust treatment

    Energy Technology Data Exchange (ETDEWEB)

    Badini, Claudio; Saracco, Guido; Serra, Valentina; Specchia, Vito [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24-10129 Torino (Italy)

    1998-09-21

    In this work, the effect of thermal treatment at 380C and 600C, under gaseous atmospheres containing some typical components of diesel emissions (SO{sub 2} and water), was studied on some promising catalysts for diesel particulate combustion. In particular, the ageing behaviour of two novel catalysts (based on CsVO{sub 3}+KCl and KVO{sub 3}+KCl, respectively) and of a more widely studied Cu-K-V-Cl catalyst was investigated. The catalytic activities of these novel catalysts were lower than that of the Cu-K-V-Cl one, but, contrary to this last counterpart, they almost completely maintained their activity during ageing treatments in dry or humid air at 380C and 600C, respectively. Moreover, after prolonged thermal exposure in wet air, the activity of the Cu-K-V-Cl catalyst became comparable with that of the CsVO{sub 3}+KCl one, while remaining still slightly higher than that of the KVO{sub 3}+KCl catalyst. The thermal treatments of all the catalysts under investigation in an atmosphere containing SO{sub 2} did not cause an activity decrease. X-ray diffraction analyses showed the formation of new phases (sulphates and vanadates with a K/V ratio different from that of metavanadates) which could also improve the catalytic activity, counterbalancing the loss of active components due to evaporation at high temperatures. Furthermore, the catalyst activity was evaluated after employing repeatedly these catalysts in carbon combustion. The catalytic activities were generally slightly lowered by the repeated use, even though, from this viewpoint, that of Cu-K-V-Cl was more affected than those of the other catalysts. On the basis of the obtained results the CsVO{sub 3}+KCl catalyst was found to allow the best compromise between satisfactory catalyst activity and stability

  14. Effect of precipitating agent on the catalytic behaviour of precipitated iron catalysts

    International Nuclear Information System (INIS)

    Motjope, T.R.; Dlamini, H.T.; Pollak, H.; Coville, N.J.

    1999-01-01

    Iron precipitated catalysts have been prepared using different precipitating agents (NH 4 OH, K 2 CO 3 ) at different pH values. In situ Moessbauer (MES) study of the reduced catalyst prepared using NH 4 OH revealed the presence of superparamagnetic Fe 2+ , Fe 3+ and magnetically split α-Fe only, whereas the catalyst prepared with K 2 CO 3 also showed an extra magnetic sextuplet of Fe 3 O 4 . For both catalyst systems, in situ MES revealed that during Fischer-Tropsch synthesis α-Fe was converted into ε'-Fe 2,2 C and finally into χ-Fe 2,5 C when the synthesis time was increased. The rate of formation of hydrocarbons was observed to increase with the increase in the degree of carburisation with the NH 4 OH catalyst showing a higher rate of reaction. The K 2 CO 3 catalyst exhibited higher olefin selectivity than the NH 4 OH catalyst under similar pH conditions

  15. Catalytic activity of zeolite-containing catalysts in cumene cracking

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhtarova, G N; Topchieva, K V [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Fizicheskoj Khimii

    1977-01-01

    The catalytic properties are studied of decationized forms (Ca and La) of zeolite-containing catalysts in relation to the nature of the cation and the degree of exchange in the cumene cracking reaction. It has been established that the increase in the activity of Ca-decationized catalysts occurs at a degree of exchange from 22 to 40% and at a ratio of the cation and decationized areas from 0.4 to 1. For La-decationized catalysts the activity increases at a degree of exchange up to 60% and at a ratio between the cation and decationized areas exceeding 1.

  16. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  17. A Catalyst for Change

    DEFF Research Database (Denmark)

    Lønsmann, Dorte

    2017-01-01

    This case study of a team in an international workplace investigates processes of language socialization in a transient multilingual setting. Using interview and observational data, the analysis shows how social and linguistic norms are negotiated, with the newcomer positioned as a catalyst...... for changing language practices toward more English, with the ultimate aim of creating a 'global mindset' in the organization. Language socialization in a transient multilingual setting is shown to focus on and assign positive value to new linguistic norms that experienced members are socialized...... into in a process that hinges on new members functioning as tools for management to bring about the desired change. The article shows that while the newcomer is used as a catalyst for increased use of English and for the creation of a 'global mindset,' she is at the same time socialized into the existing Danish...

  18. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jögi, I.; Erme, K.; Levoll, E.

    2017-01-01

    The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts in the im......The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts...... in the improvement of oxidation efficiency based on the stationary and time-dependent studies of the NOx oxidation at different reactor configurations and experimental conditions. The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst...... surfaces while the exact mechanism and extent of the effect depended on the reactor configuration. The effect of catalyst at different experimental conditions was quantitatively described with the aid of analytical lumped kinetic models derived for the NOx oxidation when the catalyst was directly...

  20. Radiation modification of vanadium catalyst for anthracene oxidation

    International Nuclear Information System (INIS)

    Norek, J.; Vymetal, J.; Mucka, V.; Pospisil, M.; Cabicar, J.

    1985-01-01

    Vanadium pentoxide on a suitable carrier is often used as catalyst for the oxidation of anthracene in the gaseous phase to 9,10-anthraquinone. The activity and selectivity of the catalyst may be affected by irradiation. The effects were studied of gamma radiation on the properties of the catalyst where the active system was a V 2 O 5 -KOH-K 2 SO 4 mixture on a Al 2 O 3 +SiO 2 carrier. The 60 Co radiation source had an activity of 185 TBq; the carrier of the catalyst was irradiated at a dose rate of 3.05, 1.98 and 0.084 kGy/h to a total dose of 10 kGy. Irradiation increased the selectivity of the catalyst such that in the oxidation temperature optimum of 300 to 400 degC the yield of 9,10-anthraquinone increased by 4.6 to 4.8 %mol. to roughly 90 %mol.; a significant reduction of the content of acid components (phthalanhydride) in the oxidation product also occurred. This effect remained unchanged for 5 months after irradiation. A reduction of selectivity was observed at lower dose rates only in the temperature range between 400 and 480 degC. (A.K.)

  1. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  2. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  3. Study of ternary-component bismuth molybdate catalysts by 18O2 tracer in the oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Ueda, W.; Moro-oka, Y.; Ikawa, T.

    1981-01-01

    Participation of lattice oxide ions of ternary-component bismuth molybdate catalysts M-Bi-Mo-O (M = Ni, Co, Mg, Mn, Ca, Sr, Ba, and Pb) was investigated using the 18 O 2 tracer in the selective oxidation of propylene to acrolein. The participation of the lattice oxide ions in the oxidation is prominent on every catalyst but the extent of the participation varies significantly depending on the structure of the catalyst. Only lattice oxide ions in the bismuth molybdate phase are incorporated into the oxidized products on the catalysts (M = Ni, Co, Mg, and Mn) where M have smaller ionic radius than Bi 3+ ; catalyst particles are composed of a shell of bismuth molybdates and a core of MMoO 4 . On the other hand, whole oxide ions in the active particles are involved in the oxidation on catalysts having a scheelite-type structure (M = Ca, Sr, Ba, and Pb) where M has a comparable ionic radius to Bi 3+

  4. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  5. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.

    Science.gov (United States)

    Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong

    2018-03-01

    An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  7. The synthesis of nanostructured, phase pure catalysts by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.R.; Sunstrom, J.E.; Marshik-Geurts, B.J. [Worcester Polytechnic Institute, Worcester, MA (United States)

    1995-12-01

    A new process for the synthesis of advanced catalytic materials based on performing the synthesis under hydrodynamic cavitation conditions has been discovered. This continuous process for catalyst synthesis resulted in the formation of both supported and unsupported catalysts. The advantage of the process over classical methods of synthesis is that it permits the formation of a wide variety of nanostructured catalysts in exceptionally high phase purities. The synthesis of platinum and palladium catalysts supported on alumina and other supports resulted in high dispersions of the noble metals. The synthesis of alpha, beta- and gamma-bismuth molybdates resulted in catalysts having superior phase purities as compared to several other classical methods of synthesis. The beta-bismuth molybdate was synthesized directly onto Cabosil. These studies showed that the particle size of the active component could be varied from a few manometers to much larger grains. The process enabled the synthesis of other complex metal oxides like perovskites as pure phases. The process uses a commercially available Microfluidizer.

  8. Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.

    Science.gov (United States)

    Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki

    2014-04-01

    The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.

  9. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  10. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  11. Theoretical modeling of structure and function of cathode catalyst layers in PEMFC

    International Nuclear Information System (INIS)

    Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.

    2004-01-01

    'Full text:' In this work, we first investigate transport and reaction kinetics in single agglomerates of cathode catalyst layers in proton exchange fuel cells. Two types of spherical agglomerates are evaluated, which represent limiting structures that can be obtained by distinct synthetic procedures. One type consists of a mixture of carbon/catalyst particles and proton conducting perfluorosulfonated ionomer (PFSI). The other type consists of carbon/catalyst particles and water-filled pores. Performance of the former type is rationalized on the basis of the well-known Thiele-modulus. Characteristics of the latter type are studied using Nernst-Planck and Poisson equations. Aspects of current conversion, reactant and current distributions, and catalyst utilization are explored. In general, the PFSI-filled agglomerates exhibit more homogeneous distributions of reaction rates. Effectiveness factors for them are close to one. However, it was found that proton penetration depths in waterflooded agglomerates could be quite significant as well under certain conditions, resulting in unexpectedly high catalyst utilization. The effects of agglomerate radius and of boundary conditions at the agglomerate surface are studied. Moreover, using the same approach, we evaluate the performance of a flat PFSI-free catalyst layer with water-filled pore space. Compared with conventional composite catalyst layers impregnated with PFSI, the PFSI-free layer exhibits better performance and high Pt utilization for thicknesses less than 0.1 μm. The significance of these results for the optimization catalyst layers in view of operation conditions and synthesis methods is discussed. (author)

  12. Graphene supported heterogeneous catalysts for Li–O{sub 2} batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alaf, M., E-mail: mirac.alaf@bilecik.edu.tr [Bilecik Seyh Edebali University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Gulumbe Campus, Bilecik 11210 (Turkey); Tocoglu, U.; Kartal, M.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey)

    2016-09-01

    Graphical abstract: - Highlights: • Free-standing and flexible electrodes were prepared for Li–air batteries. • α-MnO{sub 2} nanorods, Pt nanoparticles and graphene were used. • α-MnO{sub 2} and Pt catalyst improved OER/ORR kinetics. - Abstract: In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO{sub 2}/graphene, (iii) Pt/graphene (iv) α-MnO{sub 2}/Pt/graphene composite cathodes for Li–air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N{sub 2} adsorption–desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li–air batteries.

  13. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  14. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  15. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.

  16. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  17. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  18. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  19. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  20. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  1. Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide.

    Science.gov (United States)

    Kilvington, Simon; Winterton, Lynn

    2017-11-01

    Hydrogen peroxide (H2O2) disinfection systems are contact-lens-patient problem solvers. The current one-step, criterion-standard version has been widely used since the mid-1980s, without any significant improvement. This work identifies a potential next-generation, one-step H2O2, not based on the solution formulation but rather on a case-based peroxide catalyst. One-step H2O2 systems are widely used for contact lens disinfection. However, antimicrobial efficacy can be limited because of the rapid neutralization of the peroxide from the catalytic component of the systems. We studied whether the addition of an iron-containing catalyst bound to a nonfunctional propylene:polyacryonitrile fabric matrix could enhance the antimicrobial efficacy of these one-step H2O2 systems. Bausch + Lomb PeroxiClear and AOSept Plus (both based on 3% H2O2 with a platinum-neutralizing disc) were the test systems. These were tested with and without the presence of the catalyst fabric using Acanthamoeba cysts as the challenge organism. After 6 hours' disinfection, the number of viable cysts was determined. In other studies, the experiments were also conducted with biofilm formed by Stenotrophomonas maltophilia and Elizabethkingia meningoseptica bacteria. Both control systems gave approximately 1-log10 kill of Acanthamoeba cysts compared with 3.0-log10 kill in the presence of the catalyst (P catalyst compared with ≥3.0-log10 kill when it was omitted. In 30 rounds' recurrent usage, the experiments, in which the AOSept Plus system was subjected to 30 rounds of H2O2 neutralization with or without the presence of catalytic fabric, showed no loss in enhanced biocidal efficacy of the material. The catalytic fabric was also shown to not retard or increase the rate of H2O2 neutralization. We have demonstrated the catalyst significantly increases the efficacy of one-step H2O2 disinfection systems using highly resistant Acanthamoeba cysts and bacterial biofilm. Incorporating the catalyst into the

  2. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  3. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    Science.gov (United States)

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-01-01

    the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized

  5. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  6. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  7. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  8. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  9. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  10. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  11. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  12. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  13. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de

    2016-01-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  14. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  15. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  16. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  17. Mechanistic Studies of Metal-Oxo Cubane Catalysts for Lightweight Solar Fuels Storage

    Science.gov (United States)

    2013-03-01

    13692. 4 “ Single - crystal growth, crystal and electronic structure of NaCoO2.” Takahashi, Y.; Gotoh, Y.; Akimoto, J. J. Sol. State Chem. 2003, 172, 22...bond formation by the Co–OEC catalysts. 2. A penetrating study of Co3 +|Co4+ self-exchange kinetics of Co4O4 cubanes and a detailed understanding of...construct the artificial leaf described in (7). 4. The examination of Co2+| Co3 + self-exchange in a faithful structural molecular analog of the 7

  18. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  19. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    Kruszka, Bartosz; Terzyk, Artur P; Wiśniewski, Marek; Gauden, Piotr A; Szybowicz, Mirosław

    2014-01-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  20. Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andreia F.; Barella, Rodrigo A.; Silva, Edson A. [Department of Chemical Engineering, Universidade Estadual do Oeste do Parana, Toledo (Brazil); Pergher, Sibele B.C.; Treichel, Helen; Oliveira, Debora; Mazutti, Marcio A.; Oliveira, J. Vladimir [Department of Food Engineering, URI, Campus de Erechim, CEP 99700-000, Erechim (Brazil)

    2011-02-15

    This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 2{sup 3} full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions. (author)