WorldWideScience

Sample records for tetrameric potassium ion

  1. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang , Youxing (UPENN); (UTSMC); (HHMI)

    2017-07-19

    TMEM175 is a lysosomal K+ channel that is important for maintaining the membrane potential and pH stability in lysosomes1. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K+ channels and lacks the TVGYG selectivity filter motif found in these channels2, 3, 4. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K+ channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K+ channel family.

  2. Crystallization and preliminary X-ray diffraction studies of the tetramerization domain derived from the human potassium channel Kv1.3

    International Nuclear Information System (INIS)

    Winklmeier, Andreas; Weyand, Michael; Schreier, Christina; Kalbitzer, Hans Robert; Kremer, Werner

    2009-01-01

    The tetramerization domain of human Kv1.3 was cloned, expressed, purified and crystallized. The crystals belonged to space group I4 and diffracted to 1.2 Å resolution using synchrotron radiation. The tetramerization domain (T1 domain) derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens was recombinantly expressed in Escherichia coli and purified. The crystals were first grown in an NMR tube in 150 mM potassium phosphate pH 6.5 in the absence of additional precipitants. The crystals showed I4 symmetry characteristic of the naturally occurring tetrameric assembly of the single subunits. A complete native data set was collected to 1.2 Å resolution at 100 K using synchrotron radiation

  3. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  4. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  5. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    International Nuclear Information System (INIS)

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-01-01

    In the present work, K 2 Ti 2 O 5 , K 2 Ti 4 O 9 and K 2 Ti 6 O 13 are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO 2 . Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO 3 ) 2 precursor. It is found that the binding energy of K in K 2 Ti 2 O 5 is much higher than those in K 2 Ti 4 O 9 and K 2 Ti 6 O 13 , and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K 2 Ti 2 O 5 is much easier to be exchanged out.

  6. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  7. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    Science.gov (United States)

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  8. Recovery of copper ion by flotation with potassium amylxanthate

    International Nuclear Information System (INIS)

    Ramirez-Serrano, B.; Coello-Velazquez, A. L.; Bernardo, A.; Afif, E.; Menendez-Aguado, J. M.

    2012-01-01

    In this paper a study about the column flotation process of copper ion employing potassium amylxanthate as collector reagent is carried out. The effect on the recovery of copper ion by the modification of variables such as collector/metal relation and surface velocity of gas and liquid was determined experimentally by the analysis of the statistic-mathematical model of the copper flotation process, as well as the physico-chemical phenomena that take place, showing the effect of the collector/metal relation in the process. The effect of pH as the main properties of the chemical system in the recovery and the kinetic of the flotation process is made too. The experimental results shows that the recovery of copper in the pH range of 4,5 - 12 is possible with prevalence of precipitate flotation. (Author) 43 refs.

  9. The Effects of Changing Membrane Compositions and Internal Electrolytes on the Respon of Potassium Ion Sensor

    OpenAIRE

    Ulianas, Alizar; Heng, Lee Yook

    2015-01-01

    A study on the changing of membrane compositions and internal solution towards the response potassium ion sensor was carried out. Potassium ion sensor based on photocured cross linking poly(n-butyl acrylate) membranes with varying composition of valinomycin (val), sodium tetrakis [3.5-bis(trifluoro-methyl) phenyl] borat (NaTFPB), types ion of internal solution were investigated. Effects of varying composition of val, NaTFPB, types and concentration of internal solution were observed on potass...

  10. [The relationship between PMI and concentration of potassium ion and sodium ion in swine aqueous humor after death].

    Science.gov (United States)

    Han, Ju; Yu, Guang-biao; Dong, Ye-qiang; Fang, Chao; Jing, Hua-lan; Luo, Si-min

    2010-04-01

    To explored the relationship between the concentration of potassium ion as well as sodium ion in the aqueous humor and post-mortem interval (PMI). The concentrations of potassium ion and sodium ion in the aqueous humor of swine within 48 h after death at 4 degrees C and 28 degrees C were detected using Z-500 atomic absorption spectrophotometer. The concentrations of potassium ion and sodium ion in aqueous humor of isolated swine eyeballs within 48 h after death when the environmental temperature was 4 degrees C were significantly related to PMI. The relationship between PMI and the concentration of potassium ion was PMI = -0.178[K+]2 + 49.978 (R2 = 0.995). The relationship between PMI and the rate of sodium ion and potassium ion was PMI = 120.987/[Na+/K+]-28.834 (R2 = 0.905). The concentration of potassium in aqueous humor of isolated swine eyeballs may be one of the reference indicators to estimate PMI of the corpses at lower temperatures.

  11. Can Cu(II) ions be doped into the crystal structure of potassium hydrogen tartrate?

    OpenAIRE

    Srinivasan, Bikshandarkoil R.; Remesh, H.

    2015-01-01

    The differing binding preferences of the hydrogen tartrate ligand (HC4H4O6)- namely {\\mu}7-octadentate mode for potassium ion and bidentate mode for cupric ion rules out the doping (incorporation) of any Cu(II) ion into the crystal structure of potassium hydrogen tartrate. Hence, the claim of growth of copper doped potassium hydrogen tartrate viz. K0.96Cu0.04C4H5O6 by Mathivanan and Haris, Indian J Pure App Phys 51 (2013) 851-859 is untenable.

  12. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five

  13. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An Electrochemical Sensor Based on Nanostructured Hollandite-type Manganese Oxide for Detection of Potassium Ions

    Directory of Open Access Journals (Sweden)

    Alex S. Lima

    2009-08-01

    Full Text Available The participation of cations in redox reactions of manganese oxides provides an opportunity for development of chemical sensors for non-electroactive ions. A sensor based on a nanostructured hollandite-type manganese oxide was investigated for voltammetric detection of potassium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III to Mn(IV at the surface of the electrode and the subsequent extraction of the potassium ions into the hollandite structure. In this work, an amperometric procedure at an operating potential of 0.80 V (versus SCE is exploited for amperometric monitoring. The current signals are linearly proportional to potassium ion concentration in the range 4.97 × 10−5 to 9.05 × 10−4 mol L−1, with a correlation coefficient of 0.9997.

  15. Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries

    Science.gov (United States)

    Liu, Cailing; Luo, Shaohua; Huang, Hongbo; Wang, Zhiyuan; Wang, Qing; Zhang, Yahui; Liu, Yanguo; Zhai, Yuchun; Wang, Zhaowen

    2018-06-01

    A layered potassium vanadate K0.23V2O5 has been successfully prepared by the hydrothermal method and evaluated as an anode material for lithium-ion and potassium-ion batteries. High structural stability is demonstrated by the ex situ X-ray diffraction (XRD) and ex situ scanning electron microscopy (SEM). When used as an anode material for lithium-ion batteries, the K0.23V2O5 exhibits a reversible capacity of 480.4 mAh g-1 at 20 mA g-1 after 100 cycles and 439.7 mAh g-1 at 200 mA g-1 after 300 cycles as well as good cycling stability. Even at a high current density of 800 mA g-1, a high reversible capacity of 202.5 mAh g-1 can be retained, indicating excellent rate performance. Whereas in potassium-ion batteries, it retains a capacity of 121.6 mAh g-1 after 150 cycles at 20 mA g-1 and 97.6 mAh g-1 at 100 mA g-1 after 100 cycles. Such superior electrochemical performance of K0.23V2O5 can be ascribed to the special flower-like morphology and structure. Overall, the results highlight the great potential of K0.23V2O5 as an anode material for both lithium-ion and potassium-ion batteries.

  16. Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells

    Science.gov (United States)

    Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.; Moll, Gert N.; Driessen, Arnold J. M.

    2001-01-01

    Enterocin P is a bacteriocin produced by Enterococcus faecium P13. We studied the mechanism of its bactericidal action using enterocin-P-sensitive E. faecium T136 cells. The bacteriocin is incapable of dissipating the transmembrane pH gradient. On the other hand, depending on the buffer used, enterocin P dissipates the transmembrane potential. Enterocin P efficiently elicits efflux of potassium ions, but not of intracellularly accumulated anions like phosphate and glutamate. Taken together, these data demonstrate that enterocin P forms specific, potassium ion-conducting pores in the cytoplasmic membrane of target cells. PMID:11181377

  17. Study of the permeability of the various parts of the tubules to sodium and potassium ions

    International Nuclear Information System (INIS)

    Morel, F.; Falbriard, A.

    1959-01-01

    The method of stop flow analysis has been used in rabbits together with radioactive sodium and potassium injected in the middle of a six minutes period of arrest of urine flow during an osmotic diuresis. Urine was subsequently collected in 60 ta 80 mg samples. The specific activities of sodium and potassium suggest that both ions pass directly from the renal interstitial tissue into the urine at different and distinct areas in the tubules. The whole distal segment, including the area of active reabsorption of this ion, is impermeable to sodium in the direction interstitial tissue to lumen. The adjacent, more proximal tubule is, however, extremely permeable. The distal tubular impermeability to potassium is more limited. The specific activity already having reached a maximum at the level of active sodium reabsorption. Reprint of a paper published in 'Revue Francaise d'Etudes Cliniques et Biologiques', n. 5, vol IV, p. 471-474 [fr

  18. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  19. New membrane materials for potassium-selective ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    van der Wal, P.D.; van der Wal, Peter D.; Skowronska-Ptasinska, Maria; van den Berg, Albert; Bergveld, Piet; Sudholter, Ernst; Sudholter, Ernst J.R.; Reinhoudt, David

    1990-01-01

    Several polymeric materials were studied as membrane materials for potassium-selective ion-sensitive field-effect transistors (ISFETs) to overcome the problems related with the use of conventional plasticized poly(vinyl chloride) membranes casted on ISFET gate surfaces. Several acrylate materials,

  20. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    Science.gov (United States)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  1. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    Science.gov (United States)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  2. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  3. Thermal decomposition of potassium metaperiodate doped with trivalent ions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleedharan, K., E-mail: kmuralika@gmail.com [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India); Kannan, M.P.; Gangadevi, T. [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India)

    2010-04-20

    The kinetics of isothermal decomposition of potassium metaperiodate (KIO{sub 4}), doped with phosphate and aluminium has been studied by thermogravimetry (TG). We introduced a custom-made thermobalance that is able to record weight decrease with time under pure isothermal conditions. The decomposition proceeds mainly through two stages: an acceleratory stages up to {alpha} = 0.50 and the decay stage beyond. The decomposition data for aluminium and phosphate doped KIO{sub 4} were found to be best described by the Prout-Tompkins equation. Separate kinetic analyses of the {alpha}-t data corresponding to the acceleratory region and decay region showed that the acceleratory stage gave the best fit with Prout-Tompkins equation itself whereas the decay stage fitted better to the contracting area equation. The rate of decomposition of phosphate doped KIO{sub 4} increases approximately linearly with an increase in the dopant concentration. In the case of aluminium doped KIO{sub 4}, the rate passes through a maximum with increase in the dopant concentration. The {alpha}-t data of pure and doped KIO{sub 4} were also subjected to isoconversional studies for the determination of activation energy values. Doping did not change the activation energy of the reaction. The results favour an electron-transfer mechanism for the isothermal decomposition of KIO{sub 4}, agreeing well with our earlier observations.

  4. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    Science.gov (United States)

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-07-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion.

  5. Mechanism of caesium ion exchange on potassium cobalt hexacyanoferrates(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, J.; Haukka, S.; Harjula, R. (Helsinki Univ. (Finland). Dept. of Radiochemistry); Blomberg, M. (Helsinki Univ. (Finland). Dept. of Physics)

    1990-03-01

    The caesium uptakes by K{sub 2}(CoFe(CN){sub 6}) and non-stoicheiometric compounds K{sub 2/x}Co{sub x/2}(CoFe(CN){sub 6}) were found to correlate directly with the specific surface areas of the products with x < 1. The exchange process is assumed to involve only the outermost surface layer of their crystals, which have cubic lattice, i.e. only potassium (or cobalt) ions inside the elementary cubes closest to the surface of the crystals are exchanged for caesium ions. Compounds with x > 1 are mixtures of cubic potassium cobalt hexacyanoferrate (ii) and tetragonal Co{sub 2}Fe(CN){sub 6}. The thermodynamic equilibrium constant of the caesium exchange on K{sub 2}(CoFe(CN){sub 6}) was found to have a high value of 125. (author).

  6. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  7. Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells

    OpenAIRE

    Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.; Moll, Gert N.; Driessen, Arnold J. M.

    2001-01-01

    Enterocin P is a bacteriocin produced by Enterococcus faecium P13. We studied the mechanism of its bactericidal action using enterocin-P-sensitive E. faecium T136 cells. The bacteriocin is incapable of dissipating the transmembrane pH gradient. On the other hand, depending on the buffer used, enterocin P dissipates the transmembrane potential. Enterocin P efficiently elicits efflux of potassium ions, but not of intracellularly accumulated anions like phosphate and glutamate. Taken together, t...

  8. Ion charge-state production and photoionization near the K edge in argon and potassium

    International Nuclear Information System (INIS)

    Berry, H.G.; Azuma, Y.; Cowan, P.L.; Gemmell, D.S.; LeBrun, T.; Amusia, M.Y.

    1994-01-01

    We have measured the time-of-flight charge distributions of ions of argon and potassium following x-ray absorption at energies near their respective K edges. We confirm previously observed enhancements of the higher charge states at energies up to 100 eV below the K edge in argon. The measurements confirm recent calculations suggesting excitation of a virtual 1s state in this energy range

  9. Impulse-Excited Energy Harvester based on Potassium-Ion- Electret

    Science.gov (United States)

    Ashizawa, H.; Mitsuya, H.; Ishibashi, K.; Ishikawa, T.; Fujita, H.; Hashiguchi, G.; Toshiyoshi, H.

    2015-12-01

    We have developed an energy harvester that is specifically desired for impulse acceleration of infrastructure vibrations such as sudden motion at railway bridges. The energy harvester based on potassium-ion-electret on the sidewalls of 1.8- μm-gap comb electrodes generated a 64 μAp-p current during low impulse acceleration, which was large enough to light a green LED.

  10. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    Science.gov (United States)

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  11. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhixin Tai

    2017-07-01

    Full Text Available Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs, significantly better than in lithium-ion batteries (LIBs, with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g−1. It also shows a high reversible capacity of ∼230 mAh g−1 at 0.2 A g−1, 75% capacity retention over 350 cycles at 0.4 A g−1and the highest rate performance (based on the total electrode weight among graphite electrodes for K+ storage reported so far. Keywords: Current-collector-free, Flexible pencil-trace electrode, Potassium-ion battery, Lithium-ion battery, Layer-by-layer interconnected architecture

  12. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Directory of Open Access Journals (Sweden)

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  13. High brightness potassium ion gun for the HIF neutralized transport experiment (NTX)

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Roy, P.K.; Yu, S.S.

    2003-01-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. To focus a high intensity beam to a small spot requires a high brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce type diode. At the diode exit, an aperture with variable size provides the capability to vary the beam perveance and to significantly reduce the beam emittance. We shall report on the gun characterization including current density profile, phase space distributions and the control of electrons generated by the beam scraping at the aperture. Comparison with particle simulations using the EGUN code will be presented

  14. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  15. Nano-memory-element applications of carbon nanocapsule encapsulating potassium ions: molecular dynamics study

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2004-01-01

    We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.

  16. Solidification of 137Cs into potassium cobalt hexacyanoferrate (II) ion exchanger

    International Nuclear Information System (INIS)

    Lehto, J.; Harjula, R.; Haukka, S.; Wallace, J.

    1989-01-01

    An inorganic ion exchange, potassium cobalt hexacyanoferrate(II), has been studied for the separation of 137 Cs from nuclear waste solutions. This exchanges is highly selective for cesium over other alkali metal ions and can be synthesized in granular form suitable for column operations. Pilot-plant experiments were carried out at a NPP to test the exchanges for solidification of 137 Cs from an evaporator concentrate. The results were encouraging: decontamination factors and volume reduction factors were both very high. A full-scale separation plant is now under construction plans call for the exchanges, loaded with 137 Cs, to be disposed of in stainless steel columns, sealed by welding and enclosed in concrete block. According to the authors this multibarrier procedure provides a safe final disposal solution

  17. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  18. EPR and optical absorption studies of Cr3+ ions in potassium sodium dl-tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Kripal, Ram; Singh, Pragya; Shukla, Santwana

    2011-01-01

    EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: g x =1.9257±0.0002, g y =1.9720±0.0002, g z =2.0102±0.0002, |D|=313±2 (x10 -4 ) cm -1 and |E|=101±2 (x10 -4 ) cm -1 . From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (D q ) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. -- Research Highlights: → EPR spectra of Cr 3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are done at 77 K. → The spin Hamiltonian and zero field parameters g, |D| and |E| are measured. From the results of EPR study, the site symmetry of Cr 3+ ion in the crystal is discussed. → The optical absorption at room temperature is also studied and the crystal field splitting parameter (D q ) as well as the Racah inter-electronic repulsion parameters (B and C) is evaluated. → The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.

  19. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M A; D' Auria, R; Kuo, I W; Krisch, M J; Starr, D E; Bluhm, H; Tobias, D J; Hemminger, J C

    2008-04-23

    X-ray photoemission spectroscopy operating under ambient pressure conditions is used to probe ion distributions throughout the interfacial region of a free-flowing aqueous liquid micro-jet of 6 M potassium fluoride. Varying the energy of the ejected photoelectrons by carrying out experiments as a function of x-ray wavelength measures the composition of the aqueous-vapor interfacial region at various depths. The F{sup -} to K{sup +} atomic ratio is equal to unity throughout the interfacial region to a depth of 2 nm. The experimental ion profiles are compared with the results of a classical molecular dynamics simulation of a 6 M aqueous KF solution employing polarizable potentials. The experimental results are in qualitative agreement with the simulations when integrated over an exponentially decaying probe depth characteristic of an APPES experiment. First principles molecular dynamics simulations have been used to calculate the potential of mean force for moving a fluoride anion across the air-water interface. The results show that the fluoride anion is repelled from the interface, and this is consistent with the depletion of F{sup -} at the interface revealed by the APPES experiment and polarizable force field-based molecular dynamics simulation. Together, the APPES and MD simulation data provide a detailed description of the aqueous-vapor interface of alkali fluoride systems. This work offers the first direct observation of the ion distribution at a potassium fluoride aqueous solution interface. The current experimental results are compared to those previously obtained for saturated solutions of KBr and KI to underscore the strong difference in surface propensity between soft/large and hard/small halide ions in aqueous solution.

  20. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    Science.gov (United States)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  1. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents

    International Nuclear Information System (INIS)

    Santos, Jacinete Lima dos

    2001-01-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd 2+ is a function of the following parameters as pH, concentration of Cd 2+ , time of contact between the ion exchangers the concentration of the Cd 2+ solution and the interference of other ions like Ni 2+ . The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd 2+ solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni 2+ as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd 2+ . (author)

  2. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte

    Science.gov (United States)

    An, Yongling; Fei, Huifang; Zeng, Guifang; Ci, Lijie; Xi, Baojuan; Xiong, Shenglin; Feng, Jinkui

    2018-02-01

    Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g-1 at the rate of 10 mA g-1 and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g-1 with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.

  3. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  4. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.

    Science.gov (United States)

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2017-09-01

    Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200  mm×200  mm×12  mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.

  5. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  6. Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate(II) supported on polymethylmethacrylate

    International Nuclear Information System (INIS)

    Shabana Taj; Din Muhammad; Ashraf Chaudhry, M.; Muhammad Mazhar

    2011-01-01

    Potassium iron(III) hexacyanoferrate(II) supported on poly methyl methacrylate, has been developed and investigated for the removal of lithium, rubidium and cesium ions. The material is capable of sorbing maximum quantities of these ions from 5.0, 2.5 and 4.5 M HNO 3 solutions respectively. Sorption studies, conducted individually for each metal ion, under optimized conditions, demonstrated that it was predominantly physisorption in the case of lithium ion while shifting to chemisorption with increasing ionic size. Distribution coefficient (K d ) values followed the order Cs + > Rb + > Li + at low concentrations of metal ions. Following these findings Cs + can preferably be removed from 1.5 to 5 M HNO 3 nuclear waste solutions. (author)

  7. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions

    International Nuclear Information System (INIS)

    Kiser, Philip D.; Lodowski, David T.; Palczewski, Krzysztof

    2007-01-01

    A 3.02 Å crystal structure of native GroEL from E. coli is presented. GroEL is a member of the ATP-dependent chaperonin family that promotes the proper folding of many cytosolic bacterial proteins. The structures of GroEL in a variety of different states have been determined using X-ray crystallography and cryo-electron microscopy. In this study, a 3.02 Å crystal structure of the native GroEL complex from Escherichia coli is presented. The complex was purified and crystallized in the absence of potassium ions, which allowed evaluation of the structural changes that may occur in response to cognate potassium-ion binding by comparison to the previously determined wild-type GroEL structure (PDB code http://www.rcsb.org/pdb/explore.do?structureId), in which potassium ions were observed in all 14 subunits. In general, the structure is similar to the previously determined wild-type GroEL crystal structure with some differences in regard to temperature-factor distribution

  8. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  9. Potassium iron(III)hexacyanoferrate(II) supported on polymethylmethacrylate ion-exchanger for removal of strontium(II)

    International Nuclear Information System (INIS)

    Taj, S.; Ashraf Chaudhry, M.; Mazhar, M.

    2009-01-01

    Potassium iron(III)hexacyanoferrate(II) supported on poly metylmethacrylate has been synthesized and investigated for the strontium(II) removal from HNO 3 and HCl solutions. The ion exchange material characterized by different techniques and found to be stable in 1.0-4.0 M HNO 3 solutions, has been used to elaborate different parameters related to ion exchange and sorption processes involved. The data collected suggested its use to undertake removal of Sr(II) from more acidic active waste solutions. Thus the material synthesized had been adjudged to present better chances of application for Sr(II) removal as compared to other such materials. (author)

  10. Chemical composition of sublates (difficultly soluble substances) which form on interaction of polyvalent metal ions with potassium alkylcarboxylate

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Skryleva, T.L.; Sazonova, V.F.

    1996-01-01

    The pH value is considered for its effect on chemical composition of sublates which form on interaction of fatty acid collectors (potassium alkylcarboxylate) with polyvalent ions of Ni, An, Cu and Be. It is shown that interaction of these ions with fatty acid collectors in weakly acid, neutral and weakly alkaline solutions is accompanied by formation of medium soaps. Acid soaps are formed in more acid solutions, while in more alkaline-basic soaps. Domains of stability for medium soaps of Ni, Zn, Cu and Be are determined. 17 refs.; 4 figs

  11. Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Microscaffolds.

    Science.gov (United States)

    Dong, Shengyang; Li, Zhifei; Xing, Zhenyu; Wu, Xianyong; Ji, Xiulei; Zhang, Xiaogang

    2018-05-09

    To fill the gap between batteries and supercapacitors requires integration of the following features in a single system: energy density well above that of supercapacitors, cycle life much longer than Li-ion batteries, and low cost. Along this line, we report a novel nonaqueous potassium-ion hybrid capacitor (KIC) that employs an anode of K 2 Ti 6 O 13 (KTO) microscaffolds constructed by nanorods and a cathode of N-doped nanoporous graphenic carbon (NGC). K 2 Ti 6 O 13 microscaffolds are studied for potential applications as the anode material in potassium-ion storage for the first time. This material exhibits an excellent capacity retention of 85% after 1000 cycles. In addition, the NGC//KTO KIC delivers a high energy density of 58.2 Wh kg -1 based on the active mass in both electrodes, high power density of 7200 W kg -1 , and outstanding cycling stability over 5000 cycles. The usage of K ions as the anode charge carrier instead of Li ions and the amenable performance of this device suggest that hybrid capacitor devices may welcome a new era of beyond lithium.

  12. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  13. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels.

    Science.gov (United States)

    Castañeda, Olga; Harvey, Alan L

    2009-12-15

    Peptides have been isolated from several species of sea anemones and shown to block currents through various potassium ion channels, particularly in excitable cells. The toxins can be grouped into four structural classes: type 1 with 35-37 amino acid residues and three disulphide bridges; type 2 with 58-59 residues and three disulphide bridges; type 3 with 41-42 residues and three disulphide bridges; and type 4 with 28 residues and two disulphide bridges. Examples from the first class are BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS (or kaliseptine) from Anemonia sulcata (now A. viridis). These interfere with binding of radiolabelled dendrotoxin to synaptosomal membranes and block currents through channels with various Kv1 subunits and also intermediate conductance K(Ca) channels. Toxins in the second class are homologous to Kunitz-type inhibitors of serine proteases; these toxins include kalicludines (AsKC 1-3) from A. sulcata and SHTXIII from S. haddoni; they block Kv1.2 channels. The third structural group includes BDS-I, BDS-II (from A. sulcata) and APETx 1 (from Anthropleura elegantissima). Their pharmacological specificity differs: BDS-I and -II block currents involving Kv3 subunits, while APETx1 blocks ERG channels. The fourth group comprises the more recently discovered SHTX I and II from S. haddoni. Their channel blocking specificity is not yet known but they displace dendrotoxin binding from synaptosomal membranes. Sea anemones can be predicted to be a continued source of new toxins that will serve as molecular probes of various K(+) channels.

  14. Experimental and numerical investigation of ion signals in boosted HCCI combustion using cesium and potassium acetate additives

    International Nuclear Information System (INIS)

    Mack, J. Hunter; Butt, Ryan H.; Chen, Yulin; Chen, Jyh-Yuan; Dibble, Robert W.

    2016-01-01

    Highlights: • HCCI engine experiments show that CsOAc and KOAc additives increased the ion SNR. • The ion signal is more apparent at higher equivalence ratios. • An increase in intake pressure produces a decrease in the ion signal. • Use of metal acetates as additives yielded reductions in IMEP g and maximum ROHR. • A numerical model predicted peak ion signal, CA50, and p intake dependence. - Abstract: A sparkplug ion sensor can be used to measure the ion current in a homogeneous charge compression ignition (HCCI) engine, providing insight into the ion chemistry inside the cylinders during combustion. HCCI engines typically operate at lean equivalence ratios (ϕ) at which the ion current becomes increasingly indistinguishable from background noise. This paper investigates the effect of fuel additives on the ion signal at low equivalence ratios, determines side effects of metal acetate addition, and validates numerical model for ionization chemistry. Cesium acetate (CsOAc) and potassium acetate (KOAc) were used as additives to ethanol as the primary fuel. Concentration levels of 100, 200, and 400 mg/L of metal acetate-in-ethanol are investigated at equivalence ratios of 0.08, 0.20, and 0.30. The engine experiments were conducted at a boosted intake pressure of 1.8 bar absolute and compared to naturally aspirated results. Combustion timing was maintained at 2.5° after top-dead-center (ATDC), as defined by the crank angle degree (CAD) where 50% of the cumulative heat release occurs (CA50). CsOAc consistently produced the strongest ion signals at all conditions when compared to KOAc. The ion signal was found to decrease with increased intake pressure; an increase in the additive concentration increased the ion signal for all cases. However, the addition of the metal acetates decreased the gross indicated mean effective pressure (IMEP g ), maximum rate of heat release (ROHR), and peak cylinder pressure. Experimental results were used to validate ion chemistry

  15. Sol-gel preparation of high surface area potassium tetratitanate for the immobilization of nuclear waste metal ions

    International Nuclear Information System (INIS)

    Jung, K.T.; Shul, Y.G.; Moon, J.K.; Oh, W.J.

    1997-01-01

    Potassium tetratinates(K 2 Ti 4 O 9 ) were synthesized by using the sol-gel method to produce ion-exchangeable materials with high surface area. The effects of mole ratios of K/Ti and H 2 O/Ti were examined. K 2 Ti 4 O 9 was obtained at 740 deg. C by the sol-gel method, which uses a lower temperature than the melting method. After calcination at 800 deg. C, K 2 Ti 4 O exhibits a needle shape which is quite different from the shape of K 2 Ti 6 O 13 powder. The surface areas of K 2 Ti 4 O 9 was 15 m 2 /g by the sol-gel method after calcining at 800 C. The enhancement of BET area to 25 m 2 /g was obtained after supercritical drying using EtOH as solvent. By using the sodium alginate method, needle type potassium titanate 10μm in length, the longest aspect ratio of 1,3 x 10 3 could be obtained. There are variations in the Sr 2+ ion exchange rate and capacity according to the preparation method. Larger BET surface area provides fast ion exchange and larger capacity for Sr 2+ ion in the order; sol-gel process with supercritical drying > sol-gel process > melting process. (author). 17 refs, 21 figs, 1 tab

  16. Effect of ion implantation on B. mucilaginosus KNP414 and screening for mutants with higher release of phosphate and potassium

    International Nuclear Information System (INIS)

    Hu Xiufang; Gao Yuanyuan; Fang Qionglou; Wu Jinguang; Chen Jishuang

    2008-01-01

    Effect of ion implantation on strain KNP414 of Bacillus mucilaginosus was investigated. Survival ratio of isolate KNP414 was independent of the tested ions species and energy, but was highly dependent on their doses and the presence of bacterial capsule. 14 phytate-degradation mutants were obtained from the spores implanted with N + (20 keV, 5 x 10 15 -5 x 10 16 ions cm -2 ), and their phytate-degradation capacities were 15%-35%. Amongst, 3 mutants (KNP414-04, KNP414- 05, KNP414-12) with higher solubilizing capacities of mineral phosphate and potassium were identified. Their solubilizing capacities of the two minerals increased by 14.7%-27.5% and 16.2%-26.4%, respectively. Mutant KNP414-12 was found to be able to dissolve 57.3% phytate in the optimized medium and the degradation ratio was comparatively stable in seven continuous generations and during the storage process. In conclusion, ion implantation was an effective mutagenic source for isolate KNP414, since it increased the abilities to solubilize phosphate and potassium as well as to degradate phytate. Meanwhile the screening method used in this study has been proved to be successful for rapid selection of phytate-degradation mutants. (authors)

  17. Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries.

    Science.gov (United States)

    Tian, Bingbing; Tang, Wei; Su, Chenliang; Li, Ying

    2018-01-10

    Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V 2 O 5 ·0.6H 2 O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V 2 O 5 , the hydrated vanadium pentoxide (V 2 O 5 ·0.6H 2 O) exhibits the ability of accommodating larger alkali metal ions of K + because of the enlarged layer space by hosting structural H 2 O molecules in the interlayer. By intercalation of H 2 O into the V 2 O 5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g -1 and a discharge capacity of ∼103.5 mA h g -1 even after 500 discharge/charge cycles at a current density of 50 mA g -1 , which is much higher than that of the V 2 O 5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V 2 O 5 ·0.6H 2 O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V 2 O 5 ·0.6H 2 O is a promising cathode candidate for KIBs.

  18. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Tounsi, Moncef, E-mail: tounsi1981@live.fr [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Braiek, Mourad [Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène, Faculté des Sciences, Université de Monastir, Avenue de l' environnement, 5019, Monastir (Tunisia); Barhoumi, Houcine [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Baraket, Abdoullatif; Lee, Michael; Zine, Nadia [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Maaref, Abderrazak [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K{sup +} ions quantification. Here, silicon nitride-based structures (Si-p/SiO{sub 2}/Si{sub 3}N{sub 4}) were developed and the surface was activated, functionalized with an aldehyde–silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10{sup −8} M to 1.0 × 10{sup −3} M and a detection limit of 1.0 × 10{sup −8} M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. - Highlights: • Synthesis and characterization of a new derivatives of Aza[7]helicenes • Manufacture of PPy structures on the SiO{sub 2}/Si{sub 3}N{sub 4} surface using the TESUD as cross linking agent. • The PPy fabricated microstructures can be used as support matrix in biosensing. • Impedimetric K{sup +}-ISEs was developed by using dibromoaza[7]helicene as ionophore for K{sup +} ions determination.

  19. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  20. etermination of Nitrate, Potassium, and Calcium using Ion-Selective Sensors in Soilless Plant Growth Media of Some Vegetables

    Directory of Open Access Journals (Sweden)

    Melda ALTIKATOĞLU

    2017-02-01

    Full Text Available Since it is important to transfer the minerals desired by plants for a long time in a controlled manner, simple and economical new micro and macro scale agricultural production systems are needed. In this study, the nutrients in the plant nutrient solutionwere kept at the required level according to the needs of the plant, using computer controlled potentiometric micro-sized chemical sensor systems. Polyvinylchloride (PVC -based ion-selective sensors have been used to sensitively and selectively measure the concentration of macro nutrient NO3−, K+, and Ca2+ions in the hydroponic solution. It has been found that the nitrate, potassium and calcium ion levels required for the green pepper and eggplants grown in the greenhouse are different. The results showed that in the first two months of growth, the pepper consumed nitrate in a lesser amount than the eggplant. In addition, it was determined that the amount of potassium consumed by plants was higher than that of other nutrients.

  1. Ionizing radiation action of transport systems of Na+ and K+ of neutronal membranes. Potassium ions reaccumulation with brain slices

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Shainskaya, A.M.; Ananyeva, T.V.; Kulikova, I.A.

    1990-01-01

    The biological effect of ionizing radiation (IR) on the Na,K pump of the surviving brain cortex slices was investigated. It was shown that IR leads to marked disturbances in the Na,K pump activity and causes essential phasic changes in potassium ion reaccumulation by brain slices in different time after exposure. The possibility of modelling the radiation effect with the help of phospholipase A2 and decylenic acid was shown. The mechanisms of the functional disturbance of Na-K pump of nerve cells after irradiation are under discussion. (author)

  2. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites

    Czech Academy of Sciences Publication Activity Database

    Kikhtyanin, O.; Bulánek, R.; Frolich, K.; Čejka, Jiří; Kubička, D.

    2016-01-01

    Roč. 424, DEC 2016 (2016), s. 358-368 ISSN 1381-1169 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : activated hydrotalcites * carbon-monoxide * cyclic-ketones * Acetone * Furfural * Condensation * Potassium-BEA * Zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.211, year: 2016

  3. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion

    Science.gov (United States)

    Zainudin, Afiq Azri; Fen, Yap Wing; Yusof, Nor Azah; Al-Rekabi, Sura Hmoud; Mahdi, Mohd Adzir; Omar, Nur Alia Sheh

    2018-02-01

    In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K+) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K+ in solution with and without C-GO-V thin film. The K+ can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K+ in solution. The sensor produces a linear response for K+ ion up to 100 ppm with sensitivity and detection limit of 0.00948° ppm- 1 and 0.001 ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K+ that has been proved by the SPR measurement.

  4. The role of potassium and other ions in the control of aldosterone synthesis

    International Nuclear Information System (INIS)

    Kenyon, C.J.; Shepherd, R.M.; Fraser, R.; Pediani, J.D.; Elder, H.Y.

    1991-01-01

    Fast and slow K+ efflux components, independently regulated by angiotensin II (AII), have been identified in bovine adrenocortical cells. The authors have further investigated the role of potassium in the control of aldosterone synthesis in two ways. Firstly, isotopic tracers, in conjunction with channel modulators, have been used to study the interrelationship of K+ and Ca2+ in the control of AII-stimulated aldosterone synthesis. Secondly, electron probe X-ray microanalysis (EPXMA) was used to quantify potassium, sodium, chlorine and phosphorous in control and AII-stimulated cells. The effects of verapamil on 43K efflux were measured at two stages during AII stimulation. During the first ten minutes of treatment, when efflux via the fast component predominates, AII and verapamil both slowed efflux and their effects were additive. If verapamil was added later, at the time when efflux by the fast component appeared exhausted and the stimulatory effect of AII on the slow efflux component was apparent, it again slowed efflux. These data suggest that verapamil prevents calcium-gated K+ channels from opening by blocking Ca2+ channels. However, verapamil had no effect on AII-stimulated calcium efflux. In addition to blocking Ca2+ channels, verapamil may directly inhibit potassium efflux. EPXMA showed a bimodal distribution of potassium concentrations in control cells. However, in cells stimulated with AII for five minutes, the mean potassium content was less than in controls and was not bimodally distributed. Sodium content was increased by AII-treatment, chlorine was lowered and phosphorus remained unchanged. The data confirm previous observations that AII inhibits Na+/K+ ATPase activity

  5. Detection of anion-linked polymerization of the tetrameric hemoglobin from Scapharca inaequivalvis by 35Cl NMR spectroscopy

    International Nuclear Information System (INIS)

    Chiancone, E.; Univ. 'La Sapienza', Rome; Drakenberg, T.; Forsen, S.

    1988-01-01

    Ion binding to the hemoglobin components of Scaphara inaequivalvis has been measured directly in quadrupole relaxation experiments of 23 Na and 35 Cl. The dimeric and tetrameric hemoglobins interact weakly with sodium ions, but differ in their interaction with chloride ions. The dimeric hemoglobin binds chloride ions with low affinity, whereas the tetrameric protein has high affinity chloride binding sites. Binding of chloride ions to these high affinity sites brings about an oxygen-linked polymerization which manifests itself in an unusual dependence of the 35 Cl excess linewidth on the concentration of the anion. Polymerization is more pronounced in the deoxygenated than in the oxygenated derivative: in the former, it has been observed previously in sedimentation velocity experiments. The sensitivity of the 35 Cl excess linewidth on polymer formation indicates that the residence time of the transiently bound chloride on the tetrameric hemoglobin is not shorter than the correlation time of the molecule (2 X 10 -8 s -1 ). 17 refs.; 2 figs

  6. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mládková, Jana; Hladílková, Jana; Diamond, C. E.; Tryon, K.; Yamada, K.; Garrow, T. A.; Jungwirth, Pavel; Koutmos, M.; Jiráček, Jiří

    2014-01-01

    Roč. 82, č. 10 (2014), s. 2552-2564 ISSN 0887-3585 R&D Projects: GA ČR(CZ) GAP207/10/1277; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : BHMT * homocysteine * potassium * crystal structure * molecular dynamics * simulations * enzyme kinetics Subject RIV: CE - Biochemistry Impact factor: 2.627, year: 2014

  7. Investigation of lanthanum- and neodymium ion interaction with potassium polyphosphate in aqueous solution

    International Nuclear Information System (INIS)

    Ezhova, Zh.A.; Tananaev, I.V.; Koval', E.M.

    1983-01-01

    A study was made on the interaction in the LaCl 3 -KPO 3 -H 2 O and NdCl 3 -KPO 3 -H 2 O systems at 0 deg C by methods of solubility of residual concentrations and measurement of the pH value. The formation of binary KLa 2 (PO 3 ) 7 x10H 2 O and KLa(PO 3 ) 4 X5H 2 O lanthanum- and potassium polyphosphates, as well as KNd 2 (PO 3 ) 7 X10H 2 O and KNd(PO 3 ) 4 X5H 2 O neodymium- apd potassiUm polyphasphates was established. Chemical, paper-chromatographic, infrared spectroscopic, X-ray diffraction and differential thermal analyses of the prepared compoUnds were conducted. Anhydrous binary lanthanum- and neodymium polyphosphates with potassium-=Kla(PO 3 ) 4 , KNd(PO 3 ) 4 , KLa 2 (PO 3 ) 7 and KNd 2 x(PO 3 ) 7 - eere prepared

  8. New phenomenon of potassium permanganate treatment effect in polymer irradiated with heavy ions

    International Nuclear Information System (INIS)

    Zhou Mi; Liu Yibao; Wei Qianglin; Fu Yuanyong; Ju Wei; Chen Dongfeng; Wu Zhendong; Liang Haiying

    2014-01-01

    Background: Nuclear track membranes offer distinct advantages over conventional membranes due to their precisely determined structure. Their pore size, shape and density can be controlled intentionally so that a membrane with the required characteristics can be produced. The track etching technology plays an important role in the production of nuclear track membranes. Purpose: The effect of potassium permanganate solution pretreatment on the etching rate for polyethylene terephthalate film (PET) is studied in this work. Methods: The conductivity method is used in this research. Under different conditions, the PET films were pretreated for 1 h, 2 h, 3 h, 4 h, 5 h and 6 h by potassium permanganate solution. 5%, 15%, 25%, 35% of 2-mol·L -1 sulfuric acid solutions were added in 0.1 mol·L -1 potassium permanganate solution. Results: Track etching rate reached a peak at 2 h, Afterwards, with the pretreatment time increasing, the track etching rate declined, and the longer of the pretreatment time, the smaller of the bulk etching rate. Half cone angle either. Adding to sulfuric solution, the experimental results show that the effect on track etching rate is small, with the amount of sulfuric acid increasing, bulk etching rate becomes larger, the same change with half cone angle. In addition, the DC voltage used in the conductivity method also has impact on the track etching rate. Conclusion: The experiment has provided a method to improve the etching rate. (authors)

  9. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    Science.gov (United States)

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  10. EPR and optical studies of Cu2+ ions doped in magnesium potassium phosphate hexahydrate single crystals

    International Nuclear Information System (INIS)

    Kripal, Ram; Shukla, Santwana

    2011-01-01

    An electron paramagnetic resonance (EPR) study of Cu 2+ -doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu 2+ are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  11. Mechanism of caesium ion exchange on potassium cobalt hexacyanoferrates(II)

    International Nuclear Information System (INIS)

    Lehto, J.; Haukka, S.; Harjula, R.; Blomberg, M.

    1990-01-01

    The caesium uptakes by K 2 [CoFe(CN) 6 ] and non-stoicheiometric compounds K 2/x Co x/2 [CoFe(CN) 6 ] were found to correlate directly with the specific surface areas of the products with x 1 are mixtures of cubic potassium cobalt hexacyanoferrate (ii) and tetragonal Co 2 Fe(CN) 6 . The thermodynamic equilibrium constant of the caesium exchange on K 2 [CoFe(CN) 6 ] was found to have a high value of 125. (author)

  12. On the concept of resting potential--pumping ratio of the Na⁺/K⁺ pump and concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell.

    Science.gov (United States)

    Xu, Ning

    2013-01-01

    In animal cells, the resting potential is established by the concentration gradients of sodium and potassium ions and the different permeabilities of the cell membrane to them. The large concentration gradients of sodium and potassium ions are maintained by the Na⁺/K⁺ pump. Under physiological conditions, the pump transports three sodium ions out of and two potassium ions into the cell per ATP hydrolyzed. However, unlike other primary or secondary active transporters, the Na⁺/K⁺ pump does not work at the equilibrium state, so the pumping ratio is not a thermodynamic property of the pump. In this article, I propose a dipole-charging model of the Na⁺/K⁺ pump to prove that the three Na⁺ to two K⁺ pumping ratio of the Na⁺/K⁺ pump is determined by the ratio of the ionic mobilities of potassium to sodium ions, which is to ensure the time constant τ and the τ-dependent processes, such as the normal working state of the Na⁺/K⁺ pump and the propagation of an action potential. Further, the concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell are 0.3027 and 0.9788, respectively, and the sum of the potassium and sodium equilibrium potentials is -30.3 mV. A comparative study on these constants is made for some marine, freshwater and terrestrial animals. These findings suggest that the pumping ratio of the Na⁺/K⁺ pump and the ion concentration ratios play a role in the evolution of animal cells.

  13. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  14. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  15. Regulation of p53 tetramerization and nuclear export by ARC.

    Science.gov (United States)

    Foo, Roger S-Y; Nam, Young-Jae; Ostreicher, Marc Jason; Metzl, Mark D; Whelan, Russell S; Peng, Chang-Fu; Ashton, Anthony W; Fu, Weimin; Mani, Kartik; Chin, Suet-Feung; Provenzano, Elena; Ellis, Ian; Figg, Nichola; Pinder, Sarah; Bennett, Martin R; Caldas, Carlos; Kitsis, Richard N

    2007-12-26

    Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53.

  16. Ar-ion etching effects on the XPS spectra of the ferroelectric potassium lithium niobate crystal

    International Nuclear Information System (INIS)

    Jun, Byeong-Eog; Kim, Chung-Sik; Kim, Hyung-Kook; Kim, Jung-Nam; Hwang, Yoon-Hwae; Chae, Jong-Suk

    2005-01-01

    Ar + -ion-sputtered surface of KLN crystal was studied by X-ray photoelectron spectroscopy in order to investigate the oxidation states and chemical environments of K, Li, Nb and O ions. As Ar + -sputtering time increased, the decreasing binding energy of Nb 3d and the peak broadening of mixed Nb 4s and Li 1s (namely Nb* 4s) levels were observed. Also, the binding-energy difference between O 1s and Nb* 4s increased as Ar + -ion-sputtering time increased. The broad peak of Nb* 4s was considered to be related to the site occupancy of Li ion in A1 and C in tetragonal tungsten-bronze structure.

  17. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining

    International Nuclear Information System (INIS)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R.

    2009-01-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO 3 formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  18. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  19. Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J.; Subramaniam, Vinod

    2011-01-01

    DsRed is representative of the tetrameric reef coral fluorescent proteins that constitute particularly interesting coupled multichromophoric systems. Either a green emitting or a red emitting chromophore can form within each of the monomers of the protein tetramer. Within the tetramers the

  20. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1986-05-06

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-(/sup 3/H)ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate.

  1. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  2. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  3. New tetrameric forms of the rotavirus NSP4 with antiparallel helices.

    Science.gov (United States)

    Kumar, Sushant; Ramappa, Raghavendra; Pamidimukkala, Kiranmayee; Rao, C D; Suguna, K

    2018-06-01

    Rotavirus nonstructural protein 4, the first viral enterotoxin to be identified, is a multidomain, multifunctional glycoprotein. Earlier, we reported a Ca 2+ -bound coiled-coil tetrameric structure of the diarrhea-inducing region of NSP4 from the rotavirus strains SA11 and I321 and a Ca 2+ -free pentameric structure from the rotavirus strain ST3, all with a parallel arrangement of α-helices. pH was found to determine the oligomeric state: a basic pH favoured a tetramer, whereas an acidic pH favoured a pentamer. Here, we report two novel forms of the coiled-coil region of NSP4 from the bovine rotavirus strains MF66 and NCDV. These crystallized at acidic pH, forming antiparallel coiled-coil tetrameric structures without any bound Ca 2+ ion. Structural and mutational studies of the coiled-coil regions of NSP4 revealed that the nature of the residue at position 131 (Tyr/His) plays an important role in the observed structural diversity.

  4. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  5. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange

    International Nuclear Information System (INIS)

    Yu Zhihui; Qi Tao; Qu Jingkui; Wang Lina; Chu Jinglong

    2009-01-01

    Experimental measurements have been made on the batch ion exchange of Ca(II) and Mg(II) from potassium chromate solution using cation exchanger of Amberlite IRC 748 as K + form. The ion exchange behavior of two alkaline-earth metals on the resin, depending on contact time, pH, temperature and resin dosage was studied. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. For Ca(II) ion, the Langmuir model represented the adsorption process better than the Freundlich model. The maximum ion exchange capacity was found to be 47.21 mg g -1 for Ca(II) and 27.70 mg g -1 for Mg(II). The kinetic data were tested using Lagergren-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Various thermodynamic parameters such as Gibbs free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) were also calculated. These parameters showed that the ion exchange of Ca(II) and Mg(II) from potassium chromate solution was feasible, spontaneous and endothermic process in nature. The activation energy of ion-exchange (E a ) was determined as 12.34 kJ mol -1 for Ca(II) and 9.865 kJ mol -1 for Mg(II) according to the Arrhenius equation.

  6. Accumulation and localization of sodium and potassium ions in maize plants on saline soil

    Directory of Open Access Journals (Sweden)

    S. N. Kabuzenko

    2013-02-01

    Full Text Available The goal of this work is studying the accumulation and distribution of Na+ and K+ in maize hybrids of different salt tolerance under conditions of the chloride salinity. The new corn hybrid Veselka MV (salt-tolerant and Odessa 375 MB (not salt-tolerant were studied. The plants grown in salt-free chernozem soil are control. In the experiment, sodium chloride was dissolved in the irrigation water to form the salinity of test soils up to concentrations of 0.25, 0.5, 0.75, and 1.0% of ovendry weight. Soil moisture in the pots was maintained at 60% of the full field water capacity, the air temperature was +25…+27 °C, and the light – 10 klux. Plant samples were dried in the oven under 70 °C. Then, the average sample of 10 specimens was thoroughly levigated in the porcelain pounder  and dispersed in distilled water at 100 °C. The ions were extracted, and the extracts were centrifuged for 20 min at 3000 rpm. The ions content in the cell sap was analysed. Plant samples (1 g were incubated 10 min in chloroform, dried carefully with filter paper, and then the cell sap was squeezed. 1 ml of clear top layer of the cell sap was dissolved in 10 ml of distilled water. Ions content was determined by the atomic absorption spectrophotometer ("Karl Zeiss", Germany. Salt-tolerant maize hybrid Veselka MW (14 days age is characterized by an increased content of Na+ in the root tissues in comparison with the above-ground parts. In Odessa 375 MB hybrid this regularity is less pronounced. With the increase of sodium chloride concentration in the soil the content of Na+ in the aerial parts of plants rises. That may be connected with the reduced role of a root barrier. The salt-tolerant hybrid has a higher content of Na+ in the roots as compared to the above-ground parts. The content of K+ was higher in the above-ground parts, which is more pronounced in the salt-tolerant hybrid Veselka MB. The decrease of K+ in cell sap of the root under saline conditions was

  7. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1989-01-01

    The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [ 3 H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86 Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle

  8. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  9. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  10. Molecular determinants of tetramerization in the KcsA cytoplasmic domain.

    Science.gov (United States)

    Kamnesky, Guy; Hirschhorn, Orel; Shaked, Hadassa; Chen, Jingfei; Yao, Lishan; Chill, Jordan H

    2014-10-01

    The cytoplasmic C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is an amphiphilic domain that forms a helical bundle with four-fold symmetry mediated by hydrophobic and electrostatic interactions. Previously we have established that a CTD-derived 34-residue peptide associates into a tetramer in a pH-dependent manner (Kamnesky et al., JMB 2012;418:237-247). Here we further investigate the molecular determinants of tetramer formation in the CTD by characterizing the kinetics of monomer-tetramer equilibrium for 10 alanine mutants using NMR, sedimentation equilibrium (SE) and molecular dynamics simulation. NMR and SE concur in finding single-residue contributions to tetramer stability to be in the 0.5 to 3.5 kcal/mol range. Hydrophobic interactions between residues lining the tetramer core generally contributed more to formation of tetramer than electrostatic interactions between residues R147, D149 and E152. In particular, alanine replacement of residue R147, a key contributor to inter-subunit salt bridges, resulted in only a minor effect on tetramer dissociation. Mutations outside of the inter-subunit interface also influenced tetramer stability by affecting the tetramerization on-rate, possibly by changing the inherent helical propensity of the peptide. These findings are interpreted in the context of established paradigms of protein-protein interactions and protein folding, and lay the groundwork for further studies of the CTD in full-length KcsA channels. © 2014 The Protein Society.

  11. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    Science.gov (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  12. Effect of elevated potassium ion concentrations on electrically evoked release of (/sup 3/H)acetylcholine in slices of rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Szerb, J C; Hadhazy, P; Dudar, J D [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Physiology and Biophysics

    1978-01-01

    To establish the effect of raising the concentration of extracellular potassium ions on axonal conduction and transmitter release in a mammalian central pathway, the septohippocampal cholinergic tract, the rate of (/sup 3/H) acetylcholine release evoked by electrical stimulation was measured in rat hippocampal slices superfused with Krebs' solution containing 3-15 mM K/sup +/. The evoked release of (/sup 3/H) acetylcholine was abolished by the presence of tetrodotoxin or by the omission of Ca/sup 2 +/ in the superfusion medium, indicating that it originated from terminals depolarized by conducted action potentials. Potassium concentrations between 3 and 8 mM had no effect but 10-15 mM K/sup +/ reduced the rate of evoked release and decreased the size of the releasable pool of (/sup 3/H) acetylcholine. Decreasing the sodium content of the Krebs' solution to 97 mM or less had effects similar to those of elevated (K/sup +/). Elevated K/sup +/ (10-15 mM) reversibly reduced the size of compound action potentials in the fimbria and the alveus. The results suggest that extracellular potassium concentrations occurring under physiological conditions do not affect axonal conduction and transmitter release but that both are reduced in pathological states when extracellular (K/sup +/) above 8 mM occur.

  13. Structure of a tetrameric galectin from Cinachyrella sp. (ball sponge)

    Energy Technology Data Exchange (ETDEWEB)

    Freymann, Douglas M., E-mail: freymann@northwestern.edu [Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611 (United States); Nakamura, Yuka [Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611 (Japan); Focia, Pamela J. [Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611 (United States); Sakai, Ryuichi [Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611 (Japan); Swanson, Geoffrey T. [Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611 (United States)

    2012-09-01

    The structure of a tetrameric sponge galectin suggests a basis for glutamate receptor potentiation. The galectins are a family of proteins that bind with highest affinity to N-acetyllactosamine disaccharides, which are common constituents of asparagine-linked complex glycans. They play important and diverse physiological roles, particularly in the immune system, and are thought to be critical metastatic agents for many types of cancer cells, including gliomas. A recent bioactivity-based screen of marine sponge (Cinachyrella sp.) extract identified an ancestral member of the galectin family based on its unexpected ability to positively modulate mammalian ionotropic glutamate receptor function. To gain insight into the mechanistic basis of this activity, the 2.1 Å resolution X-ray structure of one member of the family, galectin CchG-1, is reported. While the protomer exhibited structural similarity to mammalian prototype galectin, CchG-1 adopts a novel tetrameric arrangement in which a rigid toroidal-shaped ‘donut’ is stabilized in part by the packing of pairs of vicinal disulfide bonds. Twofold symmetry between binding-site pairs provides a basis for a model for interaction with ionotropic glutamate receptors.

  14. Structure of a tetrameric galectin from Cinachyrella sp. (ball sponge)

    International Nuclear Information System (INIS)

    Freymann, Douglas M.; Nakamura, Yuka; Focia, Pamela J.; Sakai, Ryuichi; Swanson, Geoffrey T.

    2012-01-01

    The structure of a tetrameric sponge galectin suggests a basis for glutamate receptor potentiation. The galectins are a family of proteins that bind with highest affinity to N-acetyllactosamine disaccharides, which are common constituents of asparagine-linked complex glycans. They play important and diverse physiological roles, particularly in the immune system, and are thought to be critical metastatic agents for many types of cancer cells, including gliomas. A recent bioactivity-based screen of marine sponge (Cinachyrella sp.) extract identified an ancestral member of the galectin family based on its unexpected ability to positively modulate mammalian ionotropic glutamate receptor function. To gain insight into the mechanistic basis of this activity, the 2.1 Å resolution X-ray structure of one member of the family, galectin CchG-1, is reported. While the protomer exhibited structural similarity to mammalian prototype galectin, CchG-1 adopts a novel tetrameric arrangement in which a rigid toroidal-shaped ‘donut’ is stabilized in part by the packing of pairs of vicinal disulfide bonds. Twofold symmetry between binding-site pairs provides a basis for a model for interaction with ionotropic glutamate receptors

  15. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  16. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents; Trocadores ionicos inorganicos a base de manganes e potassio para recuperacao e remocao de metais poluentes de efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jacinete Lima dos

    2001-07-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd{sup 2+} is a function of the following parameters as pH, concentration of Cd{sup 2+}, time of contact between the ion exchangers the concentration of the Cd{sup 2+} solution and the interference of other ions like Ni{sup 2+}. The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd{sup 2+} solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni{sup 2+} as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd{sup 2+}. (author)

  17. Sodium and potassium ions and accumulation of labelled D-aspartate and GABA in crude synaptosomal fraction from rat cerebral cortex

    International Nuclear Information System (INIS)

    Takagaki, G.

    1978-01-01

    The accumulation of labelled D-aspartate into crude synaptosomal fraction (P 2 ) prepared from the rat cerebral cortex proceeded by a 'high affinity' system (Ksub(m) = 15.1 μM). The maximal velocity of D-aspartate uptake was higher than that of the 'high affinity' component of L-aspartate uptake and almost equal to that of L-glutamate under the same incubation conditions. Negligible metabolism of labelled D-aspartate was observed in the P 2 fraction. These findings are in accord with those which have been reported for rat cerebral cortical slices. The following observations were made on D-aspartate uptake into rat cerebral P 2 fraction. The requirement of sodium were almost absolute and obligatory. The affinity of the carrier for the substrate was increased by increasing sodium concentration in the medium, but the maximal velocity was not altered. It is suggested that sodium ion is co-transported mole for mole with the substrate molecule. Omission of potassium from the medium inhibited the uptake competitively. Ouabain was a competitive inhibitor on the uptake. Whereas thallium, rubidium and ammonium were efficient substitutes for potassium in exhibiting Na-K ATPase activity of the P 2 fraction, the uptake was activated only by rubidium in the absence of potassium. These observations were in common with the uptake of L-aspartate as well as of L- and D-glutamate, but not with GABA uptake. The requirement of sodium for the uptake of D-glutamate was indicated to be higher than that in the uptake of the other amino acids. Mutual inhibitions of the uptake among L- and D-isomers of glutamate and aspartate suggested that a common carrier is involved in the transport. Mechanisms of the transport of these amino acids in the crude synaptosomal fraction were discussed. (author)

  18. Ion Exchange Kinetics of some Heavy Metals from Aqueous Solutions onto Poly(Acrylic Acid-Acrylo nitrle) Potassium Titanate

    International Nuclear Information System (INIS)

    El-Shorbagy, M.M.; El-Sadek, A.A.

    2012-01-01

    Composite inorganic-organic absorbers represent a group of inorganic ion exchangers modified using binding organic materials for preparation of larger size particles heaving higher granular strength. Such modification of originally powdered or microcrystalline inorganic ion exchangers makes their application in peaked beds possible-modified polyacrylonitrile (PAN) has been used as a universal binding polymer for a number of inorganic ion exchangers. The kinetic of ion exchange and sorption capacity of such composite absorbers is not influenced by the binding polymer mentioned above. These composites have been tested for separation and concentration of various contaminants from aqueous solutions. Their high selectivity and sorption efficiency are advantageous for treatment of various industrial waste waters. Removal of natural or artificial and the heavy metals, Pb, Cd and Zn ions. the influence of initial metal ion concentration and ph on metal ion removal has been studied. The process was found to follow a first order rate kinetics. The intra-particle diffusion of ions through pores in the adsorbent was to be the main rate limiting step. The selectivity order towards the ions was Pb(II) > Cd(II) > Zn(II)

  19. EPR and optical studies of Cu{sup 2+} ions doped in magnesium potassium phosphate hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram; Shukla, Santwana, E-mail: ram_kripal2001@rediffmail.com, E-mail: shukla.santwana@gmail.com [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2011-03-15

    An electron paramagnetic resonance (EPR) study of Cu{sup 2+}-doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu{sup 2+} are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  20. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NARCIS (Netherlands)

    Sefünç, Mustafa; Segerink, Franciscus B.; García Blanco, Sonia Maria

    2015-01-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  1. [Unification of methods for determining the trace quantities of lead, zinc, sodium and potassium ions in the assessment of drinking water adn transfusion fluid quality].

    Science.gov (United States)

    Popkov, V A; Golovina, N V; Evgrafov, A A

    2001-01-01

    The results of long-term studies made by the Department of General Chemistry, I. M. Sechenov Moscow Medical Academy, that deals with unification of methods for determining some ions of metals (lead, zinc, sodium, and potassium) in the assessment of the quality of drinking water and transfusion fluids are summarized. A procedure was developed to determine the trace impurities of zinc, lead, and silver by atomic absorption spectrometry (AAS) by using sorption concentration. C-80-2-aminothiazole, a new sorbent synthesized at the Research Institute of Polymers, was used to detect these ions in the drinking water. With regards to the chosen optimal conditions, drinking water samples were analyzed via their direct spraying in the air-acetylene flame. The prior sorption concentration determined drinking water zinc and lead ions in the concentrations equal to or less than their permissible dose concentrations. The studies indicated that the used methods to determine the trace quantities of metals in the drinking water and aqueous solutions show a high sensitivity, rapidity, simplicity of sample preparation.

  2. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    Science.gov (United States)

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  3. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.

    Science.gov (United States)

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant; Jiang, Youxing

    2014-08-01

    Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K(+) channels KcsA and MthK. Rb(+) bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs(+), however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba(2+) binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba(2+) block. In the presence of K(+), Ba(2+) bound to the NaK2K channel at site 3 in conjunction with a K(+) at site 1; this led to a prolonged block of the channel (the external K(+)-dependent Ba(2+) lock-in state). In the absence of K(+), however, Ba(2+) acts as a permeating blocker. We found that, under these conditions, Ba(2+) bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba(2+) binding profile in the presence and absence of K(+) thus provides a structural explanation for the short and prolonged Ba(2+) block observed in NaK2K. © 2014 Lam et al.

  4. Dirac-Fock calculation of oscillator strengths and lifetimes of levels for ions of potassium isoelectronic series

    International Nuclear Information System (INIS)

    Zilitis, V.A.

    1989-01-01

    Oscillator forces, f, of 4s-4p, 4p-5s, 3d-4p and 3d-4f transitions for 13 terms of the potassium isoelectric line (from K to U 73+ ) are calculated by the Dirac-Fock method. Nonmonotonous change in values f along the isoelectric line is detected in some cases. Radiation life times of levels 4p 1/2 , 4p 3/2 and 5s 1/2 are also calculated. Similar values, which can be approximated by formula τ≅ 5x10 -8 Z ef -3 .3 , where Z ef - the effective charge, are obtained for life times of these levels. Values obtained for f and τ are compared with data of other authors

  5. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    International Nuclear Information System (INIS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2009-01-01

    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R work = 16.1% and R free = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042 o , and 0.071 o , respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure of the homodimer St UPh in the complex with a K + ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).

  6. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  7. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    Energy Technology Data Exchange (ETDEWEB)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.; Mikhailov, A. M., E-mail: amm@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2009-03-15

    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R{sub work} = 16.1% and R{sub free} = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042{sup o}, and 0.071{sup o}, respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure of the homodimer St UPh in the complex with a K{sup +} ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).

  8. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook, E-mail: jaekook@chonnam.ac.kr

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K{sup +})-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K{sup +} ion doping caused no change in the phase structure, and highly crystalline K{sub x}Cu{sub 1−x}O{sub 1−δ} (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K{sup +}-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g{sup −1} for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g{sup −1} at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g{sup −1} at 0.1 C and 68.9 mA h g{sup −1} at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K{sup +} ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  9. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  10. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  11. X-radiation effect on the hyperpolarization of cells, the adeninenucleotide content and the distribution of sodium and potassium ions

    Energy Technology Data Exchange (ETDEWEB)

    Frol' kis, V V [Akademiya Meditsinskikh Nauk Ukrainskoj SSR, Kiev. Inst. Gerontologii

    1975-03-01

    X-radiation prevents the progress of hyperpolarization of muscle and liver cells caused by hormones (estradioldipropyonate, deoxycorticosteron-acetate and insulin) and by the loss of blood. X-radiation offsets the redistribution of K/sup +/ and Na/sup +/ ions caused by hyperpolarization and does not change the level of ATP, ADP, CP and Pi. X-radiation is suggested to affect the hyperpolarization and the ionic shifts via the system of protein biosynthesis.

  12. Trichomonas vaginalis induces IL-1β production in a human prostate epithelial cell line by activating the NLRP3 inflammasome via reactive oxygen species and potassium ion efflux.

    Science.gov (United States)

    Gu, Na-Yeong; Kim, Jung-Hyun; Han, Ik-Hwan; Im, Su-Jeong; Seo, Min-Young; Chung, Yong-Hoon; Ryu, Jae-Sook

    2016-07-01

    Trichomonas vaginalis is a sexually transmitted protozoan parasite that causes vaginitis in women, and urethritis and prostatitis in men. IL-1β is synthesized as immature pro-IL-1β, which is cleaved by activated caspase-1. Caspase-1 is, in turn, activated by a multi-protein complex known as an inflammasome. In this study, we investigated the inflammatory response of a prostate epithelial cell line (RWPE-1) to T. vaginalis and, specifically, the capacity of T. vaginalis to activate the NLRP3 inflammasome. RWPE-1 cells were stimulated by live T. vaginalis, and subsequent expression of pro-IL-1β, IL-1β, NLRP3, ASC and caspase-1 was determined by real-time PCR and Western blotting. IL-1β and caspase-1 production was also measured by ELISA. To evaluate the effects of NLRP3 and caspase-1 on IL-1β production, the activated RWPE-1 cells were transfected with small interfering RNAs to silence the NLRP3 and caspase-1 genes. Activation of the NLRP3 inflammasome was observed by fluorescence microscopy. Intracellular reactive oxygen species (ROS) were evaluated by spectrofluorometry. When RWPE-1 cells were stimulated with live T. vaginalis, the mRNA and protein expression of IL-1β, NLRP3, ASC, and caspase-1 increased. Moreover, silencing of NLRP3 and caspase-1 attenuated T. vaginalis-induced IL-1β secretion. The NADPH oxidase inhibitor DPI and high extracellular potassium ion suppressed the production of IL-1β, caspase-1, and the expression of NLRP3 and ASC proteins. The specific NF-κB inhibitor, Bay 11-7082, inhibited IL-1β production, and also inhibited the production of caspase-1, ASC and NLRP3 proteins. T. vaginalis induces the formation of the NLRP3 inflammasome in human prostate epithelial cells via ROS and potassium ion efflux, and this results in IL-1β production. This is the first evidence for activation of the NLRP3 inflammasome in the inflammatory response by prostate epithelial cells infected with T. vaginalis. Prostate 76:885-896, 2016. © 2016 Wiley

  13. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  14. The existence of the potassium dioxodifluorobromate

    International Nuclear Information System (INIS)

    Tantot, Georges; Bougon, Roland

    1975-01-01

    The reaction of liquid bromine pentafluoride with potassium bromate allows the formation of an oxyfluorinated complex ion of bromine V: the dioxodifluorobromate ion BrO 2 F 2 - . From Raman spectroscopy data this ion has a structure related to those of the chlorine and iodine corresponding ions [fr

  15. Potassium test

    Science.gov (United States)

    ... hyperkalemia ) may be due to: Addison disease (rare) Blood transfusion Certain medicines Crushed tissue injury Hyperkalemic periodic paralysis ... released. This may cause a falsely high result. Alternative Names Hypokalemia test; K+ Images Blood test References Mount DB. Disorders of potassium balance. ...

  16. Potassium Iodide

    Science.gov (United States)

    ... certain other liquids including low-fat white or chocolate milk, flat soda, orange juice, raspberry syrup, or ... Potassium iodide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: swollen glands metallic taste in the ...

  17. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    Science.gov (United States)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  18. Total inelastic cross sections for potassium ion--atom collisions: Oscillations in the velocity dependence and correlation with molecular structure

    International Nuclear Information System (INIS)

    Aquilanti, V.; Casavecchia, P.

    1976-01-01

    Electronic excitation leading to light emission in the wavelength range 350--800 nm has been studied by a crossed ion--atom beam technique for (K + , K) collisions, and the results are interpreted in terms of properties of the potential energy curves for the molecular ion K + 2 . The investigated velocity range is (1.3--12) x10 6 cm s -1 . The total cross section for the process K + (3p 6 1 S 0 ) +K(4s 2 S 1 / 2 ) →K + (3p 6 1 S 0 ) +K(4p 2 P 3 / 2 , 1 / 2 ) increases from threshold up to approx.10 -15 cm 2 at a velocity of approx.4.5x10 6 cm s -1 , and shows an oscillatory structure. The magnitude and over-all velocity dependence are attributed to a Σ--Pi curve crossing, and the oscillations to an interference effect, which is treated as an inelastic ''glory'' phenomenon. Cross sections for production of each of the fine structure components of K(4p), 2 P 3 / 2 , and 2 P 1 / 2 , have also been measured. Their ratio, which in the investigated velocity range is different from the statistical value, shows additional oscillations, which are discussed in terms of long range interference between alternate semiclassical paths

  19. A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum).

    Science.gov (United States)

    Ngai, Patrick H K; Ng, T B

    2007-02-01

    A tetrameric lectin, with hemagglutinating activity toward rabbit erythrocytes and with specificity toward D-mannosamine and D(+)-mannose, was isolated from the ovaries of a teleost, the cobia Rachycentron canadum. The isolation protocol comprised ion exchange chromatography on CM-cellulose and Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q, and finally gel filtration by FPLC on Superose 12. The lectin was adsorbed on all ion exchangers used. It exhibited a molecular mass of 180 kDa in gel filtration on Superose 12 and a single 45-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is a tetrameric protein. The hemagglutinating activity of the lectin was stable up to 40 degrees C and between pH 4 and pH 10. All hemagglutinating activity disappeared at 60 degrees C and at pH 1 and pH 13. The hemagglutinating activity was doubled in the presence of 0.1 microM FeCl3. The lectin exerted antibacterial activity against Escherichia coli with 50% inhibition at 250 microg. There was no antifungal activity toward Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, and Rhizoctonia solani at a dose of 300 microg. The lectin exhibited maximal mitogenic response from mouse splenocytes at a concentration of 14 microM.

  20. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  1. Low Potassium (Hypokalemia)

    Science.gov (United States)

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  2. Purification of the labeled cyanogen bromide peptides of the α polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the α-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate

  3. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Lehneck, Ronny; Neumann, Piotr; Vullo, Daniela; Elleuche, Skander; Supuran, Claudiu T; Ficner, Ralf; Pöggeler, Stefanie

    2014-04-01

    Carbonic anhydrases (CAs) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate (hydrogen carbonate) and protons. CAs have been identified in archaea, bacteria and eukaryotes and can be classified into five groups (α, β, γ, δ, ζ) that are unrelated in sequence and structure. The fungal β-class has only recently attracted attention. In the present study, we investigated the structure and function of the plant-like β-CA proteins CAS1 and CAS2 from the filamentous ascomycete Sordaria macrospora. We demonstrated that both proteins can substitute for the Saccharomyces cerevisiae β-CA Nce103 and exhibit an in vitro CO2 hydration activity (kcat /Km of CAS1: 1.30 × 10(6) m(-1) ·s(-1) ; CAS2: 1.21 × 10(6 ) m(-1) ·s(-1) ). To further investigate the structural properties of CAS1 and CAS2, we determined their crystal structures to a resolution of 2.7 Å and 1.8 Å, respectively. The oligomeric state of both proteins is tetrameric. With the exception of the active site composition, no further major differences have been found. In both enzymes, the Zn(2) (+) -ion is tetrahedrally coordinated; in CAS1 by Cys45, His101 and Cys104 and a water molecule and in CAS2 by the side chains of four residues (Cys56, His112, Cys115 and Asp58). Both CAs are only weakly inhibited by anions, making them good candidates for industrial applications. CAS1 and CAS2 bind by x-ray crystallography (View interaction) Structural data have been deposited in the Protein Data Bank database under accession numbers 4O1J for CAS1 and 4O1K for CAS2. © 2014 FEBS.

  4. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  6. Thanatochemistry: Study of vitreous humor potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-02-18

    Feb 18, 2014 ... particularly vitreous potassium has received most attention. It is known that ... respect to different age and sex at different death intervals. The details regarding the ... Analyser by the Ion selective method. The reagents used ...

  7. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    International Nuclear Information System (INIS)

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    Substitutive mutations that convert a tetrameric β-glucosidase into a dimeric state lead to improvement of its crystal quality. β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed

  8. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    Wittchow, F.

    1979-01-01

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li + + K, Na + + K, K + + K, and Rb + + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG) [de

  9. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  10. Biodegradable nanoparticles loaded with tetrameric melittin: preparation and membrane disruption evaluation.

    Science.gov (United States)

    Gonzalez-Horta, Azucena; Matamoros-Acosta, Arely; Chavez-Montes, Abelardo; Castro-Rios, Rocio; Lara-Arias, Jorge

    2017-10-01

    Melittin is the main component of bee venom consisting of 26 amino acids that has multiple effects, including antibacterial, antiviral and anti-inflammatory in various cell types. This peptide forms pores in biological membranes and triggers cell death. Therefore it has potential as an anti-cancer therapy. However, the therapeutic application of melittin is limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. In the present study, we formulated tetrameric melittin-carrying poly-D,L-lactic-co-glycolic acid nanoparticles (PLGA-NPs) and analyzed the lytic activity of this system on liposomes that resembles breast cancer cells. Tetrameric melittin binds avidly to PLGA-NPs with an encapsulation efficiency of 97% and retains its lytic activity demonstrating the effectiveness of PLGA-NPs as nanocarriers for this cytolytic peptide.

  11. Multistability in a neuron model with extracellular potassium dynamics

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  12. Study of solvent effects on the stability constant and ionic mobility of the dibenzo-18-crown-6 complex with potassium ion by affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Konášová, Renáta; Jaklová Dytrtová, Jana; Kašička, Václav

    2016-01-01

    Roč. 39, č. 22 (2016), s. 4429-4438 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR GP13-21409P Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * crown ethers * hydro-organic solvents * ionic mobility * potassium complexes Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.557, year: 2016

  13. Penicillin V Potassium

    Science.gov (United States)

    Penicillin V potassium is used to treat certain infections caused by bacteria such as pneumonia and other ... heart valves and other symptoms) from coming back. Penicillin V potassium is in a class of medications ...

  14. Potassium maldistribution revisited

    African Journals Online (AJOL)

    Background:This study investigated maldistribution of concentrated 15% potassium chloride after injection into .... and latter experiments referred to for example as “Control 1” ..... be further investigated as a reliable, simple method of potassium.

  15. Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase

    DEFF Research Database (Denmark)

    Johansson, Eva; Neuhard, Jan; Willemoës, Martin

    2004-01-01

    with the dipole moments from two alpha-helices partially neutralizes the additional negative charge in the active site, leading to a catalytic activity similar to D-CDA. Arg56 has been substituted by a glutamine (R56Q), the corresponding residue in D-CDA, an alanine (R56A), and an aspartate (R56D). Moreover, one...

  16. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  17. Temperature effect in potassium and nitrate ions in soil transport Efeito da temperatura no transporte dos íons potássio e nitrato no solo

    Directory of Open Access Journals (Sweden)

    Adriano D. M. A. Gonçalves

    2008-09-01

    Full Text Available When doing researches on solute dynamics in porous medium, the knowledge of medium characteristics and percolating liquids, as well as of external factors is very important. An important external factor is temperature and, in this sense, our purpose was determining potassium and nitrate transport parameters for different values of temperature, in miscible displacement experiments. Evaluated parameters were retardation factor (R, diffusion/dispersion coefficient (D and dispersivity, at ambient temperature (25 up to 28 ºC, 40 ºC and 50 ºC. Salts used were potassium nitrate and potassium chlorate, prepared in a solution made up of 5 ppm nitrate and 2.000 ppm potassium, with Red-Yellow Latosol porous medium. Temperature exhibited a positive influence upon porous medium solution and upon dispersion coefficient.No estudo da dinâmica de solutos num meio poroso, é de suma importância o conhecimento das propriedades do meio e dos líquidos percolantes, bem como de fatores externos. Um fator externo relevante é a temperatura e, nesse sentido, teve-se como objetivo determinar os parâmetros de transporte dos íons potássio e nitrato para diferentes valores de temperatura em experimentos de deslocamento miscível. Os parâmetros avaliados foram o fator de retardamento (R, o coeficiente de difusão/dispersão (D e a dispersividade (λ , e as temperaturas utilizadas foram a ambiente (25 a 28 ºC, 40 ºC e 50 ºC. Os sais utilizados foram nitrato de potássio e cloreto de potássio, preparados em solução composta de 50 ppm de nitrato e 2.000 ppm de potássio, sendo o meio poroso um Latossolo Vermelho-Amarelo, textura média. A temperatura apresentou influência positiva na velocidade da solução no meio poroso e no coeficiente de dispersão.

  18. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  19. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  20. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  1. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    Science.gov (United States)

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow

  2. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    Science.gov (United States)

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  3. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  4. Effect of Intercalated Water on Potassium Ion Transport through Kv1.2 Channels Studied via On-the-Fly Free-Energy Parametrization.

    Science.gov (United States)

    Paz, S Alexis; Maragliano, Luca; Abrams, Cameron F

    2018-05-08

    We introduce a two-dimensional version of the method called on-the-fly free energy parametrization (OTFP) to reconstruct free-energy surfaces using Molecular Dynamics simulations, which we name OTFP-2D. We first test the new method by reconstructing the well-known dihedral angles free energy surface of solvated alanine dipeptide. Then, we use it to investigate the process of K + ions translocation inside the Kv1.2 channel. By comparing a series of two-dimensional free energy surfaces for ion movement calculated with different conditions on the intercalated water molecules, we first recapitulate the widely accepted knock-on mechanism for ion translocation and then confirm that permeation occurs with water molecules alternated among the ions, in accordance with the latest experimental findings. From a methodological standpoint, our new OTFP-2D algorithm demonstrates the excellent sampling acceleration of temperature-accelerated molecular dynamics and the ability to efficiently compute 2D free-energy surfaces. It will therefore be useful in large variety complex biomacromolecular simulations.

  5. Study and application of ion chromatography and activation analysis without chemical separation for the determination of sodium and potassium in muscle tissues

    International Nuclear Information System (INIS)

    Haber, E.P.

    1984-01-01

    The simultaneous determination of Na and K in small amounts of muscular tissue by use of two methods, namely activation analysis and ion chromatography, is presented. For the activation analysis the samples were irradiated for 30 minutes in a 5 X 10 11 n cm sup(-) 2 s sup(-) 1 flux. The induced activities of 24 Na and 42 K were determined, without chemical separation, using a Ge(Li) detector equipped with a 4096 channel analyser on-line with a computer. The gamma ray spectra registered from the samples and standards were analysed and compared by the computer. For the ion chromatography analysis the samples and standards in solution were injected into the apparatus. The ions were separated by an ion-exchange system of columns and the concentrations were measured by conductivity. In addition, the two analytical methods were compared in regard to sensitivity, precision and accuracy as well as simplicity, cost and working time involved in the analysis. From the point of view of the reliability of the results, both techniques proved to be excelent and might be of great value in medical research. (Author) [pt

  6. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT

  7. Potassium Chloride Versus Voltage Clamp Contractures in Ventricular Muscle

    Science.gov (United States)

    Morad, M.; Reeck, S.; Rao, M.

    1981-01-01

    In frog ventricle, developed tension was markedly larger in response to depolarization caused by a voltage clamp step than to depolarization induced by high concentrations of potassium chloride. Measurement of extracellular potassium activity at the surface and at the depth of muscle during the development of contractures showed that the diffusion of potassium is much slower than the spread of depolarization through the cross section of muscle. These two observations suggest that competition between the depolarizing and the negative inotropic effects of an increase in the extracellular potassium ion concentration may determine the time course and magnitude of contractile tension in heart muscle.

  8. Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host.

    Science.gov (United States)

    Noda, Shuhei; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2015-01-13

    Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance.

  9. PET imaging of alphavbeta integrin expression in tumours with Ga-labelled mono-, di- and tetrameric RGD peptides

    NARCIS (Netherlands)

    Dijkgraaf, I.; Yim, C.B.; Franssen, G.M.; Schuit, R.C.; Luurtsema, G.; Liu, S.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of (68)Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared

  10. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  11. Solid contact potassium selective electrodes for biomedical applications – a review

    NARCIS (Netherlands)

    van de Velde, Lennart; d'Angremont, E.; Olthuis, Wouter

    2016-01-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium

  12. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  13. Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator

    International Nuclear Information System (INIS)

    Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David; McVey, Colin E.; Carrondo, Maria A.; Enguita, Francisco J.

    2007-01-01

    The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit

  14. Tetrameric structure of the flagellar cap protein FliD from Serratia marcescens.

    Science.gov (United States)

    Cho, So Yeon; Song, Wan Seok; Hong, Ho Jeong; Lee, Geun-Shik; Kang, Seung Goo; Ko, Hyun-Jeong; Kim, Pyeung-Hyeun; Yoon, Sung-Il

    2017-07-15

    Bacterial motility is provided by the flagellum. FliD is located at the distal end of the flagellum and plays a key role in the insertion of each flagellin protein at the growing tip of the flagellar filament. Because FliD functions as an oligomer, the determination of the oligomeric state of FliD is critical to understanding the molecular mechanism of FliD-mediated flagellar growth. FliD has been shown to adopt a pentameric or a hexameric structure depending on the bacterial species. Here, we report another distinct oligomeric form of FliD based on structural and biochemical studies. The crystal structures of the D2 and D3 domains of Serratia marcescens FliD (smFliD) were determined in two crystal forms and together revealed that smFliD assembles into a tetrameric architecture that resembles a four-pointed star plate. smFliD tetramerization was also confirmed in solution by cross-linking experiments. Although smFliD oligomerizes in a head-to-tail orientation using a common primary binding interface between the D2 and D3' domains (the prime denotes the second subunit in the oligomer) similarly to other FliD orthologs, the smFliD tetramer diverges to present a unique secondary D2-D2' binding interface. Our structure-based comparative analysis of FliD suggests that bacteria have developed diverse species-specific oligomeric forms of FliD that range from tetramers to hexamers for flagellar growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    Science.gov (United States)

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  16. Potassium and Your CKD Diet

    Science.gov (United States)

    ... vegetable in your diet, leach them before using. Leaching is a process by which some potassium can be pulled out ... out of my favorite high-potassium vegetables? The process of leaching will help pull potassium out of some high- ...

  17. Purification of the labeled cyanogen bromide peptides of the. cap alpha. polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the ..cap alpha..-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate.

  18. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  19. Potassium Blood Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Potassium, Serum; 426–27 p. Lab ...

  20. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  1. Low potassium level

    Science.gov (United States)

    ... treat and prevent low level of potassium. These foods include: Avocados Baked potato Bananas Bran Carrots Cooked lean beef Milk Oranges Peanut butter Peas and beans Salmon Seaweed Spinach Tomatoes Wheat germ

  2. Preparation and characterization of dimeric and tetrameric clusters of molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.R.

    1981-10-01

    The cyclo-addition of two Mo/sub 2/Cl/sub 4/(P(C/sub 6/H/sub 5/)/sub 3/)/sub 2/(CH/sub 3/OH)/sub 2/ molecules has produced a new type of tetrameric molybdenum cluster, Mo/sub 4/Cl/sub 8/L/sub 4/. Structural characterization of this dimer revealed weak molybdenum-methanol bonding which was consistent with the observed reactivity of the compound. New synthetic methods were devised for the preparation of Mo/sub 4/X/sub 8/L/sub 4/ clusters where X = Cl, Br, I and L = PR/sub 3/, Po/sub 3/, RCN, CH/sub 3/OH. A scheme for the metal-metal bonding in these clusters was presented which was in agreement with the known structural features of Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/, R = C/sub 2/H/sub 5/, n-C/sub 4/H/sub 9/. The preparation of the analogous W/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ cluster from WCl/sub 4/ was accomplished by application of techniques used in the molybdenum syntheses. The single crystal x-ray structure revealed slight differences from the molybdenum analog which were rationalized in terms of the known behavior in dimeric tungsten and molybdenum species. The attempted preparation of a tetrameric tungsten cluster from W/sub 2/(mhp)/sub 4/ was unsuccessful (mhp = anion of 2-methyl-6-hydroxypyridine). Instead, the new tungsten dimer, W/sub 2/Cl/sub 2/(mhp)/sub 3/, was isolated which possessed a metal-metal bond order of 3.5. The x-ray crystal structure of the dimer revealed that the chlorine atoms were situated cis, one bound to each tungsten. Cyclic voltammetry showed that the compound could be reversibly reduced, presumably to a W/sub 2//sup 4 +/ dimer containing a quadruple metal-metal bond.

  3. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  4. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  5. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  6. Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development.

    Science.gov (United States)

    Phansalkar, Rasika S; Nam, Joo-Won; Chen, Shao-Nong; McAlpine, James B; Leme, Ariene A; Aydin, Berdan; Bedran-Russo, Ana-Karina; Pauli, Guido F

    2018-02-02

    Proanthocyanidins (PACs) find wide applications for human use including food, cosmetics, dietary supplements, and pharmaceuticals. The chemical complexity associated with PACs has triggered the development of various chromatographic techniques, with countercurrent separation (CCS) gaining in popularity. This study applied the recently developed DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) approach for the selective enrichment of trimeric and tetrameric PACs using centrifugal partition chromatography (CPC). This CPC method aims at developing PAC based biomaterials, particularly for their application in restoring and repairing dental hard tissue. A general separation scheme beginning with the depletion of polymeric PACs, followed by the removal of monomeric flavan-3-ols and a final enrichment step produced PAC trimer and tetramer enriched fractions. A successful application of this separation scheme is demonstrated for four polyphenol rich plant sources: grape seeds, pine bark, cinnamon bark, and cocoa seeds. Minor modifications to the generic DESIGNER CCS method were sufficient to accommodate the varying chemical complexities of the individual source materials. The step-wise enrichment of PAC trimers and tetramers was monitored using normal phase TLC and Diol-HPLC-UV analyses. CPC proved to be a reliable tool for the selective enrichment of medium size oligomeric PACs (OPACs). This method plays a key role in the development of dental biomaterials considering its reliability and reproducibility, as well as its scale-up capabilities for possible larger-scale manufacturing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein

    Science.gov (United States)

    Chen, Huizhong; Hopper, Sherryll L.; Cerniglia, Carl E.

    2018-01-01

    Azo dyes are a predominant class of colourants used in tattooing, cosmetics, foods and consumer products. A gene encoding NADPH-flavin azoreductase (Azo1) from the skin bacterium Staphylococcus aureus ATCC 25923 was identified and overexpressed in Escherichia coli. RT-PCR results demonstrated that the azo1 gene was constitutively expressed at the mRNA level in S. aureus. Azo1 was found to be a tetramer with a native molecular mass of 85 kDa containing four non-covalently bound FMN. Azo1 requires NADPH, but not NADH, as an electron donor for its activity. The enzyme was resolved to dimeric apoprotein by removing the flavin prosthetic groups using hydrophobic-interaction chromatography. The dimeric apoprotein was reconstituted on-column and in free stage with FMN, resulting in the formation of a fully functional native-like tetrameric enzyme. The enzyme cleaved the model azo dye 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl Red) into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. The apparent Km values for NADPH and Methyl Red substrates were 0·;074 and 0·057 mM, respectively. The apparent Vmax was 0·4 µM min−1 (mg protein)−1. Azo1 was also able to metabolize Orange II, Amaranth, Ponceau BS and Ponceau S azo dyes. Azo1 represents the first azoreductase to be identified and characterized from human skin microflora. PMID:15870453

  8. Identification of a tetramerization domain in the C terminus of the vanilloid receptor.

    Science.gov (United States)

    García-Sanz, Nuria; Fernández-Carvajal, Asia; Morenilla-Palao, Cruz; Planells-Cases, Rosa; Fajardo-Sánchez, Emmanuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2004-06-09

    TRPV1 (transient receptor potential vanilloid receptor subtype 1) is a member of the TRP channel family gated by vanilloids, protons, and heat. Structurally, TRPV1 appears to be a tetramer formed by the assembly of four identical subunits around a central aqueous pore. The molecular determinants that govern its subunit oligomerization remain elusive. Here, we report the identification of a segment comprising 684Glu-721Arg (referred to as the TRP-like domain) in the C terminus of TRPV1 as an association domain (AD) of the protein. Purified recombinant C terminus of TRPV1 (TRPV1-C) formed discrete and stable multimers in vitro. Yeast two-hybrid and pull-down assays showed that self-association of the TRPV1-C is blocked when segment 684Glu-721Arg is deleted. Biochemical and immunological analysis indicate that removal of the AD from full-length TRPV1 monomers blocks the formation of stable heteromeric assemblies with wild-type TRPV1 subunits. Deletion of the AD in a poreless TRPV1 subunit suppressed its robust dominant-negative phenotype. Together, these findings are consistent with the tenet that the TRP-like domain in TRPV1 is a molecular determinant of the tetramerization of receptor subunits into functional channels. Our observations suggest that the homologous TRP domain in the TRP protein family may function as a general, evolutionary conserved AD involved in subunit multimerization.

  9. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein.

    Directory of Open Access Journals (Sweden)

    Anne-Marie Carola Andersson

    Full Text Available The ectodomain of the matrix 2 protein (M2e of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4 was constructed linking M2e (in its consensus sequence to the rotavirus fragment NSP4(98-135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.

  10. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  11. Behaviour of potassium hexabromoruthenate (4) in solutions

    International Nuclear Information System (INIS)

    Rudnitskaya, O.V.; Miroshnichenko, I.V.; Pichkov, V.N.

    1989-01-01

    Behaviour of potassium hexabromoruthenate in HBr, H 2 O-acetone, dimethylformamide, dimetnylsulfoxide (DMSO) solutions is investigated by means of absorption and ESR specroscopy. Complex is shown to be labile, interacts easily with solvents forming ruthenium complexes in more low oxidation degrees. Hexabromoruthenate-ion is formed in concentrated HBr, while in DMSO the formation of ruthenium (3) and (2) bromide-dimethylsulfoxide complexes occurs gradually, final product is trans-[Ru(DMSO) 4 Br 2

  12. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement.

    Science.gov (United States)

    Yang, Chang; Hu, Dong-Hui; Feng, Yan

    2015-10-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8‑cineole, against certain respiratory infection‑causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography‑mass spectrometry. A micro‑well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 µg/ml, while the values of the two constituents were between 130 and 200 µg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 µg/mouse) and grandisol (135 µg/mouse) significantly reduced the number of viable bacterial cells in the lungs (Pessential oil or grandisol 135 µg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different

  13. Determination of the physiological plasmatic values of sodium, potassium and ion calcium and its pre and post exercise Variations in “paso fino” horses in the bogota savannah

    Directory of Open Access Journals (Sweden)

    Camila Valdés Restrepo

    2010-12-01

    Full Text Available This research intends to be a contribution to the Colombian sports equine medicine by providing data on electrolytes standards, a field where there is a substantial lack of literature. This research analyze and determines the normal values of sodium (Na+,potassium (K+ and ion calcium (iCa2+ electrolytes for Colombian Paso Fine horses. The establishment of the reference intervals was done at rest and after exercise. To achieve this, blood samples were taken from farms located in the Bogotá savannah. The 115 mares and stallions used for this study were actively competing with ages ranging from 43 to 78 months old. The samples were taken at three intervals: T0 (Rest,T1 (immediately after 45 minutes of exercise, and T2(1 hour post exercise. The samples were processed using a portable blood analyzer i-STAT® and the data was interpreted using descriptive and comparative statistic according to Turkey tests. The normal values for the breed were established and an electrolytic behavior curve was created, using values inside interval sat 95% confidence levels. The values obtained inmEq/L were: for T0: Na+ (136,71+/-0,23, K+ (4,05+/-0,03, Ca2+ (1,58+/-0,006; for T1: Na+ (136,44+/-0,24, K+ (3,92+/-0,24, Ca2+ (1,42+/-0,008; and for T2: Na+ (137,32+/-0,23, K+ (3,68+/-0,03, Ca2+(1,51+/-0,009. Na+ values increased after exercise. On the contrary K+ and Ca2+ values didn’t increase inT1. Calcium increased on T2 and K+ decreased. The findings of this research will serve as a framework for future analysis. Moreover, further studies and developments in this field are recommended and will prove to be very useful for equine practitioners.

  14. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement

    Science.gov (United States)

    YANG, CHANG; HU, DONG-HUI; FENG, YAN

    2015-01-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8-cineole, against certain respiratory infection-causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry. A micro-well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 μg/ml, while the values of the two constituents were between 130 and 200 μg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 μg/mouse) and grandisol (135 μg/mouse) significantly reduced the number of viable bacterial cells in the lungs (Pessential oil or grandisol 135 μg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial

  15. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  16. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  17. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  18. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    Science.gov (United States)

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  19. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    Directory of Open Access Journals (Sweden)

    V.G. Goffman

    2015-09-01

    Full Text Available Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  20. Elevated extracellular potassium ion concentrations suppress ...

    African Journals Online (AJOL)

    To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain. Methods: To this end, performing local field ...

  1. Cesium immobilization into potassium magnesium phosphate matrix

    International Nuclear Information System (INIS)

    Sayenko, S.Y.; Shkuropatenko, V.A.; Bereznyak, O.P.; Hodyreva, Y.S.; Tarasov, R.V.; Virych, V.D.; Ulybkina, E.A.; Pylypenko, O.V.; Kholomeev, G.O.; Zykova, A.V.; Wagh, Arun S.

    2017-01-01

    The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO 4 centred dot 6H 2 O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 deg C, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm -1 , which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K 0.96 Cs 0.04 MgPO 4 centred dot 6H 2 O.

  2. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  3. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase.

    Science.gov (United States)

    de Cima, Sergio; Gil-Ortiz, Fernando; Crabeel, Marjolaine; Fita, Ignacio; Rubio, Vicente

    2012-01-01

    N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.

  4. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase.

    Directory of Open Access Journals (Sweden)

    Sergio de Cima

    Full Text Available N-acetyl-L-glutamate kinase (NAGK catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS, which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK has, in addition to the amino acid kinase (AAK domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.

  5. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  6. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster

    Science.gov (United States)

    The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...

  7. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.

    Science.gov (United States)

    Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei

    2011-04-29

    Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.

  9. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2013-01-01

    Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the k...... subunit(s). DOI: http://dx.doi.org/10.7554/eLife.01289.001....

  11. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K channels may be of importance....

  13. Reduction of potassium permanganate solution by γ-irradiated sodium chloride [Paper No. RD-21

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Ravishankar, D.

    1982-01-01

    The dissolution of γ-irradiated sodium chloride in potassium permanganate solution results in the reduction of MnO 4 - ions. This has been inferred from spectrophotometric studies. This has been explained on the basis of interaction of colour centres with MnO 4 - ions. The extent to which MnO 4 - ions are reduced are found to vary with

  14. PET imaging of alpha(v)beta(3) integrin expression in tumours with Ga-68-labelled mono-, di- and tetrameric RGD peptides

    NARCIS (Netherlands)

    Dijkgraaf, Ingrid; Yim, Cheng-Bin; Franssen, Gerben M.; Schuit, Robert C.; Luurtsema, Gert; Liu, Shuang; Oyen, Wim J. G.; Boerman, Otto C.

    Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of Ga-68-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their

  15. 21 CFR 184.1619 - Potassium carbonate.

    Science.gov (United States)

    2010-04-01

    ... solution of potassium hydroxide with excess carbon dioxide to produce potassium carbonate; (3) By treating a solution of potassium hydroxide with carbon dioxide to produce potassium bicarbonate, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food...

  16. Potassium in milk and milk products

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Nuguid, Z.F.S.; Tangonan, M.C.

    1989-01-01

    The amount of potassium in imported processed milk was determined by gamma spectral analysis. The results show that the potassium content of diluted infant formula milk is closest to the reported mean concentration of potassium in human milk while other milk types have potassium values similar to the potassium content of cow milk. (Auth.). 2 figs., 5 refs

  17. Dietary reference values for potassium

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for potassium. The Panel decides to set DRVs on the basis of the relationships between potassium intake and blood pressure and stroke...

  18. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  19. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... of low potassium? Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, ... your urine. This can lead to low potassium levels in your blood (hypokalemia). Signs and symptoms of ...

  20. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages.

    Science.gov (United States)

    Guo, Jia; Lua, Aik Chong

    2002-10-15

    Preparation and characterization of activated carbon from palm shell, a carbonaceous agricultural solid waste, by potassium hydroxide treatment at different stages were studied. The effects of activation temperature and chemical to sample ratio on the characteristics of the activated carbon were investigated. Fixed-bed adsorption of sulfur dioxide (SO(2)) gas was carried out to evaluate the adsorptive capacity of the samples. Desorption tests were conducted to verify the occurrence of chemisorption due to some surface functional groups or of chemical reaction between SO(2) and KOH. It was found that pre-impregnation of raw palm shell was involved in replacement of some hydrogen ions with potassium ions to form cross-linked complexes, which retarded the tar formation during carbonization, resulting in a relatively high yield. Moreover, these potassium ions accelerated the reaction as catalysts during gasification of chars by carbon dioxide. For chars with mid-impregnation, potassium hydroxide acted in two ways: (i) formation of metallic potassium by dehydration and (ii) conversion into potassium carbonate. Metallic potassium intercalated to the carbon matrix accounted for pore development and potassium carbonate layer prevented the sample from over burn-off. Post-impregnation of final products modified the textural characteristics of the sample as some pore entrances were blocked by chemicals. However, potassium hydroxide enhanced the amount of SO(2) uptaken via formation of potassium sulfite.

  1. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  2. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  3. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  4. Preparation of potassium tantalum fluoride from tantalum hydroxide

    International Nuclear Information System (INIS)

    Silva, F.T. da; Espinola, A.; Dutra, A.J.B.

    1987-01-01

    Potassium tantalum fluoride (K 2 TaF 7 ) is an intermediary product in the processing of tantaliferous materials; it is the basic raw material for both reduction processes in use presently: reduction by metallic sodium and electrolysis in molten halides. It is normally obtained from a fluorotantalic acid solution to which potassium ions are added the precipitation of white acicular crystals of K 2 TaF 7 . The conditions for precipitation and recrystallization were studied, and crystal characterization were done by scanning electron microscopy, X-ray diffraction and thermogravimetric and thermodifferential analyses. (Author) [pt

  5. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  6. Oral potassium supplementation in surgical patients.

    Science.gov (United States)

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  7. Colonic potassium handling

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Matos, Joana E.; Prætorius, Helle

    2010-01-01

    , intestinal K+ losses caused by activated ion secretion may become life threatening. This topical review provides an update of the molecular mechanisms and the regulation of mammalian colonic K+ absorption and secretion. It is motivated by recent results, which have identified the K+ secretory ion channel...... regulated by hormones and adapts readily to changes in dietary K+ intake, aldosterone and multiple local paracrine agonists. In chronic renal insufficiency, colonic K+ secretion is greatly enhanced and becomes an important accessory K+ excretory pathway. During severe diarrheal diseases of different causes...

  8. Potassium isotope abundances in Australasian tektites and microtektites.

    Science.gov (United States)

    Herzog, G. F.; O'D. Alexander, C. M.; Berger, E. L.; Delaney, J. S.; Glass, B. P.

    2008-10-01

    We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1 1.6 wt%, are lower than published average values, 1.9 2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12‰ (1σ mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7‰ (1σ mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from -10.6 ± 1.4‰ to +13.8 ± 1.5‰ and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite-forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.

  9. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  10. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  11. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  12. Potassium channels as drugs targets in therapy of cardiovascular diseases: 25 years later

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-03-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  13. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  14. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  15. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  16. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  17. Potassium distribution in sugar cane

    International Nuclear Information System (INIS)

    Medina, N.H.

    2014-01-01

    In this work the distribution of potassium in sugarcane has been studied during its growth in two different conditions. In the first one the sugarcane soil was prepared with natural fertilizers, using sugarcane bagasse and, in another plantation the soil was prepared with commercial fertilizer NPK with a proportion of 10-10-10. For the measurement of potassium concentration in each part of the plant, gamma ray spectrometry techniques have been used to measure gamma-rays emitted from the radioisotope 40 K present in the sugarcane samples. The concentration of potassium in roots, stems and leaves were measured periodically. The results for sugarcane cultivated in soil with natural fertilizer show a higher concentration of potassium at the beginning of plant development and over time there is an oscillatory behavior in this concentration in each part of the plant, reaching a lower concentration in the adult plant. The results for the plant grown in soil with NPK fertilizer, indicate that the potassium concentration is higher in the stem at the beginning of cultivation and remained practically constant over time in various parts of the plant, with higher values in the leaves and stem than at the root. On the other hand, the results obtained using fertilizer NPK shows a lower potassium concentration, since the fertilizer provoked a much higher growth rate. (author)

  18. Potassium supplements for oral diarrhoea regimens.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  19. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    International Nuclear Information System (INIS)

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  20. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  1. Ipomoelin, a Jacalin-Related Lectin with a Compact Tetrameric Association and Versatile Carbohydrate Binding Properties Regulated by Its N Terminus

    Science.gov (United States)

    Chang, Wei-Chieh; Liu, Kai-Lun; Hsu, Fang-Ciao; Jeng, Shih-Tong; Cheng, Yi-Sheng

    2012-01-01

    Many proteins are induced in the plant defense response to biotic stress or mechanical wounding. One group is lectins. Ipomoelin (IPO) is one of the wound-inducible proteins of sweet potato (Ipomoea batatas cv. Tainung 57) and is a Jacalin-related lectin (JRL). In this study, we resolved the crystal structures of IPO in its apo form and in complex with carbohydrates such as methyl α-D-mannopyranoside (Me-Man), methyl α-D-glucopyranoside (Me-Glc), and methyl α-D-galactopyranoside (Me-Gal) in different space groups. The packing diagrams indicated that IPO might represent a compact tetrameric association in the JRL family. The protomer of IPO showed a canonical β-prism fold with 12 strands of β-sheets but with 2 additional short β-strands at the N terminus. A truncated IPO (ΔN10IPO) by removing the 2 short β-strands of the N terminus was used to reveal its role in a tetrameric association. Gel filtration chromatography confirmed IPO as a tetrameric form in solution. Isothermal titration calorimetry determined the binding constants (KA) of IPO and ΔN10IPO against various carbohydrates. IPO could bind to Me-Man, Me-Glc, and Me-Gal with similar binding constants. In contrast, ΔN10IPO showed high binding ability to Me-Man and Me-Glc but could not bind to Me-Gal. Our structural and functional analysis of IPO revealed that its compact tetrameric association and carbohydrate binding polyspecificity could be regulated by the 2 additional N-terminal β-strands. The versatile carbohydrate binding properties of IPO might play a role in plant defense. PMID:22808208

  2. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... acid with potassium hydroxide or potassium carbonate. It occurs as transparent crystals or a white... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS...

  3. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution

    Science.gov (United States)

    Calabrò, Emanuele; Magazù, Salvatore

    2018-05-01

    Samples of a typical tetrameric protein, the hemoglobin, at the concentration of 150 mg/ml in bidistilled water solution, were exposed to a uniform magnetic field at 200 mT at different temperatures of 15∘C, 40∘C and 65∘C. Fourier Transform Infrared Spectroscopy was used to analyze the response of the secondary structure of the protein to both stress agents, heating and static magnetic field. The most relevant result which was observed was the significant increasing in intensity of the Amide I band after exposure to the uniform magnetic field at the room temperature of 15∘C. This result can be explained assuming that protein's α-helices aligned along the direction of the applied magnetic field due to their large dipole moment, inducing the alignment of the entire protein. Increasing of temperature up to 40∘C and 65∘C induced a significant reduction of the increasing in intensity of the Amide I band. This effect may be easily explained assuming that Brownian motion of the protein in water solution caused by thermal molecular agitation increased with increasing of temperature, contrasting the effect of the torque of the magnetic field applied to the protein in water solution.

  4. The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2017-05-01

    Full Text Available The Vip3 proteins produced during vegetative growth by strains of the bacterium Bacillus thuringiensis show insecticidal activity against lepidopteran insects with a mechanism of action that may involve pore formation and apoptosis. These proteins are promising supplements to our arsenal of insecticidal proteins, but the molecular details of their activity are not understood. As a first step in the structural characterisation of these proteins, we have analysed their secondary structure and resolved the surface topology of a tetrameric complex of the Vip3Ag4 protein by transmission electron microscopy. Sites sensitive to proteolysis by trypsin are identified and the trypsin-cleaved protein appears to retain a similar structure as an octomeric complex comprising four copies each of the ~65 kDa and ~21 kDa products of proteolysis. This processed form of the toxin may represent the active toxin. The quality and monodispersity of the protein produced in this study make Vip3Ag4 a candidate for more detailed structural analysis using cryo-electron microscopy.

  5. Substoichiometric determination of selenium with potassium ethyl xanthate

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Polaiah, B.; Rangamannar, B.

    1989-01-01

    A substoichiometric radiochemical method was developed for the determination of selenium with potassium ethyl xanthate. The selenium ethyl xanthate complex formed was extracted into chloroform from borate buffer at pH 5. The effect of foreign ions on the extraction was studied. Microgram quantities of selenium could be conveniently determined with a fair degree of accuracy. The method was successfully applied for the determination of selenium content in food stuffs such as 'Jaggery' and 'Wheat powder'. (author) 4 refs.; 3 figs

  6. PET imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in tumours with {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Franssen, Gerben M.; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Yim, Cheng-Bin [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Utrecht University, Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht (Netherlands); Schuit, Robert C. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Luurtsema, Gert [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30.001, Groningen (Netherlands); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States)

    2011-01-15

    Due to the restricted expression of {alpha}{sub v}{beta}{sub 3} in tumours, {alpha}{sub v}{beta}{sub 3} is considered a suitable receptor for tumour targeting. In this study the {alpha}{sub v}{beta}{sub 3}-binding characteristics of {sup 68}Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their {sup 111}In-labelled counterparts. A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]{sub 2}) and a tetrameric (E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2}) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with {sup 68}Ga. In vitro {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined in a competitive binding assay. In vivo {alpha}{sub v}{beta}{sub 3}-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. The IC{sub 50} values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]{sub 2} and DOTA-E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2} were 23.9 {+-} 1.22, 8.99 {+-} 1.20 and 1.74 {+-} 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 {+-} 1.15, 3.34 {+-} 1.16 and 1.80 {+-} 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 {+-} 0.30, 5.24 {+-} 0.27 and 7.11 {+-} 0.67%ID/g, respectively) was comparable to that of their {sup 111}In-labelled counterparts (2.70 {+-} 0.29, 5.61 {+-} 0.85 and 7.32 {+-} 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The {sup 68}Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of {alpha}{sub v} {beta}{sub 3} expression with PET. (orig.)

  7. Potassium recycling pathways in the human cochlea.

    Science.gov (United States)

    Weber, P C; Cunningham, C D; Schulte, B A

    2001-07-01

    Potential pathways for recycling potassium (K+) used in the maintenance of inner ear electrochemical gradients have been elucidated in animal models. However, little is known about K+ transport in the human cochlea. This study was designed to characterize putative K+ recycling pathways in the human ear and to determine whether observations from animal models can be extrapolated to humans. A prospective laboratory study using an immunohistochemical approach to analyze the distribution of key ion transport mediators in the human cochlea. Human temporal bones were fixed in situ within 1 to 6 hours of death and subsequently harvested at autopsy. Decalcification was accomplished with the aid of microwaving. Immunohistochemical staining was then performed to define the presence and cell type-specific distribution of Na,K-ATPase, sodium-potassium-chloride cotransporter (NKCC), and carbonic anhydrase (CA) in the inner ear. Staining patterns visualized in the human cochlea closely paralleled those seen in other species. Anti-Na,K-ATPase stained strongly the basolateral plasma membrane of strial marginal cells and nerve endings underlying hair cells. This antibody also localized Na,K-ATPase to type II, type IV, and type V fibrocytes in the spiral ligament and in limbal fibrocytes. NKCC was present in the basolateral membrane of strial marginal cells as well as in type II, type V, and limbal fibrocytes. Immunoreactive carbonic anhydrase was present in type I and type III fibrocytes and in epithelial cells lining Reissner's membrane and the spiral prominence. The distribution of several major ion transport proteins in the human cochlea is similar but not identical to that described in various rodent models. These results support the presence of a complex system for recycling and regulating K+ homeostasis in the human cochlea, similar to that described in other mammalian species.

  8. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  9. Concentration of Potassium in Plasma, Erythrocytes, and Muscle Tissue in Cows with Decreased Feed Intake and Gastrointestinal Ileus.

    Science.gov (United States)

    Schneider, S; Müller, A; Wittek, T

    2016-01-01

    Healthy cows consume large amounts of potassium and a sudden loss in appetite can lead to hypokalemia. The routine method to evaluate potassium homeostasis is the measurement of the extracellular potassium in plasma or serum, but this does not provide information about the intracellular potassium pool. To evaluate potassium homeostasis by comparing the extracellular and intracellular potassium concentration in cows with reduced feed intake and gastrointestinal ileus. Twenty cows 1-3 days postpartum (group 1) and 20 cows with gastrointestinal ileus (group 2). Observational cross-sectional study. Plasma potassium was measured by using an ion-sensitive electrode. Intracellular potassium was measured in erythrocytes and muscle tissue (muscle biopsy) by using inductively coupled plasma optical emission spectroscopy. Cows of group 1 did not have hypokalemia. Overall cows with gastrointestinal ileus were hypokalemic (mean ± SD, 2.9 mmol/L ± 0.78), but potassium concentration in erythrocytes and muscle tissue was not lower than in postpartum cows. Intracellular potassium in erythrocytes varied very widely; group 1: 3497-10735 mg/kg (5559 ± 2002 mg/kg), group 2: 4139-21678 mg/kg (7473 ± 4034 mg/kg). Potassium in muscle tissue did not differ between group 1 (3356 ± 735 mg/kg wet weight) and group 2 (3407 ± 1069 mg/kg wet weight). No association between extracellular and intracellular potassium concentrations was detected. That measurement of plasma potassium concentration is not sufficient to evaluate potassium metabolism of cows. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    Science.gov (United States)

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

  11. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  12. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry

    Directory of Open Access Journals (Sweden)

    Alexander Wurzer

    2018-04-01

    Full Text Available Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetrakis[methylene(2-carboxyethylphosphinic acid], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC, based on the building block DOTPI(azide4. A detailed investigation of kinetic properties of Cu(II-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II-, Zn(II, and Cu(II-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx4 (a model for DOTPI conjugates as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII, and CuII-complexes of DOTPI (logK(CaL = 8.65, logK(ZnL = 15.40, logK(CuL = 20.30 and DOTPI(Chx4 (logK(CaL = 8.99, logK(ZnL = 15.13, logK(CuL = 20.42 were found. Transchelation of Cu(II-complexes occurs via proton-assisted dissociation, whereafter released Cu(II is scavenged by EDTA. The corresponding dissociation rates [kd = 25 × 10−7 and 5 × 10−7 s−1 for Cu(DOTPI and Cu(DOTPI(Chx4, respectively, at pH 4 and 298 K] indicate that conjugation increases the kinetic inertness by a factor of 5. However, demetallation is completed within 4.5 and 7.2 h at pH 2 and 25°C, respectively, indicating that Cu(II removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA targeting motif Lys-urea-Glu (KuE were synthesized via CuAAC as well as dibenzo-azacyclooctine (DBCO based

  13. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry

    Science.gov (United States)

    Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes

    2018-01-01

    Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II), and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII, and CuII-complexes of DOTPI (logK(CaL) = 8.65, logK(ZnL = 15.40, logK(CuL) = 20.30) and DOTPI(Chx)4 (logK(CaL) = 8.99, logK(ZnL) = 15.13, logK(CuL) = 20.42) were found. Transchelation of Cu(II)-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates [kd = 25 × 10−7 and 5 × 10−7 s−1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K] indicate that conjugation increases the kinetic inertness by a factor of 5. However, demetallation is completed within 4.5 and 7.2 h at pH 2 and 25°C, respectively, indicating that Cu(II) removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-azacyclooctine (DBCO

  14. Synthesis of symmetrical tetrameric conjugates of the radiolanthanide chelator DOTPI for application in endoradiotherapy by means of click chemistry

    Science.gov (United States)

    Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes

    2018-04-01

    Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II) and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII and CuII-complexes of DOTPI (logK(CaL)=8.65, logK(ZnL=15.40, logK(CuL)=20.30) and DOTPI(Chx)4 (logK(CaL)=8.99, logK(ZnL)=15.13, logK(CuL)=20.42) were found. Transchelation of CuII-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates (kd=25×10‑7 and 5×10‑7 s‑1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K) indicate that conjugation increases the kinetic inertness by a factor of 5. However demetallation is completed within 4.5 and 7.2 hours at pH 2 and 25 °C, respectively, indicating that CuII removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-cyclooctine (DBCO) based, strain

  15. Structure and Mechanism of Proton Transport Through the Transmembrane Tetrameric M2 Protein Bundle of the Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    R Acharya; V Carnevale; G Fiorin; B Levine; A Polishchuk; V Balannick; I Samish; R Lamb; L Pinto; et al.

    2011-12-31

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2{sup +} and 3{sup +} with a pK{sub a} near 6. A 1.65 {angstrom} resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  16. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  17. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  18. Status of potassium permanganate - 2008

    Science.gov (United States)

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  19. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  20. Obtaining of potassium dicyan-argentate

    International Nuclear Information System (INIS)

    Sattarova, M.A.; Solojenkin, P.M.

    1997-01-01

    This work is devoted to obtaining of potassium dicyan-argentate. By means of exchange reaction between silver nitrate and potassium cyanide the potassium dicyan-argentate was synthesized. The analysis of obtained samples was carried out by means of titration and potentiometry.

  1. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  2. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  3. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  4. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  5. Excretion of 137 Cs and bio energetic processes in Carp Cyprinus Carpio L. in the time of his acclimation to different concentrations of potassium in the water

    International Nuclear Information System (INIS)

    Romanenko, V.D.; Solomatina, V.D.; Fomovskij, M.A.; Nasvit, O.I.

    1995-01-01

    The result of the investigation on the peculiarities of 137 Cs release acclimatized to different potassium concentration in water are reported. The differences in characteristics of ion exchange and bioenergetic processes between fishes acclimated to different potassium concentrations were mainly eliminated to the 28-th day of acclimation period. The dynamics of radiocesium release is characterized by slow and just components. No differences in 137 Cs release rate were observed in experiments with different water potassium concentrations

  6. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model.

    Science.gov (United States)

    Solarte, Víctor Alfonso; Conget, Paulette; Vernot, Jean-Paul; Rosas, Jaiver Eduardo; Rivera, Zuly Jenny; García, Javier Eduardo; Arango-Rodríguez, Martha Ligia

    2017-01-01

    Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20-25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20-25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20-25)4, LfcinB(20-25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20-25)4 and LfcinB(20-25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20-25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20-25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20-25)4 and LfcinB(20-25) induced higher degree of apoptosis relative to the untreated tumors (75-86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20-25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20-25). In addition the cellular damage and selectivity of the LfcinB(20-25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20-25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20-25)4 could be considered as a new therapeutic agent for the treatment of OSCC.

  7. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model.

    Directory of Open Access Journals (Sweden)

    Víctor Alfonso Solarte

    Full Text Available Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20-254, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20-25, for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(aanthracene, and tumors were treated with one of the following peptides: LfcinB(20-254, LfcinB(20-25, or vehicle (control. Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20-254 and LfcinB(20-25 was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively. Also, LfcinB(20-254 caused acellularity in the parenchymal tumor compared with LfcinB(20-25 and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20-254 and LfcinB(20-25 induced higher degree of apoptosis relative to the untreated tumors (75-86% vs 8%, respectively. Moreover, although the lowest inflammatory response was achieved when LfcinB(20-254 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20-25. In addition the cellular damage and selectivity of the LfcinB(20-254 peptide was evaluated in vitro. These assays showed that LfcinB(20-254 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20-254 could be considered as a new therapeutic agent for the treatment of OSCC.

  8. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  9. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry; Espectrometria de Iones Aplicada al Estudio de la Adsorcion de H y K en GaAs(110)

    Energy Technology Data Exchange (ETDEWEB)

    Gayone, J E [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    We study the adsorption of H and K on a GaAs(ll0) surface by Time-of-Flight Ion-Scattering (ISS) and Direct Recoiling (DRS) Spectrometry. The method for cleaning and preparation of the surface consists on cycles of grazing bombardment with 20 keV Ar+ combined with annealing. Since this is the first time that this method is applied to a semiconductor surface, the crystallographic structure of the grazing ion bombarded surface is first characterized by ISS and DRS. The variations of the projectile scattered intensity as a function of the incident and azimuthal angles are interpreted in terms of calculated shadowing and focusing effects. The crystallographic structure of the GaAs(ll0) surface prepared by this method presents the surface relaxation observed for cleaved surfaces. The adsorption of H on GaAs(ll0) is studied as a function of the H{sub 2} exposure and the surface temperature.The behavior of the intensity of projectiles scattered from the first two As and Ga layers is consistent with a process of unrelaxation towards the ideal surface termination upon H adsorption. We have determined that for exposures of 1000 L and 2000 L the AsI-GaI splitting corresponding to the unrelaxed surface is reduced to {delta}Z = (0.0 n 0.08) A, as it should be expected for the bulk terminated surface. In addition, the fraction of the surface remaining relaxed as in the clean surface decreases strongly with the H{sub 2} exposure. The H atoms adsorbed on the surface can be detected as recoils produced in quasi-single collisions allowing the study of the adsorption kinetics. The variations of the H recoil intensity with the exposure show that the sticking coefficient changes strongly with the H coverage since the beginning the adsorption. Above {approx} 500 L, the adsorption kinetics deviates from the initial behavior and the sticking coefficient becomes almost constant and small. The simultaneous measurements of the H coverage (with DRS) and the changes in the atomic structure

  10. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  11. Maintenance of serum potassium with sodium zirconium cyclosilicate (ZS-9) in heart failure patients : results from a phase 3 randomized, double-blind, placebo-controlled trial

    NARCIS (Netherlands)

    Anker, Stefan D.; Kosiborod, Mikhail; Zannad, Faiez; Pina, Ileana L.; McCullough, Peter A.; Filippatos, Gerasimos; van der Meer, Peter; Ponikowski, Piotr; Rasmussen, Henrik S.; Lavin, Philip T.; Singh, Bhupinder; Yang, Alex; Deedwania, Prakash

    2015-01-01

    AimsHyperkalaemia in heart failure patients limits use of cardioprotective renin-angiotensin-aldosterone system inhibitors (RAASi). Sodium zirconium cyclosilicate (ZS-9) is a selective potassium ion trap, whose mechanism of action may allow for potassium binding in the upper gastrointestinal tract

  12. Cellular location of lead and potassium in the lichen Cladonia rangiformis (L. ) Hoffm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D H; Slingsby, D R

    1972-01-01

    The cellular location of lead and potassium has been studied in the lichen Cladonia rangiformis, collected from a lead-rich site. Elution of ions by dilute acid or their replacement by other ions has demonstrated that lead is ionically bound, most probably within the cell wall. The same techniques have shown a proportion of the total potassium to be also bound ionically in the cell wall. In addition potassium is present as freely diffusible material retained within the permeability barriers of the intact cell and also firmly bound in an insoluble form. The reported tolerance of lichens to heavy metal is discussed in relation to the demonstrated location of lead. 9 references, 2 figures, 1 table.

  13. Does short-term potassium fertilization improve recovery from drought stress in laurel?

    Science.gov (United States)

    Oddo, Elisabetta; Inzerillo, Simone; Grisafi, Francesca; Sajeva, Maurizio; Salleo, Sebastiano; Nardini, Andrea

    2014-08-01

    Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-free water. Two-year-old potted laurel seedlings were subjected to water stress by suspending irrigation until leaf conductance to water vapour (g(L)) dropped to ∼30% of its initial value and leaf water potential (ψ(L)) reached the turgor loss point (ψ(TLP)). Plants were then irrigated either with water or with 25 mM KCl and monitored for water status, gas exchange and plant hydraulics recovery at 3, 6 and 24 h after irrigation. No significant differences were found between the two experimental groups in terms of ψ(L), g(L), plant transpiration, plant hydraulic conductance or leaf-specific shoot hydraulic conductivity. Analysis of xylem sap potassium concentration showed that there were no significant differences between treatments, and potassium levels were similar to those of potassium-starved but well-watered plants. In conclusion, potassium uptake from the soil solution and/or potassium release to the xylem appeared to be impaired in water-stressed plants, at least up to 24 h after relief from water stress, so that fertilization after the onset of stress did not result in any short-term advantage for recovery from drought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric.

    Science.gov (United States)

    Bondar, Yuliia; Kuzenko, Svetlana; Han, Do-Hung; Cho, Hyun-Kug

    2014-01-01

    A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.

  15. Potassium

    Science.gov (United States)

    ... confusion listlessness tingling, prickling, burning, tight, or pulling sensation of arms, hands, legs, or feet heaviness or weakness of legs cold, pale, gray skin stomach pain unusual stomach bulging ...

  16. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  17. Operating experience with potassium systems

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-04-01

    In an international cooperation R and D work for the realization of potassium topping cycles to increase the conversion efficiency of thermal power stations is going on. Feasibility studies show that the realization of such a process can be achieved under economic considerations with existing materials and today's technology. Nevertheless, it has to be shown that the assumptions with respect to material behaviour and component reliability are based on sound technical premises. Therefore, in continuation of design studies, a hardware programme has been initiated in the Austrian Research Centre Seibersdorf. First results with respect to component and material behaviour are described. (Author) [de

  18. Electronic absorption spectrum of copper-doped magnesium potassium phosphate hexahydrate

    Science.gov (United States)

    Rao, S. N.; Sivaprasad, P.; Reddy, Y. P.; Rao, P. S.

    1992-04-01

    The optical absorption and EPR spectra of magnesium potassium phosphate hexahydrate (MPPH) doped with copper ions are recorded both at room and liquid nitrogen temperatures. The spectrum is characteristic of Cu2+ in tetragonal symmetry. The spin-Hamiltonian parameters and molecular orbital coefficients are evaluated. A correlation between EPR and optical absorption studies is drawn.

  19. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Vlasenko, K.K.; Belov, A.A.; Vorob'ev, A.F.

    1986-01-01

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K + and I - ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  20. Effect of hydrocarbon radical length of fatty acid collectors on flotation separation process of thorium ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Perlova, O.V.; Sazonova, V.F.

    1991-01-01

    It is shown experimentally that the degree of flotation separation of thorium ions collected by their means increases firstly (potassium laurate), then decreases (potassium tridecanate) and after that increases again (potassium palminate) when increasing the length of the hydrocarbon radical of potassium soaps of saturated fatty acids. The first increase of the collector efficiency is due to the decrease of solubility of thorium-containing sublates, and drop and further increase is due to the change in colloidchemical properties of sublates

  1. Conversion of borate ions in liquid phase

    International Nuclear Information System (INIS)

    Gode, G.K.; Bernare, A.A.

    1989-01-01

    Isomolar series of aquepus solutions of magnesium chloride and potassium tetraborate at 25 deg C are investigated by the refractometry method. It is established that inderite containing triborate-ion is crystalized from solutions of rather high concentration. In 0.1 M solution reagents form supersaturated solutions with the decreased refractive index against the calculated one. It is supposed that this deviation is caused by partial transformation of tetraborate-ion to triborate-ion under the magnesium ion effect

  2. Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1

    OpenAIRE

    Baev, Didi; Rivetta, Alberto; Li, Xuewei S.; Vylkova, Slavena; Bashi, Esther; Slayman, Clifford L.; Edgerton, Mira

    2003-01-01

    Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target o...

  3. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater

    NARCIS (Netherlands)

    Griffioen, J.

    2001-01-01

    Fertilization of agricultural land in groundwater infiltration areas often causes deterioration of groundwater quality. In addition to nitrogen and phosphorous, potassium deserves attention. The fate of potassium in the subsurface is controlled mainly by cation-exchange. Use of the Potassium

  4. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance.

    Science.gov (United States)

    Brazhe, A R; Maksimov, G V; Mosekilde, E; Sosnovtseva, O V

    2011-02-06

    The myelinated nerve fibre is formed by an axon and Schwann cells or oligodendrocytes that sheath the axon by winding around it in tight myelin layers. Repetitive stimulation of a fibre is known to result in accumulation of extracellular potassium ions, especially between the axon and the myelin. Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from no block (less than 100 Hz) to a complete block (greater than 500 Hz). The transitional patterns include intermittent periodic block with interleaved spiking and non-spiking intervals of different relative duration as well as an unstable regime with chaotic switching between the spiking and non-spiking states. Intermittent conduction blocks are accompanied by oscillations of extracellular potassium. The mechanism of conductance block based on myelin restructuring complements the already known and modelled block via hyperpolarization mediated by the axonal sodium pump and potassium depolarization.

  5. 21 CFR 582.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1613 Potassium bicarbonate. (a)...

  6. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  7. 75 FR 23298 - Potassium Permanganate From China

    Science.gov (United States)

    2010-05-03

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China. SUMMARY: The... on potassium permanganate from China would be likely to lead to continuation or recurrence of...

  8. 75 FR 51112 - Potassium Permanganate From China

    Science.gov (United States)

    2010-08-18

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate from China... of the antidumping duty order on potassium permanganate from China would be likely to lead to...

  9. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  10. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  11. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections and...) of this chapter 0.25 Do. All other food categories 0.01 Do. (d) Prior sanctions for potassium... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food...

  12. Studies on the decomposition of ethyl diazoacetate and its reaction with coal. Formation of a new tetrameric product and reagent access within the coal

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Rooney, P.

    A new tetrameric pyrazoline, 10, has been observed in the thermal and Fe/sub 2/O/sub 3/-catalyzed decomposition of ethyl diazoacetate (2) as well as when several coal samples were treated thermally with 2 under various conditions. Identification of 10 was based on spectral properties and an independent synthesis. A comparison of the amounts of diethyl fumarate (3), diethyl maleate (4), the trimeric pyrazoline 5, triethyl trans-cyclopropane-1,2,3-tricarboxylate (8), and the tetrameric pyrazoline 10 formed in the coal reactions with the relative quantities produced in the thermal and Fe/sub 2/O/sub 3/-catalyzed reactions of 2, both neat and diluted with p-xylene, showed that there were several successive and competing reactions occurring, one of which was independent of the concentration of 2. Further, on the basis of the observation that the product distribution of 3-5, 8, and 10 in the Fe/sub 2/O/sub 3/-catalyzed decomposition of 2 in relatively dilute solution is similar to that observed in the coal reactions, with cyclopropane 8 being the major product in both cases, and that 2 is reacting mainly with the coal, it is concluded that 2 is fairly well dispersed within the coal. In addition, it is clear that swelling of the coal with dioxane did very little to facilitate access of 2 into the coal. Instead the dioxane merely acted to allow for more complete extraction of the products after 2 had reacted with the coal, presumably by keeping the matrix structure more open, than when the dioxane was not used. 26 refs., 2 tabs.

  13. Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin.

    Directory of Open Access Journals (Sweden)

    Valerie J O'Sullivan

    Full Text Available A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop(3-4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop(3-4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop(7-8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop(7-8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (k(off of 4.28×10(-4 s(-1 and K(d of 1.9×10(-8 M make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.

  14. Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Science.gov (United States)

    O'Sullivan, Valerie J.; Barrette-Ng, Isabelle; Hommema, Eric; Hermanson, Greg T.; Schofield, Mark; Wu, Sau-Ching; Honetschlaeger, Claudia; Ng, Kenneth K.-S.; Wong, Sui-Lam

    2012-01-01

    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible. PMID:22536357

  15. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  16. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    Science.gov (United States)

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  17. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  18. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  19. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  20. Electrodialysis recovery of boric acid and potassium hydroxide from eluates of SWC facilities at NPP with VVER

    International Nuclear Information System (INIS)

    Dudnik, S.N.; Virich, P.M.; Kramskikh, E.Y.; Masanov, O.L.; Turovsky, I.P.

    1993-01-01

    To extract boric acid and potassium hydroxide from regenerates of SWC-2-46 facilities, an electrodialysis-sorption process has been devised consisting of the following operations: separation of boron-alkaline regenerate solution into desorbate and wash water; filling of desalination and concentration chambers, respectively, with desorbate and was water of electrodialysis equipment; production of boric acid and potassium hydroxide from desorbate by electrodialysis; removal of chloride-ion from boric acid solution on ion-exchange filter AB-17-18. The flow-sheet was tested and boron containing alkaline regeneration solutions were recovered from Novovoronezh NPP

  1. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  2. On the fusibility of potassium heptafluorotantalate

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Bessonova, V.A.

    1983-01-01

    Phase transformations of potassium heptafluorotantalate near the liquidus temperature have been studied. Thermograms and polytherm of the electric condUctivity of potassium heptafluorotantalate, thermogram of the mechanical mixture 0.5 K 2 TaF 7 +0.5 KF and thermogram of K 3 TaF 8 crystallization are plotted. The phase diagram of the K 2 TaF 7 -KF system is presented. In the temperature range 746 to 778 deg, i.e. above K 2 TaF 7 melting point, the melt is shown to remain heterogeneous. A portion of the phase diagram rich in potassium heptafluorotantalate is qualified as an ordinary eutectics

  3. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  4. Effects of low energy helium plasma irradiation on potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xiaoyan [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang (China); Huang, Bo [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Liu, Dongping; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Ning [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Tang, Jun, E-mail: tangjun@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China)

    2017-04-15

    Effects of helium plasma irradiation on spark plasma sintering (SPS) W-K, pure W and traditionally sintered commercial W-K have been studied, concerning the density, grain size and potassium content as the influence factors. Pinholes are formed under 120 eV He ions at 600 °C and 1 × 10{sup 23} m{sup −2} fluence on the surface of all samples. It is found that SPS-sintered W-K shows the best irradiation resistance among the present samples, and SPS-sintered pure W exhibits higher irradiation tolerance than commercial W-K. Different He-plasma tolerance was observed among the SPS-sintered W-K samples due to varied potassium content and grain size. In addition, the microstructure evolution under helium irradiation, the growth-migration of helium bubbles and their interactions of potassium bubbles have also been discussed.

  5. Cole–Cole Parameter Characterization of Urea and Potassium for Improving Dialysis Treatment Assessment

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Meaney, Paul M.; Epstien, Neil R.

    2012-01-01

    In this letter, we investigate the characteristics of the dielectric properties of urea and ions such as potassium and sodium, which are the principal molecules studied during dialysis treatment. The method involves measuring the electrical properties of varying concentrations of the constituent...... solutions over a broad frequency range and estimating the associated Cole–Cole parameters. We utilized concentrations above those expected in vivo to achieve a more accurate characterization. In these studies, we found that the conductivity was essentially constant with respect to urea concentration but had...... a strong, nearly linear correlation with potassium. In addition, the alpha factor had a distinct, monotonically varying relationship for both urea and potassium with significantly different initial slopes. Utilizing these two curves, simple inversion algorithms are possible to compute the solute...

  6. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  7. Effect of potassium on micromorphological and chemical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... study the effect of potassium on yield and internal leaf tissues composition of cotton ... Nitrogen (N) and phosphorus (P) were applied at 150 mg N/kg soil and 75 mg ..... Copper enzymes in isolated chloroplasts: Polyphenol.

  8. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  9. Photoconductivity and dielectric studies of potassium pentaborate

    Indian Academy of Sciences (India)

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  10. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    OpenAIRE

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ...

  11. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  12. Determinação de potássio em méis após precipitação com tetrafenilborato de sódio e separação em coluna de troca-iônica Determination of potassium in honeys after precipitation with sodium tetraphenilborate and separation on ion exchanger column

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Alves Azeredo

    1998-10-01

    Full Text Available A new method for determination of potassium in honey samples of different colors was developed as an alternative method for determination of this metal. Analysis of genuine honeys attested by the qualities and quantities tests officially adopted in Brazil, showed that the concentration of potassium ranged from 181 to 315 mg/kg for light honeys, from 393 to 570 mg/kg for medium honeys and from 791 to 915 mg/kg for dark honeys. Recoveries making use of spikes of potassium added to the honey samples and to the deionized distilled water showed results close by hundred percent at pH <= 2,0 under temperature bellow 20°C.

  13. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  14. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    Science.gov (United States)

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  15. Nematodes from Swainson's spurfowl Pternistis swainsonii and an Orange River francolin Scleroptila levaillantoides in Free State Province, South Africa, with a description of Tetrameres swainsonii n. sp. (Nematoda: Tetrameridae).

    Science.gov (United States)

    Junker, K; Davies, O R; Jansen, R; Crowe, T M; Boomker, J

    2008-12-01

    Five Swainson's spurfowl collected in Free State Province, South Africa, were examined for helminth parasites, and the nematodes Acuaria gruveli, Cyrnea parroti, Gongylonema congolense, Subulura dentigera, Subulura suctoria and a new Tetrameres species were recovered. Their respective prevalence was 100, 20, 80, 20, 20 and 20%. These nematodes are all new parasite records for Swainson's spurfowl, and Acuaria gruveli constitutes a new geographical record as well. A single specimen of Cyrnea eurycerca was found in an Orange River francolin, representing a new host and geographical record for this parasite. The new species, for which the name Tetrameres swainsonii is proposed, can be differentiated from its congeners by a combination of the following characters of males: two rows of body spines, a single spicule which is 1152-1392 microm long, and eight pairs of caudal spines arranged in two ventral and two lateral rows of four spines each. The single female has the globular shape typical of the genus.

  16. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  17. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  18. Transverse thermal magnetoresistance of potassium

    International Nuclear Information System (INIS)

    Newrock, R.S.; Maxfield, B.W.

    1976-01-01

    Results are presented of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 0 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. A number of relationships are observed between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T,H) is given reasonably well by W(T,H)T = W(T,0)T + AH + BH 2 , where both A and B are temperature-dependent coefficients. Results show that A = A 0 + A 1 T 3 , while B(T) cannot be expressed as any simple power law. A 0 is dependent on the RRR, while A 1 is independent of the RRR. Two relationships are found between corresponding coefficients in the electrical and thermal magnetoresistance: (i) the Wiedmann--Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron--phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. It is concluded that at least a portion of the anomalous electrical and thermal magnetoresistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects

  19. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  20. The ions displacement through glasses

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1980-01-01

    A method to introduce sodium, potassium, lithium, calcium, iron and other ions in vacuum or gas light bulb by mean of a strong stationay electric field. The experiments showed that the mass deposited inside the bulbs obey Faraday's law of electrolysis, although the process of mass transfer is not that of a conventional electrolysis. A method which allows to show that hydrogen ions do not penetrate the glass structure is also described. Using radioactive tracers, it is shown that heavy ions, such PO 4 --- do not penetrate the glass structure. The vitreous state and the glass properties were studied for interpreting experimental results. (Author) [pt

  1. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.

    2018-02-01

    A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.

  2. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  3. Indirect complexometric determination of mercury(II) using potassium bromide as selective masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of mercury in presence of other metal ions based on the selective masking ability of potassium bromide towards mercury is described. Mercury(II) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against zinc sulfate solution at pH 5-6 using xylenol orange as the indicator. A known excess of 10 % solution of potassium bromide is then added and the EDTA released from Hg-EDTA complex is titrated against standard zinc sulfate solution. Reproducible and accurate results are obtained for 8 mg to 250 mg of mercury(II) with a relative error ±0.28 % and standard deviations /leg 0.5 mg. The interference of various ions is studied. This method was applied to the determination of mercury(II) in its alloys. (author)

  4. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genetic variation observed at three tetrameric short tandem repeat loci HumTHO1, TPOX, and CSF1PO--in five ethnic population groups of northeastern India.

    Science.gov (United States)

    Ranjan, D; Kashyap, V K

    2001-01-01

    This paper portrays the genetic variation observed at three tetrameric short tandem repeat (STR) loci HumTHO1, TPOX, and CSF1PO in five ethnic population groups from northeastern India. The study also specifies the suitability of use of these markers for forensic testing. The populations studied included three tribal groups (Kuki, Naga and Hmar), one Mongoloid caste group (Meitei), and a religious caste group (Manipuri Muslims). The loci were highly polymorphic in the populations, and all loci met Hardy-Weinberg expectations. No evidence for association of alleles among the loci was detected. The probability of match for the three loci of the most frequent genotype in the five population groups ranged between 2.6 x 10(-4) and 6.6 x 10(-5). The average heterozygosity among the population groups was approximately 70% with the overall extent of gene differentiation among the five groups being high (Gst = 0.046). Genetic affinity among the populations reveal very close association between the Kuki, Hmar, Naga, and Meitei. The Manipuri Muslims, despite being found in the same region, have had no admixture with these populations and maintain a substantial distance with the other groups. The genetic polymorphism data suggest that the studied systems can be used for human identity testing to estimate the frequency of a multiple locus STR DNA profile in population groups of northeastern India.

  6. Molecular dynamics characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization

    Science.gov (United States)

    Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro

    2018-05-01

    Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

  7. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  8. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  9. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin; Lee, Jyh-Fu; Wu, Nae-Lih

    2009-01-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  10. Electrochemical study in molten potassium thiocyanate; Etude electrochimique dans le thiocyanate de potassium fondu

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    We have studied in this work the electrochemical properties of molten potassium thiocyanate. The melting point of this salt is 173 deg C and we have chosen to work at 195 deg C. The molten salted is dissociated into K{sup +} and SCN{sup -} ions; since the K{sup +} ions are very difficult to reduce it is the oxido-reduction reaction of the SCN{sup -} ion which limits the electro-active zone of the solvent. We have shown that SCN{sup -} behaves as an addition compound of S{sup 0} and CN{sup -}.analysis of the products formed during the oxidation and the coulometric reduction of the bath shows that the electrochemical reactions which limit the electro-active zone of the solvent are the following: SCN{sup -} + 2 e {yields} S{sup 2-} + CN{sup -} SCN{sup -} + 2 e {yields} S{down_arrow} + 1/2 (CN){sup -}{sub 2} We have shown that it is possible also to carry out the chemical oxidation of the thiocyanate by introducing an oxidising cation such as Fe{sup 3+} or Cu{sup 2+}. This reaction leads to the same chemical species as the electrochemical oxidation. With respect to the Ag{down_arrow} / Ag 0.1 M electrode taken as reference, the electro-active limits are the following: from - 1.050 V to + 0.750 V for a platinum electrode from - 1.350 V to + 0.050 V for a mercury drop electrode. We have studied the electrochemical behaviour of a certain number of ions in the molten salt; by plotting the intensity-potential curves it has been possible to determine the half-wave potentials of several cations: Pb{sup 2+}, Sn{sup 2+}, Fe{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Hg{sup 2+}{sub 2}, Hg{sup 2+}, Cu{sup +}, Co{sup 2+}, Ni{sup 2+}, Cr{sup 3+}. A comparison of the potential values found in the thiocyanate with those which are already known for other molten solvents has made it possible for us to find parallels between the properties of the thiocyanate and those of certain salts such as molten chlorides or nitrates. Thus the complexing properties of SCN{sup -} with respect to Cu

  11. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    Science.gov (United States)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  12. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Sebnem Eren Cevik

    2012-02-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  13. Potassium cardioplegia: early assessment by radionuclide ventriculography

    International Nuclear Information System (INIS)

    Ellis, R.J.; Born, M.; Feit, T.; Ebert, P.A.

    1978-01-01

    Left ventricular function was evaluated by single pass /sup 99m/Tc radionuclide ventriculography when potassium cardioplegia was combined with hypothermia. In 35 patients undergoing myocardial revascularization (3 CABG/patient) in which potassium cardioplegia at 4 0 C was used, no patient developed a myocardial infarction either by electrocardiogram or /sup 99m/Tc pyrophosphate imaging in the postoperative period. In 22 patients, aortic cross-clamp time was greater than 60 min, and the ejection fraction by the single pass radionuclide technique was 50% preoperatively and 53% postoperatively (NS). Wall motion in the single RAO view was not worse postoperatively. No patient required any inotropic agents in the immediate postoperative period. It appears that no significant ventricular impairment occurred in the immediate postoperative period (48 to 72 hours) when potassium cardioplegia combined with hypothermia was used for a 60-minute period

  14. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Tuba Cimilli Ozturk

    2012-01-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  15. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    Science.gov (United States)

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  16. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  17. Enthalpies of potassium iodide dissolution in dimethyl acetamide mixtures with water

    International Nuclear Information System (INIS)

    Privalova, N.M.; Gritsenko, S.I.; Vorob'ev, A.F.

    1986-01-01

    Enthalpies of potassium iodide dissolution in mixed dimethyl acetamide - water solvent at 298.15 K in the whole range of dimethyl acetamide compositions are measured by the calorimetric method. From the plots of KI dissolution enthalpy dependence and dependence of experimental ΔH p∞ 0 value deviations from calculational ones on solvent composition, as well as from the results of calculation of solvate shell composition of potassium iodide ions in the mixed solvent, it is obvious that in the region of 0-15 mol% concentrations of dimethyl acetamide insufficient enrichment of solvate ion shells by dimethyl acetamide (DMAA) occurs, in the region of 15-40 mol% DMAA compositions enrichment of solvate shells of ions by water occurs, in the region of 40-100 mol% DMAA enrichment of solvate ion shells by the organic component in comparison with mixture compostion occurs. Maximum enrichment of solvate ion shells by mixture components in three above mentioned regions of the mixed solvent occurs at 10, 30 and 80 mol% DMAA concentrations

  18. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  19. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  20. The monomeric, tetrameric, and fibrillar organization of Fib: the dynamic building block of the bacterial linear motor of Spiroplasma melliferum BC3.

    Science.gov (United States)

    Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo

    2011-07-08

    Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. 21 CFR 862.1600 - Potassium test system.

    Science.gov (United States)

    2010-04-01

    ... potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte balance in the diagnosis and treatment of diseases conditions characterized by low or high blood potassium levels. (b) Classification. Class II. ...

  2. 21 CFR 184.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  3. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  4. Computational study on potassium picrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai; Lu, Ya-Lin; Ma, Xiu-Fang; Xiao, He-Ming [Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-08-15

    DFT calculation at the B3LYP level was performed on crystalline potassium picrate. The frontier bands are slightly fluctuant. The energy gap between the highest occupied crystal orbital (HOCO) and the lowest unoccupied crystal orbital (LUCO) is 0.121 a.u. (3.29 eV). The carbon atoms that are connected with the nitro groups make up the narrow lower energy bands, with small contributions from nitro oxygen and phenol oxygen. The higher energy bands consist of orbitals from the nitro groups and carbon atom. The potassium bears almost 1 a.u. positive charge. The potassium forms ionic bonding with the phenol oxygen and the nitro oxygen at the same time. The crystal lattice energy is predicted to be -574.40 kJ/mol at the B3LYP level determined with the effective core pseudopotential HAYWSC-31G basis set for potassium and 6-31G** basis set for other atoms. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Altered potassium homeostasis in Crohn's disease

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Bosaller, C.; Lehr, L.

    1983-01-01

    The total body potassium (TBK), serum potassium, and the number of red blood cell ouabain-binding sites was studied in 94 patients with Crohn's diease. TBK was measured by counting the endogenous 40 K in a whole body counter. TBK was 87%+-13% in 94 patients was Crohn's disease, while in control subjects, it was 97%+-12% (n=24). This significant reduction in TBK was accompanied by normal serum potassium levels (4.4+-0.5 mM). TBK was significantly correlated with the Crohn's disease activity index (r=0.79, n=113, P 3 H-ouabain showed a significant increse in the number of Na-K pumps in Crohn's disease (396+-65, n=27) compared with the control group. 290+-45 (n=24). These results support the suggestion that changes in TBK may regulate the synthesis of Na-K pump molecules. The total body potassium depletion and the need for a preoperative nutritional support in Crohn's disease are discussed. (orig.)

  6. Nutritional potassium requirement for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2011-12-01

    Full Text Available The objective of this study was to evaluate the potassium requirement for laying Japanese quails. Two hundred and forty quails were distributed in a randomized block design, with five treatments and six replicates, with eight birds each. The treatments consisted of a basal diet deficient in potassium (K (2.50 g/kg, supplemented with potassium carbonate, to replace the inert, to reach levels of 2.50, 3.50, 4.50, 5.50 and 6.50 (g/kg of K in the diet. There was a quadratic effect of K levels on feed intake, egg production, egg mass and feed conversion per egg mass and per egg dozen, estimating the requirements of 4.26, 4.41, 4.38, 4.43 and 4.48 (g/kg of K diet, respectively. There was no significant effect on the levels of K in the diet on egg weight, albumen weight, percentage of yolk or shell and yolk color. However, yolk and shell weights reduced and the albumen percentage increased linearly with increasing levels of K in the diet. Despite the reduction of shell weight, the increased levels of K did not influence the specific gravity and shell thickness. The use of 4.41 g/kg of potassium is recommended in the diet for laying Japanese quails.

  7. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  8. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  9. Acute Renal Failure following Accidental Potassium Bromate ...

    African Journals Online (AJOL)

    Accidental poisoning is common in children. Potassium bromate is a commonly used additive and raising agent in many edibles particularly bread, a staple food worldwide, yet its accidental poisoning has hitherto, not been documented in Nigeria. We report an unusual case of acute renal failure following accidental ...

  10. Brand to brand variation in the disintegrant functionality of Polacrilin Potassium, NF

    Directory of Open Access Journals (Sweden)

    Mrudula H. Bele

    2011-09-01

    Full Text Available The current monograph for Polacrilin Potassium, NF does not specify tests that could assist in distinguishing between different brands of this disintegrant. The objective of this work was to examine the physical characteristics of four brands of Polacrilin Potassium, NF and relate the observed differences to differences in their functionality. Significant differences were observed in the particle size, true density, porosity, surface area and morphology of the samples. Functionality tests, such as settling volume, intrinsic swelling, rate and extent of water uptake were carried out. Significant differences were observed in intrinsic swelling and the initial rate of water uptake. The disintegration times of the tablets were found to be a function of the initial rate of water uptake. Since the disintegration times were shown to be significantly different despite negligible differences in settling volumes, wicking and water uptake, as opposed to the magnitude of swelling, appear to be the major mechanisms that distinguish disintegration performance between different brands of Polacrilin Potassium, NF when incorporated into insoluble tablet matrices. Thus, the measurement of the rate of water uptake may be a useful functionality test for Polacrilin Potassium in particular, and for ion exchange resin type disintegrants in general.

  11. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    Science.gov (United States)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  12. A Common Structural Component for β-Subunit Mediated Modulation of Slow Inactivation in Different KV Channels

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Henrion, Ulrike; Schmitt, Nicole

    2013-01-01

    Background/Aims: Potassium channels are tetrameric proteins providing potassium selective passage through lipid embedded proteinaceous pores with highest fidelity. The selectivity results from binding to discrete potassium binding sites and stabilization of a hydrated potassium ion in a central...... internal cavity. The four potassium binding sites, generated by the conserved TTxGYGD signature sequence are formed by the backbone carbonyls of the amino acids TXGYG. Residues KV1.5-Val481, KV4.3-Leu368 and KV7.1- Ile 313 represent the amino acids in the X position of the respective channels. Methods...

  13. Determinants of renal potassium excretion in critically ill patients : The role of insulin therapy

    NARCIS (Netherlands)

    Hoekstra, Miriam; Yeh, Lu; Oude Lansink, Annemieke; Vogelzang, Mathijs; Stegeman, Coen A.; Rodgers, Michael G. G.; van der Horst, Iwan C. C.; Wietasch, Gotz; Zijlstra, Felix; Nijsten, Maarten W. N.

    Objectives: Insulin administration lowers plasma potassium concentration by augmenting intracellular uptake of potassium. The effect of insulin administration on renal potassium excretion is unclear. Some studies suggest that insulin has an antikaliuretic effect although plasma potassium levels were

  14. Transport of Alkali Metal Ions through a Liquid Membrane System ...

    African Journals Online (AJOL)

    crown-6, [K(MF18C6)](picrate) was determined by X-ray crystallography and showed that each potassium ion is eight-coordinate; each K+ ion is coordinated to the six oxygen atoms of the crown, to the phenolate oxygen atom and to one of the ...

  15. Graphene Visualizes the Ion Distribution on Air-Cleaved mica

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin Herman; Zandvliet, Henricus J.W.; Poelsema, Bene

    2017-01-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization

  16. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  17. A novel potassium deficiency-induced stimulon in Anabaena torulosa

    Indian Academy of Sciences (India)

    Unknown

    torulosa and of nine proteins in Escherichia coli. These were termed potassium deficiency-induced proteins or. PDPs and constitute hitherto unknown potassium deficiency–induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the ...

  18. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors. See...

  19. Relationship between potassium intake and radiocesium retention in the reindeer

    International Nuclear Information System (INIS)

    Holleman, D.F.; Luick, J.R.

    1975-01-01

    The effect of dietary potassium on radiocesium retention was studied in reindeer fed winter diets of lichens. Potassium added to the diet markedly decreased radiocesium retention; this suggests that seasonal changes in cesium retention observed earlier in reindeer might be caused largely by nutritional factors. Data indicate that a 20-fold increase in dietary potassium results in a 2-fold decrease in radiocesium retention

  20. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  1. Synthesis and characterization of super absorbent poly (acrylamide-co-potassium acrylate) hydrogels by radiation technique

    International Nuclear Information System (INIS)

    Erizal

    2010-01-01

    A series of super absorbent hydrogels were prepared from acrylamide (AAm) and potassium acrylate (KA) by gamma irradiation technique at room temperature. The solution containing potassium acrylate 15% and different concentrations of AAm (10-16%) were irradiated by gamma rays (20-40 kGy). The hydrogels produced by irradiation were characterized by fourier transform infra red spectroscopy (FT-IR). The gel fraction, kinetics of swelling and the equilibrium degree of swelling (EDS) were studied. Under irradiation dose of 20 kGy and concentration of AAM 10 %), poly(AAm-co-KA) hydrogel with high gel fraction (99.08%) and very high EDS (420 g/g) were obtained. The capacity of hydrogel to adsorb metal ion Cu 2+ and Fe 3+ were investigated. It is shown than 10 minutes the hydrogel could adsorb Cu 2+ ion up to 95 %, and Fe 3+ ion up to 55 % in 80 minutes. This hydrogel has a potential to be used for soil conditioning and ion metal absorbent. (author)

  2. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  3. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  4. Radiation decomposition of pure and barium doped potassium nitrate and effect of oxides thereon

    International Nuclear Information System (INIS)

    Patil, S.F.; Bedekar, A.G.

    1985-01-01

    Studies of radiation decomposition of naturally and quench cooled fused potassium nitrate and potassium nitrate doped with Ba 2+ ions reveal that in quench cooled samples the nitrite yield is higher than in the naturally cooled samples. This observation is attributed to the higher defect concentration present in the quenched samples. A comparison of G(NO 2 - ) values obtained in heterogeneous mixtures containing PbO and Al 2 O 3 indicates that Al 2 O 3 retards while PbO enhances the rate of formation of nitrite during radiolysis. Further, G(NO 2 - ) values were found to increase with the mole% of PbO in the admixture. These results observed in the heterogeneous systems are explained on the basis of energy transfer processes occurring within the solid and at the surface and also in terms of electron donor-acceptor properties of oxides. (orig.)

  5. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  6. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  7. Scanning Tunneling Spectroscopy of Potassium on Graphene

    Science.gov (United States)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  8. Potassium tetracyanidoaurate(III monohydrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsushita

    2017-03-01

    Full Text Available The structure of the title metal complex salt, K[Au(CN4]·H2O, has been redetermined using X-ray diffraction data at 173 K in order to improve the precision. The previous determination was based on neutron diffraction data [Bertinotti & Bertinotti (1970. Acta Cryst. B26, 422–428]. The title compound crystallizes in the space group P212121 with one potassium cation, one [Au(CN4]− anion and one water molecule in the asymmetric unit. The AuIII atom lies on a general position and has an almost square-planar coordination sphere defined by four cyanide ligands. Interactions between the potassium cation and N atoms of the complex anion, as well as O—H...N hydrogen bonds, lead to the formation of a three-dimensional framework structure.

  9. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  10. Potassium sensing histidine kinase in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  12. Potassium Permanganate Poisoning: A Nonfatal Outcome

    Directory of Open Access Journals (Sweden)

    Suzan M. Eteiwi

    2015-07-01

    Full Text Available Acute poisoning by potassium permanganate is a rare condition with high morbidity and mortality. Diagnosis of the condition relies on a history of exposure or ingestion and a high degree of clinical suspicion. Oxygen desaturation and the presence of methemoglobin are also helpful indicators. Since no specific antidote is available, treatment is mainly supportive. Few cases have been reported in the literature following potassium permanganate ingestion, whether intentional or accidental, and most of the patients in these cases had unfavorable outcomes, which was not the case in our patient. Our patient, a 73-year-old male, purchased potassium permanganate over the counter mistaking it for magnesium salt, which he frequently used as a laxative. Several hours after he ingested it, he was admitted to the endocrine department at King Hussein Medical Center, Jordan, with acute rapidly evolving shortness of breath. During hospitalization, his liver function tests deteriorated. Since he was diagnosed early and managed promptly he had a favorable outcome.

  13. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  14. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: a study in awake goats.

    Science.gov (United States)

    Wester, Maarten; Gerritsen, Karin G; Simonis, Frank; Boer, Walther H; Hazenbrink, Diënty H; Vaessen, Koen R; Verhaar, Marianne C; Joles, Jaap A

    2017-06-01

    Patients on standard intermittent haemodialysis suffer from strong fluctuations in plasma potassium and phosphate. Prolonged dialysis with a wearable device, based on continuous regeneration of a small volume of dialysate using ion exchangers, could moderate these fluctuations and offer increased clearance of these electrolytes. We report in vivo results on the efficacy of potassium and phosphate adsorption from a wearable dialysis device. We explore whether equilibration of ion exchangers at physiological Ca 2+ , Mg 2+ and hypotonic NaCl can prevent calcium/magnesium adsorption and net sodium release, respectively. Effects on pH and HCO3- were studied. Healthy goats were instrumented with a central venous catheter and dialysed. Potassium and phosphate were infused to achieve plasma concentrations commonly observed in dialysis patients. An adsorption cartridge containing 80 g sodium poly(styrene-divinylbenzene) sulphonate and 40 g iron oxide hydroxide beads for potassium and phosphate removal, respectively, was incorporated in a dialysate circuit. Sorbents were equilibrated and regenerated with a solution containing NaCl, CaCl 2 and MgCl 2 . Blood was pumped over a dialyser and dialysate was recirculated over the adsorption cartridge in a countercurrent direction. Potassium and phosphate adsorption was 7.7 ± 2.7 and 4.9 ± 1.3 mmol in 3 h, respectively. Adsorption capacity remained constant during consecutive dialysis sessions and increased with increasing K + and PO43-. Equilibration at physiological Ca 2+ and Mg 2+ prevented net adsorption, eliminating the need for post-cartridge calcium and magnesium infusion. Equilibration at hypotonic NaCl prevented net sodium release Fe 2+ and arterial pH did not change. Bicarbonate was adsorbed, which could be prevented by equilibrating at HCO3- 15 mM. We demonstrate clinically relevant, concentration-dependent, pH-neutral potassium and phosphate removal in vivo with small volumes of regenerable ion exchangers in our

  15. Spatial Distributions of Potassium, Solutes, and Their Deposition Rates in the Growth Zone of the Primary Corn Root 1

    Science.gov (United States)

    Silk, Wendy Kuhn; Hsiao, Theodore C.; Diedenhofen, Ulrike; Matson, Christina

    1986-01-01

    Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics. PMID:16665121

  16. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  17. Potassium influx and efflux of 2,4-D and MCPA-treated rice plants

    International Nuclear Information System (INIS)

    Zsoldos, F.; Haunold, E.

    1976-10-01

    A study was made of the effects of the herbicides 2,4-D and MCPA on the ion uptake, leakage and growth of rice seedlings. The isotopically-labelled solution contained different concentrations of 2,4-D (2,4-dichlorophenoxyacetic acid) or MCPA (4-chloro-2-methylphenoxyacetic acid). It was established that in the presence of 10 -4 M 2,4-D or MCPA the potassium ion uptake was effectively inhibited, while the K-ion leakage from the roots occurred only at 10 -3 M treatment. The growth of the rice seedlings was markedly retarded even at lower (10 -6 M) concentrations, and the roots and shoots tolerated the herbidie-treatment to different extents. At 10 -8 M herbicide concentration, the effects exhibited were not injurious, but rather favourable. Reduction in root length by herbicides was not in accordance with dry matter production. (author)

  18. Race, Serum Potassium, and Associations With ESRD and Mortality.

    Science.gov (United States)

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and

  19. Determination of trimethylselenonium ion in urine by ion chromatography and inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jessen, K.D.; Kristensen, F.H.

    2000-01-01

    The selenium species selenite, selenate, selenomethionine (SeMet), and trimethylselenonium iodide (TMSe+) were separated in aqueous solution by ion chromatography. The separation was performed on an Ionpac CS5 cation exchange column by elution with 10 mM oxalic acid and 20 mM potassium sulphate, p...

  20. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  1. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  2. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity.

    Science.gov (United States)

    Le Bihan, Yann-Vaï; Matot, Béatrice; Pietrement, Olivier; Giraud-Panis, Marie-Josèphe; Gasparini, Sylvaine; Le Cam, Eric; Gilson, Eric; Sclavi, Bianca; Miron, Simona; Le Du, Marie-Hélène

    2013-03-01

    Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.

  3. Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate

    International Nuclear Information System (INIS)

    Fukuda, Katsutoshi; Kato, Hisato; Sato, Jun; Sugimoto, Wataru; Takasu, Yoshio

    2009-01-01

    The intercalation chemistry of a layered protonic ruthenate, H 0.2 RuO 2.1 .nH 2 O, derived from a layered potassium ruthenate was studied in detail. Three phases with different hydration states were isolated, H 0.2 RuO 2.1 .nH 2 O (n=∼0, 0.5, 0.9), and its reactivity with tetrabutylammonium ions (TBA + ) was considered. The layered protonic ruthenate mono-hydrate readily reacted with TBA + , affording direct intercalation of bulky tetrabutylammonium ions into the interlayer gallery. Fine-tuning the reaction conditions allowed exfoliation of the layered ruthenate into elementary nanosheets and thereby a simplified one-step exfoliation was achieved. Microscopic observation by atomic force microscopy and transmission electron microscopy clearly showed the formation of unilamellar sheets with very high two-dimensional anisotropy, a thickness of only 1.3±0.1 nm. The nanosheets were characterized by two-dimensional crystallites with the oblique cell of a=0.5610(8) nm, b=0.5121(6) nm and γ=109.4(2) o on the basis of in-plane diffraction analysis. - Graphical abstract: Layered protonic ruthenate derived from a potassium form was directly reacted with bulky tetrabutylammonium ions to trigger exfoliation into nanosheets as long as it is highly hydrated.

  4. In vitro effect of pH on resistance of ruminal bacteria to intracellular potassium depletion, and effect of pH and ionophores on ammonia and microbial protein production Efeito do pH in vitro sobre a resistência de bactérias do rúmen à perda de potássio intracelular e efeito do pH e de ionóforos sobre a produção de amônia e proteína microbiana

    Directory of Open Access Journals (Sweden)

    W.M. Leopoldino

    2005-12-01

    Full Text Available Ruminal fluid from steers fed on pasture was incubated with artificial media at pH 5.5 and 7.0 in two experiments. In the first, the effect of monensin level on resistance of ruminal bacteria to potassium depletion was evaluated; in the second, effects of the ionophores monensin and lasalocid on ammonia and protein production were quantified. In experiment 1, culture media affected potassium level. The monensin concentration needed to cause half maximal potassium depletion was 2.77µM at pH 5.5 but was 0.056µM at pH 7.0, showing that bacteria incubated at pH 5.5 were more tolerant to monensin than those incubated at pH 7.0. Both ionophores as well as increased acidity caused decreased ammonia production. Both ionophores inhibited ammonia production by 56%, independently of pH. In cultures incubated at pH 5.5 compared to pH 7.0, ammonia production was decreased by 50.5%, independently of the ionophores. Therefore, effects of ionophores and acidity were additive, and the maximum inhibition occurred in the presence of an ionophore at low pH (75.2%. Microbial protein production was lowest when lasalocid was present in a low pH culture medium, causing inhibition of microbial growth.Em dois estudos, o líquido ruminal de bovinos mantidos sob pastagem foi usado para incubação in vitro em diferentes meios artificiais com valores de pH 5,5 e 7,0, para avaliar a ação de níveis crescentes de monensina na resistência à perda de potássio de bactérias do rúmen e verificar o efeito de monensina e lasalocida na produção de amônia e de proteína microbiana em pH 5,5 e 7,0. O meio utilizado para determinar a perda de potássio interferiu nos valores absolutos de potássio. A concentração de monensina necessária para causar a metade da perda máxima de potássio foi de 2,77µM em pH 5,5 e 0,056µM em pH 7,0, evidenciando que as bactérias incubadas em meios com pH 5,5 foram mais resistentes à monensina que aquelas incubadas em meios com pH 7

  5. Application of radioactive tracers in upgradation of industrial grade ion exchange resin (Amberlite IRA-400)

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    1998-01-01

    The exchange rates of ion exchange are determined by application of 131 I as a tracer isotope. The exchange study carried out in this investigation deals with understanding the effectiveness of ion exchange resin (in iodide form) Amberlite IRA-400 at different concentrations of potassium iodide solution (electrolyte) with temperature of solution varying from 27-48 degC by keeping amount of ion exchange resin constant (1.0 g). The exchange study is also carried out by varying amount of ion exchange resins, for fixed temperature (27.0 degC) and for fixed concentration of potassium iodide solution (0.005 M). (author)

  6. Illitization of Potassium, Cesium, and Ammonium Exchanged Smectite

    Science.gov (United States)

    Mills, M. M.; Wang, Y.; Payne, C.; Sanchez, A. C.; Boisvert, L.; Matteo, E. N.

    2017-12-01

    Bentonite clay is a primary choice for engineered barrier systems within geologic repositories for disposal of radioactive wastes due to its low permeability at saturated states, warranting diffusion as the dominant transport mechanism, and large swelling pressures that promote sealing. In order to predict how well the barrier will function over time at repository relevant temperatures, it is important to understand thermal alteration effects on montmorillonite, better known as smectite, a main constituent of bentonite. One type of thermal alteration is the conversion to illite, when exposed to elevated temperatures and a sufficient amount of potassium ions, thereby weakening barrier functions. To facilitate the conversion of smectite to illite and examine the influence of interlayer cations, illitization experiments on cation exchanged smectite were performed within hydrothermal reaction vessels over one week timescales. The detect any dissolved products and silica content. Results suggest the conversion rate is relatively fast, occurring within days, and is dependent on not only the amount of K, but also dissolved silica concentration related to total solid in solution. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7856A

  7. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    OpenAIRE

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ?5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose ...

  8. Atomic energy levels of the iron-period elements: potassium through nickel

    International Nuclear Information System (INIS)

    Sugar, J.; Corliss, C.

    1985-01-01

    Experimentally derived energy levels of the elements from potassium to nickel in all stages of ionization are critically compiled. The data for each level include its position in /cm (relative to the ground state), configuration, term designation, J-value, and, where available, the g-value and two leading percentages of the eigenvector composition in the most appropriate coupling scheme. For the He I and H I isoelectronic sequences, calculated level positions are given because they are considered more accurate than the measurements presently available. Ionization energies for each ion are derived either from Rydberg series, extrapolation, or calculation. Complete references are given for the compiled data

  9. Comparative substoichiometric extraction of zinc with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, P.

    1995-01-01

    The comparative extractability of zinc with potassium salts of ethyl, propyl, butyl, pentyl, and benzyl xanthates from the pH range of 3.5-9.0 into chloroform has been studied, employing a sensitive and rapid substoichiometric radiochemical method. The extent of reproducibility was tested in each case. The effect of associated ions on the extraction was studied. The amount of zinc present in the standard solutions was determined employing each xanthate separately. The zinc content present in geological water samples in and around Tirupati was determined by the method developed and compared with the values obtained by Atomic Absorption Spectrophotometry. (author) 4 refs.; 3 figs.; 4 tabs

  10. Comparative substoichiometric extraction of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, B.

    1995-01-01

    A comparative study of the extractability of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates into chloroform and a mixture of 1:4 pyridine and ethyl acetate from pH 1-7 buffers and sodium formate media, respectively, has been carried out employing an accurate and highly sensitive substoichiometric radiochemical method. The effect of foreign ions on the extractability was studied. The method developed was utilized for the determination of cadmium content in standard as well as in geological water samples. (author) 4 refs.; 5 figs.; 3 tabs

  11. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  12. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  13. Natural potassium as a teaching material

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1993-07-01

    An experience of an educational experiment is presented with results and discussion. It was performed in the introductory course of nuclear energy in the Nuclear Education Center of Japan Atomic Energy Research Institute. Purpose of the experiment is understanding disintegration rate (Bq, radioactivity or λN) through measurement of low radioactivity of natural potassium. It was accomplished through calculation of the radioactivity of a measuring known sample and counting efficiency during measurement. The students in the training course had great variety and most students did not have preliminary knowledge. But they said in the questionnaire having almost understood the experiment; and some students enjoyed it. (author)

  14. Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion

    DEFF Research Database (Denmark)

    2015-01-01

    A process for the preparation of lactic acid and 2-hydroxy- 3-butenoic acid or esters thereof from a sugar in the presence of a metallo-silicate material, a metal ion and a solvent, wherein the metal ion is selected from one or more of the group consisting of potassium ions, sodium ions, lithium...

  15. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    exposure temperatures slowdown the deactivation. K2SO4 causes a lower rate of deactivation compared to KCl. This may be related to a faster transfer of potassium from the solid KCl matrix to the catalyst, however, it cannot be ruled out toalso be caused by a significantly larger particle size of the K2SO4...

  16. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  17. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion.

    Science.gov (United States)

    Thurlow, John S; Little, Dustin J; Baker, Thomas P; Yuan, Christina M

    2013-06-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion.

  18. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    Science.gov (United States)

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion. PMID:26064493

  19. Regulation of extrarenal potassium homeostasis by adrenal hormones in rats.

    Science.gov (United States)

    Bia, M J; Tyler, K A; DeFronzo, R A

    1982-06-01

    The effect of chronic (7-10 days) adrenal insufficiency on extrarenal potassium tolerance was examined by infusing potassium into rats after acute nephrectomy. The increment in plasma potassium concentration was significantly higher in glucocorticoid-replaced adrenalectomized rats versus controls (max delta PK 3.59 +/-0.11 vs. 2.93 +/- 0.08 meq/liter; P less than 0.001). The impairment in extrarenal potassium tolerance in adrenalectomized rats could not be attributed to acidemia, hypotension, changes in plasma insulin or glucose concentration, or potassium retention prior to study. Acute replacement with aldosterone resulted in significant improvement in the rise in plasma potassium after KCl (max delta PK 3.18 +/- 0.06 meq/liter; P less than 0.005 compared with aldosterone-deficient adrenalectomized rats but higher than in controls, P less than 0.02). If given on a chronic basis, aldosterone replacement led to a complete correction of the defect (max delta PK = 2.89 +/- 0.08 meq/liter). Acute epinephrine replacement in adrenalectomized rats also returned potassium tolerance to normal (max delta PK = 3.02 +/- 0.10 meq/liter). The results demonstrate that extrarenal potassium tolerance is impaired in chronic adrenal insufficiency and suggest that both aldosterone and epinephrine deficiency may contribute to the defect, since replacement with either hormone returns potassium tolerance toward normal. Accordingly, both aldosterone and epinephrine have important extrarenal mechanisms of action.

  20. Role of hemolysis in potassium release by iodinated contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Nakamura, T.; Shimizu, Y. [Department of Radiology, Kyoto City Hospital (Japan)

    1999-09-01

    It has been demonstrated that an iodinated contrast medium (CM) causes release of potassium into blood vessel lumina, resulting in an increase in serum potassium. The purpose of the present study was to assess whether this potassium release is due to hemolysis. Fresh human blood was mixed in vitro with CM at a ratio of 10:2. Potassium release rates were determined, and serum haptoglobin and free hemoglobin were measured after 30 min of exposure to CM. To compare the potassium release curve between CM exposure and true hemolysis induced by distilled water, fresh human blood was also mixed with distilled water. The level of serum haptoglobin decreased due to hemodilution. Changes in haptoglobin were not correlated with potassium release rates. The serum free hemoglobin level did not increase significantly, and there was no correlation between changes in the free hemoglobin level and the rate of potassium release. Hemolysis caused by water occurred instantaneously, whereas potassium release caused by CM was a slow response, which was linearly correlated with exposure time. Potassium release from blood cannot be explained by hemolysis. (orig.) With 4 figs., 4 tabs., 3 refs.

  1. Synthesis of Analcime Crystals and Simultaneous Potassium Extraction from Natrolite Syenite

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2017-01-01

    Full Text Available Analcime single crystals were successfully synthesized from natrolite syenite powder (K2O 10.89% and 92.6% of potassium was extracted simultaneously by means of soda roasting followed by alkali-hydrothermal method. Effects of NaOH concentration, reaction temperature, and holding period on the analcime formation and potassium extraction were investigated systemically. The results indicated that NaOH concentration plays an important role in determining the chemical composition of zeolites and size distribution; by turning the NaOH concentrations, three different pure zeolites (i.e., the phillipsite-Na, the analcime, and the sodalite were prepared. Besides, a higher temperature could accelerate the dissolution of K+ ions and enhance the crystallinity degree of zeolite. The reactions involved in the analcime synthesis can be summarized as follows: sodium aluminum silicate dissolution → precipitation and dissolution of metastable zeolite-P → analcime nucleation → analcime growth. The extraction ratio of K+ is associated with the types of synthesized zeolites, among which analcime is the most effective to promote potassium leaching out from zeolite lattice position. The optimal condition for analcime crystallization and K+ leaching is found to be as follows: 175°C for 4 h in 0.5 mol/L NaOH solution.

  2. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  3. Acid-permanganate oxidation of potassium tetraphenylboron

    International Nuclear Information System (INIS)

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO 2 , highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO 4 /2.5M H 3 PO 4 solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO 2 (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation

  4. Potassium nutrition on lychee (Litchi chinensis Sonn

    Directory of Open Access Journals (Sweden)

    Aburto-González, C.A

    2016-01-01

    Full Text Available The lychee (Litchi chinensis Sonn is a potential alternative crop for areas with subtropical climate. In Mexico, cv. ‘Brewster’ dominates 98 % in terms of established surface; however, it has many problems to maintain stable production through its production cycles. Worldwide, yield per hectare ranges from 1 to 15 t. In Mexico, yields also fluctuate in that range. Researches who have worked with it agree that much of the problem that leads to low yields is the lack of a proper nutrition program. All existing information regarding the fertilization of this crop has been generated in other countries, mainly India, USA and Australia. Its need for K+ is higher compared to N and P. Since K+ is a nutrient that has an impact on yield and fruit quality, this paper review focuses on studies that have been done on potassium nutrition on lychee and concludes that more research is needed to take correct decision about the amount and time for potassium application.

  5. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  6. Preparation of High specific activity of ''51 Cr by the Szilard-Chalmers effect on potassium chromate

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Gomez, M; Villar Castejon, M A

    1965-07-01

    The {sup 5}1 Cr enriched Cr{sup 3}+ ions, which appear on putting into solution the potassium chromate irradiated with neutrons, are separated as chromium hydroxide. The CrO{sub 4}{sup 2}- ions occluded by the precipitate are eliminated on re precipitating the hydroxide. The more convenient irradiation time to for the production of {sup 5}1 Cr has been determined as the position of the maximum in the experimental curve P=f(t), where the time-dependent index P used is defined as the product of the number. (Author) 13 refs.

  7. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    Science.gov (United States)

    Robertson, Sarena D.; Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Kuruppuaratchi, Dona Chathuni P.; Derr, Nicholas James; Gallant, Margaret A.; McFarland, Christina G.; Sarantos, Menelaos

    2018-01-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmins (~224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from several observations from 2014 through 2017 at various times of the year. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and the influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. In contrast, the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis of 2017 data (January through June, excluding February) indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Preliminary results from 2014 data depict a similar range of temperatures to that of 2017. Further analysis is expected for additional data from 2014 to later observations in 2017 that were not included in the initial set of models.

  8. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    Science.gov (United States)

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  9. Sodium and potassium concentrations in floral nectars in relation to ...

    African Journals Online (AJOL)

    Sodium and potassium concentrations have been measured in nectar from a variety of flowering plants visited by honey bees (Apis mellifera capensis). In 18 plant species the mean sodium concentration was 9,8 ± 1,4 mmol (± S.E.), and the mean potassium concentration was 18,7 ± 4,3 mmol. These results are compared ...

  10. 75 FR 63856 - Potassium Permanganate From China Determination

    Science.gov (United States)

    2010-10-18

    ... Permanganate From China Determination On the basis of the record \\1\\ developed in the subject five-year review... potassium permanganate from China would be likely to lead to continuation or recurrence of material injury... Commission are contained in USITC Publication 4183 (September 2010), entitled Potassium Permanganate from...

  11. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  12. Potassium bromate content of some baked breads sold in Kano ...

    African Journals Online (AJOL)

    Background: Potassium bromate is an additive used by some bakers to make the bread rise rapidly, create a good texture in the finished product and to give bulkiness to the dough. Objective: The main objective of this work was to assess the potassium bromate residues of some baked breads sold in some selected local ...

  13. Conversion of borate ions in liquid phase. Izmenenie sostava borationov v zhidkoj faze

    Energy Technology Data Exchange (ETDEWEB)

    Gode, G K; Bernare, A A [Latvijskij Gosudarstvennyj Univ., Riga (USSR)

    1989-01-01

    Isomolar series of aquepus solutions of magnesium chloride and potassium tetraborate at 25 deg C are investigated by the refractometry method. It is established that inderite containing triborate-ion is crystalized from solutions of rather high concentration. In 0.1 M solution reagents form supersaturated solutions with the decreased refractive index against the calculated one. It is supposed that this deviation is caused by partial transformation of tetraborate-ion to triborate-ion under the magnesium ion effect.

  14. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  15. Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner

    International Nuclear Information System (INIS)

    Zhang, Pengyao; Idota, Yoko; Yano, Kentaro; Negishi, Masayuki; Kawabata, Hideaki; Arakawa, Hiroshi; Ogihara, Takuo; Morimoto, Kaori; Tsuji, Akira

    2014-01-01

    We found that bacteria in a commercial soil conditioner sold in Ishinomaki, Miyagi, exhibited concentrative and saturable cesium ion (Cs + ) uptake in the natural range of pH and temperature. The concentration of intracellular Cs + could be condensed at least a few times higher compared with the outside medium of the cells. This uptake appeared to be mediated by a K + transport system, since Cs + uptake was dose-dependently inhibited by potassium ion (K + ). Eadie-Hofstee plot analysis indicated that the Cs + uptake involved a single saturable process. The maximum uptake amount (J max ) was the same in the presence and absence of K + , suggesting that Cs + and K + uptakes were competitive with respect to each other. These bacteria might be useful for bioremediation of cesium-contaminated soil. (author)

  16. Quartz crystal microbalance sensor using ionophore for ammonium ion detection.

    Science.gov (United States)

    Kosaki, Yasuhiro; Takano, Kosuke; Citterio, Daniel; Suzuki, Koji; Shiratori, Seimei

    2012-01-01

    Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.

  17. Strontium and barium in aqueous solution and a potassium channel binding site

    Science.gov (United States)

    Chaudhari, Mangesh I.; Rempe, Susan B.

    2018-06-01

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.

  18. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  19. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    International Nuclear Information System (INIS)

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-01-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs + (and K + ) using electrophysiological techniques. Although the 137 Cs soil inventory ranged between 328-730 Bq m -2 in this region, no 137 Cs activity was detected in these plants. However, all the species, submitted previously to K + starvation, showed the uptake of both Cs + and K + when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K M values were smaller for K + than for Cs + , indicating a higher affinity for the first cation. The presence of increasing K + concentrations in the assay medium inhibited Cs + uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs + is smaller than K + concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors

  20. Burning characteristics of potassium and lithium

    International Nuclear Information System (INIS)

    Sonntag, K.; Menzenhauer, P.; Peppler, W.

    1982-03-01

    A series of laboratory scale tests has been carried out in which lithium and potassium were burnt in trays in atmospheres of air and nitrogen. The test results are compared with those from literature. The maximum weight of metal in a test was 200 gram. The tests were carried out in a glove box which allowed the atomospheric composition to be varied to some extent. The initial temperature was varied to determine its effect on the course of the reaction. The temperature and the composition of the atmosphere were recorded during the tests. After each test the reaction products were weighed and chemically analysed. A good insight into the course of the reaction was obtained from the results. The main phases of the reaction are illustrated by a series of photographs. (orig.) [de

  1. Electron impact study of potassium hydroxide

    Science.gov (United States)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  2. Potassium-argon dating in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, I. (Australian National Univ., Canberra (Australia). Research School of Earth Sciences)

    1990-01-01

    The potassium-argon (K-Ar) isotopic dating method can provide precise and accurate numerical ages on suitable rocks, especially igneous rocks, over a wide range of age from less than 100,000 years old, with no older limit. Together with its variants, the {sup 40}Ar/{sup 39}Ar technique, the K-Ar method is very useful for the numerical age calibration of stratigraphic sequences, including those containing archaeological or fossil material, in cases where appropriate rocks for dating are present. This brief review of the basis of the K-Ar dating method and the underlying assumptions, concludes with an example of its application to the Plio-Pleistocene stratigraphic sequence in the Turkana Basin, northern Kenya. By dating alkali feldspars separated from pumice blocks in tuffaceous beds, excellent age control has been obtained for the wealth of vertebrate fossils, including hominids, as well as archaeological materials that has been found in the sequence. (author).

  3. Electron coincidence spectroscopy of sodium and potassium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.

    1982-03-01

    The Na 3s and K 4s electron momentum distributions have been obtained using the noncoplanar symmetric (e,2e) reaction at total energies of 800 eV and 1200 eV. They show excellent agreement with the results of plane wave impulse approximation calculations using Roothaan-Hartree-Fock functions, after small corrections are made for the finite angular resolution of the apparatus. The potassium valence s momentum profile is a little narrower than that for sodium, implying a correspondingly slightly larger spatial distribution of the outer valence electrons. The ratio between the (n-1)p and ns cross-sections at their respective maxima in q-space were measured to be 0.009 +- 0.003 and 0.019 +- 0.003 for Na and K respectively. These cross-section ratios are in agreement with the PWIA calculations

  4. Potassium Capture by Kaolin, Part 1: KOH

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    -capture level. The effect of reaction temperature,K-concentration in the flue gas, and, thereby, molar ratio of K/(Al+Si) in reactants, gas residence time, and solid particle size on K-capture reaction was systematically investigated. Corresponding equilibrium calculations were conducted with FactSage 7.......0. The experimental results showed that kaolin reached almost full conversion to K-aluminosilicates under suspension-fired conditions at 1100–1450 °C for a residence time of 1.2 s and a particle size of D50 = 5.47 μm. The amount of potassium captured by kaolin generally followed the equilibrium at temperatures above...

  5. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  6. Reaction Mechanisms of Magnesium Potassium Phosphate Cement and its Application

    Science.gov (United States)

    Qiao, Fei

    Magnesium potassium phosphate cement (MKPC) is a kind of cementitious binder in which the chemical bond is formed via a heterogeneous acid-base reaction between dead burned magnesia powder and potassium phosphate solution at room temperature. Small amount of boron compounds can be incorporated in the cement as a setting retarder. The final reaction product of MgO-KH2PO4-H 2O ternary system is identified as magnesium potassium phosphate hexahydrate, MgKPO4·6H2O. However, the mechanisms and procedures through which this crystalline product is formed and the conditions under which the crystallization process would be influenced are not yet clear. Understanding of the reaction mechanism of the system is helpful for developing new methodologies to control the rapid reaction process and furthermore, to adjust the phase assemblage of the binder, and to enhance the macroscopic properties. This study is mainly focused on the examination of the reaction mechanism of MKPC. In addition, the formulation optimization, microstructure characterization and field application in rapid repair are also systematically studied. The chemical reactions between magnesia and potassium dihydrogen phosphate are essentially an acid-base reaction with strong heat release, the pH and temperature variation throughout the reaction process could provide useful information to disclose the different stages in the reaction. However, it would be very difficult to conduct such tests on the cement paste due to the limited water content and fast setting. In the current research, the reaction mechanism of MKPC is investigated on the diluted MKPC system through monitoring the pH and temperature development, identification of the solid phase formed, and measurement of the ionic concentration of the solution. The reaction process can be explained as follows: when magnesia and potassium phosphate powder are mixed with water, phosphate is readily dissolved, which is instantly followed by the dissociation of

  7. Reaction of lithium, sodium and potassium polyphosphates with potassium permanganate at elevated temperatures

    International Nuclear Information System (INIS)

    Paderova, L.V.; Onuchina, T.V.; Kochergin, V.P.

    1996-01-01

    A study was made on destruction of molten polyphosphates of alkaline metals by potassium permanganate during change of KMnO 4 content, test time and temperature. Ortho-, di, tri- and tetraphosphate-anions, as well as manganese compounds with different oxidation degree were revealed in products of component interaction. Empirical equations of the dependence of the value of average molecular mass on change of melt temperature were derived. 11 refs.; 2 figs.; 2 tabs

  8. Action of tributyltin (TBT) on the lipid content and potassium retention in the organotins degradating fungus Cunninghamella elegans.

    Science.gov (United States)

    Bernat, Przemysław; Słaba, Mirosława; Długoński, Jerzy

    2009-09-01

    The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K(+) g dry weight(-1). The maximum concentration of K(+) was 15.06 mg g(-1) dry weight at 30 mg l(-1) of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5-30 mg l(-1) strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.

  9. Ionic channels in plants: potassium transport Canais iônicos em plantas: o transporte de potássio

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    1995-01-01

    Full Text Available The discovery of potassium channels on the plasma membrane has helped to elucidate important mechanisms in animal and plant physiology. Plant growth and development associated mechanisms, such as germination, leaf movements, stomatal action, ion uptake in roots, phloem transport and nutrient storage are linked to potassium transport. Studies describing potassium transport regulation by abscisic acid (ABA, Ca++, light and other factors are presented here. Also the types of channels that regulate potassium uptake and efflux in the cell, and the interaction of these channels with external signals, are discussed.A descoberta de canais iônicos presentes na membrana plasmática tem ajudado a elucidar importantes mecanismos fisiológicos em animais e plantas. Mecanismos associados ao crescimento e desenvolvimento das plantas, tais como germinação, movimento foliar, abertura e fechamento de estômatos, absorção de íons pelas raízes e armazenamento de nutrientes estão ligados ao transporte de potássio. Estudos descrevendo a regulação do transporte deste nutriente por ácido abscísico (ABA, Ca++, luz e outros fatores são apresentados. Os tipos de canais que regulam a saída e entrada de potássio na célula, e as interações destes com os sinais externos, são discutidos.

  10. Sodium and potassium salts of dichloroisocyanuric acid and their hydrates as antimicrobials agents studied by 35Cl-NQR spectroscopy and DFT calculations

    International Nuclear Information System (INIS)

    Walczak, A.; Brycki, B.; Kaczmarek, M.; Poleshchuk, O.Kh.; Ostafin, M.; Nogaj, B.

    2006-01-01

    The electronic structure of dichloroisocyanuric acid derivatives was analysed by 35 Cl-NQR spectroscopy and DFT calculations. Here we concentrate our attention on three different factors: type of metallic substituent (sodium and potassium), temperature of the sample (liquid nitrogen and room) and degree of hydration (an amount of water molecules attached to analysed compounds). In particular, all the variations in 35 Cl-NQR frequencies upon hydration of salts containing sodium and potassium ions are explained as a consequence of H-bonds formation and accompanied effects of charge redistribution. Our studies can be useful in searching for the derivatives of dichloroisocyanuric acid revealing higher antimicrobial activity

  11. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Foliar Application of Potassium Fertilizer to Reduce the Effects of Salinity in Potato

    Directory of Open Access Journals (Sweden)

    H Molahoseini

    2017-06-01

    treatment, respectively. Control, and even once treated by foliar potassium (Sulphate or potassium oxide had lower harvest index values than the other treatments. The negative effect of irrigation with saline water on assimilate partitioning to the tuber is cause of the reduction of harvest index. Water use efficiency with foliar application of three times potassium sulfate or potassium oxide was 27% higher than the control treatment (4.5 kg m-3. The use of sufficient potassium in such a situation is not only necessary to maintain osmotic potency, the continuation of assimilates in phloem, and loading these vessels but also plays an important role in detoxification of sodium ions. In salinity stress, accelerated aging and earliness shoot unintentionally, are the reasons for the reduction in tuber size. Conclusions The results showed that foliar application of potassium, especially in two or three times (depending on the type of fertilizer application can result in harmful effects of salinity and leads to an increase in tuber yield. In relation to foliar K application, some cases are necessary: First, due to the sensitivity of potato to fungal diseases, foliar application of fungicides and K fertilizers can be simultaneously tested in salt stress conditions. Second, the salinity considered for this study was 6.1 dS m-1. This amount of salinity to the potatoes is too much so it may be recommendable to spray less frequently at lower salinity levels.

  13. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    Energy Technology Data Exchange (ETDEWEB)

    Harish, S. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Joseph, James, E-mail: jameskavlam@yahoo.com [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Phani, K.L.N. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2011-06-30

    Highlights: > In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. > Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. > Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. > We are proposing the formation of a compound with general formula 'KFe{sub x}[Au(CN){sub 2}]{sub y}' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au

  14. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    International Nuclear Information System (INIS)

    Harish, S.; Joseph, James; Phani, K.L.N.

    2011-01-01

    Highlights: → In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. → Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. → Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. → We are proposing the formation of a compound with general formula 'KFe x [Au(CN) 2 ] y ' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au-Fe complex. Hence 'as

  15. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  16. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  17. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    International Nuclear Information System (INIS)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  18. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    Science.gov (United States)

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  19. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  20. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  1. Use of potassium-42 in the study of kidney functioning

    International Nuclear Information System (INIS)

    Morel, F.; Guinnebault, M.

    1959-01-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [fr

  2. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  3. Microinjection study on potassium transport of rat kidney

    International Nuclear Information System (INIS)

    Miyamoto, Makoto

    1978-01-01

    Wister rate were divided into the following four groups. (A) control group (B) high-potassium diet group (C) low-potassium diet group (D) nephron population reduction (N.P.R.) group. Microinjection of the artificial solutions containing both 86 Rb and 3 H-inulin were performed into the proximal and distal convoluted tubules as well as cortical peritubular capillaries in rats undergoing mannitol diuresis. Excretory patterns of these substances were analyzed in successive urine samples. 3 H-inulin is entirely recovered in the urine of the experimental kidney following the injection into the proximal and distal tubules. 86 Rb is an adequate tracer for potassium and is absorbed into the potassium pool from either proximal tubular injections or peritubular capillaries. 86 Rb excreted with a time course similar to that of 3 H-inulin is termed as 'direct recovery' and that excreted more slowly, 'delayed recovery'. The 86 Rb recoveries which were obtained after proximal injections were independent of the injection site and averaged 9%. Secretion of 86 Rb into the urine was stimulate during enhanced K secretion and decreased during reduced K secretion along the distal nephron. Distal tubular injections gave 100% direct recovery in control, high-K diet, and N.P.R. rats. It was apparent that the 86 Rb recovery was significantly reduced, although not delayed, in animals deprived of dietary potassium for several weeks. At the collecting duct, the extensive net potassium reabsorption is observed in potassium depleted rats, whereas K absorption might be reduced or even secretion is seemingly taking place in potassium loading rats. In conclution, distal convolution and collecting duct play the major role in the regulation of urinary potassium excretion. (auth.)

  4. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  5. Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil

    Science.gov (United States)

    Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori

    2018-01-01

    This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.

  6. How are ion pumps and agrin signaling integrated?

    DEFF Research Database (Denmark)

    Tidow, Henning; Aperia, Anita; Nissen, Poul

    2010-01-01

    Na(+),K(+)-ATPase (NKA) has a fundamental role in ion transport across the plasma membrane of animal cells and uses approximately 50% of brain energy consumption. Recent work has uncovered additional roles for NKA in signal transduction. How might such different functions of the sodium-potassium ...

  7. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  8. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  9. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  10. Caesium absorption by barley - influence of its retention by the soil - competitive action of potassium

    International Nuclear Information System (INIS)

    Ferron-Trosseau, F.

    1964-06-01

    We have studied, in various culture media, how the absorption of caesium by barley varies with its concentration, and how this absorption can be in competition with a similar alkali cation-potassium. We have also considered the caesium distribution in the ground in particular radio-active caesium, between the soil and solution, as a function of the amount of caesium. From our work it is clear that barley behaves very differently according to whether the caesium is in a nutritive solution or is in the soil: for a nutritive solution, the fraction of caesium (radioactive and stable) absorbed by barley remains practically constant in the presence of increasing amounts (relatively small) of stable caesium; in soil, the fraction of the radio-active caesium absorbed increases as the stable caesium content (fairly low) of the soil increases, in relationship with a rapidly decreasing selectivity of the soil for Cs + . The difference between these results is thus explained by the very pronounced selectivity of the illitic soil studied for Cs + , as long as the proportion of Cs remains low, about as low as that of most natural soils. Furthermore, the K + ion is in competition with the Cs + ion, for absorption by barley in a culture medium in a nutritive solution or in soil, only when the potassium concentrations are relatively low, of the order of the nutritive maximum. This shows that the addition of potassium to a medium already rich in this element does not reduce the absorption of caesium by barley. The choice of experimental conditions close to natural conditions (nutritive media strong in calcium) and the examination of the distribution of radioactive caesium between the soil, the soil solution and the plant in the presence of very low doses of stable caesium make these results interesting from the 'atomic health' point of view; it should be expected that a definite contamination risk exists for plants cultivated on synthetic media and for plants such as rice and cress

  11. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  12. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1994-01-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino--silicate surface source are the thermal types. The hot alumino--silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  13. Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels☆

    Science.gov (United States)

    Cuypers, Eva; Abdel-Mottaleb, Yousra; Kopljar, Ivan; Rainier, Jon D.; Raes, Adam L.; Snyders, Dirk J.; Tytgat, Jan

    2008-01-01

    In this study, we pharmacologically characterized gambierol, a marine polycyclic ether toxin which is produced by the dinoflagellate Gambierdiscus toxicus. Besides several other polycyclic ether toxins like ciguatoxins, this scarcely studied toxin is one of the compounds that may be responsible for ciguatera fish poisoning (CFP). Unfortunately, the biological target(s) that underlies CFP is still partly unknown. Today, ciguatoxins are described to specifically activate voltage-gated sodium channels by interacting with their receptor site 5. But some dispute about the role of gambierol in the CFP story shows up: some describe voltage-gated sodium channels as the target, while others pinpoint voltage-gated potassium channels as targets. Since gambierol was never tested on isolated ion channels before, it was subjected in this work to extensive screening on a panel of 17 ion channels: nine cloned voltage-gated ion channels (mammalian Nav1.1–Nav1.8 and insect Para) and eight cloned voltage-gated potassium channels (mammalian Kv1.1–Kv1.6, hERG and insect ShakerIR) expressed in Xenopus laevis oocytes using two-electrode voltage-clamp technique. All tested sodium channel subtypes are insensitive to gambierol concentrations up to 10 μM. In contrast, Kv1.2 is the most sensitive voltage-gated potassium channel subtype with almost full block (>97%) and an half maximal inhibitory concentration (IC50) of 34.5 nM. To the best of our knowledge, this is the first study where the selectivity of gambierol is tested on isolated voltage-gated ion channels. Therefore, these results lead to a better understanding of gambierol and its possible role in CFP and they may also be useful in the development of more effective treatments. PMID:18313714

  14. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    Science.gov (United States)

    Guzman, L. A.; Suzuki, M.; Fujimoto, Y.; Fujioka, K.

    2016-03-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al3+ ions in the prismatic section of the crystal.

  15. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    International Nuclear Information System (INIS)

    Guzman, L A; Suzuki, M; Fujimoto, Y; Fujioka, K

    2016-01-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al 3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al 3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al 3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al 3+ ions in the prismatic section of the crystal. (paper)

  16. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    International Nuclear Information System (INIS)

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G.

    2003-01-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites

  17. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  18. Discovery of potassium salts deposits in colombia

    International Nuclear Information System (INIS)

    Gonzalez Oviedo Leopoldo; Espinosa Baquero Armando

    2012-01-01

    The first potassium salts ores found in Colombia are presented and described; they are located in the Santander province, in La Mesa de los Santos area, between Los Santos village and the rio Chicamocha Canyon. From a geological point of view, the mineralization is associated to the sediments of the Paja Formation, Early Cretaceous in age, and is located near the base of the formation. In the study area the main structure is the Villanueva syncline which involves, from bottom to top, Los Santos, Rosablanca, Paja, Tablazo and Simiti formations.The mineralization consists of small veins where the main mineral is singenite (K 2 Ca[SO4] 2- H 2 O) with small amounts of carbonates and accidental minerals. In the host rock, minerals like langbeinite (K 2 Mg 2 [SO4] 3) andrinneite (K 3 Na[Fe,Cl] 6) are present; they show that the rock was formed in an evaporitic environment and that detailed studies of that sequence may lead to the discovery of other mineralizations of economic interest.

  19. Potassium-phosphorus relationships in cotton (gossypium hirsutum L.) as affected by potassium nutrition

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Ashraf, M.

    2007-01-01

    Field studies were undertaken to determine the interrelationship between potassium (K+) concentration in various organs of plant and phosphorus (P) content as influenced by K-nutrition in cotton. The experiment was conducted on Miani soil series silt loam and classified as Calcaric Cambisols, fine silty, mixed Hyperthermic Fluventic Haplocambids. The treatments consisted .of (a) four cotton (Gossypium hirsutum L.) cultivars (CI.M-448, CIM-IIOO, Karishma, S-12); and (b) four potassium fertilizer doses (0, 62.5, 125.0, 250.0 kg K ha-l). The design of experiment was split plot (main: cultivars, sub-plot: K-doses). The plant samples were collected at five stages of growth, i.e., first flower bud., first flower, peak flowering, first boll split and maturity. The various parts of plants were analyzed for phosphorus and potassium concentration at various stages of growth. Phosphorus concentration in leaves, stems, burs, seed and lint decreased with concurrent increase in K-doses. Crop maintained 0.22% phosphorus concentration in leaf tissues at first flower bud and dropped to 0.11% at maturity. Cultivars differed greatly amongst themselves in terms of maintaining P content in their different parts. Averaged across K-doses, cv. CIM-448 maintained the highest P content in all parts than other cultivars. There was a negative and significant correlation co-efficient between K and P concentration in various parts of the plant. The study demonstrated antagonistic interaction between K+ and P in cotton plant under irrigated conditions. (author)

  20. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate

    National Research Council Canada - National Science Library

    Institute of Medicine (U.S.). Panel on Dietary Reference Intakes for Electrolytes and Water

    2005-01-01

    .... This new report, the sixth in a series of reports presenting dietary reference values for the intakes of nutrients by Americans and Canadians, establishes nutrient recommendations on water, potassium...

  1. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG; Zhang, Jianqin; Sun, Xun; Zhang, Qiang; Zhao, Xian; Zhang, Xixiang

    2013-01-01

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property

  2. Synthesis and derivatographic investigation of potassium octacyanotungstate (4)

    International Nuclear Information System (INIS)

    Kovbashin, V.I.; Dovgej, V.V.; Chernyak, B.I.

    1983-01-01

    The interaction between the rated quantities of potassium cyanide and WO(OH) 3 hydroxide resulted in preparation of potassium dioxytetracyanotungstate (4), K 4 [WO 2 (CN) 4 ]X6H 2 O. The latter, while interacting with a saturated potassium cyanide solution in a carbon dioxide flow transforms to potassium octacyanotungstate (4). The process of K 4 [W(CH) 8 ]x2H 2 O compound thermolysis in argon atmosphere is studied. It is found that, after dehydration of the complex, there occurs thermal transformation of K 4 [W(CN) 8 ] to K 3 [W(CN) 7 ] and then to K 3 [W(CN) 6 ]. The thermolysis final product is tungsten carbide WC

  3. Effect of Metformin on Potassium-adapted and Non- adapted ...

    African Journals Online (AJOL)

    determined. Results: The blood glucose of the potassium-adapted diabetic group was not significantly reduced on treatment ... whom dietary carbohydrate restriction has not controlled .... significantly different from the metformin-treated group.

  4. Studies on potassium chlorate as a primary oxidimetric reagent.

    Science.gov (United States)

    Murty, C R; Rao, G G

    1972-01-01

    Conditions have been established for the use of potassium chlorate as a primary oxidizing agent in the direct titration of vanadium(III), tin(II) and titanium(III) with visual or potentiometric end-points.

  5. Effects of different cavity‑disinfectants and potassium titanyl ...

    African Journals Online (AJOL)

    disinfectants and potassium titanyl phosphate (KTP) laser on microtensile bond strength to primary dentin. Chlorhexidine (CHX), propolis (PRO), ozonated water (OW), gaseous ozone (OG) and KTP laser were used for this purpose. Methodology: ...

  6. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2007-02-14

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  7. Estimation of Total Body Fat from Potassium-40 Content

    International Nuclear Information System (INIS)

    Taha Mohamed Taha Ahmed, T.M.T.

    2010-01-01

    This paper concerns on estimation of total body fat from potassium 40 content using total body counting technique. The work performed using fast scan whole body counter. Calibration of that system for K-40 was carried out under assumption that uniformity distribution of radioactivity of potassium was distributed in 10 polyethylene bottles phantom. Different body sizes were represented by 2, 4, 6, 8 and 10 polyethylene bottles; each bottle has a volume of 0.04 m3. The counting efficiency for each body size was determined. Lean body weight (LBW) was calculated for ten males and ten females using appropriate mathematical equation. Total Body Potassium, TBK for the same selected group was measured using whole body counter. A mathematical relationship between lean body weight and potassium content was deduced .Fat contents for some individuals were calculated and weight/height ratio was indicated for fatness.

  8. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  9. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  10. Effect of phosphorus and potassium on seed production of berseem

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... 1Department of Agronomy, Khyber Pukhtunkhwa Agricultural University, Peshawar, Pakistan. ... Key words: Berseem, seed production, phosphorus, potassium. ... important forage legumes in Pakistan and India which belongs ...

  11. Potassium Ferrate: A Novel Chemical Warfare Agent Decontaminant

    National Research Council Canada - National Science Library

    Greene, Russell; von Fahnestock, F. M; Monzyk, Bruce

    2004-01-01

    ..., and/or unsatisfactory CWA destruction efficiencies. Potassium ferrate (K2FeO4) addresses all of these issues through its high oxidation potential, stable shelf life, and benign reduced state, namely iron oxide...

  12. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  13. Degradation behaviour of potassium K-phosphite in apple trees

    OpenAIRE

    Kelderer, Markus; Matteazzi, Aldo; Casera, Claudio

    2008-01-01

    Although potassium phosphite is not registered for organic fruit production in Europe, it has long been regarded as a potential alternative to sulphur- and copper-containing fungicides. In 2005/2006 a field trial was carried out to verify the presence of residues of phosphoric acid over time in apples after applications of potassium phosphite at different time-points. No residues were present on fruits if treatments were applied before flowering, whereas treatments after flower...

  14. Evaluating Status Change of Soil Potassium from Path Model

    Science.gov (United States)

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  15. Evaluating status change of soil potassium from path model.

    Directory of Open Access Journals (Sweden)

    Wenming He

    Full Text Available The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K. Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K, the chemical index of alteration (CIA, Soil Organic Matter in soil solution (SOM, Na and total nitrogen in soil solution (TN, and key indirect factors were Carbonate (CO3, Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK, Non-exchangeable potassium (neK and water-soluble potassium (wsK under influences of specific environmental parameters. In reversible equilibrium state of [Formula: see text], K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of [Formula: see text], K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth.

  16. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  17. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: an in vitro study.

    Science.gov (United States)

    Wester, Maarten; Simonis, Frank; Gerritsen, Karin G; Boer, Walther H; Wodzig, Will K; Kooman, Jeroen P; Joles, Jaap A

    2013-09-01

    Continuous dialysis could provide benefit by constant removal of potassium and phosphate. This study investigates the suitability of specific potassium and phosphate sorbents for incorporation in an extracorporeal device by capacity and regenerability testing. Capacity testing was performed in uraemic plasma. Regenerability was tested for potassium sorbents, with adsorption based on cationic exchange for sodium, with 0.1 M and 1.0 M NaCl. To regenerate phosphate sorbents, with adsorption based on anionic exchange, 0.1 M and 1.0 M NaHCO3 and NaOH were used. Subsequently, sodium polystyrene divinylbenzene sulphonate (RES-A) and iron oxide hydroxide (FeOOH) beads were incorporated in a cartridge for testing in bovine blood using a recirculating blood circuit and a dialysis circuit separated by a high-flux dialyzer (dynamic setup). Preloading was tested to assess whether this could limit calcium and magnesium adsorption. In the batch-binding assays, zirconium phosphate most potently adsorbed potassium (0.44 ± 0.05 mmol/g) and RES-A was the best regenerable potassium sorbent (92.9 ± 5.7% with 0.1 M NaCl). Zirconium oxide hydroxide (ZIR-hydr) most potently adsorbed phosphate (0.23 ± 0.05 mmol/g) and the polymeric amine sevelamer carbonate was the best regenerable sorbent (85.7 ± 5.2% with 0.1 M NaHCO3). In the dynamic setup, a potassium adsorption of 10.72 ± 2.06 mmol in 3 h was achieved using 111 g of RES-A and a phosphate adsorption of 4.73 ± 0.53 mmol in 3 h using 55 g of FeOOH. Calcium and magnesium preloading was shown to reduce the net adsorption in 3 h from 3.57 ± 0.91 to -0.29 ± 1.85 and 1.02 ± 0.05 to -0.31 ± 0.18 mmol, respectively. RES-A and FeOOH are suitable, regenerizable sorbents for potassium and phosphate removal in dialysate regeneration. Use of zirconium carbonate and ZIR-hydr may further increase phosphate adsorption, but may compromise sorbent regenerability. Use of polymeric amines for phosphate adsorption may enhance sorbent

  18. Contribution to the study of the Szilard-Chalmers effect in potassium ferro-cyanide; Contribution a l'etude de l'effet Szilard-Chalmers dans le ferrocyanure de potassium

    Energy Technology Data Exchange (ETDEWEB)

    Meriadec, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-01-01

    With a view to studying the Szilard-Chalmers effect in potassium ferrocyanide, a chemical separation method has been developed for the different ions formed by recoil: Fe{sup 2+}, Fe{sup 3+} and the complex forms of iron. A measurement method has been developed also for analyzing separately the isotopes {sup 55}Fe and {sup 59}Fe, and determining the relative amounts of these two isotopes in the different chemical states. The experimental results show that the activity of the two isotopes is distributed differently between the complex forms of iron, the ferrous ions and the ferric ions. This difference is of the order of 40 per cent in the ferrous solution and of 2 to 5 per cent in the ferric retention and ferric solution. (author) [French] En vue d'etudier l'effet Szilard-Chalmers dans le ferrocyanure de potassium, on a mis au point une methode de separation chimique permettant d'obtenir les differents ions formes par recul: Fe{sup 2+}, Fe{sup 3+} et les formes complexes du fer. Une methode de mesure a ete egalement mise au point pour analyser separement les isotopes {sup 55}Fe et {sup 59}Fe et determiner les proportions relatives de ces 2 isotopes dans les differents etats chimiques. Les resultats experimentaux montrent que l'activite des deux isotopes est repartie differemment entre les formes complexes du fer, les ions ferreux et les ions ferriques. Cette difference est de l'ordre de 40 pour cent dans la solution ferreuse et de 2 a 5 pour cent dans la retention et la solution ferrique. (auteur)

  19. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  20. Parathyroid hormone impairs extrarenal potassium tolerance in the rat

    International Nuclear Information System (INIS)

    Sugarman, A.; Kahn, T.

    1988-01-01

    The effect of parathyroid hormone (PTH) on the extrarenal disposition of an acute potassium load was examined in acutely nephrectomized rats infused with KCl alone or in combination with PTH, with serial monitoring of plasma potassium every 10 min. The rise in plasma potassium concentration (ΔPK) in the PTH group was higher than control. PTH was then administered along with KCl to two groups of nephrectomized and acutely thyroparathyroidectomized (TPTX) rats in doses of 1 and 0.25 U · kg -1 · min -1 for 90 min. ΔPK with PTH in both groups was higher than TPTX control. The two higher doses of PTH resulted in a decrease in mean arterial pressure from their respective controls. A similar reduction in arterial pressure in three groups of nephrectomized rats by administration of hydralazine or nitroprusside or by acute blood loss did not change ΔPK subsequent to potassium infusion from that in control rats. Furthermore, the lowest dose of PTH did not lower arterial pressure from its respective control. Therefore, hypotension is not a cause for the PTH-induced potassium intolerance. Serum levels of insulin, aldosterone, catecholamines, calcium, plasma HCO 3 concentration, and pH were not different in PTH-infused vs. respective control rats. These data suggest that PTH impairs extrarenal potassium disposal in the rat. The effect of PTH may relate to enhanced calcium entry into cells

  1. Variable Potassium Concentrations: Which Is Right and Which Is Wrong?

    Science.gov (United States)

    Theparee, Talent; Benirschke, Robert C; Lee, Hong-Kee

    2017-05-01

    Reverse pseudohyperkalemia is a term used to describe in vitro, falsely elevated potassium concentrations in plasma specimens that occur in association with extreme leukocytosis and are commonly associated with hematologic malignant neoplasms. Tumor lysis syndrome is an in vivo lysis of tumor cells that leads to elevated levels of potassium, uric acid, phosphate, and lactate dehydrogenase, as well as decreased calcium concentrations. Herein, we report a case of a 66-year-old Caucasian man with stage IV mantle-cell lymphoma who has elevated levels of potassium, uric acid, and phosphorus, as well as a white blood cell (WBC) count greater than 100,000 cells per mm3. The patient initially was diagnosed as having tumor lysis syndrome. His subsequent potassium concentrations in whole blood remained elevated even after hemodialysis; however, his serum potassium concentrations were decreased. The patient then was diagnosed accurately as having reverse pseudohyperkalemia, and accurate potassium measurements were obtained via serum specimens. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  3. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  4. Impact of potassium bromate and potassium iodate in a pound cake system.

    Science.gov (United States)

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  5. Tomato yield and potassium concentrations in soil and in plant petioles as affected by potassium fertirrigation

    Directory of Open Access Journals (Sweden)

    FONTES PAULO CEZAR REZENDE

    2000-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering. Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.

  6. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  7. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions. Key points This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. PMID:25545278

  8. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  9. Ocular Injury due to Potassium Permanganate Granules

    Directory of Open Access Journals (Sweden)

    Chareenun Chirapapaisan

    2018-02-01

    Full Text Available Purpose: We report a rare case of ocular injury due to potassium permanganate (KMnO4 granules in a child. Methods: This is a retrospective case report. Results: A 2-year-old boy was transferred to our emergency room with severe pain in his right eye, inflamed eyelids, and brownish stains on his fingers. Chemical injury was suspected. Copious eye irrigation was immediately performed. Diffuse brownish splotches were then observed at the inferior bulbar conjunctiva. Otherwise, systemic organs were intact. Complete eye exam under general anesthesia revealed a 5-mm epithelial defect at the central cornea, along with generalized conjunctival injection and limbal ischemia, inferiorly. Multiple semi-dissolved granules of KMnO4 trapped in the inferior fornix were identified. The chemical particles were gradually washed out and removed; however, the brownish stains remained. The patient received preservative-free steroid, antibiotic eye drops, and lubricants as regular management for mild to moderate degree of ocular burn. Pseudomembrane developed early and transformed into symblepharon within a few days after the injury. Membrane adhesion was lysed, and more aggressive medications were then substituted. Commercial amniotic membrane (PROKERA® was also applied to promote wound healing and to prevent recurrence of symblepharon. The ocular surface was eventually restored, and corneal transparency was preserved. Conclusion: Ocular injury with the granular form of KMnO4 is rare. Its toxicity is comparable to concentrated KMnO4 solution. However, the dissolved particles that had been absorbed in the stained conjunctiva were continuously released and damaged the ocular surface more than we primarily anticipated. Awareness of this condition and prompt management yield a good treatment outcome.

  10. Ketone deprotonation mediated by mono- and heterobimetallic alkali and alkaline earth metal amide bases: structural characterization of potassium, calcium, and mixed potassium-calcium enolates.

    Science.gov (United States)

    He, Xuyang; Noll, Bruce C; Beatty, Alicia; Mulvey, Robert E; Henderson, Kenneth W

    2004-06-23

    Potassium, calcium, and mixed potassium-calcium amide combinations have been shown to be efficient reagents in enolization reactions, and a set of representative intermediate mono- and heterobimetallic enolates have been successfully isolated and crystallographically characterized.

  11. The Effect of Potassium on the Controlling of Salt in Evening Primrose (Oenothera macrocarpa

    Directory of Open Access Journals (Sweden)

    M. Goldani

    2016-07-01

    Full Text Available Introduction: Salinity has been recognized as one of the major abiotic factors affecting crop yields in arid and semi-arid irrigated areas of the world and efforts for breeding salt-resistant crop plants have been made. Approximately one-third of the world irrigated soils and a large proportion of soils in dry land are saline. Two major effects have been identified as the probable causes of high salt toxicity in crop plant i.e., the ionic effect and the osmotic effect. The ionic effect results in alterations in enzymatic processes, disturbances in accumulation and transport of different ions or a combination of all these factors. As a result, shoot and root growing reduce and uptake of nutrient elements by plants is adversely affected. While excess Na accumulated in plants under salinity stress conditions hinders K uptake; Cl hinders NO3 uptake by plants and destroys ionic balance in plants. Evening primrose is a plant which belongs to Onagraceae. Its seed oil has a special arrangement in Glycerol molecule, so it has been used a lot in medical treatments and also feeding. Researchers showed that using the best techniques and methods in farming can increase the amount of oil in the seeds of this plant. The wrong method of agricultural activities in Iran caused increasing salt in the soil, so growing plants in this situation isn’t possible. For confronting with this phenomenon knowing and choosing kinds of plants that can resist the situation of salt is really a necessary. Materials and Methods: This study was conducted as a factorial experiment based on completely randomized design with three replicates was performed with five levels of NaCl salinity on Oenothera macrocarpa (0, 30, 60, 90 and 120 mM and potassium chloride levels (zero and 15.02 mM and three times in the Faculty of Agriculture, Ferdowsi University of Mashhad in 1390. Salt treatment to prevent osmotic shock was applied to four-leaf stage and treated with potassium was gradually

  12. Control of secondary electrons from ion beam impact using a positive potential electrode

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  13. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  14. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  15. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    Science.gov (United States)

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  16. Protonated form: the potent form of potassium-competitive acid blockers.

    Directory of Open Access Journals (Sweden)

    Hua-Jun Luo

    Full Text Available Potassium-competitive acid blockers (P-CABs are highly safe and active drugs targeting H+,K+-ATPase to cure acid-related gastric diseases. In this study, we for the first time investigate the interaction mechanism between the protonated form of P-CABs and human H+,K+-ATPase using homology modeling, molecular docking, molecular dynamics and binding free energy calculation methods. The results explain why P-CABs have higher activities with higher pKa values or at lower pH. With positive charge, the protonated forms of P-CABs have more competitive advantage to block potassium ion into luminal channel and to bind with H+,K+-ATPase via electrostatic interactions. The binding affinity of the protonated form is more favorable than that of the neutral P-CABs. In particular, Asp139 should be a very important binding site for the protonated form of P-CABs through hydrogen bonds and electrostatic interactions. These findings could promote the rational design of novel P-CABs.

  17. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  18. Protonated form: the potent form of potassium-competitive acid blockers.

    Science.gov (United States)

    Luo, Hua-Jun; Deng, Wei-Qiao; Zou, Kun

    2014-01-01

    Potassium-competitive acid blockers (P-CABs) are highly safe and active drugs targeting H+,K+-ATPase to cure acid-related gastric diseases. In this study, we for the first time investigate the interaction mechanism between the protonated form of P-CABs and human H+,K+-ATPase using homology modeling, molecular docking, molecular dynamics and binding free energy calculation methods. The results explain why P-CABs have higher activities with higher pKa values or at lower pH. With positive charge, the protonated forms of P-CABs have more competitive advantage to block potassium ion into luminal channel and to bind with H+,K+-ATPase via electrostatic interactions. The binding affinity of the protonated form is more favorable than that of the neutral P-CABs. In particular, Asp139 should be a very important binding site for the protonated form of P-CABs through hydrogen bonds and electrostatic interactions. These findings could promote the rational design of novel P-CABs.

  19. Multi stage electrodialysis for separation of two metal ion species

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Sakurai, H.; Nii, S.; Sugiura, K. [Nagoya Univ., Nagoya (Japan)

    1995-04-20

    In this article, separation of two metal ions by electrodialysis with a cation exchange membrane has been investigated. In other words, separation of potassium ion and sodium ion has been investigated by using batch dialysis with and without an electric field and continuous electrodialysis with a four-stage dialyzer. As a result, the difference in the permselectivity between the dialysis with and without an electric field has not been appreciable for the system of potassium and sodium ions with the cation exchange membrane. Concerning the continuous electrodialysis, the concentration ratio between potassium and sodium ions in the outlet solution from the recovery side of the dialyzer has increased with the reflux flow rate and the number of stages. In case when the reflux flow rate has been zero, the concentration ratio with the four-stage dialyzer has become 1.5 which is almost the same as with that with a two-stage dialyzer consisting of a simple membrane. When the reflux flow ratio has been 0.7, the concentration ratio has reached 3.6. 20 refs., 8 figs.

  20. Influence of Potassium on Sapric Peat under Different Environmental Conditions

    Science.gov (United States)

    Tajuddin, Syafik Akmal Mohd; Rahman, Junita Abdul; Rahim, Nor Haakmal Abd; Saphira Radin Mohamed, Radin Maya; Saeed Abduh Algheethi, Adel Ali, Dr

    2018-04-01

    Potassium is mainly present in soil in the natural form known as the K-bearing mineral. Potassium is also available in fertilizer as a supplement to plants and can be categorized as macronutrient. The application of potassium improves the texture and structure of the soil beside to improves plant growth. The main objective of this study was to determine the concentration of potassium in sapric peat under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of potassium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of potassium for flush condition at outlet 4 was 13.58 ppm. Similarly, sapric under rainwater condition recorded the highest value of 13.32 and 12.34 ppm respectively at outlet 4 for wet and dry condition. However, the difference in Sapric, rainwater and fertilizer category showed that the highest value for the wet condition was achieved at outlet 2 with 13.99 ppm while highest value of 14.82 ppm was obtained for the dry condition at the outlet 3. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of potassium in the soil which was influenced by the environmental conditions.

  1. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    International Nuclear Information System (INIS)

    Trendewicz, Anna; Evans, Robert; Dutta, Abhijit; Sykes, Robert; Carpenter, Daniel; Braun, Robert

    2015-01-01

    This paper proposes modifications to an existing cellulose pyrolysis mechanism in order to include the effect of potassium on product yields and composition. The changes in activation energies and pre-exponential factors due to potassium were evaluated based on the experimental data collected from pyrolysis of cellulose samples treated with different levels of potassium (0–1% mass fraction). The experiments were performed in a pyrolysis reactor coupled to a molecular beam mass spectrometer (MBMS). Principal component analysis (PCA) performed on the collected data revealed that cellulose pyrolysis products could be divided into two groups: anhydrosugars and other fragmentation products (hydroxyacetaldehyde, 5-hydroxymethylfurfural, acetyl compounds). Multivariate curve resolution (MCR) was used to extract the time resolved concentration score profiles of principal components. Kinetic tests revealed that potassium apparently inhibits the formation of anhydrosugars and catalyzes char formation. Therefore, the oil yield predicted at 500 ° C decreased from 87.9% from cellulose to 54.0% from cellulose with 0.5% mass fraction potassium treatment. The decrease in oil yield was accompanied by increased yield of char and gases produced via a catalyzed dehydration reaction. The predicted char and gas yield from cellulose were 3.7% and 8.4%, respectively. Introducing 0.5% mass fraction potassium treatment resulted in an increase of char yield to 12.1% and gas yield to 33.9%. The validation of the cellulose pyrolysis mechanism with experimental data from a fluidized-bed reactor, after this correction for potassium, showed good agreement with our results, with differences in product yields of up to 5%

  2. Lead removal from aqueous solutions by potassium titanate doped with silica; Remocion de plomo de soluciones acuosas por titanato de potasio dopado con silice

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar G, M. A.; Aguilar E, A. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes No. 120, 31109 Chihuahua (Mexico); Gorokhovsky, A. V.; Escalante G, J. I. [Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Mty Km. 13, Apdo. Postal 663, Saltillo 25000, Coahuila (Mexico)], e-mail: mgzlz@hotmail.com

    2009-07-01

    This paper is related to elimination of Pb{sup 2+} ions from aqueous solutions by adsorption in potassium tetra titanate doped with silica. The adsorbent was prepared in the form of granules with pastes of potassium poly titanate (45 %), powdered Pyrex glass (5 %) and potato starch (50 %), which were extruded and thermally treated at 1100 C. The structural characteristic of the granulated adsorbent allows reducing the Pb concentration, from the solutions eluted through an adsorption column, to levels below the requirement of national standards. The effects of the time of saturation of the adsorbent and the ph of the solution were also investigated on the effectiveness of the adsorption of Pb. The mechanism of lead adsorption, by the developed adsorbent, is considered as a combination of adsorption, ion-exchange and co-precipitation processes. It is also shown that the lead-saturated adsorbent could be utilized to produce high-strength non-dangerous ceramic materials. (Author)

  3. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari......The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased......M. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases...

  4. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  5. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  6. Abnormalities of the five serum ions in patients with Leber congenital amaurosis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhong Wu

    2017-03-01

    Full Text Available AIM:To study the concentration changes of the serum magnesium, calcium, potassium, sodium and chloride ions of the patients of Leber congenital amaurosis(LCA.METHODS:Based on the retrospective study and the simple size in the statistics, 50 cases of LCA patients and 99 cases of normal people were tested the serum ions by professionals in hospital according to the single blind study. Data were analyzed statistically between LCA and normal groups. RESULTS: In the clinical serum ions test of LCA group, the concentration of calcium and potassium were 2.338±0.090mmol/L and 4.164±0.356mmol/L respectively, which were significantly higher than those of the normal group(all PPP>0.05. CONCLUSION: In the patients with LCA, abnormal concentration changes of magnesium, calcium and potassium will be needed to concern of the ophthalmologist, which is probably related with the occurrence of LCA.

  7. Low-resolution structure of the tetrameric phenylalanyl-tRNA synthetase from Escherichia coli. A neutron small-angle scattering study of hybrids composed of protonated and deuterated protomers

    International Nuclear Information System (INIS)

    Dessen, P.; Ducruix, A.; May, R.P.; Blanquet, S.

    1990-01-01

    Escherichia coli phenylalanyl-tRNA synthetase is a tetrameric protein composed of two types of protomers. In order to resolve the subunit organization, neutron small-angle scattering experiments have been performed in different contrasts with all types of isotope hybrids that could be obtained by reconstituting the alpha 2 beta 2 enzyme from the protonated and deuterated forms of the alpha and beta subunits. Experiments have been also made with the isolated alpha promoter. A model for the alpha 2 beta 2 tetramer is deduced where the two alpha promoters are elongated ellipsoids (45 x 45 x 160 A3) lying side by side with an angle of about 40 degrees between their long axes and where the two beta subunits are also elongated ellipsoids (31 x 31 x 130 A3) with an angle of 30 degrees between their axes. This model was obtained by assuming that the two pairs of subunits are in contact in an orthogonal manner and by taking advantage of the measured distance between the centers of mass of the alpha 2 and beta 2 pairs (d = 23 +/- 2 A)

  8. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    International Nuclear Information System (INIS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules

  9. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    Balzer Nielsen, Lars

    1998-01-01

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW Th pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  10. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1999-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  11. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  12. Effect of palytoxin on the sodium–potassium pump: model and simulation

    International Nuclear Information System (INIS)

    Rodrigues, Antônio M; Infantosi, Antonio F C; Almeida, Antônio-Carlos G

    2008-01-01

    We propose a reaction model for the palytoxin–sodium–potassium (PTX–Na + /K + ) pump complex. The model, which is similar to the Albers–Post model for Na + /K + -ATPase, is used to elucidate the effect of PTX on Na + /K + -ATPase during the enzyme interactions with Na + and/or K + ions. Conformational substates and reactions for the pump are incorporated into the Albers–Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na + as well as K + promotes PTX-induced channel blockage; (ii) extracellular K + accelerates PTX unbinding; and (iii) K + occlusion in the PTX–pump complex is essential for describing the PTX-induced current dynamics

  13. Comparative studies on the myocardial potassium and thallium exchange in isolated papillary muscles of guinea pigs

    International Nuclear Information System (INIS)

    Krettek, C.

    1982-01-01

    For the distribution of Tl 201 an analogous potassium membrane transport is assumed with the use of myocardial scintiscanning. This hypothesis was tested on the membrane model of the papillary muscle. The absorption and discharge behaviour of Tl 201 and K 42 was studied in isolated, stimulated papillary muscles from the right ventricle of a guinea pig heart in Ringer's solution at 36 0 C to answer the question of whether there are differences in ion transport. The results indicate only a partially similar membrane behaviour of K and Tl. Differences and similarities in the membrane transport of K and Tl allow themselves to be easily interpreted, when energetic, electric, and geometric factors as well as the various affinities of K and Tl for intracellular proteins are considered. (orig./MG) [de

  14. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca 2+ -dependent regulation of Shaker channels by Ca 2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca 2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  15. Potassium self-diffusion in a K-rich single-crystal alkali feldspar

    CERN Document Server

    Hergemöller, Fabian; Deicher, Manfred; Wolf, Herbert; Brenner, Florian; Hutter, Herbert; Abart, Rainer; Stolwijk, Nicolaas A.

    The paper reports potassium diffusion measurements performed on gem-quality single-crystal alkali feldspar in the temperature range from 1169 to 1021 K. Natural sanidine from Volkesfeld, Germany was implanted with {}^{43}K at the ISOLDE/CERN radioactive ion-beam facility normal to the (001) crystallographic plane. Diffusion coefficients are well described by the Arrhenius equation with an activation energy of 2.4 eV and a pre-exponential factor of 5×10^{-6}m^{2}/s, which is more than three orders of magnitude lower than the {}^{22}Na diffusivity in the same feldspar and the same crystallographic direction. State-of-the-art considerations including ionic conductivity data on the same crystal and Monte Carlo simulations of diffusion in random binary alloy structures point to a correlated motion of K and Na through the interstitialcy mechanism.

  16. redox reactions of uranium in the presence of potassium 2-phospho-17-tungstate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Rykov, A.G.; Sirotinkina, L.V.

    1986-01-01

    The redox reactions of uranium in the presence of potassium 2-phospho-17-tungstate (17W2P) - K 10 P 2 W 17 O 61 - were studied by the methods of spectrophotometry and potentiometry. It was established that in the presence of 17W2P the UO /SUP 2/2/ + ion is reduced by iron(II) to uranium(IV) as a result of the binding of U(IV) into a strong complex with composition (U(p 2 W 17 O 61 ) 2 ) 16- . The peculiarities of the coordination of uranium(IV) by voluminous 17W2P ligands are the cause of the different nature of its interaction with various types of oxidizing agents. It was established that under the action of oxidizing agents (K 2 Cr 2 O 7 , KMnO 4 ), the reduced form of which is a complex with 17W2P, there is a conversion of the complex of uranium(IV) to the corresponding complex of uranium(V), evidently with conservation of a structure analogous to that for uranium(IV). It was also shown that uranium(IV) in complex with 17W2P is practically not oxidized in the cold by persulfate ions which react according to a radical mechanism, whereas weaker oxidizing agents, for example, H 2 O 2 , oxidize it to the UO /SUP 2/2/ + ion. Hypotheses are advanced on the possible mechanisms of the occurrence of the corresponding reactions

  17. Structural basis for KCNE3 modulation of potassium recycling in epithelia.

    Science.gov (United States)

    Kroncke, Brett M; Van Horn, Wade D; Smith, Jarrod; Kang, CongBao; Welch, Richard C; Song, Yuanli; Nannemann, David P; Taylor, Keenan C; Sisco, Nicholas J; George, Alfred L; Meiler, Jens; Vanoye, Carlos G; Sanders, Charles R

    2016-09-01

    The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."

  18. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  19. Sporadic potassium layers and their connection to sporadic E layers in the mesopause region at Beijing, China

    Directory of Open Access Journals (Sweden)

    Jing Jiao

    2017-06-01

    Full Text Available A double-laser beam lidar to measure potassium (K layer at Beijing (40.5° N, 116.2° E was successfully developed in 2010. The parameters of sporadic Ks layers and their distributions were given. The seasonal distribution of Ks occurrence frequency was obtained, with two maxima in July and January. The seasonal distributions of sporadic Es layer occurrence frequency over Beijing differ from those of Ks. However, the good correlation between Es and Ks in the case-by-case studies supports the mechanism of neutralization of metal ions in a descending Es layer.

  20. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: a provisional study.

    Science.gov (United States)

    Keenswijk, Werner; Ilias, Mohamad Ikram; Raes, Ann; Donckerwolcke, Raymond; Walle, Johan Vande

    2018-01-01

    There is evidence pointing to a decrease of the glomerular filtration rate (GFR) in a subgroup of nephrotic children, likely secondary to hypovolemia. The aim of this study is to validate the use of urinary potassium to the sum of potassium plus sodium ratio (UK/UK+UNa) as an indicator of hypovolemia in nephrotic syndrome, enabling detection of those patients who will benefit from albumin infusion. We prospectively studied 44 nephrotic children and compared different parameters to a control group (36 children). Renal perfusion and glomerular permeability were assessed by measuring clearance of para-aminohippurate and inulin. Vaso-active hormones and urinary sodium and potassium were also measured. Subjects were grouped into low, normal, and high GFR groups. In the low GFR group, significantly lower renal plasma flow (p = 0.01), filtration fraction (p = 0.01), and higher UK/UK+UNa (p = 0.03) ratio were noted. In addition, non-significant higher plasma renin activity (p = 0.11) and aldosteron (p = 0.09) were also seen in the low GFR group. A subgroup of patients in nephrotic syndrome has a decrease in glomerular filtration, apparently related to hypovolemia which likely can be detected by a urinary potassium to potassium plus sodium ratio > 0.5-0.6 suggesting benefit of albumin infusion in this subgroup. What is Known: • Volume status can be difficult to assess based on clinical parameters in nephrotic syndrome, and albumin infusion can be associated with development of pulmonary edema and fluid overload in these patients. What is New: • Urinary potassium to the sum of urinary potassium plus sodium ratio can accurately detect hypovolemia in nephrotic syndrome and thus identify those children who would probably respond to albumin infusion.